
DETERMINING WHEN A STRUCTURE IS A NESTED RELATION

Patrick C. Fischer and Dirk Van Gucht

Box 1679B, Vanderbilt University, Nashville, TN 37235

Abstract

Unnormalized relations permit components of
tuples to be relation instances themselves instead of
atomic values. Such structures do not always
represent the restructuring of a flat (1NF) relation.
It is shown that for one-level structures (nesting is
permitted only over sets of attributes) there is a
polynomial time algorithm to determine whether the
structure is the result of restructuring a flat relation
with a sequence of NEST operations.

1. Introduction

Most work on the relational model of Codd [Cod]
has involved the first normal form (INF)
assumption, i.e., that all elements of a tuple of a
relation are atomic values. However, difficulties of
modelling the real world using 1NF have led to
investigations of ways of relaxing 1NF while
retaining much of the advantages of the relational
model. Generalizations have proceeded in two
directions: allowing null values and allowing richer
structures as entries in a tuple, e.g., a data item
might itself be a relation.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and ita date appear, and notice is given that copy.
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a See and/or special permis-
sion from the Endowment.

Early work in the second direction by Makinouchi
has led to the concept of nesting [Mak]. This W&S

later studied by Jaeschke and Schek for one-level

nesting [JS] over a single attribute and by Thomas
and Fischer [TF,Tho] in a more general setting,
Kambayashi, Tanaka and Takeda considered
nesting (called .row-nest. in KTT]) as well as
other related operators for restructuring relations
without loss of information. Abiteboul and Bidoit
considered multi-level nesting under very strong
conditions so that the unnested attributes of a
relation would be a key for the relation [AB]. They
also permited null values. Roth, Korth and
Silberschatz have used similar assumptions in their
work but do not permit null values IRKS].

We wish to study non-1NF relations under as few
assumptions as possible. For example, the
assumptions in [AB] and [RKS] are sufficient, but
not necessary, to guarantee that all NEST
operations on the same level commute. A complete
characterization of the permutability of one-level
nesting is given by the authors in [FVl] and an
efficient algorithm for detecting this condition is
given in [FVB]. In this paper we will not assume
that two different NEST operations necessarily
commute.

We present an informal overview of our subject
before giving the formal development. A structure
(called ‘nested relational structure’ in [TF]) is
simply an unnormalized relation scheme and
instance, i.e., a relation in the original sense of
[Cod]. In a structure, elements of a tuple may
either be atomic or may be relat,ions, which
themselves need not be in 1NF.

Proceedings of VLDB 85, Stockholm 171

Example 1: An example of a structure is shown in
Figure 1.

FATHER (SON SON-HONEY*) l FATHER-HOBBY*

--

fl Bl <hi, h23 fh2, h43
82 Ih33

12 63 <hi, h33 {hi3
84 Ch43

Figure 1

We shall use the term relation or flat relation to
mean a 1NF relation, i.e., all data items in tuples
are atomic. A relation is, of course, a special case of
a structure. We allow NEST (u) and UNNEST (p)
operations on any structure; formal definitions are
presented below. Essentially, nesting on a set of
objects Y collects into sets those subtuples over Y
which agree on all values outside of the nesting
attributes Y. Unnesting will reverse this process.

Example 2: Consider the flat relation r2 shown in
Figure 2. A tuple (p,c) belongs to r2 if p is a natural
parent of child c. In Figures 3 through 6 below we
show r3 = ~PmENT(r2h r4 = ~cHnD(r2h
rg = %HILD("P,4RENT('& and
rc = upmENT(uCHLD(r2)) respectively.

