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Abstract 

Unnormalized relations permit components of 
tuples to be relation instances themselves instead of 
atomic values. Such structures do not always 
represent the restructuring of a flat (1NF) relation. 
It is shown that for one-level structures (nesting is 
permitted only over sets of attributes) there is a 
polynomial time algorithm to determine whether the 
structure is the result of restructuring a flat relation 
with a sequence of NEST operations. 

1. Introduction 

Most work on the relational model of Codd [Cod] 
has involved the first normal form (INF) 
assumption, i.e., that all elements of a tuple of a 
relation are atomic values. However, difficulties of 
modelling the real world using 1NF have led to 
investigations of ways of relaxing 1NF while 
retaining much of the advantages of the relational 
model. Generalizations have proceeded in two 
directions: allowing null values and allowing richer 
structures as entries in a tuple, e.g., a data item 
might itself be a relation. 
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Early work in the second direction by Makinouchi 
has led to the concept of nesting [Mak]. This W&S 

later studied by Jaeschke and Schek for one-level 

nesting [JS] over a single attribute and by Thomas 
and Fischer [TF,Tho] in a more general setting, 
Kambayashi, Tanaka and Takeda considered 
nesting (called .row-nest. in KTT]) as well as 
other related operators for restructuring relations 
without loss of information. Abiteboul and Bidoit 
considered multi-level nesting under very strong 
conditions so that the unnested attributes of a 
relation would be a key for the relation [AB]. They 
also permited null values. Roth, Korth and 
Silberschatz have used similar assumptions in their 
work but do not permit null values IRKS]. 

We wish to study non-1NF relations under as few 
assumptions as possible. For example, the 
assumptions in [AB] and [RKS] are sufficient, but 
not necessary, to guarantee that all NEST 
operations on the same level commute. A complete 
characterization of the permutability of one-level 
nesting is given by the authors in [FVl] and an 
efficient algorithm for detecting this condition is 
given in [FVB]. In this paper we will not assume 
that two different NEST operations necessarily 
commute. 

We present an informal overview of our subject 
before giving the formal development. A structure 
(called ‘nested relational structure’ in [TF]) is 
simply an unnormalized relation scheme and 
instance, i.e., a relation in the original sense of 
[Cod]. In a structure, elements of a tuple may 
either be atomic or may be relat,ions, which 
themselves need not be in 1NF. 
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Example 1: An example of a structure is shown in 
Figure 1. 

FATHER (SON SON-HONEY*) l FATHER-HOBBY* 

-------------------------------------------- 

fl Bl <hi, h23 fh2, h43 
82 Ih33 

12 63 <hi, h33 {hi3 
84 Ch43 

Figure 1 

We shall use the term relation or flat relation to 
mean a 1NF relation, i.e., all data items in tuples 
are atomic. A relation is, of course, a special case of 
a structure. We allow NEST (u) and UNNEST (p) 
operations on any structure; formal definitions are 
presented below. Essentially, nesting on a set of 
objects Y collects into sets those subtuples over Y 
which agree on all values outside of the nesting 
attributes Y. Unnesting will reverse this process. 

Example 2: Consider the flat relation r2 shown in 
Figure 2. A tuple (p,c) belongs to r2 if p is a natural 
parent of child c. In Figures 3 through 6 below we 
show r3 = ~PmENT(r2h r4 = ~cHnD(r2h 
rg = %HILD("P,4RENT('& and 
rc = upmENT(uCHLD(r2)) respectively. 

PARENT CHILD PARENT* CHILD 
----------c--- --------------- 

Pl cl <pl,p23 cl 
Pi c2 
P2 cl {pl,p23 ca 
P2 c2 
Pi c3 <pl.p33 c3 
P3 c3 
P4 c4 ip4,p63 c4 
P5 c4 

Figure 2 Figure 3 

PARENT CHILD* 

PI {cl. c2, ~33 
P2 {cl.c23 

G33 
<Cl3 

<cl) 

Figure 4 Figure 6 

PARENT’ CHILD* 

<pi3 <cl,c2,c33 
<p23 icl,c23 
Ip33 Cc33 
<p4.p53 k43 

Figure 6 

PARENT’ CHILD* 

tpl,p23 kl,c23 
<pi, p33 (c33 
<p4, p63 ic4) 

PARENT CHILD' 

Pi 
P2 
Pl 

z 
P5 

<cl.c23 
<cl, c23 
Ic3) 
ic3) 
k43 
Ic4) 

Figure 7 

This example illustrates that nesting does not 
necessarily commute. Furthermore, notice how 
subtle semantic relationships existing between 
parents and children can be highligthed when we 
use structures with set-valued entries. This suggest 
that the 1NF assumption may be too strong for 
database design. 

