
Database Machine Morphology’

Haran Boral
Steve Redjield

Microelectronics and Computer Technology Corporation
9430 Research Blvd.
Austin, Texas 78759

Abstract

In this paper we classify and analyze approximately twenty database machines (DBMS). We show
that (i) research has generally been focused on brute force parallel search methods, (ii) little original
work has been done on storage structures, (iii) almost no work has been done on database operating
systems, and (iv) most designs are geared towards minimizing the response time of an individual
operation, few designs attempt to minimize the response time of an individual query, and almost none
are throughput oriented. We also show that the machine architecture of most DBh4s can be described
using a small number of building blocks.

1. Introduction

The MCC Database Program is studying means fol
enhancing database management systems to deal with
‘Lnon-standard” applications, such as knowledge
management. In addition, we are exploring the use of
a DBM to implement a kernel of the DBMS functions.
To provide some order to the assessment of lessons
learned from past DBM designs, we undertook a study
to classify and analyze DBMS. Our results have been
mixed: on the positive side we were able to come up
with a “language” for describing DBMS and through
its use we have come up with an analysis leading to
several important conclusions; on the negative side,
the resulting grouping of DBMS into classes is not as
robust as we had hoped it would be. In this report we
present our language and some of the lessons that we
have learned by applying it to approximately twenty
DBM designs. Several rather negative conclusions
may be drawn at this point. First, the designs we
examined tend to emphasize the use of brute force
parallelism. Second, little attention seems to have
been given to the I/O bottleneck. Third, almost no
attempt has been made to examine the effect and

Permission to copy without fee all or part of this material is
ganted provided that the copies are not made or distributed for di-
rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

benefits of a specialized database operating system.
Fourth, almost every design is optimized towards
improving the response time of a single request rather
than the throughput of the system. On the positive
side, some of the more recent designs seem to be
bucking these trends (in particular the first and
second).

The remainder of this paper is organized as follows.
In Section 2 we give an overview of the morphology.
In Sections 3 and 4 we describe its two components.
In Section 5 we discuss lessons learned from its appli-
cation and relate our work to other classification
efforts. Appendices A and C contain several detailed
descriptions of DBMS using the morphology and
Appendix B contains a BNF grammar for it.

2. Overview of the Morphology

Our morphology consists of two components: (1) a
cataloguing component which is used to discriminate
among DBMS based on seven macro characteristics,
and (2) an anatomical component in which machine
architectures are described systematically. This dis-
tinction was made because for the morphology to bc
useful it must be both simple and complete. Simpli-
city enables the user of the morphology to capture the
essential features and mechanisms of a given DBM
whereas completeness enables him to make meaningful
comparisons. Simplicity is provided in the catalogue
and completeness in the anatomy.

’ Morphology: I‘... a study of structure or form . ..” --
Webster’s Nrw Collegiate Dictiollnry.

Proceedings of VLDB 85, Stockholm 59

Our starting point for the morphology is a simplified
model of a DBM. All DBMS are said to be made up
of a Door, a Fwanel, and a Home Repository. The
door and home repository elements of the model are
used to describe the passive characteristics of a DBM
-_ the interface to it (door) and the ultimate location
of the data (home repository), whereas the funnel is
used to describe its active characteristics. Our choice
of a funnel as an abstraction of the processing activity
is based on the view that the accomplishment of a
database request can be (and typically is) broken
down to a series of steps which take place on some
base data as it moves from the home repository to the
user (assuming a retrieval operation). Each step
causes irrelevant data to be filtered out and relevant
data to be enhanced to what the user desires. Thus,
there is a gradual refinement of the data starting from
its “raw” form in the home repository and ending up
in its “processed” form in the door. This model of a
DBM is shown in Figure 1.

3. Catalogue

3.1. Scheme

What are the salient features of a DBM? We argue
that these can be described succinctly using seven
attributes that characterize, in a gross manner, each
of the three components of the model shown in Figure
1.

The seven attributes we chose are:
l Mission (M)
l Number of Simultaneous Missions (NSM)
l Overlap Type (OT)
l Memory Property (MP)
0 Processing Primitives (PP)
l Location Mechanism (LM)
0 Storage Structures (SS)

M and NSM characterize the door. OT, MP, PP, and
LM characterize the funnel. MP, LM, and SS charac-
terize the home repository. Note that the MP and
LM attributes can be reflected as funnel characteris-
tics or as home repository characteristics.

We argue that these attributes enable a complete,
albeit high-level, description of a DBM starting from
what the machine does (the door characteristics), the
basic mechanisms it uses to accomplish its mission
(the funnel characteristics), and, not least, how the
machine addresses the I/O bottleneck* (the home
repository characteristics).

