
An Architecture and Data Model for CAD Databases

Alejandro P. Buchmann
Conoepoion Perez de Celis

/f&WAS - UNAM
Notiod University, Meszco

Apartado Podtd M-766
Merico, DF., 01000

Abstract

An architecture for a process-plant CAD
presented to serve as the framework for the
of a data model based on the notion of
aggregation. Structures, operations and
handling mechanisms are introduced.

system is
discussion
molecular
constraint

1.- Introduction

Computer Aided Design is emerging as one of the more
interesting areas of application for database technology.
Unfortunately, there still exists a divorce between the
engineering and the database communities. In spite of the
early efforts by the engineering community to apply
databases to CAD, these were often frustrated by the
prevailing state of the art in database technology. Since
the database community engaged in CAD-databases many
worthwile contributions have been made, but the current
literature reflects the present situation: there are
either position papers and requirement specifications
with little information about possible solutions or one
may find specific solutions to smaller subproblems, most
of them strongly influenced by VLSI-CAD. While VLSI-
CAD presents important problems there are many other
engineering disciplines with requirements that at least
match in complexity those of VLSI-CAD. Examples are
shipbuilding, chemical process-plant design and aero-
space-CAD, to name just a few.

We consider it necessary at this time to specify an over-
all systems architecture which truly reflects engineering
design practice. This is important since a CAD system
and its DBMS will only gain the acceptance of the
engineering community if it can support currently
accepted design practice. This design practice will have
an effect on the necessary modeling constructs, the
operators to support them, and the constraints imposed on
them. Therefore, we shall present first an overall archi-
tecture which was derived from the requirement analysis
of a fully integrated industrial scale process plant

design CAD system. The resulting architecture, which
reflects the diversity of the data to be handled and their
usage patterns, will have an effect on the modeling
constructs. Molecular objects IBATD84J will be used
and we shall present both a high level representation and
a possible implementation model for them. The imple-
mentation model is important since it will have a major
effect on the operators. Finally, a possible option for
constraint handling will be outlined. The molecular
aggregation model is being developed as part of a project
that aims at combining an object-oriented, message
passing language, TM IGERM84, BUCA851, with an object
oriented DBMS tailored for CAD requirements to form a
complete, object-oriented programming environment for
CAD.

2.- The application realm & the programming
environment

Our application realm is chemical process plant design.
It is beyond the scope of this paper to present a crash-
course in plant design. For a description of how the
engineering design proceeds in this application and how
this affects a CAD system the reader can consult
IRASH73, LEEM78a, LEEM78b, BUCABO, LEEM82j.
Reference to engineering design practice will be made as
we explain the architecture.

The programming environment is the TM language, which
has been described elsewhere IGERM84, BUCA85J. Here
we will only summarire its main features to give some
additional clues when reading the following sections.
TM is an object-oriented, message passing language with
data-typing and attribute inheritance. Everything in
TM is an object. Objects can be grouped into classes
and for each class there exists an administrator.
Administrators act upon the members of the class they
administer through responses. One of the convenient
features of TM is, that responses can be added to an
administrator without having to recompile the whole
administrator. TM is also extensible in the LISP-
sense, that is, new modules can be added and once they
are accepted the language is considered extended.

proceedings of VLDB 85, Stockholm 10s

3.-. Gross Architecture: The Databases --
ing to one criterion and any other clustering has to be
done through indexing mechanisms. By extracting portions
of the global database and structuring them according to
the prefered access paths one can improve response-time
markedly. The different levels of data-quality mentioned
in the previous section represent a third important reason
to create subdatabases.

Logically one can distinguish the following databases in
a plant design CAD system:

* a project-wide approved database;
* several workares databases:
* a data dictionary and control database;
* template and symbol databases;
* master catalogues and support databases;
* constraint bases.

So far we have only talked generically about subdatabases.
These are actually of three different types based on their
function:

The reasons for separating these databases is the nature
of the data and the kind of operations to be performed on
them. We have to handle large amounts of data and of
metadata; whether a database contains data or metadata
is the first criterion for distinction among the data-
bases that were listed above. Secondly, there is the
temporality of data, and, finally, the usage patterns, i.e.
read and write frequencies, number of users performing
accesses, on-line vs. batch updating, archival needs,
etc. In the remainder of this section we will analyse
the function of each kind of database and their interplay.
Figure 1 shows these databases and their interaction.