PARENT CHILD PARENT* CHILD
----------c--- ---------------

Pl cl <pl,p23 cl
Pi c2
P2 cl {pl,p23 ca
P2 c2
Pi c3 <pl.p33 c3
P3 c3
P4 c4 ip4,p63 c4
P5 c4

Figure 2 Figure 3

PARENT CHILD*

PI {cl. c2, ~33
P2 {cl.c23

G33
<Cl3

<cl)

Figure 4 Figure 6

PARENT’ CHILD*

<pi3 <cl,c2,c33
<p23 icl,c23
Ip33 Cc33
<p4.p53 k43

Figure 6

PARENT’ CHILD*

tpl,p23 kl,c23
<pi, p33 (c33
<p4, p63 ic4)

PARENT CHILD'

Pi
P2
Pl

z
P5

<cl.c23
<cl, c23
Ic3)
ic3)
k43
Ic4)

Figure 7

This example illustrates that nesting does not
necessarily commute. Furthermore, notice how
subtle semantic relationships existing between
parents and children can be highligthed when we
use structures with set-valued entries. This suggest
that the 1NF assumption may be too strong for
database design.

Between relations and arbitrary structures there
are many classes of structures; we discuss two here.
A normalization-lossless (NL) structure is a
structure that can be fully unnested to a relation
and recreated from the flat relation using only legal
NEST and UNNEST operations. This was the main
class studied in [TF, Tho]. Intuitively, by
normalizing such a structure (i.e., bringing it to
lNF), no information is lost. Clearly, the class of all
structures and the class of NL structures are each
closed under NEST and UNNEST operations.

Example 3: The structure r, = pPARENT+(r5)
shown in Figure 7 is an example of a NL structure.
Figures 2 through 6 also depict NL structures.

Example 4: An example of a structure rs which is
not a NL structure is shown in Figure 8 (cf. [Mak]).
A tuple (T,A) belongs to ra if A is the area of the
triangle T.

172

POINT* AREA

(O.O),
1 1 (2.01, 1

(0.1)

POINT8 AREA --------------- --------------- (O.O), (O.O),
(1.01, (1.01,

i I i I (0,2), 1 (0,2), 1
(2,0), (2,0),
(0.1) (0.1)

Figure 8 Figure 9

The reader is invited to verify that
+OINT(~POINT*(r8)) is the structure r9 shown in
Figure 9. This example illustrates that information
can be lost through normalization, a situation which
clearly should be avoided.

A nest.ed relation is a structure which can be
obtained from a relation using only legal NEST
operat.ions. All structures considered in Example 2
are examples of nested relations. The structures
used in (AB] and the ‘partitioned-normal-form
relations. discussed in (RKS] are a proper subclass
of the class of nested relations. Nested relations can
often provide a succint representation of flat
relations and can be a useful alternative to vertical
decomposition in dea.ling with update and other
anomalies (cf. [KTT, FVl, FV2, FV3)).

While the class of nested relations is obviously
closed under NEST operations, it is easy to show
they are not closed under UNNEST. First we
observe that the structure r, in Figure 7 above is a
NL structure which is not a nested relation. Since
unnesting r, produces the relation r2 in Figure 2, we
see that if r, were a nested relation it would be
equal to r4, which is not the case. From the
definition of r, in Example 3 we see that an
UNhEST operation on r5, a nested relation,
produces r,, which is not a nested relation.

The question naturally arises as to when a given
structure is in fact a nested relation. This question
is obviously recursively solvable in exponential time
since one need only unnest the structure to a flat
relation and try all possible legal renesting
combinations, comparing each result with the
original structure. Thus, we are interested in

whether a polynomial-time algorithm exists. We are
able to do this for the special case of one-level
nested relations, i.e., structures where nesting is
done only over sets of basic attributes. In this cl~s,
elements of a tuple are either atomic or may be 1NF
relations.

In our development we will introduce a
generalization of the notion of functional
dependency which appropriately deals with the
effects of nesting. We will show that the order of
nesting creates a %race. of these strong functional
dependencies. From this trace one can gain
information about sequences of nest operations
which could recreate the given structure.

2. Basic Concepts

In order to formalize the notion of structures, we
need the auxiliary concept of scheme. Intuitively, a
scheme specifies the underlying frame of a structure.