Between relations and arbitrary structures there 
are many classes of structures; we discuss two here. 
A normalization-lossless (NL) structure is a 
structure that can be fully unnested to a relation 
and recreated from the flat relation using only legal 
NEST and UNNEST operations. This was the main 
class studied in [TF, Tho]. Intuitively, by 
normalizing such a structure (i.e., bringing it to 
lNF), no information is lost. Clearly, the class of all 
structures and the class of NL structures are each 
closed under NEST and UNNEST operations. 

Example 3: The structure r, = pPARENT+(r5) 
shown in Figure 7 is an example of a NL structure. 
Figures 2 through 6 also depict NL structures. 

Example 4: An example of a structure rs which is 
not a NL structure is shown in Figure 8 (cf. [Mak]). 
A tuple (T,A) belongs to ra if A is the area of the 
triangle T. 
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POINT* AREA 

(O.O), 
1 1 (2.01, 1 

(0.1) 

POINT8 AREA --------------- --------------- (O.O), (O.O), 
(1.01, (1.01, 

i I i I (0,2), 1 (0,2), 1 
(2,0), (2,0), 
(0.1) (0.1) 

Figure 8 Figure 9 

The reader is invited to verify that 
+OINT(~POINT*(r8)) is the structure r9 shown in 
Figure 9. This example illustrates that information 
can be lost through normalization, a situation which 
clearly should be avoided. 

A nest.ed relation is a structure which can be 
obtained from a relation using only legal NEST 
operat.ions. All structures considered in Example 2 
are examples of nested relations. The structures 
used in (AB] and the ‘partitioned-normal-form 
relations. discussed in (RKS] are a proper subclass 
of the class of nested relations. Nested relations can 
often provide a succint representation of flat 
relations and can be a useful alternative to vertical 
decomposition in dea.ling with update and other 
anomalies (cf. [KTT, FVl, FV2, FV3)). 

While the class of nested relations is obviously 
closed under NEST operations, it is easy to show 
they are not closed under UNNEST. First we 
observe that the structure r, in Figure 7 above is a 
NL structure which is not a nested relation. Since 
unnesting r, produces the relation r2 in Figure 2, we 
see that if r, were a nested relation it would be 
equal to r4, which is not the case. From the 
definition of r, in Example 3 we see that an 
UNhEST operation on r5, a nested relation, 
produces r,, which is not a nested relation. 

The question naturally arises as to when a given 
structure is in fact a nested relation. This question 
is obviously recursively solvable in exponential time 
since one need only unnest the structure to a flat 
relation and try all possible legal renesting 
combinations, comparing each result with the 
original structure. Thus, we are interested in 

whether a polynomial-time algorithm exists. We are 
able to do this for the special case of one-level 
nested relations, i.e., structures where nesting is 
done only over sets of basic attributes. In this cl~s, 
elements of a tuple are either atomic or may be 1NF 
relations. 

In our development we will introduce a 
generalization of the notion of functional 
dependency which appropriately deals with the 
effects of nesting. We will show that the order of 
nesting creates a %race. of these strong functional 
dependencies. From this trace one can gain 
information about sequences of nest operations 
which could recreate the given structure. 

2. Basic Concepts 

In order to formalize the notion of structures, we 
need the auxiliary concept of scheme. Intuitively, a 
scheme specifies the underlying frame of a structure. 

Let U denote the universe of attributes. 

A scheme R and its set of underlying attributes, 
attr(R), is defined recursively by: 

1. If R is a finite subset of U then R is a 
(flat) scheme and attr(R) = R. 

2. Let X be a flat scheme and Y,,...,Y 
schemes such that attr(Xi 
attr(Yr),...,attr(Y,) are pairwise disjoint, 
then R = X U {Y,,...,Y,} is a 

scheme, and 
attr(R) = X U ( if, attr(yi)). 

Let R be a scheme, then A(R) = R n U is 
called the set of (basic) attributes of R and 
H(R) = R - A(R) is called the set of higher 
order objects of R. 