Figure 1 - Model

The catalogue places DBM designs into categories
based on seven attributes which can be loosely associ-
ated with the three elements of the model. We
believe that these seven attributes represent the most
significant aspects of a DBM (excluding its machine
organization) if one had to describe it succinctly.

While the purpose of the catalogue is to facilitate
enumeration of designs, the anatomy enables com-
parisons among these designs. The anatomy must,
thus, capture machine organizational details. Only an
anatomy of funnels is given. Sufficient information
about the door and home repository is provided in the
catalogue. The anatomy is done from the perspective
of interconnected subsystems each of which loosely
corresponds to a single processing step. Each subsys-
tem has an inner fine structure which is made up of
basic hardware modules and their interconnects.

A cataloguing involves assigning specific values, or
descriptors, to each of the seven attributes.

3.2. Terminology

In this section we describe each of the seven attributes
in some detail and give several examples of descrip-
tors that can be assigned to them.

M refers to the level of processing done in the DBM;
or, equivalently, how much of the total database sys-
tem job the DBM performs. Some of the descriptors
possible for M are (assuming the relational model):
algebra tree, relational algebra operator, and access
method.

The algebra tree descriptor indicates that the DBM
receives a tree of relational algebra operators to exe-
cute. To be given this classification it must work on

2 See [4] for a discussion of the impact of the I/O bottleneck
on DBM performance.

60

the tree as a whole and not on an operator at a time.
The relational algebra operator descriptor indicates
that the DBM works at the level of single operators.
The access method descriptor indicates that the pri-
mary role of the DBM is to effect the access methods
for a database system.

The NSM category indicates how many concurrent
missions the DBM can be handling at one time
instance. Some of the descriptors possible for NSM
are: single, few, and several.

The single mission descriptor obviously indicates that
the DBM only works on one mission at one time. We
choose not to distinguish between machines that are
dedicated to a single mission or those that use
timesharing to attain pseudo concurrency -- both fall
under the single mission descriptor. A DBM in this
category may carry out its mission using some combi-
nation of parallelism or pipelining (see the overlap
attribute below), but it only does one mission at a
time. Some DBMS allow a limited degree of overlap
between different missions because of an “assembly
line” approach to processing. We distinguish between
such machines (where the degree of simultaneity is
fixed and typically small) -- the few missions descrip-
tor, and those machines that allow several (in princi-
ple an arbitrary number of) missions -- the several
missions descriptor.

The OT category indicates how much and what
manner of concurrency is utilized in processing a sin-
gle mission. A DBM that utilizes some form of over-
lap in the execution of a single mission must be capa-
ble of decomposing a mission into a number of tasks
that can be executed in an overlapped manner. Some
of the descriptors possible for OT are: none, pipelined,
parallel, and pipelined parallel.

The no overlap descriptor indicates that the DBM has
no concurrency with respect to a given mission. It
may still have concurrency associated with more than
one mission. The pipelined overlap descriptor indi-
cates that the DBM treats a specific mission as a
sequence of steps that can be chained linearly. An
example is a hardware realization of a pipelined
sorter. The parallel overlap descriptor indicates that
the DBM divides the work or part of the work it has
to do for a specific mission into a number of (possibly
identical) activities it can do in parallel. The pipe-
lined parallel overlap descriptor indicates that the
DBM does both pipelined and parallel mission execu-
tion.

The MP category indicates whether the DBbg does

61

any staging of data from the home repository for the
purpose of speeding the access to staged data. Some
of the descriptors possible for MP are: non staging and
buffering.

The non staging descriptor indicates that the DBM
has no memory, but just acts as a intelligent conduit
between the home repository and the user. The
buffering descriptor indicates that the DBM will retain
data received from the home repository. The buffered
data may be held in a different and more convenient
format from the home repository’s format.

The PP category indicates the primary techniques
used by the DBM to achieve its missions. We concen-
trate on the mission execution rather than on how the
data is accessed here. Some of the descriptors possible
for PP are: sorting, hash partitioning, intersection,
hash semi-joins, j2ter semi-joins, and nested loops.

Each of these six descriptors indicates the basic primi-
tive that is used to realize the processing primitives.
Some DBMS use more than one of these. DBMS also
differ in how they realize these primitives -- several
use a software implementation on a general purpose
comput,er and a few have special purpose devices that
realize the operation directly in hardware.

The LM category indicates the primary technique
used by the DBM to associatively access the database.
The data may be located in the home repository, or if
there is staging it will be in a buffer. Some of the
descriptors possible for LM are: filtering, indexing,
indexing with filtering, and link based access.

The filtering descriptor indicates that the DBM uses a
scanning and comparison process to locate desired
data. The indexing descriptor indicates that the DBM
uses a directory or index to identify candidate data
based on attribute or key values. The index may
specify individual instances or (more typically) blocks
which contain qualifying instances. The DBM may do
some processing on the indices to further reduce the
number of candidates before actually materializing the
data. The indexing with filtering descriptor indicat.es
that the DBM uses a combination of indexed and
filtered access. The link based access descriptor indi-
cates that the DBM uses pointers to locate desired
data. The pointers may be associated with the data
and represent interrelationships or they may be a.
separate meta structure which can i)e riavigateti

before materializing the dat,a.