Let U denote the universe of attributes.

A scheme R and its set of underlying attributes,
attr(R), is defined recursively by:

1. If R is a finite subset of U then R is a
(flat) scheme and attr(R) = R.

2. Let X be a flat scheme and Y,,...,Y
schemes such that attr(Xi
attr(Yr),...,attr(Y,) are pairwise disjoint,
then R = X U {Y,,...,Y,} is a

scheme, and
attr(R) = X U (if, attr(yi)).

Let R be a scheme, then A(R) = R n U is
called the set of (basic) attributes of R and
H(R) = R - A(R) is called the set of higher
order objects of R.

As a.n example, let U = ABCDEF. (Note that we
are adopting the well-known but imprecise
convention of sometimes representing sets by
concatenating their members and omitting outside
braces and also using concatenation to represent set
union.) Then for the scheme
R = {A, B, {C, D), {E, {F))l, we have
A(R) = AB and H(R) = {{C, D}, {E, {F}}}.

173

The reader may note the ambiguity in whether the
set {C,D} refers to the set CD of two basic
attributes or to a single higher order object. In [TF]
and [RKS) this ambiguity is resolved by adding
.rules’ to the formal system which explicitly name
the higher order objects. In [AB] and FTT] this
ambiguity is resolved by treating a scheme as a
string rather than a set of objects. We choose to
resolve this ambiguity, when necessary, by tagging a
set or a variable with a superscript ‘*’ to indicate
that it represents a higher order object. Thus, if we
write {C, D}* we refer to a member of H(R), but if
we write {C, D} or CD we refer to a set of two
att,ributes. When context makes the meaning clear,
we omit, the I*‘, e.g., ‘let M be a member of H(R)‘.
We shall tend to use capital middle letters of the
alphabet (e.g., M, N) to represent such variables.

We are now able to define structures (instances)
over a scheme R. We assume each attribute
A E U has a set of values associated with it,
called the domain of A and denoted dam(A).

Let R be a scheme. The set of structures over R,
denoted str(R.), is recursively defined by:

I. If R is a flat scheme, then r is in str(R) if
r is a finite nonempty set of tuples over
R, where a tuple t over R is a mapping

2. If R is a scheme, then r is in str(R) if r is
a finite nonempty set of tuples over R,
where a tuple t over R is a mapping

into
such
each

A E A(R) and t(M) E str(M) for
M E H(R).

We now define the NEST and UNNEST
operators. First, let t be a tuple over scheme R and
X C R. The X-value of t, denoted t[q, is the
restriction of the mapping t to X. Note that some
members of X may be higher order objects.

Let r be a structure over scheme R and let
Y C R. Then vy(r) is a structure over

(R - Y)Y* such that a tuple v E uy(r) if and
only if:

1. there exists a tuple t E r such that
t@ - y] = v(R - r] and

2. v(Y’) = { t’M 1 t’ E r and
t’[R - yl = v@ - yl }.

pt s be a stucture over scheme S and let
Y E H(S). Then ry*(s) is a structure over

(S - Y*)Y such that t E pY*(s) if and only if
there exists a v E s such that
tP - Y*]

tuple
= v[S - Y*] and tM E v(Y*).

3. Strong Functional Dependencies

Let r be a structure over scheme R. Let V c R,
W C H(R), and Z C R. Furthermore let
vnw=g. Then r satisfies the strong
functional dependency (SFD) V<W> -> 2 if
and only for any two tuples tl, t2 E r such that

%M = t2M and tl[M] n t2[M] + # for each
M E W, we have t,[Z] = t,JZ].

When W = # , a strong functional dependency
is nothing but an ordinary functional dependency
(FD) and we shall use standard FD notation /Ull].

Example 5: The structure rlo shown in Figure 10

does not satisfy the SFD A<B*> --> C.

A B’ C

Figure 10

Notice however that rlo satisfies the SFD

AB* -> c.

