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Abstract 

In this paper we classify and analyze approximately twenty database machines (DBMS). We show 
that (i) research has generally been focused on brute force parallel search methods, (ii) little original 
work has been done on storage structures, (iii) almost no work has been done on database operating 
systems, and (iv) most designs are geared towards minimizing the response time of an individual 
operation, few designs attempt to minimize the response time of an individual query, and almost none 
are throughput oriented. We also show that the machine architecture of most DBh4s can be described 
using a small number of building blocks. 

1. Introduction 

The MCC Database Program is studying means fol 
enhancing database management systems to deal with 
‘Lnon-standard” applications, such as knowledge 
management. In addition, we are exploring the use of 
a DBM to implement a kernel of the DBMS functions. 
To provide some order to the assessment of lessons 
learned from past DBM designs, we undertook a study 
to classify and analyze DBMS. Our results have been 
mixed: on the positive side we were able to come up 
with a “language” for describing DBMS and through 
its use we have come up with an analysis leading to 
several important conclusions; on the negative side, 
the resulting grouping of DBMS into classes is not as 
robust as we had hoped it would be. In this report we 
present our language and some of the lessons that we 
have learned by applying it to approximately twenty 
DBM designs. Several rather negative conclusions 
may be drawn at this point. First, the designs we 
examined tend to emphasize the use of brute force 
parallelism. Second, little attention seems to have 
been given to the I/O bottleneck. Third, almost no 
attempt has been made to examine the effect and 
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benefits of a specialized database operating system. 
Fourth, almost every design is optimized towards 
improving the response time of a single request rather 
than the throughput of the system. On the positive 
side, some of the more recent designs seem to be 
bucking these trends (in particular the first and 
second). 

The remainder of this paper is organized as follows. 
In Section 2 we give an overview of the morphology. 
In Sections 3 and 4 we describe its two components. 
In Section 5 we discuss lessons learned from its appli- 
cation and relate our work to other classification 
efforts. Appendices A and C contain several detailed 
descriptions of DBMS using the morphology and 
Appendix B contains a BNF grammar for it. 

2. Overview of the Morphology 

Our morphology consists of two components: (1) a 
cataloguing component which is used to discriminate 
among DBMS based on seven macro characteristics, 
and (2) an anatomical component in which machine 
architectures are described systematically. This dis- 
tinction was made because for the morphology to bc 
useful it must be both simple and complete. Simpli- 
city enables the user of the morphology to capture the 
essential features and mechanisms of a given DBM 
whereas completeness enables him to make meaningful 
comparisons. Simplicity is provided in the catalogue 
and completeness in the anatomy. 

’ Morphology: I‘... a study of structure or form . ..” -- 
Webster’s Nrw Collegiate Dictiollnry. 
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Our starting point for the morphology is a simplified 
model of a DBM. All DBMS are said to be made up 
of a Door, a Fwanel, and a Home Repository. The 
door and home repository elements of the model are 
used to describe the passive characteristics of a DBM 
-_ the interface to it (door) and the ultimate location 
of the data (home repository), whereas the funnel is 
used to describe its active characteristics. Our choice 
of a funnel as an abstraction of the processing activity 
is based on the view that the accomplishment of a 
database request can be (and typically is) broken 
down to a series of steps which take place on some 
base data as it moves from the home repository to the 
user (assuming a retrieval operation). Each step 
causes irrelevant data to be filtered out and relevant 
data to be enhanced to what the user desires. Thus, 
there is a gradual refinement of the data starting from 
its “raw” form in the home repository and ending up 
in its “processed” form in the door. This model of a 
DBM is shown in Figure 1. 

3. Catalogue 

3.1. Scheme 

What are the salient features of a DBM? We argue 
that these can be described succinctly using seven 
attributes that characterize, in a gross manner, each 
of the three components of the model shown in Figure 
1. 