The SS category indicates the l)rimary stor:~~e qt TIIC-
ture utilized by the DBM for holding t11r daI ;fll:~~.

Together with the location mechanism, the storage
structure attribute specifies how the DBM deals with
the I/O bottleneck. Some of the descriptors possible
for SS are: unordered normalized relations (unr), sin-
gle attribute clustered normalized ielations (sacnr),
multiattribute clustered normalized relations (macnr),
unnormalized relations (ur), attribute, and domain.

The normalized relations descriptors (unr, sacnr, and
macnr) indicate that each relation is stored as a single
unit. The items making up a single tuple in the rela-
tion are stored in the same place. (Some implementa-
tions store a tuple as a contiguous byte string, others
associate attribute codes with each field, and others
associate mark bits at either the individual field or
tuple levels.) Relations may be unclustered, clustered
on one, or several, attributes. The unnormalized rela-
tions descriptor indicates that each (unnormalized)
relation is stored as a single unit. The attribute
descriptor indicates that the primary storage structure
is an attribute. Associated with this structure must
be information to enable the reconstruction of tuples.
This can be done explicitly using some meta structure,
or implicitly by position (as in transposed files) or
tid’s. The domain descriptor indicates that the pri-
mary storage structure is a domain. All values in a
given domain are stored in a single unit. Some addi-
tional information for associating values with their
relations must exist.

3.3. Examples

Table 1 in Appendix A shows assignment of descrip-
tors to the seven attributes for the twenty DBMs we
examined.

4. Anatomy

4.1. Overview

The descriptions of DBM architectures available in
the literature are typically so detailed that it is almost
impossible to compare two or more DBMS. In this
section we propose a “language” for describing the
machine organization of the funnel component of
DBMS. The language treats a funnel as: (1) a collec-
tion of modules, (2) the interconnects which link these
modules, and (3) subsystems which are groupings of
modules and their associated interconnects. Modules
correspond to basic hardware units like sorters and
memories. Subsystems correspond to basic units of
work and basic units of flow. They indicate the
manner of work assignment to the modules.

given a name based on the function they perform
(modules) or on their structure (interconnects). We
argue that subsystems can also be typed using two
properties to be introduced below. This typing is cap-
tured in a configuration expression.

Our goal is to describe a funnel in a manner that on
the one hand is detailed (by using modules and inter-
connects) and on the other hand enables “pigeonhol-
ing” designs into few categories for the purpose of
comparison (using subsystems). Although some preci-
sion is lost at the subsystem level of description the
advantage is the ability to compare “apples with
apples” rather than “apples with oranges”.

4.2. Modules and Interconnects

Nine types of modules have been found to cover the
DBMs dissected so far. They are (in alphabetical
order): Arithmetic Processor, Buffer, Controller,
Filter, General Processor, Hasher, Index Processor,
Merger, and Sorter.

Four types of interconnect cover the varieties found in
the DBMS studied to date: Point to Point, Bus, Ring,
and Switch.

4.3. Subsystems

We have identified two characteristics that distinguish
subsystems from each other: Junction and flow. Func-
tion refers to the activities carried out by the subsys-
tem. Examination of approximately twenty DBMS
yields the following list of possible activities: Jiltering,
indexing, sorting, partitioning, buflering, metadata
processing, and general purpose computing. Metadata
processing is distinct from indexing in the sense that
indexing simply refers to the operation of mapping a
value to a set of addresses whereas metadata process-
ing refers to performing operations on sets of
addresses (i.e., the intersection of two inverted lists).
By general purpose computing we mean that the sub-
system has the capability of performing any computa-
tion.

Flow refers to how execution of the activities is
mapped to the modules and interconnects that make
up the subsystem. Specifically, it indicates how many
instruction streams are active and the type of overlap
used in their execution. We have identified four types
of flow: single, pipelined, single request parallel
(SIMD), and multiple requevrl purallel (MIMD).

Modules and interconnects can be “typed” -- that is

62

4.4. Dissection Process

The anatomy of a given DBM and the resulting
configuration expression can be obtained by following
a series of straightforward steps.

First, the work done on the data as it moves form the
home repository is examined. It will appear to take
place in a number of “steps”. A step is a logically
complete data location, reduction, ordering, deriva-
tion, or computation. The work belonging to a step
will be performed by one or more modules and their
interconnects. The collection of modules and inter-
connects associated with a step is identified and iso-
lated as a subsystem.