Remark 1: Let r be a structure over scheme
R. Let V, Z C R, and Y* E W C H(R). If r
satisfies the SFD V<W> -> Z then r satisfies
theSFD VY’<(W-Y*)> -> Z.

The proof is immediate from the definition of a
SFD. The converse does not hold, cf. Example 5.

174

Our theory uses four basic results concerning Y, c
and SFDs. The first three were proved in [TF].

Lemma 1: Let r be any structure over scheme R
and let Y C R. Then

cy*b#) = r

Lemma 2: Let s be a structure over scheme S and
let M and N E H(S). Then

P&&N = P&M(S))*

Remark 2: In view of Lemma 2, the result of
unnesting on more than one higher object is
independent of the order of unnesting. We therefore
extend our notation so that

'M1M2...Mk@) = 'Mk("Mk~l- bM1(sb*‘)

where s is a structure over S and
M,M,...M, c H(S).

Lemma 3:

a. Let r be a structure over scheme R and let
Y C R. Then (R - Y) -> Y* holds in 9(r).

b. Let s be a structure over scheme S and let
Y* E H(S). Then (S - Y’) -> Y* holds in s
if and only if I&*(S)) = s.

Lemma 4:

a. Let r be a structure over scheme R. Let X, Y,
Z C R and let W C H(R). Then r satisfies
xY<w> -> Z if and only if uY(r) satisfies

x<y*w> -> z.

b. Let s be a structure over scheme S. Let X,
z c s, let Y* E H(S) and
W c (H(S) - Y’). Then s satisfies
X<Y*W> --> Z if and only if +*(s) satisfies
xY<w> --> z.

Proof:

a. If r does not satisfy XY<W> -> Z then
there exist t,, t2 E r such that
tl[XYI = t2[XYl, tr[M] fl t&M] + # for each
M E W, and t,[Z] + tJZ]. Hence in q,(r) there

exist two distinct tuples VI, v2 such that

?M r= v2M, tlM E vlTy*] n v2[1’*], and
vlM n vzM # # for each M E W, and

vl[Z] + v,[Z] which violates X<Y*W> -> Z
in vy(r).

If yy(r) does not
there exist vl,

VlM = qq’

satisfy X<Y*W> -> Z then

v2 E $4 such that

vIIY*l n v21y*l #= 8, and
v,[M] fl v2M #= # for each M E W and
vl[Z] # v2[Z]. I3y Lemma 1, pY*(uY(r)) = r and

we therefore find t,, t2 E r such that

%M = t2M, tlM = Q’l,
tip] fl t2b] #= # for each M E W, and
tl[Z] + t,[Z], which violates XY<W> -> Z.

b. If s does not satisfy X<Y’W> --> Z then
there exist vl, v2 E s such that VIM = v2M,

vlTu*l n v2Vl + f4 vpl n v2P41 fE 9 for
each M E W, and vl[Z] #= v2[Z]. Clearly in
ry*(r) there will be two tuples tI, t2 such that

SM = tpl, 0 = t2M,
tpl n Q41 + $, and t,[Z] #= t,[Z], which
violates XY<W> -> Z in Roy+.

If lrY*(s) does not satisfy XY<W> -> Z there
exist tr, t2 E +*(s) such that tIM = tzM,

GM = t2M, t,[M] n t2[Mj + 8 for each
M E W, but qz1 #= qz1* Since
t,[Z] + t2[Z] these tuples must have come from
two different tuples v1 and v2 E S. Furthermore,
these tup1e-s satisfy VIM = qq,

+M E v,rY*I n v2[Y*19 vJV n v21Ml #= B
for each M E W, but v,[Z] + v2[Z], which

violates X<Y*W> -> Z in 5.