The seven attributes we chose are: 
l Mission (M) 
l Number of Simultaneous Missions (NSM) 
l Overlap Type (OT) 
l Memory Property (MP) 
0 Processing Primitives (PP) 
l Location Mechanism (LM) 
0 Storage Structures (SS) 

M and NSM characterize the door. OT, MP, PP, and 
LM characterize the funnel. MP, LM, and SS charac- 
terize the home repository. Note that the MP and 
LM attributes can be reflected as funnel characteris- 
tics or as home repository characteristics. 

We argue that these attributes enable a complete, 
albeit high-level, description of a DBM starting from 
what the machine does (the door characteristics), the 
basic mechanisms it uses to accomplish its mission 
(the funnel characteristics), and, not least, how the 
machine addresses the I/O bottleneck* (the home 
repository characteristics). 

Figure 1 - Model 

The catalogue places DBM designs into categories 
based on seven attributes which can be loosely associ- 
ated with the three elements of the model. We 
believe that these seven attributes represent the most 
significant aspects of a DBM (excluding its machine 
organization) if one had to describe it succinctly. 

While the purpose of the catalogue is to facilitate 
enumeration of designs, the anatomy enables com- 
parisons among these designs. The anatomy must, 
thus, capture machine organizational details. Only an 
anatomy of funnels is given. Sufficient information 
about the door and home repository is provided in the 
catalogue. The anatomy is done from the perspective 
of interconnected subsystems each of which loosely 
corresponds to a single processing step. Each subsys- 
tem has an inner fine structure which is made up of 
basic hardware modules and their interconnects. 

A cataloguing involves assigning specific values, or 
descriptors, to each of the seven attributes. 

3.2. Terminology 

In this section we describe each of the seven attributes 
in some detail and give several examples of descrip- 
tors that can be assigned to them. 

M refers to the level of processing done in the DBM; 
or, equivalently, how much of the total database sys- 
tem job the DBM performs. Some of the descriptors 
possible for M are (assuming the relational model): 
algebra tree, relational algebra operator, and access 
method. 

The algebra tree descriptor indicates that the DBM 
receives a tree of relational algebra operators to exe- 
cute. To be given this classification it must work on 

2 See [4] for a discussion of the impact of the I/O bottleneck 
on DBM performance. 
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the tree as a whole and not on an operator at a time. 
The relational algebra operator descriptor indicates 
that the DBM works at the level of single operators. 
The access method descriptor indicates that the pri- 
mary role of the DBM is to effect the access methods 
for a database system. 

The NSM category indicates how many concurrent 
missions the DBM can be handling at one time 
instance. Some of the descriptors possible for NSM 
are: single, few, and several. 

The single mission descriptor obviously indicates that 
the DBM only works on one mission at one time. We 
choose not to distinguish between machines that are 
dedicated to a single mission or those that use 
timesharing to attain pseudo concurrency -- both fall 
under the single mission descriptor. A DBM in this 
category may carry out its mission using some combi- 
nation of parallelism or pipelining (see the overlap 
attribute below), but it only does one mission at a 
time. Some DBMS allow a limited degree of overlap 
between different missions because of an “assembly 
line” approach to processing. We distinguish between 
such machines (where the degree of simultaneity is 
fixed and typically small) -- the few missions descrip- 
tor, and those machines that allow several (in princi- 
ple an arbitrary number of) missions -- the several 
missions descriptor. 

The OT category indicates how much and what 
manner of concurrency is utilized in processing a sin- 
gle mission. A DBM that utilizes some form of over- 
lap in the execution of a single mission must be capa- 
ble of decomposing a mission into a number of tasks 
that can be executed in an overlapped manner. Some 
of the descriptors possible for OT are: none, pipelined, 
parallel, and pipelined parallel. 