3 1 The project-wide approved database A-

The project-wide database is a monotonically growing
collection of approved data. In engineering terms,
approved data means data that have undergone several
levels of verification and authorization, usually by the
designer, the group leader, the project manager and the
client’s representative. Traditionally, data are always
kept on documents and these are legally binding. Any
change that is made to approved data has to be recorded
as a revision and the change has to be approved by the
same approval hierarchy. Since a design rarely jumps back
and forth between versions it is acceptable that old
versions be offloaded in order not to clutter the data-
base. Data that have not reached full approval have to be
marked so, in order that derived designs be also regarded
as tentative and subject to the final approval of the data
they were derived from. The sire of the schema is usually
a problem, since it comprises of the order of 10,888
attributes. Even if there were no data-quality limitations
to updating the full database, the sheer size of the
schema and the data volume in a large project make it
impossible to allow direct updates to the project-wide
database other than the integration of final designs.

32 Local and workarea databases A--

* local databases;
* workarea databases;
* scratchspaces.

We have opted for naming them differently to clarify
their different functions. However, it is possible to
view them all just as workspaces.

3.2.1 Local databases.- Local databases are extracts
from the project-wide approved database and their content
is defined by the application(s) a local database is
intended for. The objects to be extracted are determined
by the type of the application and by the instance of the
application. For example, if a condenser has to be
specified it is necessary to extract the already existing
data for the heatexchanger (such as heat-duty generated
in a process simulation) and also context data, such as
the physical properties of the fluids to be handled,
local parameters (e.g. atmospheric pressure) and other
project-related information. We call all the data re-
quired by an application its context. The local database
will be physically restructured based on access data kept
in the data dictionary to optimire performance for a
particular application.

The local database is a stable copy from which other
copies may be generated through simple file copying on
demand. This is much faster than carrying out a new
extraction from the large project-wide database. Second,
in the event a designer decides the design he/she has
produced over the last hour is completely messed up, he/
she can start fresh from the stable local database and
does not have to undo already committed changes. Finally,
it is important to keep in mind the different levels of
data quality and the verification process. Often it is
easyest to verily a design by reexecuting the consolidated
log of the designer’s transaction(s). The consolidated
log is the log reduced to only those updates which have a
lasting effect. If the supervisor discovers mistakes or
has a better idea he can put on hold parts of the design
he/she is checking. If this is done in the project-wide
database it can cause serious disruptions.

3.2.2. The workarea databases.- Workarea databases are
copies of the local database in which the designer
executes the necessary design actions. It is possible that
two or three designers work in parallel and they may
want each their own workarea. Workareas have to be

The length of interactive engineering transactions has
been used before as argument for generating subdatabases
(HASR82, LORR83). In addition to this rather powerful
reason one should not forget the usage patterns of the
data, since multiple applications have to access the same
data. No single database can efficiently support the
multiple access paths required. In an object-oriented
system, physical clustering will be possible only accord-

106

I 1
I I
I I

107

made compatible before integrating them into the
project-wide database.

3.2.3. Scratchspaces.- Often a designer has a wild idea
he/she wants to test. Since these ideas may depend on
previously executed design actions which are already
committed in the workarea, he/she may want to generate
one or more ‘what-if’ copies to test different design
alternatives. While workareas have to be compatible
among them, scratchspaces are usually discarded and at
most one is promoted as the correct solution.

3.3 The data dictionary ---

The data dictionary has a double function: during the
design of the CAD databases and during the usage of the
system. The database design support data should be
readily available to the database designer through a
database design tool. However, once the database design
is completed these data can be off-loaded and archived.