4. One-Level Nested Relations

Let S = XY;...Y: be a scheme, i.e., X = A(S)

and Yt...Y: = H(S). We say that S is a one-level
scheme if Yi is a flat scheme for each i, 1 < i < n.
Let s be a structure over a one-level scheme SyWe
say s is a one-level nested relation (1NR) if and only
if there exists a relation r over attr(S) and a

175

permutation (i,,i,,..., in) of the integers 1,2,...,n such
that

s = yyn lLyyil(+b
*

Remark 3: It follows from Lemma 1 and Remark
2 that r = PH(S)(S)*

The following theorem gives a characterization of
a onelevel nested relation in terms of the SFDs
holding in the structure.

Theorem 1: Let s be a structure over a one-level
scheme S = XY;...Yz. Let si = p’y+ Y*

_*
(S)

for 1 <, i 5 n. Thus, s, is the normaliz% r$&n
obtained by completely unnesting 8, i.e.,

% = Pi. Then

’ = u~n(u~n~l(~~~(u~n~i+l~s~~~~~~))

if and only if

8 satisfies XYf...Yi-l<Yi+l...Y:> -> Y;
for each j, n-i+1 5 j <, n.

Proof: The proof will be by induction on i.

@&: i = 1. Then from Lemma 3b

s satisfies XYI...Yz-r -> Yz if and only if

s = qryy = qq.

Induction Step: Assume that for all m, 1 5 m <
n, the theorem holds, i.e.,

S = “y,(“ypJ...‘“l. m+l(smb..))

if and only if

s satisfies Yr...Y;-,<Y;+l...Yi> -> Yl
for each j, n-m+1 5 j <_ n.

Let i = m + 1. We have to prove that:

S = “y,(“y, lL.(“yn m+l(u~n-m(s’+,)))...)) -

if and only if s satisfies the SFDs

xY;...Y;w,<Y;+l...Y:> -> Y’
for n-m 5 j < n.

We have:

8, = uy nmm(sm+l) and

8 = “y,(~yJ-.(yy, m+l(smb..)).
This holds if and only if sm satisfies the SFD

xy:...y~-,,yn-m+l...yn -> y;.m, (1)
by Lemma 3b, and s satisfies the SFDs

xY;...Y;,<Y;+l...Y;> --> Yi’
for each j, n-m+1 5 j 5 n, by the induct.ic)ll
hypothesis. TO complete the proof we need OIII\
observe by repeated application of Lemma 4b th:lf
(1) holds if and only if s satisfies the SFD

xY;...Y;eml<Y;mm+I...Y:> -> Y*
n-m’

Theorem 2: Let s be a structure over a one-lcvchl
scheme S = XYI...Yi. The following statements
are equivalent:

1. For any permutation (i,,$,..., in) of the
integers 1,2,...,n

2. The structure s satisfies the SFDs

x<Y;...Y;-,Y;+,...Y;> --> Y’
for each j, 1 5 j 5 n.

3. For any two tuples vr, v2 E s wit,h

VIM = v2M there exist indices p and
q, 1 <, p < q 5 n, such that

Proof: 1 =, 2. Since s =
y~~(-~vy~+~(vy~ l(...(vyl(~~.(cH~s)o))...))...) for each

j, 1 5 j 5 n-, we know’ from Theorem 1 that s
satisfies the SFD

x<Y;...Y;mlY;+,...Y;> -> Yf
for each j, 1 < j <_ n.

2 => 1. Consider any permutation

176

(i,,i, ,..., in) of the integers 1,2,...,n. Since s satisfies
the SFD

x<Y;...Yfe*Y;+I...Y:> -> Y;
for each j, 1 2 j < n, by Remark 1 s also satisfies
the SFDs

2 <=> 3. Follows immediately from the
definition of SFDs.

5. A Polynomial-Time Algorithm for Identifyinq
Nested Relations

In this section we will develop an algorithm to test
whether a structure over a one-level nested scheme
is a onelevel nested relation. We first prove two
technical lemmas.