As a.n example, let U = ABCDEF. (Note that we 
are adopting the well-known but imprecise 
convention of sometimes representing sets by 
concatenating their members and omitting outside 
braces and also using concatenation to represent set 
union.) Then for the scheme 
R = {A, B, {C, D), {E, {F))l, we have 
A(R) = AB and H(R) = {{C, D}, {E, {F}}}. 
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The reader may note the ambiguity in whether the 
set {C,D} refers to the set CD of two basic 
attributes or to a single higher order object. In [TF] 
and [RKS) this ambiguity is resolved by adding 
.rules’ to the formal system which explicitly name 
the higher order objects. In [AB] and FTT] this 
ambiguity is resolved by treating a scheme as a 
string rather than a set of objects. We choose to 
resolve this ambiguity, when necessary, by tagging a 
set or a variable with a superscript ‘*’ to indicate 
that it represents a higher order object. Thus, if we 
write {C, D}* we refer to a member of H(R), but if 
we write {C, D} or CD we refer to a set of two 
att,ributes. When context makes the meaning clear, 
we omit, the I*‘, e.g., ‘let M be a member of H(R)‘. 
We shall tend to use capital middle letters of the 
alphabet (e.g., M, N) to represent such variables. 

We are now able to define structures (instances) 
over a scheme R. We assume each attribute 
A E U has a set of values associated with it, 
called the domain of A and denoted dam(A). 

Let R be a scheme. The set of structures over R, 
denoted str(R.), is recursively defined by: 

I. If R is a flat scheme, then r is in str(R) if 
r is a finite nonempty set of tuples over 
R, where a tuple t over R is a mapping 

2. If R is a scheme, then r is in str(R) if r is 
a finite nonempty set of tuples over R, 
where a tuple t over R is a mapping 

into 
such 
each 

A E A(R) and t(M) E str(M) for 
M E H(R). 

We now define the NEST and UNNEST 
operators. First, let t be a tuple over scheme R and 
X C R. The X-value of t, denoted t[q, is the 
restriction of the mapping t to X. Note that some 
members of X may be higher order objects. 

Let r be a structure over scheme R and let 
Y C R. Then vy(r) is a structure over 

(R - Y)Y* such that a tuple v E uy(r) if and 
only if: 

1. there exists a tuple t E r such that 
t@ - y] = v(R - r] and 

2. v(Y’) = { t’M 1 t’ E r and 
t’[R - yl = v@ - yl }. 

pt s be a stucture over scheme S and let 
Y E H(S). Then ry*(s) is a structure over 

(S - Y*)Y such that t E pY*(s) if and only if 
there exists a v E s such that 
tP - Y*] 

tuple 
= v[S - Y*] and tM E v(Y*). 

3. Strong Functional Dependencies 

Let r be a structure over scheme R. Let V c R, 
W C H(R), and Z C R. Furthermore let 
vnw=g. Then r satisfies the strong 
functional dependency (SFD) V<W> -> 2 if 
and only for any two tuples tl, t2 E r such that 

%M = t2M and tl[M] n t2[M] + # for each 
M E W, we have t,[Z] = t,JZ]. 

When W = # , a strong functional dependency 
is nothing but an ordinary functional dependency 
(FD) and we shall use standard FD notation /Ull]. 

Example 5: The structure rlo shown in Figure 10 

does not satisfy the SFD A<B*> --> C. 

A B’ C 

Figure 10 

Notice however that rlo satisfies the SFD 

AB* -> c. 

Remark 1: Let r be a structure over scheme 
R. Let V, Z C R, and Y* E W C H(R). If r 
satisfies the SFD V<W> -> Z then r satisfies 
theSFD VY’<(W-Y*)> -> Z. 

The proof is immediate from the definition of a 
SFD. The converse does not hold, cf. Example 5. 
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Our theory uses four basic results concerning Y, c 
and SFDs. The first three were proved in [TF]. 

Lemma 1: Let r be any structure over scheme R 
and let Y C R. Then 

cy*b#) = r 

Lemma 2: Let s be a structure over scheme S and 
let M and N E H(S). Then 

P&&N = P&M(S))* 

Remark 2: In view of Lemma 2, the result of 
unnesting on more than one higher object is 
independent of the order of unnesting. We therefore 
extend our notation so that 

'M1M2...Mk@) = 'Mk("Mk~l- bM1(sb*‘) 

where s is a structure over S and 
M,M,...M, c H(S). 