During operation the data dictionary has to contain the
information about data definition, for example units in
which the data are stored, the data usage information to
support the clustering algorithms which determine how
the data should be clustered in the local and workarea
databases, data mailing lists which are used to support
the update propagation mechanism and indicate whether a
user has to authorize an update or whether simple
notification is enough. The data dictionary will also
contain the data usage information about who has
checked out what object in order to be able to notify
the users of any change that affects them.

u Template database

The lack of unique industry-wide standards forces an
engineering company who is contracting for a specific
client to adopt that client’s conventions when elaborating
drawings or other documents. Each company has its own
policy as to format of titleblocks (summary information
about a piece of equipment which is included on a draw-
ing), notes, labels, pipe-numbers, etc. This requires a
special versatility of a CAD system and its database. A
possible solution is through the use of metadata which
define for each project the valid templates. These
templates can be customixed from a more general
template. For example, the titleblock for a pump may
consist of an equipment number, an equipment name, a
flowrate, the pressure difference between suction and
discharge and the specific gravity of the fluid. Some
companies want all this information on a drawing, others
prefer only equipment number and its service. If the
flowrate is included there is a variety of possible units in
which it can be displayed (ft**3/sec,gpm, bpd) which could
be different from the units in which the data are stored
in the database.

Another class of project specific templates, allthough
these are strictly graphical, is the set of allowable
symbols.

Allthough the template database and the data dictionary
both contain metadata, we consider it important to distin-
guish them conceptually: the metadata in the data
dictionary are fairly stable and reflect an engineering
company’s policies. Template data are project-specific
and have to be customized for each of an engineering
company’s clients. This distinction is important since a
major engineering company can have tens of projects
active at one time.

Q Catalogue and support databases

In chemical process plant design one has to handle both
one-of-a-kind components, such as the major pieces of
equipment, and also standard components. The second
class is common for piping components and structural
items. For these standard engineering components there
exist master catalogues, often produced by the
corresponding professional societies. Out of this wealth
of possible components it is common to select only a
subset which is valid for a given project. This subset,
called ‘piping specs’ in the case of the piping components,
is arrived at through negotiations between the client and
the engineering company and is, therefore, project specific.
To save time it is also customary to tailor the specs of
an old job to the client’s requirements. The piping or
other specs are part of a design and can be viewed as
value constraints for the standard components. These
databases are both a help for the designer so that he can
chose valid components from them and also a source of
constraints for the validation mechanism.

3.6 Constraint bases -

Constraint bases are the repositories for constraints and
exceptions to these constraints. More detail will be given
in Section 8 when we talk about constraint handling.
Suffice it to say here that constraints are stored as
strings. The string is the description of the constraint
and, particularly for project specific cosntraints, the
reference values can be taken from the valid support
databases.

&= Documents

Engineering design is carried through design documents.
These documents, who are just different materializations
of the data stored in the database have an existence in
their own right and the document control information is
an integral part of the project-wide database and the
workareas.

Documents often determine an application. For instance, a
modification to a process such as the inclusion of a new

108

piece of equipment is done through the Process Flow-
Sheet. Access control is best implemented through the
documents. For control purposes the components of a
drawing can be aggregated according to a variety of
criteria, such as ‘all the pieces of equipment introduced
through a document,‘, ‘all the instruments that appear on
a drawing’, etc. Therefore, documents and all the other
aggregations defined on them are considered as molecular
objects.

52x Molecular rKg,regation

Molecular objects IBATD841 were introduced to allow easy
manipulation of aggregates consisting of many, possibly
heterogeneous objects. We shall call the basic, non-nested
objects, atomic objects, and they are equivalent to the
entities in the ER model. Molecular objects are objects
of a higher degree of abstraction and can consist
themselves either 01 atomic objects or other molecular
objects of lesser degree of abstraction. The process by
which molecular objects are formed is called molecular
aggregation.

In order to describe a schema adequately it is necessary
to be able to express it in the form of a language. There-
fore, a definition is needed that can easily be expressed
as a language, as opposed to purely graphical structures.
The DDL constructs will be presented elsewhere.

A molecular aggregate can be defined with very few
concepts: objects and links. We avoid the term ‘role’
consciously, although the links carry the semantics of the
association, because the notion of object-role has a
definite meaning in Falkenb-erg’s object-role model
(FALE’IBJ. Molecular aggregates do not impose the
limitations of the object-role model.