Lemma 5: Let s be a structure over a one-level

scheme XZi...YL. Let si be as in Theorem 1, for 2
< i < n and let k = n-i+l. If s satisfies the
@Ds -

.+ *
m I-‘yk-I<y k+l l k.* k+2”’

and

xY;...Y;-I<Y;Y;+2...Y;> --> Y*k+l
then v yk+l(uyk(si)) = u~k~u~k+l(si))

m: By Lemma 4b sim2 = cy* y+ II... k+2(s)
satisfies the SFDs

* l *

xyI-.yk.l<y k+l >Yk+2’..Yn --> Y; (2)

and

,* l r* l

xk y..yk-I<J k>Yk+2”.Y,, --> y k+l (3)
By Remark 1 sk2 also satisfies the SFDs

xY;...Y;-,Y*,+,Yk+,...Y, --> Y;, (4)

8. = uy (vY (si)) since sk2 satisfies the SFDs

(ir and ($+land’ sim2 = uyk(~yk+l(si)j since sc2

satisfies the SFDs (3) and (4). Hence we obtain the
desired equality.

Let s be a structure over one-level scheme
XY;...Yi. Let P = (i,,i, ,...iJ be a permutation of
the integers 1,2 ,..., n. (Y. ,Y. ,..., Y.

‘1 ‘2 ‘II
) is called a

nesting sequence for r if
uyi LbYi2(UYi b+.qqo()))M = s-

I! 1

Lemma 6: Let s be a INR over scheme
S = xY;...y:. If for some j the SFD

X<H(S) - Yj’> -> YI holds in s then there
exists a nesting sequence of s starting with Yj.

w: Since s is a nested relation there exists a
nesting sequence for s. Without loss of gcneralit.y,
we assume s=
~~z~(...~~z~+,(u~~(u~~ ,(...~~~(‘“(~)(s))...)))...). where

V,v..,Z,l is a perxAtation of {Y1 ,..., Y,}. If Yj =
Z,, we are done. Otherwise, Yj = Zk+l for some k.
We will show that r, -_
~~“(...‘Zk(~Zk+I(~Zk~~~...VZ1o(S))...~~~...~~ BY

Theorem 1 we know that s satisfies the SFD

XZ;...Z;el<Z* k+1z;+2...z:> --> z;.
By our hypothesis s satisfies the SFD

l L l * l
X<Z,...Zk-1ZkZk+2...z”> -->

l
z k+,

hence by Remark 1 s satisfies the SFD

Let
$3. = I
9. = I

Xz;...Z;-*<Z;Z;+2...z;> -> ZIk+,.
j= n-k+l. Consider

“Z:z~~I...Z*k+lz~(s). Clearly,

uZ k~I(~zk,(...(~z,(~Ho(s)))...)~. BY Lemma 5

we know that u Zk+l(uZk(si)) = uZk(uZk+,(si))’

Hence, s=
~znL~zk(~zk+I(~zk I(...~~z,(‘H(s)(s))...)))....). We can
apply the same technique repeatedly until Yj
becomes the first u.

and

l l *
xY,...Yk-1YkYk+2...Yn

*

--’ ’ k+l (5)
Recall that ccy* k+1Y;h2J = si. By Theorem 1

177

We now use Theorem 1 and Lemma 6 to develop
our algorithm.

Input: a a rtroctare over one-10~01 rchrma
S = m;...Y’,.

output:
true if a ir 8 onr-level
aratrd relation.

false if II ir not 8 one-level
neeted relation.

Alporitb: 1NR

function 1NR (a, S) : boolean;
begin

N := H(S);
v x; :=
OK l o far := trur;

whxle-(K # d 1 and OK-oo-far do
begin

find 2* E 1 much that
w-z*> --> Z’ holds in 6;

if ouch Z* does not exist
then

OK ro-far := folee
elre-
begin

N := u - z *.

V ; :=v u 2;
end

end;
INR : = OK-no-far

end; iof lNR1

Theorem 3: Let s be a structure over a one-level
scheme S = XYy...Y:. Algorithm ll% correctly
determines whether s is a one-level nested relation.