Lemma 3: 

a. Let r be a structure over scheme R and let 
Y C R. Then (R - Y) -> Y* holds in 9(r). 

b. Let s be a structure over scheme S and let 
Y* E H(S). Then (S - Y’) -> Y* holds in s 
if and only if I&*(S)) = s. 

Lemma 4: 

a. Let r be a structure over scheme R. Let X, Y, 
Z C R and let W C H(R). Then r satisfies 
xY<w> -> Z if and only if uY(r) satisfies 

x<y*w> -> z. 

b. Let s be a structure over scheme S. Let X, 
z c s, let Y* E H(S) and 
W c (H(S) - Y’). Then s satisfies 
X<Y*W> --> Z if and only if +*(s) satisfies 
xY<w> --> z. 

Proof: 

a. If r does not satisfy XY<W> -> Z then 
there exist t,, t2 E r such that 
tl[XYI = t2[XYl, tr[M] fl t&M] + # for each 
M E W, and t,[Z] + tJZ]. Hence in q,(r) there 

exist two distinct tuples VI, v2 such that 

?M r= v2M, tlM E vlTy*] n v2[1’*], and 
vlM n vzM # # for each M E W, and 

vl[Z] + v,[Z] which violates X<Y*W> -> Z 
in vy(r). 

If yy(r) does not 
there exist vl, 

VlM = qq’ 

satisfy X<Y*W> -> Z then 

v2 E $4 such that 

vIIY*l n v21y*l #= 8, and 
v,[M] fl v2M #= # for each M E W and 
vl[Z] # v2[Z]. I3y Lemma 1, pY*(uY(r)) = r and 

we therefore find t,, t2 E r such that 

%M = t2M, tlM = Q’l, 
tip] fl t2b] #= # for each M E W, and 
tl[Z] + t,[Z], which violates XY<W> -> Z. 

b. If s does not satisfy X<Y’W> --> Z then 
there exist vl, v2 E s such that VIM = v2M, 

vlTu*l n v2Vl + f4 vpl n v2P41 fE 9 for 
each M E W, and vl[Z] #= v2[Z]. Clearly in 
ry*(r) there will be two tuples tI, t2 such that 

SM = tpl, 0 = t2M, 
tpl n Q41 + $ , and t,[Z] #= t,[Z], which 
violates XY<W> -> Z in Roy+. 

If lrY*(s) does not satisfy XY<W> -> Z there 
exist tr, t2 E +*(s) such that tIM = tzM, 

GM = t2M, t,[M] n t2[Mj + 8 for each 
M E W, but qz1 #= qz1* Since 
t,[Z] + t2[Z] these tuples must have come from 
two different tuples v1 and v2 E S. Furthermore, 
these tup1e-s satisfy VIM = qq, 

+M E v,rY*I n v2[Y*19 vJV n v21Ml #= B 
for each M E W, but v,[Z] + v2[Z], which 

violates X<Y*W> -> Z in 5. 

4. One-Level Nested Relations 

Let S = XY;...Y: be a scheme, i.e., X = A(S) 

and Yt...Y: = H(S). We say that S is a one-level 
scheme if Yi is a flat scheme for each i, 1 < i < n. 
Let s be a structure over a one-level scheme SyWe 
say s is a one-level nested relation (1NR) if and only 
if there exists a relation r over attr(S) and a 
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permutation (i,,i,,..., in) of the integers 1,2,...,n such 
that 

s = yyn lLyyil(+b 
* 

Remark 3: It follows from Lemma 1 and Remark 
2 that r = PH(S)(S)* 

The following theorem gives a characterization of 
a onelevel nested relation in terms of the SFDs 
holding in the structure. 

Theorem 1: Let s be a structure over a one-level 
scheme S = XY;...Yz. Let si = p’y+ Y* 

_* 
(S) 

for 1 <, i 5 n. Thus, s, is the normaliz% r$&n 
obtained by completely unnesting 8, i.e., 

% = Pi. Then 

’ = u~n(u~n~l(~~~(u~n~i+l~s~~~~~~)) 

if and only if 

8 satisfies XYf...Yi-l<Yi+l...Y:> -> Y; 
for each j, n-i+1 5 j <, n. 

Proof: The proof will be by induction on i. 