The no overlap descriptor indicates that the DBM has 
no concurrency with respect to a given mission. It 
may still have concurrency associated with more than 
one mission. The pipelined overlap descriptor indi- 
cates that the DBM treats a specific mission as a 
sequence of steps that can be chained linearly. An 
example is a hardware realization of a pipelined 
sorter. The parallel overlap descriptor indicates that 
the DBM divides the work or part of the work it has 
to do for a specific mission into a number of (possibly 
identical) activities it can do in parallel. The pipe- 
lined parallel overlap descriptor indicates that the 
DBM does both pipelined and parallel mission execu- 
tion. 

The MP category indicates whether the DBbg does 
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any staging of data from the home repository for the 
purpose of speeding the access to staged data. Some 
of the descriptors possible for MP are: non staging and 
buffering. 

The non staging descriptor indicates that the DBM 
has no memory, but just acts as a intelligent conduit 
between the home repository and the user. The 
buffering descriptor indicates that the DBM will retain 
data received from the home repository. The buffered 
data may be held in a different and more convenient 
format from the home repository’s format. 

The PP category indicates the primary techniques 
used by the DBM to achieve its missions. We concen- 
trate on the mission execution rather than on how the 
data is accessed here. Some of the descriptors possible 
for PP are: sorting, hash partitioning, intersection, 
hash semi-joins, j2ter semi-joins, and nested loops. 

Each of these six descriptors indicates the basic primi- 
tive that is used to realize the processing primitives. 
Some DBMS use more than one of these. DBMS also 
differ in how they realize these primitives -- several 
use a software implementation on a general purpose 
comput,er and a few have special purpose devices that 
realize the operation directly in hardware. 

The LM category indicates the primary technique 
used by the DBM to associatively access the database. 
The data may be located in the home repository, or if 
there is staging it will be in a buffer. Some of the 
descriptors possible for LM are: filtering, indexing, 
indexing with filtering, and link based access. 

The filtering descriptor indicates that the DBM uses a 
scanning and comparison process to locate desired 
data. The indexing descriptor indicates that the DBM 
uses a directory or index to identify candidate data 
based on attribute or key values. The index may 
specify individual instances or (more typically) blocks 
which contain qualifying instances. The DBM may do 
some processing on the indices to further reduce the 
number of candidates before actually materializing the 
data. The indexing with filtering descriptor indicat.es 
that the DBM uses a combination of indexed and 
filtered access. The link based access descriptor indi- 
cates that the DBM uses pointers to locate desired 
data. The pointers may be associated with the data 
and represent interrelationships or they may be a. 
separate meta structure which can i)e riavigateti 

before materializing the dat,a. 

The SS category indicates the l)rimary stor:~~e qt TIIC- 
ture utilized by the DBM for holding t11r daI ;fll:~~. 



Together with the location mechanism, the storage 
structure attribute specifies how the DBM deals with 
the I/O bottleneck. Some of the descriptors possible 
for SS are: unordered normalized relations (unr), sin- 
gle attribute clustered normalized ielations (sacnr), 
multiattribute clustered normalized relations (macnr), 
unnormalized relations (ur), attribute, and domain. 

The normalized relations descriptors (unr, sacnr, and 
macnr) indicate that each relation is stored as a single 
unit. The items making up a single tuple in the rela- 
tion are stored in the same place. (Some implementa- 
tions store a tuple as a contiguous byte string, others 
associate attribute codes with each field, and others 
associate mark bits at either the individual field or 
tuple levels.) Relations may be unclustered, clustered 
on one, or several, attributes. The unnormalized rela- 
tions descriptor indicates that each (unnormalized) 
relation is stored as a single unit. The attribute 
descriptor indicates that the primary storage structure 
is an attribute. Associated with this structure must 
be information to enable the reconstruction of tuples. 
This can be done explicitly using some meta structure, 
or implicitly by position (as in transposed files) or 
tid’s. The domain descriptor indicates that the pri- 
mary storage structure is a domain. All values in a 
given domain are stored in a single unit. Some addi- 
tional information for associating values with their 
relations must exist. 