ProoT: The proof will be by induction on n.

&&: n = 1. Then S = XY:. By Lemma 3b,

S = uYl(lryt(s)) if and only if X --> Y; holds in

s. The algorithm 1NR clearly covers this case.

Induction St.q: Assume Algorithm 1NR is correct
for structures having n-l higher order objects.
From Theorem 1 we know that if s is a 1NR then

there must exist a Z* E H(S) such that s satisfies
X<H(S) - Z8> --> z’. If such a Z* does not
exist we know that s is not a nested relation over
S. In this case algorithm 1NR halts with result false.
Otherwise, by Lemma 6 we know that if s is a
nested relation there exists a nesting sequence of s
starting with Z. We can therefore choose Z as the

first set to nest over. We now wish to treat Z* as
an attribute rather than a higher order object. For
simplicity, let Z* = Y:. Furthermore, let

x’ = Xi?. In this setting s is a structure over the
one-level scheme $3’ = XYi...Y:. As a consequence
of the above reasoning, s is a 1NR over S if and
only if s is a 1NR over S’. Since S’ has only n-l
higher order objects, the induction hypothesis means
that the Algorithm would give the correct answer if
started on (s,S‘). But when the Algorithm started on
(s,S) reaches the while statement the second time V
and W contain the same values that the Algorithm
started on (s,!?) would have the first time it reached
the while statement. From this point the two cases
run identically and give the same answer.

We claim the time complexity of Algorithm 1NR
is O(n2p2(m+w2)), where m = bwl,
n = IH(S P = IsI, and
Q = maxt E z, M E ,.,(,)(lt(M))). Notice that
this is a crude upper bound.

6. Discussion and Future Research

The main contribution of this paper is a
characterization of one-level nested relations in
terms of a new family of dependencies, the strong
functional dependencies. As a consequence of this
characterization we were able to develop a
polynomial-time algorithm to test whether a
structure defined over a one-level scheme is a one
level nested relation. In this section we ment,ion
some open problems and directions for future
research related to questions raised in this paper.

Multi-level Nested Relations

In this paper we only dealt with structures defined
over one-level schemes. A natural question is: is it
possible to extend our results to structures defined
over an arbitrary multi-level scheme, i.e., can we
find a simple characterization for muhi-level nested
relations?

178

Subclasses of Nested Relations

Roth, Korth and Silberschatz introduced a special
class of nested relations, the so called PNF
(partitioned normal form) relations IRKS]. A
structure s over scheme S is a PNF relation if and
only if s satisfies the FD A(S) --> S and for all
v E s and all M E H(S), v(M) is a PNF
relation. It can be shown that a PNF relation is a
nested relation but not conversely. The structure in
Example 1 is a PNF relation, while r5 in Figure 5 is
a nested relation but not a PNF relation. PNF
relations are closed under unnesting, a desirable
property since in general nested relations are not
closed under unnesting (cf. Example 3). For one
level nested relations, we have shown that the class
in which the nesting is fully permutable is the
largest subclass of 1NR which is closed under
unnesting.

Attribute Addition

Consider the structure ra defined over scheme

POINT*AREA of Example 4. We observed that
+,olNT(~PorNT*(rz)) + r8. The remon is that ra

violates the FD AREA --> POINT*. Suppose
however that for some reason we still would like to
normalize ra. The only reasonable thing to do, if we
want to avoid information loss, is to introduce an
extra attribute I and extend r8 to a structure ri over

scheme I,AREA,POINT* such that ri satisfies the

FD I AREA --> POINT* and ra can be obtained

as a projection of reg. A possible extension of r8 is
shown in Figure 11. Clearly such an extension is not
unique.

I POINT*

(O,O) I
1

L 1
(1.01, 1
co,21

This example illustrates the coupling between
attribute addition and horizontal decomposition. It
would be interesting to know the role of NEST and
UNNEST operators with regard to this problem.