Next each of the modules and the interconnects in a
subsystem is labeled according to its type (see previ-
ous sections). Next, each subsystem is labeled using
the function and flow descriptors. Finally, the rela-
tionships between modules, interconnects, and subsys-
tems are made precise in a configuration expression
using the BNF grammar for a funnel anatomy given
in Appendix B.

4.5. Examples

Appendix C contains example descriptions of 16
DBMS using the anatomy. The descriptions are given
at the subsystem as well as the module and intercon-
nect levels. To illustrate the ideas described in this
section we examine the derivation of the anatomy of
GRACE [12]. GRACE accomplishes its tasks in three
distinct steps. First, the data is retrieved, filtered,
and partitioned. Second, the partitions are accumu-
lated in a buffer until all relevant data has been exam-
ined. Finally, the data in the buffer is sorted and pos-
sibly repartitioned. It then is handed to the host.
Repartitioning takes place only if the data is to be
used in subsequent operations.

The overall configuration expression is:
host -I=
[order,part:FL:SRTRk] =o= [stage:FL,BUF’] =o=
[index,part,select,FL,GP”] === diskm
The host is connected to the DBM using a 1 to many
bus (see Appendix B for the definition of the symbols
used in the configuration expression). The first sub-
system performs indexing, partitioning and selections
in a parallel synchronous manner using m general pur-
pose processors, each of which is connected to a disk.
The second subsystem stages data in a parallel syn-
chronous manner and uses I buffer units. The third
subsystem performs ordering and partitioning, its flow
is parallel synchronous, and it is realized using k

hardware sorters. Rings are used to connect the vari-
ous hardware modules.

This is further illustrated in the Figure in Appendix
C.

5. Discussion

5.1. Catalogue Observations

The biggest factor in the performance of a database
system is the required location and movement of data-
base data in mass storage. Several strategies have
been taken by DBMS to deal with this “I/O
bottleneck” problem. These include parallel search
(i.e., filtering), use of indexing (with and without
filtering), clustering, and use of staging to hold fre-
quently used data.

The most popular technique seems to be parallel
searching of the data. Fifteen out of the twenty
DBMS studied used this technique. In the case of a
few of these machines, the search was of the entire
database and on behalf of a single request. This
greatly limits the potential performance of the
machine. Only DIRECT, DBMAC, TERADATA, and
SABRE did searching for more than one request at a
time.

Many of the DBMS use metadata (typically, an index
of some type) to assist in locating data. Two basic
approaches are used: multiple single attribute indexing
per relation and a single multi-attribute index per
relation. In some cases indexing was coupled with
filtering. Five of the machines, SABRE, DSDC,
GRACE, DELTA, and VERS03 adopted t,he second
approach while three machines, DBMAC, TERADTA,
and IDM-500, adopted the first approach. Generally,
the use of metadata to reduce search space is known
to be an excellent, technique. It should be one of the
major tools in a DBM. It seems reasonable then to
consider special hardware to make this tool more
efficient. Surprisingly, only DBC and DBMAC provide
special hardware for index manipulation (performing
intersections between indices). The overhead in main-
taining indices can be quite considerable, particularly
when they are sophisticated and updated frequently.

Clustering techniques have not been explored much
with respect to DBMS. Some orga.nizations could

3 V$;RSO actually indexes on the minimal subset, of at,t,ri-
butes necessary to distinguish the first tuple in a block from the
remaining ones. It thus does not employ a “trut.” multi-
attribute indexing scheme.

show a performance gain from clustering and some
would not. Those DBMs that filtered the entire data-
base for each request would obviously not benefit.
Nothing has been said explicitly about using repli-
cated data (where each copy is clustered on a different
attribute) to improve performance.

A fair number of the DBMS employ data staging.
However it often seems to be a secondary mechanism.
Very few view the staging memory as a central com-
ponent of their design. DELTA, RAF’.B, and DIRECT
do use staging in a significant fashion. However, it is
not clear whether the size of memory in those
machines (and in fact, in any DBM) is large enough to
make this effective in reducing the required I/O
bandwidth. DELTA which uses a mainframe as a
memory hierarchy manager seems particularly
ineffective. There is also the recovery problem when
data is staged in a memory. Not much seems to have
been said about this, though it is solvable, at least for
memories that are not enormous.

Almost all DBMS utilize some sort of overlap. In fact,
this overlap almost always takes the form of parallel
operations. A good example of it is the parallel data
searching mentioned above as a popular way for solv-
ing the “I/O bottleneck problem”. In some machines
there is also pipelining. No machine however has
tried to take this parallelism to a massive form where
there are hundreds of parallel operations happening at
oncee4 Also very few machines do parallel work for
more than one request at a time.

Amazingly most DBMS lay their database data out in
maSs storage in the same fashion that the user views
it, that is as relations. There are some exceptions,
VERSO and RDBM store unnormalized relations.
Both machines thus have the potential of supporting
molecular objects directly.