A molecular aggregate is the set,

MA = { {objects},{links} }

where the objects in the set of objects can be either
atomic objects or molecular objects themselves. The links
are the roles under which the objects are linked within
that particular molecular aggregate. Then, a molecular
aggregate will just be the set of triplets of the form
(Mi,Oj,Lk). There exist situations in which L is the
same for all triplets, for example, ‘component of’
relationships. fn other cases, different aggregation
roles L can appear in the triplets that form a molecular
aggregate. An example of this case is a flowsheet-drawing
for which we want to identify those pieces of equipment
that were newly introduced to the design through this
particular drawing and also want to specify all the pieces
of equipment that appear on the drawing, regardless of
whether they existed before or not. Molecular objects
are layered and have one molecular reference level which
can have its own aggregate attributes and the constituent
objects.

In 1~~~~841 four classes of molecular aggregates
were identified and it was shown that all were needed
in a complex CAD environment. The classes of molecular
aggregates are disjoint/non-disjoint and recursive/
non-recursive. It appears important at this point to
mention that non-disjointness can be of two types:
a) within one type of molecular aggregate two instances
may share an instance of a constituent object; and
b) two different molecular aggregates may have the same
object as a constituent. Both cases can be handled
adequately with this formalism.

Disjoint Molecular Aggregates: These occur when all
links in a molecular aggregate are 1:N and no cycles are
formed. The molecular aggregate is disjoint with respect
to other aggregates if no constituent object forms part
of another aggregate.

Non-Disjoint Molecular Aggregates: Internal non-dis-
jointness occurs when at least one link is M:N; external
non-disjointness occurs when at least one constituent
object in the aggregate is also a constituent object of
another aggregate.

Recursive Molecular Aggregates: There exists at least
one link that originates and ends with the same object
LYPe.

Non-Recursive Molecular Aggregates: There exists no link
that originates and ends with the same object type.

This simple but yet powerful definition of molecular
aggregation leads us directly to an implementation model
hased on binary relations.

6.- Implementation model for rsg(reKates

The implementation model that underlies the discussion of
the operators is quite simple: every record or atomic
object (equivalent to entities in the ER sense) has its
unique internal id. Aggregates are formed through binary
relations of the internal ids of the records involved. The
binary relations can be easily held in a B-tree and can
also be compressed [BUCA831.

This storage structure has definite advantages: no pointer
space has to be reserved in advance, no foreign key
attributes have to be defined, aggregates can be crested
dynamically from already existing records. The use of
binary relations also offers some distinct advan@es over
n-ary relations: deep component hierarchies can be
represented economically without repeating the id of the
uppermost records, binary relations are easily COmpreSSd

and no problems with null values arise in the linkage
relations since a component object is only connected when
it is instantiated or after the database has been
populated.

For the first implementation we are restricting OUR3dveS

to binary relations because of their simplicity and

109

because we have already developed software for efficient
handling of binary relations. If irreducible n-ary
relations are needed by the applications, then we can
expand the system, but this means that some of the
operators will have to be redefined.

7.- Operators

For a data model to be useful beyond the highest level of
conceptual modeling it is necessary to specify operations
that are permitted on the data structures. We shall
discuss here operations for aggregation, i.e. the formation
and population of molecular objects, insertion and deletion
within a single database, and extraction and reintegration
operations among the project-wide and workarea databases
specified in the overall architecture.

7J Aggreagtion operations

Several cases of molecular aggregation can be identified:

1) The definition of the molecular object exists and
it is formed upon insertion of the instances of the
component objects.

2) The definition of the molecular object exists in
generic terms but it is only instantiated once the
values for the aggregation criterion have been
specified. Once the criterion has been specified,
the molecular object is instantiated from already
loaded instances of the component objects.

3) The definition of the molecular object does not
exist and has to be created and registered first.
Once it has been accepted by the system the
molecular object can be instantiated according to
the criteria of the previous case.

7.1.1 Aggregation upon insertion. This case requires
that first the identifier for the molecular object be
inserted (the attributes of the molecular object are
optional). Then the mapping between the molecular level
and the component objects is established for each triplet
(molecule(i), object(j), link(k)) as a function of
link(k). Two subcases have to be distinguished:

* The binary relation representing link(k) already
exists, in which case only a new instance of the
pair (Mid,Objectid) is inserted.

* The binary relation representing link(k) does not
exist already, in which case the binary relation is
first instantiated and then the id-pair is inserted.

An example of case 1 could be a drawing and every
instance of an object used on it, like pieces of equipment,
is automatically linked to the drawing.