NormaIization and SFDs

The following example is from Ullman ([ull]
Example 5.10). Consider the scheme
R = CITY,ST,ZIP. A tuple (c,s,t) is in a relation
over R if city c has a building with street address s,
and z is the zip code for that address in the city. It
is assumed that the nontrivial dependencies are:

ZIP -> CITY

CITY ST-> ZIP

It is well known that there exists no dependency-
preserving decomposition of R into schemes which
are in BCNF with respect to the above set of
dependencies. Consider the relation r12 shown in
Figure 12; rr2 satisfies the given FDs.

CITY ST ZIP

cl 81 21
cl 82 zl
cl 83 21

cl 84 t2
cl 86 ra

ca 81 22
c2 84 23
c2 86 23

Figurr 12

Consider the structure rlz = u&r) over the

scheme CITY,ST*,ZIP shown in Figure 13; r13
satisfies the SFDs

ZIP --> CITY ST+

CITY <ST*> --> ZIP

Figure 11

179

CITY ST* ZIP

cl {1rl,r2,r3) rl

cl Gl4,r63 22

c2 <61,64,06~ 23

Figure 13

Nesting on ST preserves the dependencies (if we
are willing to translate FDs into SFDs in the nested
relation). Furthermore, the update anomalies
apparent m r12 disappear in r13. There appear to
be many other cases where nested relations are a
good alternative to normal forms over flat relations
(cf. FV3]). Characterizing the situations where
nesting produces good database design could be very
worthwile.

BiblioPraphy

[AB] S. Abiteboul, N. Bidoit, ‘Non First Normal
Form Relations to Represent Hierarchically
Organized Data., ACM SIGACT/SIGMOD
Principles of Database Systems, 1084, 101-200.

[Cod] E.F. Codd, ‘A Relational Model for Large
Shared Data Banks., Comm. ACM, 136, (June
1070), 377-387.

[FVl] P.C. Fischer, D. Van Gucht, .Weak
Multivalued Dependencies’, ACM
SIGACT/SIGMOD Principles of Database
Systems,March 1084, 266-274.

[FV2] P.C. Fischer, D. Van Gucht, .Structure of
Relations Satisfying Certain Families of
Dependencies., Proc. of the 2nd Symposium on
Theoretical Aspects of Computer Science,
Saarbrucken, 1085.

FV3] P.C. Fischer, D. Van Gucht, ‘Some
Principles and Uses of Nested Relational
Structures. , Vanderbilt University, Technical
Report, February 1085.

[JS] G. Jaeschke, H.J. Schek, @Remarks on the
Algebra of Non First Normal Form Relations,,
ACM SIGACT/SIGMOD Principles of Database
Svstems. 1082. 124-138.

[KTT] Y. Kambayashi, K. Tanaka, K. Takeda,
9ynthesi.s of Unnormalized Relations Incorporating
More Meaninga, Information Sciences 20 (1083),
201-247.

(Mak] A. Makinouchi, .A Consideration of Normal
Form of Not-Necessarily-Normalized Relations in
the Relational Data Model’, Proc. 5th Int’l Conf. on
Very Large Databases, Japan, 1077, 447-453.

[RKS) MA Roth, H.F. Korth, A. Silberschatz,
#Theory of Non-First-Normal-Form Relational
Databases’, University of Texas at Austin,
Technical Report, January 1885.

[TF] S.J. Thomas and P.C. Fischer, .Nested
Relational Structures., In The Theory of Databases,
P. Kanellakis, ed., JAI Press, Inc., Greenwich, CT,
to appear.

[Tho] S.J. Thomas, .A Non-First-Normal-Form
Relational Database Model’, Ph.D. Dissertation,
Vanderbilt University, 1083.

[Ull] J. Ullman, Principles of Dat,abase Systems,
Computer Science Press, 1082.