DELTA took the approach of storing data as binary
relations composed of attribute value and tid. This is
a very interesting approach and may have perfor-
mance benefits in environments where individual attri-
butes are more important than entire relations. A
knowledge based system may be an example of this
kind of environment. CASSM and DBC associate an
attribute identifier with each value in the database

4 There are two possible exceptions to this statement. Ta-
naka, in 125) which we had time only to skim, may be the excep-
tion here. He discusses the design of MPDC -- a Massively Paral-
lel DBM. The NONVON machine is supposed to employ mas-
sive amounts of parallelism. However, only part of the machine
has been specified so far and it is thus excluded.

allowing them the possibility of implementing tran-
sposed files. DBMAC took the approach of storing
domains of values in what is called a “data pool”
approach. The value of this is unclear,

It is unclear how most DBMS handle large results.
The DBMS that do not have significant staging capa-
bility will have to pass the entire result to the user at

once. DBMS with staging capabilities will be able to
send the result in parts (i.e., “stream” it).

The difficulties associated with recovery are often
glossed over. Certain DBM organizations are not very
amenable to this. Machines that modify the data in
place such as RAP.1, VERSO, RARES, EDC, CAFS,
DBC, and CASSM will have difficulty recovering from
a failure.

Mechanisms for concurrency control are often not
addressed. A good many of the DBMS only handle
one user request at a time and so this is not a factor.
Few consider updates at all.

There seems to have been a trend in DBM desigrl
where earlier machines like CASSM and RAF’.1 were
primarily oriented toward locating data and perform-
ing primitive operations on it; while later DBMS such
as DELTA, GRACE, and TERADATA deal with high
level queries. The higher the level of the interfa.ce t,o
the DBM, the more opportunity there is to optimize
execution and to take advantage of special hardware
for speed improvement.

A final observation is that with time DBM designers
have become increasingly sophisticated in their use of
processing primitives. The initial designs used filter-
ing and nested loops (with and without broadcast) to
realize the various relational algebra operators. Later
machines make more use of hashing and sorting with
GRACE, DELTA, RDBM, DSDC, and TERADATA
realizing these in special purpose hardware. However,
few machines have implemented highly parallel sort-
ing algorithms.

5.2. Anatomy Observations

An examination of the anatomy of the DBMS shown
in Appendix C has led us to place them into five
classes based on similar characteristics. The common
characteristics for machines in a group are: 1) t,he
number of subsystems in the DBM, and 2) the func-
tions realized by the subsystems. The five classes arr
named as follows: Two-stage filter (2F), Two-stage

index-filter (2IF), Three-stage computation (X),
Three-stage index-filter-sort (XFS), and Three-stage

64

mctadata processor-filter (YMF).

2F consists of those DBMS that use two subsystems to
realize filtering and data enhancing or derivation (i.e.,
joins). No indexing is supported by these DBMS. 2IF
consists of those DBMS that use two subsystems to
realize filtering, indexing, and data derivation. 3C
consists of those DBMS that use three subsystems to
realize coarse (relation-level) indexing, data manipula-
tion operations (including filtering), and buffering.
3IFS consists of those DBMS that use three subsys-
tems to realize filtering, indexing, and sorting.
Finally, 3MF consists of those DBMS that use three
subsystems to realize metadata operations and filter-
ing. Note that in all cases we have specified the
number of subsystems, the activities performed by the
subsystems but not the mapping of the activities onto
the subsystems.

\Ve now look at each class in more detail. 2F con-
tains EDC, RAP.l, and CASSM and typifies early
DBM efforts. All three DBMS use multiple filters in
SIMD fashion, and no indexing. All other operations
on the data are performed by a single general purpose
processor. Historically, this class of DBMS is impor-
tant because it helped spur interest and further work
in the area. Practically speaking it has little
significance.

“IF contains VERSO and the Britton-Lee IDM-500
DBMS. Common to both DBMS is the use of indexing
to reduce the search space. However, they differ in
the storage structures used and the corresponding
indexing scheme. VERSO employs an unnormalized
format in which the values within a field are sorted
whereas the IDM-500 uses a more conventional struc-
ture in which a normalized relation is clustered on its
primary key. Neither machine employs parallelism.
The IDM-500 does have a buffer whereas VERSO does
not. This class is representative of what we call
present day potential (and in the case of the IDM-500
existing) commercial DBMS for the DP application
environment. Both DBMS are geared towards fast
execution of selection type queries (although the
storage structure used in VERSO makes it amenable
for fast joins in some cases).