In addition to this automatic linking there is the need for
conditional linking at the moment of storage, for instance
depending on an existence criterion. An example is the
aggregation formed under the role ‘all the equipment first
introduced through an application’. In this case, first the
existence of the present instance of equipment has to be
tested, if it fails, the aggregation proceeds and an
id-pair is introduced in the binary relation representing
the ‘first introduced’ role. If existence is true, no
aggregation occurs. This is rather an insertion operation.

7.1.2 Aggregation after loading. A posteriori population
of a molecular object, is more interesting. Assume the
database has already been populated with pieces of equip-
ment, pipelines, valves, instruments, etc. during the
design tasks leading up to the Piping and Instrumentation
Diagram level. After the initial layout new units are
created based on spatial boundaries and assigned to
different designers. The generic criterion of subdivision
is already known and used in the definition of the
molecular objects representing these new units but the
exact values are only provided later.

The actions to be taken are then: scanning of the
instances of the component objects and insertion of
id-pairs into the binary relation corresponding to the
specified aggregation role.

7.1.3 Dynamic definition of aggregates. This case is
included for flexibility and can arise when a designer
wants to group according to an aggregation role not
contemplated before. An example could be the definition
of the ‘cooling water network’ or any other criterion
which may have only temporal validity. The actions to be
taken are: definition of the new molecular object,
instantiation of the molecule’s id, creation of a new
binary relation representing the role of aggregation and
then the actions of case 2. Should the necessary data for
the evaluation of the aggregation criterion not be
available in the database, then manual linkage is possible.
The proposed storage structure supports this case since no
external attributes have to be defined in the constituent
records nor is it necessary to reserve additional pointer
space within the component records.

As a corollary one can postulate that a good database
design will anticipate the required aggregations and,
therefore, can define them in the schema and does not
need a dynamic schema definition capability. However,
since a database designer who is really conversant with
the application seems to be rare, and because of the
desirability to define non-essential but convenient
aggregates dynamically, this option is supported since
it is associated with little overhead in this model.

Q Insertion operations

Insertion can be of two kinds: insertion of atomic
objects, in which case no further action has to be
taken, or insertion of atomic objects belonging to a

110

molecular object. In this case insertion consists of the
actions described above under aggregation operations
(automatic and conditional).

Insertion is always carried out first in a workarea
database which is an extraction from the project-wide
database (see 7.4). If an object is to be inserted but
it exists already, then the extraction mechanism can be
invoked to avoid redundant insertions.

‘7.3 Deletion operations

Deletion operations become difficult in the moment one
accepts non-disjoint molecular objects. We distinguish
three cases:

1) Elimination of a free-standing atomic object.
2) Elimination of an atomic object that is a
component of a molecular object.

3) Elimination of a molecular object.

7.3.1 Elimination of free-standing atomic objects. This
operation is straightforward and consists only in
eliminating an instance of the object. However, in order
to know whether an object is a free-standing atomic
object it is necessary to check in the dictionary the
definitions of the molecular objects to see whether an
atomic object is part of any molecular object. This
information can either be held at the TM dictionary level
or at the data dictionary level, whichever proves more
efficient. Like any other deletion operation, free-
standing atomic objects can only be eliminated through
the application by which they were created.

7.3.2 Elimination of a component atomic object. This
deletion operation has two subcases which have their
nature in the way engineering design is done. For each
design object there exists one responsible person or
group, usually the one who introduced that object. There-
fore, this person or group is the only one authorized to
kill or eliminate that object from the database. Everybody
else can use that object and manipulate it, some can up-
date it or specify additional detail, but they cannot
delete it from the database. Therefore the two subcases
are:

1) Deletion of an object by a non-creator.
2) Deletion of an object by its creator.

Deletion of an object by a non-creator of that object is
strictly a disconnection from the molecular object that
had this atomic object as a component. The action to be
taken is the elimination of the corresponding id-pair
from the binary relation representing that role.

Deletion of an object by its creator means eventually the
actual elimination from the database. However, this can-
not occur without warning to those responsible for
molecular objects that use the atomic object to be
deleted. Therefore, first an ‘intention to delete’ has

to be issued. The actions here require that all molecular
objects that include the object to be deleted be traced
and receive a message, so that the object can be dis-
connected from those molecular objects. Once it is dis-
connected from all other molecular objects, then the one
issuing the ‘intention to delete’ can actually proceed
and drop it. At a first glance, this procedure appears
to be cumbersome but it corresponds to engineering design
practice and avoids that objects simply vanish and leave
holes in other portions of the design, particularly in
those cases were one object can have different
representations. In addition, this procedure is mostly
applicable at the project-wide database level. Within
the workareas, where most deletions occur, this
situation will arise rarely.