@&: i = 1. Then from Lemma 3b 

s satisfies XYI...Yz-r -> Yz if and only if 

s = qryy = qq. 

Induction Step: Assume that for all m, 1 5 m < 
n, the theorem holds, i.e., 

S = “y,(“ypJ...‘“l. m+l(smb..)) 

if and only if 

s satisfies Yr...Y;-,<Y;+l...Yi> -> Yl 
for each j, n-m+1 5 j <_ n. 

Let i = m + 1. We have to prove that: 

S = “y,(“y, lL.(“yn m+l(u~n-m(s’+,)))...)) - 

if and only if s satisfies the SFDs 

xY;...Y;w,<Y;+l...Y:> -> Y’ 
for n-m 5 j < n. 

We have: 

8, = uy nmm(sm+l) and 

8 = “y,(~yJ-.(yy, m+l(smb..)). 
This holds if and only if sm satisfies the SFD 

xy:...y~-,,yn-m+l...yn -> y;.m, (1) 
by Lemma 3b, and s satisfies the SFDs 

xY;...Y;,<Y;+l...Y;> --> Yi’ 
for each j, n-m+1 5 j 5 n, by the induct.ic)ll 
hypothesis. TO complete the proof we need OIII\ 
observe by repeated application of Lemma 4b th:lf 
(1) holds if and only if s satisfies the SFD 

xY;...Y;eml<Y;mm+I...Y:> -> Y* 
n-m’ 

Theorem 2: Let s be a structure over a one-lcvchl 
scheme S = XYI...Yi. The following statements 
are equivalent: 

1. For any permutation (i,,$ ,..., in) of the 
integers 1,2,...,n 

2. The structure s satisfies the SFDs 

x<Y;...Y;-,Y;+,...Y;> --> Y’ 
for each j, 1 5 j 5 n. 

3. For any two tuples vr, v2 E s wit,h 

VIM = v2M there exist indices p and 
q, 1 <, p < q 5 n, such that 

Proof: 1 =, 2. Since s = 
y~~(-~vy~+~(vy~ l(...(vyl(~~.(cH~s)o))...))...) for each 

j, 1 5 j 5 n-, we know’ from Theorem 1 that s 
satisfies the SFD 

x<Y;...Y;mlY;+,...Y;> -> Yf 
for each j, 1 < j <_ n. 

2 => 1. Consider any permutation 
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( i,,i, ,..., in) of the integers 1,2,...,n. Since s satisfies 
the SFD 

x<Y;...Yfe*Y;+I...Y:> -> Y; 
for each j, 1 2 j < n, by Remark 1 s also satisfies 
the SFDs 

2 <=> 3. Follows immediately from the 
definition of SFDs. 

5. A Polynomial-Time Algorithm for Identifyinq 
Nested Relations 

In this section we will develop an algorithm to test 
whether a structure over a one-level nested scheme 
is a onelevel nested relation. We first prove two 
technical lemmas. 

Lemma 5: Let s be a structure over a one-level 

scheme XZi...YL. Let si be as in Theorem 1, for 2 
< i < n and let k = n-i+l. If s satisfies the 
@Ds - 

.+ * 
m I-‘yk-I<y k+l l k.* k+2”’ 

and 

xY;...Y;-I<Y;Y;+2...Y;> --> Y*k+l 
then v yk+l(uyk(si)) = u~k~u~k+l(si)) 

m: By Lemma 4b sim2 = cy* y+ II... k+2(s) 
satisfies the SFDs 

* l * 

xyI-.yk.l<y k+l >Yk+2’..Yn --> Y; (2) 

and 

,* l r* l 

xk y..yk-I<J k>Yk+2”.Y,, --> y k+l (3) 
By Remark 1 sk2 also satisfies the SFDs 

xY;...Y;-,Y*,+,Yk+,...Y, --> Y;, (4) 

8. = uy (vY (si)) since sk2 satisfies the SFDs 

(ir and ($+land’ sim2 = uyk(~yk+l(si)j since sc2 

satisfies the SFDs (3) and (4). Hence we obtain the 
desired equality. 

Let s be a structure over one-level scheme 
XY;...Yi. Let P = (i,,i, ,...iJ be a permutation of 
the integers 1,2 ,..., n. (Y. ,Y. ,..., Y. 