3C contains RAP.2 and DIRECT. Both DBMS use
relation-level indexing and general purpose processors
coupled with a large distributed buffer to realize all
the data manipulation operations. RAP.2 associates
caach buffer unit with a specific processor and uses
SIMD type parallelism in the execution of one opera-
tion whereas DIRECT allows any processor to access
any memory unit and uses MIMD type parallelism

within and across operations. Both DBMS are
representative of the idea that computation and not
I/O are the main problem in DBM design. Both
designs were optimized for the “hard” operations,
such as join.

31FS contains GRACE, DSDC, TERADATA, DELTA,
and RDBM. It is probably the most controversial of
the five classes because there are enough distinguish-
ing features between the five members of the group to
place each in a separate class. All five DBMS use
indexing to reduce the search space and incorporate
hardware sorters. All but TERADATA incorporate
hardware filters (in DELTA this is the merge proces-
sor within the sorter). DELTA and GRACE use a
buffer. DELTA, RDBM, and TERADATA use general
purpose processors in addition to special purpose pro-
cessors. DSDC, TERADATA, RDBM, and DELTA
support the parallel execution of several operations
whereas GRACE supports the parallel execution of
several operations from a single query. Finally,
TERADATA uses an intelligent switch.

The last class is 3MF and includes DBC’ and
DBMAC. Both machines are distinguished by their
use of special purpose hardware to realize operations
on metadata. Both machines also uses parallel filters
although DBC can only handle one operation at a
time through its filtering subsystem whereas DBMAC
can handle several.

5.3. Summary

In this paper we presented a scheme for describing
and classifying DBMS. Our scheme is made up of two
components: a catalogue in which DBMS are described
using seven attributes and an anatomy in which the
hardware organization of DBMS is dissected. Using
the catalogue a DBM can be described quickly and an
overview of the general mechanisms it uses to accom-
plish its work is given. The anatomy provides a con-
venient mechanism for capturing the detailed archi-
tecture of DBMS.

Two important contributions are made in this paper.
The first is the scheme itself and the second is the xJ-
lection of insights into existing DBM designs (see S-C-
tions 5.1 and 5.2).

Previous taxonomies of DBMS seem to be based on
two attributes: degree of parallelism used and starch
strategy employed. For example, Bray and Fr(:?man

5 We are assuming that a Post Processing Irnit makes UIJ
the third subsystem of DBC.

151 propose five categories based on number of proces-
sors and type of search. Song [22] proposes distin-
guishing between machines based on three attributes:
placement of logic (secondary versus primary
memory), allocation of logic (static versus dynamic),
and degree of logic distribution (a range of “low” to
“high”). Dewitt and Hawthorn (71 partition machines
based on the number of and coupling type of logic
and secondary memory. Hsiao [l l] distinguishes
among machines based on their use of software (i.e.,
conventional processors) versus hardware (i.e., special
purpose processors) and whether parallelism is used.
Only Qadah [lG] takes a broader look by distinguish-
ing among machines based on the following three
attributes: Processor-Memory organization (SISD,
SIMD, and MIMD), Query Processing Place (On-Disk,
Off-Disk, and Hybrid), and Indexing Level (Page,
Relation, and Database).

Our approach has been to concentrate on the design
of a scheme to describe DBMS resulting in an open-
ended grouping. The grouping itself is only of secon-
dary importance since it seems likely that no single
grouping will capture future machine designs. How-
ever, we believe our scheme to be sufficiently general
to enable the description of future machine designs.

The observations made in Sections 5.1 and 5.2 reveal
several important weaknesses and some trends in
existing DBM designs which the designer of a future
DBM should benefit from. The main negative state-
ments are: the I/O bottleneck has been dealt with
naively and emphasis was placed on improving
response time for a single operation (or query) rather
than increasing the overall throughput of the system.
An interesting trend is the use of sorting as a basic
processing primitive in most of the recent designs.

6. Acknowledgements

We wish to thank Marc Smith for making several
suggestions that improved the contents and presenta-
tion.

7. References

[l] Babb E., “Implementing a Relational Database by
Means of Specialized Hardware,” ACM TODS,
Vol. 4 No. 1, 1979.

[2] Bancilhon F. et al., “VERSO: A Relational Back-
end Database Machine,” in [ll].

[3] Banerjee J., D.K. Hsiao, and K. Kannan, “DBC -
A Database Computer for very Large

Databases,” IEEE Y’runs. Computers Vol. c-28,
No. G, 1979.

[4] Boral H. and D.J. Dewitt, “Database Machines:
An Idea Whose Time Has Passed? A Criticque of
the Future of Database Machines,” in Database
Machines, H.-O. Leilich and M. Missikoff (eds),
Springer-Verlag, 1983.

[5] Bray O.H. and H.A. Freeman, Data Base Comput-
ers, Lexington Books, 1979.

[S] Dewitt D.J., “DIRECT - A Multiprocessor Organi-
zation for Supporting Relational Database
Management Systems,” IEEE Trans. Computers
Vol. c-28, No. G, 1979.