7.3.3 Elimination of a molecular object. Elimination
of molecular objects can be of two types: the molecular
object is not part of another molecular object, or it is
part of another molecular object.

The first case implies that the label portion of the
molecular object be deleted as well as all the instances
of id-pairs in which the id of the molecular object
appears. Depending on the aggregation roles, this means
that component objects with no existence of their own
(weak entities) be deleted as well. An example of this
case is the elimination of a pipeline. Eliminating the
pipeline means also eliminating its components, such
as valves, fittings, pieces of pipe, etc. However, it
is important to realize that the necessary checks have
to be performed in order not to leave other pipelines
dangling or a pump discharging into the air.

The second case, elimination of a molecular object which
is part of another molecular object, has to be treated
first as if the molecular object was a component atomic
object. Once the ‘intention to delete’ has cleared, then
the case is reduced to the elimination of a non-
component molecular object. The ‘intention to delete’
has to trigger the update propagation mechanism that
alerts other users who may be affected. An example of
this case is the deletion of a valve that is a component
in a pipeline. The valve itself is a molecular object
with its own components. The initial clearing process
is used to alert the affected parties, that they may
have to perform some adjustments manually. If the valve
is eliminated at the piping and instrumentation level
and the deletion is automatically propagated, it may
leave a hole in the pipeline and it requires replacing
two pieces of pipe and flanges explicitly by a new,
single piece of pipe. These changes involve design
decisions and should not be carried out automatically.
There is no effect whether a molecular object is
recursive or non-recursive, since recursivity is
meaningful mostly for modeling purposes. For implement-
ation we have distinct objects but of the same type.

111

7.4 Extraction and Reintegration ..- -

Extraction and reintegration are two operations that
involve more than one database. We will use here the
relationship that exists between the project-wide data-
base and a local database.

7.4.1 Extraction. The extraction operation allows us to
establish a local database that contains all the necessary
data to work on a specific application (or several of them
if we specify them). The necessary data for an application
is the context and was explained previously. It is kept as
part of the data dictionary, were it should have been
gathered during the database design phase. (Our database
design tool jBUCA821 contains some basic information on
data usage and we are expanding it to handle molecular
aggregates.)

The actions to be executed are: Given the context
specification in the data dictionary, follow the
necessary links and extract the required instances. Use
the heuristics from the data dictionary to determine the
best clustering for the application and genera& a new
local database with the extracted data in the preferred
clustering and with the necessary access paths. Mark all
the objects in the project-wide database that were
extracted, so that any update can be propagated. Ex-
tracted objects remain in the project-wide database and
are available to other applications.

Extraction has a variant that is invocated when we try
to insert a new object. In order not to introduce objects
into a workarea in duplicate form, the insertion process
can verify first the existence of the object in the
project-wide database. If it exists, then that object is
extracted and inserted into the local and workarea data-
bases.

7.4.2 Reintegration. Reintegration is the process by
which an object that was either modified or freshly
inserted into a workarea database is transfered to the
project-wide database after it has been approved.

The actions to be executed are: First the inkntion to
reintegrate is declared. This intention puts a lock on
the object in the project-wide database, so that no new
extractions can be carried out. Once the lock has been
granted, the update is broadcast to those users in whose
context that object appears while the update is queued
waiting for the OK from affected users. Then the update
is carried out in the database freeing the object again
for new extractions.

7.5 Other operators --

It is interesting to observe that in object-oriented
systems like TM everything is an object. Programs can
be grouped into classes which are themselves ad-
ministered by an administrator. This is an interesting

parallel to semantic nets ILEVH791 and it is worthwile
exploring how more complex operations can be integrated
as programs.