‘1 ‘2 ‘II 
) is called a 

nesting sequence for r if 
uyi LbYi2(UYi b+.qqo()))M = s- 

I! 1 

Lemma 6: Let s be a INR over scheme 
S = xY;...y:. If for some j the SFD 

X<H(S) - Yj’> -> YI holds in s then there 
exists a nesting sequence of s starting with Yj. 

w: Since s is a nested relation there exists a 
nesting sequence for s. Without loss of gcneralit.y, 
we assume s= 
~~z~(...~~z~+,(u~~(u~~ ,(...~~~(‘“(~)(s))...)))...). where 

V,v..,Z,l is a perxAtation of {Y1 ,..., Y,}. If Yj = 
Z,, we are done. Otherwise, Yj = Zk+l for some k. 
We will show that r, -_ 
~~“(...‘Zk(~Zk+I(~Zk~~~...VZ1o(S))...~~~...~~ BY 

Theorem 1 we know that s satisfies the SFD 

XZ;...Z;el<Z* k+1z;+2...z:> --> z;. 
By our hypothesis s satisfies the SFD 

l L l * l 
X<Z,...Zk-1ZkZk+2...z”> --> 

l 
z k+, 

hence by Remark 1 s satisfies the SFD 

Let 
$3. = I 
9. = I 

Xz;...Z;-*<Z;Z;+2...z;> -> ZIk+,. 
j= n-k+l. Consider 

“Z:z~~I...Z*k+lz~(s). Clearly, 

uZ k~I(~zk,(...(~z,(~Ho(s)))...)~. BY Lemma 5 

we know that u Zk+l(uZk(si)) = uZk(uZk+,(si))’ 

Hence, s= 
~znL~zk(~zk+I(~zk I(...~~z,(‘H(s)(s))...)))....). We can 
apply the same technique repeatedly until Yj 
becomes the first u. 

and 

l l * 
xY,...Yk-1YkYk+2...Yn 

* 

--’ ’ k+l (5) 
Recall that ccy* k+1Y;h2J = si. By Theorem 1 
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We now use Theorem 1 and Lemma 6 to develop 
our algorithm. 

Input: a a rtroctare over one-10~01 rchrma 
S = m;...Y’,. 

output: 
true if a ir 8 onr-level 
aratrd relation. 

false if II ir not 8 one-level 
neeted relation. 

Alporitb: 1NR 

function 1NR (a, S) : boolean; 
begin 

N := H(S); 
v x; := 
OK l o far := trur; 

whxle-( K # d 1 and OK-oo-far do 
begin 

find 2* E 1 much that 
w-z*> --> Z’ holds in 6; 

if ouch Z* does not exist 
then 

OK ro-far := folee 
elre- 
begin 

N := u - z *. 

V ; :=v u 2; 
end 

end; 
INR : = OK-no-far 

end; iof lNR1 

Theorem 3: Let s be a structure over a one-level 
scheme S = XYy...Y:. Algorithm ll% correctly 
determines whether s is a one-level nested relation. 

ProoT: The proof will be by induction on n. 

&&: n = 1. Then S = XY:. By Lemma 3b, 

S = uYl(lryt(s)) if and only if X --> Y; holds in 

s. The algorithm 1NR clearly covers this case. 

Induction St.q: Assume Algorithm 1NR is correct 
for structures having n-l higher order objects. 
From Theorem 1 we know that if s is a 1NR then 

there must exist a Z* E H(S) such that s satisfies 
X<H(S) - Z8> --> z’. If such a Z* does not 
exist we know that s is not a nested relation over 
S. In this case algorithm 1NR halts with result false. 
Otherwise, by Lemma 6 we know that if s is a 
nested relation there exists a nesting sequence of s 
starting with Z. We can therefore choose Z as the 

first set to nest over. We now wish to treat Z* as 
an attribute rather than a higher order object. For 
simplicity, let Z* = Y:. Furthermore, let 

x’ = Xi?. In this setting s is a structure over the 
one-level scheme $3’ = XYi...Y:. As a consequence 
of the above reasoning, s is a 1NR over S if and 
only if s is a 1NR over S’. Since S’ has only n-l 
higher order objects, the induction hypothesis means 
that the Algorithm would give the correct answer if 
started on (s,S‘). But when the Algorithm started on 
(s,S) reaches the while statement the second time V 
and W contain the same values that the Algorithm 
started on (s,!?) would have the first time it reached 
the while statement. From this point the two cases 
run identically and give the same answer. 