[7] Dewitt D.J., and P. Hawthorn, “A Performance
Evaluation of Database Machine Architectures,”
Proceedings ‘7th VLDB, 1981.

[8] Epstein R. and P. Hawthorn, “Design Decisions for
the Intelligent Data Base Machine,” Proc. NCC,
1980.

[9] Gardarin G. et al., “SABRE: A Relational Data-
base System for a Multimicroprocessor Machine,”
in [ll].

[lo] Goodman J.R., “An Investigation of Multiproces-
sor Structures and Algorithms for Data Base
Management,” Electronics Research Laboratory
Memo No. UCB/ERL M81/33, University of Cal-
ifornia, Berkeley, 1981.

[ll] Hsiao D.K., Advanced Database Muchi,ne Archi-
tecture, D.K. Hsiao, ed. Prentice-Hall, 1983.

[12] Kitsuregawa M., H. Tanaka, and T. Moto-Oka,
“Application of Hash to Data Base Machine and
Its Architecture,” New Generation Computing,
Vol. 1, 1983.

[13] Lin S.C., D.C.P. Smith, and J.hl. Smith, “The
Design of a Rotating Associative Memory for
Relational Database Applications,” ACM TODS,
Vol. 1 No. 1, 19713.

[14] Missikoff M. and M. Terranova, “The Architec-
ture of a Relational Database Computer Known
as DBMAC,” in [ll].

[15] Ozkarahan E.A., S.A. Schuster, and K.C. Smith,
“RAP - An Associative Processor for Database
Management,” PTOC. AFIPS, Vol. 44, 1975.

66

1161 Qadah G.Z. and K.B. Irani, “A Database Machine
for Very Large Relational Databases,” Proceed-
iT1g.s of the 1983 International Conference on
Parallel Processing, 1983.

[17] Schuster S.A. et al., “RAP.2 - An Associative
Processor for Databases and Its Applications,”
IEEE Trans. Computers Vol. c-28, No. 6, 1979.

[18] Schultz R.K. and R.J. Zingg, “Response Time
Analysis of Multiprocessor Computers for Data-
base Support,” ACM TODS, Vol. 9 No. 1, 1984.

[19] Schweppe H. et al., “RDBM - A Dedicated Mul-
tiprocessor System for Database Management,”
in [ll].

[20] Shaw D.E., Talk given at MCC, May 1984.

[21] Shibayama S. et al., “A Relational Database
Machine with Large Semiconductor Disk and
Hardware Relational Algebra Processor,” New
Generation Conzputing, Vol. 2, 1984.

[22] song S.W., “A Survey and Taxonomy of Data-
base hlachines,” Database Engineekg, Vol. 4,
No. 2, 1981.

Appendix A - Database Machine Catalogue

[23] Su S.Y.W. et al., “The Architectural Features
and Implementation Techniques of the Multicell
CASSM,” IEEE Trans. Computers Vol. c-28, No.
6, 1979.

(24) Tanaka Y., “A Data Stream Database Com-
puter,” in Japan Annual Reviews in Electronics,
Computers d Telecommunications: Computer
science B Technologies, T. Kitagawa, ed., OHM
- North Holland, 1982.

[25] Tanaka Y., “MPDC - A Massive Parallelism
Database Machine,” Proc. Int ‘1 Conj. on Fijth
Generation Computers, 1984.

[26] “DBC/1012 Data Base Computer Concepts &
Capabilities,” Document No. co2-0001-00,
Release 1.0, Teradata Corp., 1983.

(271 Uemura S. et al., “The Design and Implementa-
tion of a Magnetic-Bubble Database Machine,”
PTOC. IFIP ‘80, 1980.

In this appendix we describe 20 database machines. Table 1 consists of the descriptors for the seven
attributes making up the catalogue for all 20 machines.

DATABASE MACHINE CATALOGUE - SUMMARY

Index
DBMAC A Tree Sev L&P No Intrsction Inverted Inverted j14]

Domains Domains

DELTA R.4 OP Few L&P Buf Srbmrg 2-Iv1 Att. w. PI
Index TIDS

DIRECT A Tree Sev L&P BUT GP Proc Reln-iv1 unr [“I
Index

DSDC l3.A OP 1 L&P No Sort Reln-lvl Encoded WI
Search Index Rel’ns

EDC RA OP 1 L No Nested DB-Iv1 unr 1271
Loops Filt,er

GRACE A Tree 1 L&P Buf Hash Multi Att macnr 14
Sort Index

HYPER- RA OP 1 L BUT Hash NA unr [lOI
TREE Sort

LIDM-500 A Tree 1 NO Buf N.4 Index sacnr 18;
8

67

NONVON

RAP.1

RAP.2

RARES

RDBM

RA OP

RA OP

RAOP

Assoc
Access
A Tree

1 L No Brdcst NA “ill. [201 ,
Nstd-lps

1 L No Filtered DB-lvl unr w. iI51
Smjoin Filter Mrk Bits

1 L No Filtered Reln-lvl unr w. 1171
Smjoin Index Mrk Bits

1 L No No DBlvl unr 1131
Filter

Few L&P BUT sort Reln-Iv1 Unnorm 1191

REPT RAOP
SABRE RAOP

TERA- RA OP

1
Few

Sev

Index Relns
L NA GP Proc NA unr l-
P Buf GP proc Multi Att macnr 1:;