&= Constmint Hmdlin~

A large portion of a design engineer’s time is spent
applying constmints. These constraints can take the form
of design codes, such as TEMA for heakxchangers or
ASME Section VIII for pressure vessels, passing
through the constraints set down in the piping or
structural specs to rather ill-defined rules of thumb
and company or personal preferences. It is in these
constraints were much of engineering knowledge is stored.
It is safe to assume that it is impossible to specify all
constraints up-front, i.e. during design and start-up of
a CAD system. Therefore, we need a system that allows
us to define constraints dynamically. Since constraint
checking is rather time-consuming and often long
response times disrupt a designer’s train of thought it
is necessary that constraint checking operaks on request.
In our proposed architecture the constraint verification
will intervene at the local level when a designer wants
to check his/her design, at the supervision stage during
approval and at a global level upon reintegration of an
object into the project-wide database. Another necessary
capability is exception handling. Engineering design
often consists in weighing contradictory criteria
selecting a solution that may violate one or several
constraints. The system must be able to register these
exceptions and not block progress everytime it comes to
that conscious constraint violation. However, at the
approval stage it must flag any exception.

A quick glance at the types of constraints we have to
handle shows us that we can distiguish between:

* type checking constraints;
* property inheritance constraints;
* range checking constmints;
* value matching constraints;
* consiskncy constraints.

Type checking is done in our environment at the TM
language level, which serves as a homogeneous language
for data definition, data manipulation and application
programming. The language provides for class definition
which may be of any complexity, allowing for nested
objects. This type-checking mechanism can be applied
here. The property inheritance constraints are also
handled by the language’s class definition capability.

What we shall describe with some more detail is the
constraint handling mechanism for range checking, value
matching and consistency constraints. Figure 2 shows
schematically the components of the constraint handling
mechanism and their function. The constraint handling
mechanism consists of the Constraint Handler, an
Exception Definition Module and Constraint Bases for
Universal Constraints, Privak Constraints and

112

Exceptions. Table 1 illustrates these constraints. For
example, a universal range checking constraint would be
(0 4 x 4 1) where x is a mole lrsction. On the other hand
it is general practice that water be never allowed in a
heatexchanger to exceed 120 degrees F (a universal
constraint). However in a plant where the water has a
high cardonate concentratibn it may be necessary to
restrict the temperature to 100 degrees F to avoid scaling.
This would be a private constraint that only applies to
this project. An exception could be that in spite of the
private constraint limiting temperatures to 100 degrees
in Chat plant, for a certain application it is justifiable
to allow 110 degrees F. Similarly, for value matching one
can identify the universal constraint as all the pipe
schedules available. A private constraint taken from the
pipe spec may indicate that only pipes of schedule 40 and
80 are allowed. Consistency constraints involve two or
more database attributes or objects and can be of any
degree of complexity. Here we show only the consistency
relationship between design and operating pressures.

Exceptions have both a new constraint value and a realm
of applicability. For instance, we may change the
maximum water temperature to 110 degrees F (the new
constraint) for a specific exchanger or an entire plant
(the realm of applicability).

Table 1: Examples of Cons!raints

Proj. Spec. Tcm, < 100°F 4030 PD > 1.1 Pop
Constraints are associated with database objects. How-
ever, since the constraints are only to he invoked upon
demand, we consider it useful Co keep the constraints in
separate constraint bases. This has the added advantage,
that we can substitute sets of constraints, particularly
those that are project-specific. For example, a vessel
can be designed according Co ASME Section VIII or
according to DIN standards. In addition, a company may
have its own design norms. The mechanism we are
proposing allows us Co use for one project one code and
for another project the other. In addition, we can specify
more than one constraint base to be active at a given
time. This mechanism permits to enforce the more
restrictive set of norms on Cop of the industry-wide
design norms. The constraint handler, if activated, will
check first in the private constraint base, since this is
the more restrictive. If no violation occurs the database
action can proceed. If a violation occurs, the exception
base is checked. If an exception exists and is fulfilled
processing proceeds, if it does not exist the user is
asked to define an exception which is then registered
and stored or to change his action on the database. If no
private constraint exists, the universal constraint base
is checked following the same steps as in the previous
case. This strategy reduces constraint base accesses CO
a minimum.

Exception T-1 < 1lO’F 120,Plant A PD >1.05 Pop

t0n5:,.