We claim the time complexity of Algorithm 1NR 
is O(n2p2(m+w2)), where m = bwl, 
n = IH(S P = IsI, and 
Q = maxt E z, M E ,.,(,)(lt(M))). Notice that 
this is a crude upper bound. 

6. Discussion and Future Research 

The main contribution of this paper is a 
characterization of one-level nested relations in 
terms of a new family of dependencies, the strong 
functional dependencies. As a consequence of this 
characterization we were able to develop a 
polynomial-time algorithm to test whether a 
structure defined over a one-level scheme is a one 
level nested relation. In this section we ment,ion 
some open problems and directions for future 
research related to questions raised in this paper. 

Multi-level Nested Relations 

In this paper we only dealt with structures defined 
over one-level schemes. A natural question is: is it 
possible to extend our results to structures defined 
over an arbitrary multi-level scheme, i.e., can we 
find a simple characterization for muhi-level nested 
relations? 
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Subclasses of Nested Relations 

Roth, Korth and Silberschatz introduced a special 
class of nested relations, the so called PNF 
(partitioned normal form) relations IRKS]. A 
structure s over scheme S is a PNF relation if and 
only if s satisfies the FD A(S) --> S and for all 
v E s and all M E H(S), v(M) is a PNF 
relation. It can be shown that a PNF relation is a 
nested relation but not conversely. The structure in 
Example 1 is a PNF relation, while r5 in Figure 5 is 
a nested relation but not a PNF relation. PNF 
relations are closed under unnesting, a desirable 
property since in general nested relations are not 
closed under unnesting (cf. Example 3). For one 
level nested relations, we have shown that the class 
in which the nesting is fully permutable is the 
largest subclass of 1NR which is closed under 
unnesting. 

Attribute Addition 

Consider the structure ra defined over scheme 

POINT*AREA of Example 4. We observed that 
+,olNT(~PorNT*(rz)) + r8. The remon is that ra 

violates the FD AREA --> POINT*. Suppose 
however that for some reason we still would like to 
normalize ra. The only reasonable thing to do, if we 
want to avoid information loss, is to introduce an 
extra attribute I and extend r8 to a structure ri over 

scheme I,AREA,POINT* such that ri satisfies the 

FD I AREA --> POINT* and ra can be obtained 

as a projection of reg. A possible extension of r8 is 
shown in Figure 11. Clearly such an extension is not 
unique. 

I POINT* 
---------------------------- 

(O,O) I 
1 

L 1 
(1.01, 1 
co,21 

This example illustrates the coupling between 
attribute addition and horizontal decomposition. It 
would be interesting to know the role of NEST and 
UNNEST operators with regard to this problem. 

NormaIization and SFDs 

The following example is from Ullman ([ull] 
Example 5.10). Consider the scheme 
R = CITY,ST,ZIP. A tuple (c,s,t) is in a relation 
over R if city c has a building with street address s, 
and z is the zip code for that address in the city. It 
is assumed that the nontrivial dependencies are: 

ZIP -> CITY 

CITY ST-> ZIP 

It is well known that there exists no dependency- 
preserving decomposition of R into schemes which 
are in BCNF with respect to the above set of 
dependencies. Consider the relation r12 shown in 
Figure 12; rr2 satisfies the given FDs. 

CITY ST ZIP 
------------------- 
cl 81 21 
cl 82 zl 
cl 83 21 

cl 84 t2 
cl 86 ra 

ca 81 22 
c2 84 23 
c2 86 23 

Figurr 12 

Consider the structure rlz = u&r) over the 

scheme CITY,ST*,ZIP shown in Figure 13; r13 
satisfies the SFDs 

ZIP --> CITY ST+ 

CITY <ST*> --> ZIP 

Figure 11 
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CITY ST* ZIP 
------------------ 
cl {1rl,r2,r3) rl 

cl Gl4,r63 22 

c2 <61,64,06~ 23 

Figure 13 

Nesting on ST preserves the dependencies (if we 
are willing to translate FDs into SFDs in the nested 
relation). Furthermore, the update anomalies 
apparent m r12 disappear in r13. There appear to 
be many other cases where nested relations are a 
good alternative to normal forms over flat relations 
(cf. FV3]). Characterizing the situations where 
nesting produces good database design could be very 
worthwile. 
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