Index
L Buf Srtmrg NA unr 1261

DATA
VERSO RA OP 1 No No Sort Primary Unnorm PI

Index Sorted

Table 1’

Appendix B - Anatomy BNF

<dbm> ..- ..- host <ic> <funnel> <ic> <home-rep>
<funnel > ::= <subsystem> 1 <ic> <subsystem> <ic> <funnel>
<ic> a.- ..- ic-type
<subsystem > ::= [<function> : <flow> : <config>]
<function> ::= function-type 1 function-type , <function>
<flow> ..-
<config> I&

flow-type
<module><Cnt’ 1 <config> <ic> <module><Cnt>

<module > ::= module-type
<cnt> ..- ..- integer letter 1
<home-rep > ::= diskcc h t’ 1 disk-cyl<Cnt> 1 disk-trackcCnt>

[c-type ::=
--- pt-to-pt
-x= l-to-m switched
-o= l-to-m ring
-I= l-to-m bus
=x- m-to-l switched
=O- m-to-l ring
=I- m-to-l bus
=x= m-to-m switched
=o= m-to-m ring
=I= m-to-m bus
--- --- parallel pt-to-pt

module-type ::=
AP
BUF
CTRL
FLTR
GP
HASH
IP
MRGR
SRTR

(arithmetic processor)
(buffer)
(controller)
(filter)
(general purpose processor)
(hasher)
(index processor)

function-type ::=
stage
order
index
select
f.3 proc (general purpose computing)
part (partition)
meta proc (metadata processing)

1 The abbreviations used in the Storage Structures column are defined in Section 3.2.

68

TE
R

AD
AT

A

b
1

w

SY

7

:
:

.
.

:
.

:
.

L
A

v
*

SO
S

*
TL

ia

su
bs

ys

is
 u

np
lcm

cu
te

d
by

an

in

rc
lh

gc
nt

m

te
rc

on
nr

cL

A

ho
st

 -
I=

Ig

p
pr

oc
:F

L:
G

P”
I

==
=

[o
rd

er
:F

S:
=x

-M
R

C
R

m
=x

=l

==
=

lo
rd

er
,s

el
ec

t:F
L:

gp

pm
’]

==
=

di
sk

D
BM

AC

ho
st

 -
I=

l&

p
pr

oc
:F

M
:G

P”
J

=x
=

[4
ec

t:F
M

:F
LT

R
m

j
==

=
di

sk

D
SD

C

x

I uo
sr

-
i&

co
nn

ec
t

is
 r

ea
lly

sh

re
d

sw
itz

h

hc
ut

 =
x=

lo

rd
cr

PL
:S

R
TR

n/

=x
=

[s
el

ec
tP

L9
LT

R
m

J
=x

=

lin
de

x:
FM

:IP
kj

=y

=
di

sk

cA
l?

s-
2

l
Ef

lcc
tiv

el
y

up

m
ul

Li
pl

ex
in

g

ho
st

 -
I=

~t

llt
er

,p
ar

t,o
rd

er
PM

:F
LT

R
n~

=I

=
di

sk

to

12
 F

rll
er

s
d;

c
I..

,

.”
F
a $. . . 0 If

I l I

70

D
lX

-

ho
st

 -

(io
de

x:
FS

:lP
I

-I=

Is
el

ec
tP

L:
FL

TR
”I

==
=

di
sk

VE
R

SO

ho
st

 -
I=

(o

rd
er

,s
el

ec
t,g

p
pr

oc
:F

L:
G

P”
==

=F
LT

R
aJ

==

=
di

sk

T

I-t
f- B

D

EL
TA

 : .

ti

I

-^
--.

8

.
__

_.

n

~
n.

ho

st
 -

lg

p
pr

oc
:P

‘S
:ti

t’j

-I=

lo
rd

er
:F

L:
M

H
G

R
”=

==
SR

TR
”J

=I
-

Is
ta

ge
,in

de
x:

FS
BU

FF
--I

PI

-I=

di
sk

12
AP

-z

ho
st

 -

Ig
p

pr
oc

:F
S:

C
TR

Ll
-(=

lo

rd
er

,a
el

ec
t,l

rt~
eP

L:
G

Pn
==

=B
W

Fn
J

=I
=

di
sk