Honaltr

TM allows Chat an administrator receives a string which
is interpreted and executed. This allows us to store
constraints as strings. When the constraint handler gets
it, he executes it, possibly invocating other
administrators (i.e. the class code associated with a
class of objects). For each constraint a particular
action is required. This means that new constraints
require new responses. The response-adding mechanism of
TM, mentioned in Section 2 and explained in [GERM841,
allows us to add new constraints and their responses
dynamically.

113

9.- Current Strtus rnd Future Work ---w-P

The language TM is currently undergoing its third
experimental implementation and work is underway to
include necessary database constructs. The CAD system
outlined in this paper will serve as a test for the
language and as a source for expansion of its capa-
bilities. The database portion is in the design phase
and work is proceeding in the definition 01 the DDL
of molecular objects, storage structures for molecular
objects, clustering criteria based on access patterns
obtained from a database design tool, and the
implementation of the constraint handler in primary
storage only at this time. The present report is only
a general overview and further work is needed in the
areas listed above.

Acknowledgements

Special thank is due to Mike Gerxso, the designer of
the TM language. Gratitude is expressed to Autotrol
and Michael Leesley Consulting Inc. There the interaction
with Dan Radin, Rex McDonnel, Bob Donaldson, George
Osborne and many others proved very useful. Many of
the ideas for the architecture and insights into actual
design practice stem from that interaction. The initial
notions of molecular aggregation evolved out of long
discussions with Don Batory at the University of Texas.
Last but not least thank is due to the members of the
CAD group at IIMAS, particularly Roland0 Carrera, for
valuable input.

(FALE761 Falkenberg,E.; ‘Concepts for Modelling
Information’, in ‘Modeling in Data Base
Management Systems’, G.M. Nijssen (ed.),
North Holland Publ. Co., 1976.

IGERM84)Gersso,J.M., Buchmann,A.P.; ‘TM - An Object
Oriented Language for CAD and Required Data-
base Capabilities’, IEEE Workshop on Languages
for Automation, New Orleans, Nov. 1984.

(HASR82)Haskins,R., Lorie,R.; ‘On Extending the
Functions of a Relational Database System’,
ACM SIGMOD 1982, pp 287-212.

(LEEM78aJ.,eesley,M.E., Buchmann,A.P.; ‘Databases for
Process Plant Design’, Prcc. CAD78 Brighton,
England, March 1978.

(LEEM78bLeesley,M.E., Buchmann,A.P, Mulraney,D.D.;
‘An Approach to a Largely Integrated System
for Process Plant Design’, Proc. International
Conference on Contributions of Computers in
Chemical Engineering, Paris, France, March 1978,
Vol. E, p. 146-152.

ILEEM82) Leesley,M.E. (ed); ‘CAD of Chemical Process
Plants’, Gulf Publ. Co., Houston, 1982.

lLEVH791Levesque,H.J., Mylopoulos,J.; ‘A procedural
semantics for semantic networks’, in ‘Associative
Networks’, N. Findler (ed.), pp 93-120, Academic
Press,New York.

ILORR831 Lorie,R., Plouffe,W.; ‘Complex Objects and
their Use in Design Transactions’ Proc. 1983
ACM Engineering Design Applications, San
Jose, Cal., May 1963.

References

IBATD84]Batory,D.S., Buchmann,A.P.; ‘Molecular Objects,
Abstract Data Types and Data Models: A
Framework’, 10th Intl. Conf. on Very Large
Data Bases, Singapore, Aug. 1984.

IBUCA8OJBuchmmn,A.P.; ‘A Methodology for the Logical
Design of Project Engineering Databases, PhD
Thesis, The University of Texas, Austin, 1986.

IBUCA821Buchmann,A.P., Leesley,M.E., Dale,A.G.; ‘The
Role, Structure and Design of a Database for
Dissemination of Process Data during Plant
Design’, Chem. Eng. Comm., Vol. 16, pp l-37,
1982.

IBUCA85)Buchmann,A.P., Gerrso,J.M.; ‘Handling Hetero-
geneously Formatted Data in an Object-Orientec
Database Environment for CAD’, Compute:
Graphics 85, NCGA, Dallas, April 1985.

(RASH’IB]Rase,H.F.; ‘Project Engineering of Process
Plants’, John Wiley, 1976.

Permission to copy without fee all or part of thii material is
granted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

114