3.3. Examples 

Table 1 in Appendix A shows assignment of descrip- 
tors to the seven attributes for the twenty DBMs we 
examined. 

4. Anatomy 

4.1. Overview 

The descriptions of DBM architectures available in 
the literature are typically so detailed that it is almost 
impossible to compare two or more DBMS. In this 
section we propose a “language” for describing the 
machine organization of the funnel component of 
DBMS. The language treats a funnel as: (1) a collec- 
tion of modules, (2) the interconnects which link these 
modules, and (3) subsystems which are groupings of 
modules and their associated interconnects. Modules 
correspond to basic hardware units like sorters and 
memories. Subsystems correspond to basic units of 
work and basic units of flow. They indicate the 
manner of work assignment to the modules. 

given a name based on the function they perform 
(modules) or on their structure (interconnects). We 
argue that subsystems can also be typed using two 
properties to be introduced below. This typing is cap- 
tured in a configuration expression. 

Our goal is to describe a funnel in a manner that on 
the one hand is detailed (by using modules and inter- 
connects) and on the other hand enables “pigeonhol- 
ing” designs into few categories for the purpose of 
comparison (using subsystems). Although some preci- 
sion is lost at the subsystem level of description the 
advantage is the ability to compare “apples with 
apples” rather than “apples with oranges”. 

4.2. Modules and Interconnects 

Nine types of modules have been found to cover the 
DBMs dissected so far. They are (in alphabetical 
order): Arithmetic Processor, Buffer, Controller, 
Filter, General Processor, Hasher, Index Processor, 
Merger, and Sorter. 

Four types of interconnect cover the varieties found in 
the DBMS studied to date: Point to Point, Bus, Ring, 
and Switch. 

4.3. Subsystems 

We have identified two characteristics that distinguish 
subsystems from each other: Junction and flow. Func- 
tion refers to the activities carried out by the subsys- 
tem. Examination of approximately twenty DBMS 
yields the following list of possible activities: Jiltering, 
indexing, sorting, partitioning, buflering, metadata 
processing, and general purpose computing. Metadata 
processing is distinct from indexing in the sense that 
indexing simply refers to the operation of mapping a 
value to a set of addresses whereas metadata process- 
ing refers to performing operations on sets of 
addresses (i.e., the intersection of two inverted lists). 
By general purpose computing we mean that the sub- 
system has the capability of performing any computa- 
tion. 

Flow refers to how execution of the activities is 
mapped to the modules and interconnects that make 
up the subsystem. Specifically, it indicates how many 
instruction streams are active and the type of overlap 
used in their execution. We have identified four types 
of flow: single, pipelined, single request parallel 
(SIMD), and multiple requevrl purallel (MIMD). 

Modules and interconnects can be “typed” -- that is 
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4.4. Dissection Process 

The anatomy of a given DBM and the resulting 
configuration expression can be obtained by following 
a series of straightforward steps. 

First, the work done on the data as it moves form the 
home repository is examined. It will appear to take 
place in a number of “steps”. A step is a logically 
complete data location, reduction, ordering, deriva- 
tion, or computation. The work belonging to a step 
will be performed by one or more modules and their 
interconnects. The collection of modules and inter- 
connects associated with a step is identified and iso- 
lated as a subsystem. 

Next each of the modules and the interconnects in a 
subsystem is labeled according to its type (see previ- 
ous sections). Next, each subsystem is labeled using 
the function and flow descriptors. Finally, the rela- 
tionships between modules, interconnects, and subsys- 
tems are made precise in a configuration expression 
using the BNF grammar for a funnel anatomy given 
in Appendix B. 

4.5. Examples 

Appendix C contains example descriptions of 16 
DBMS using the anatomy. The descriptions are given 
at the subsystem as well as the module and intercon- 
nect levels. To illustrate the ideas described in this 
section we examine the derivation of the anatomy of 
GRACE [12]. GRACE accomplishes its tasks in three 
distinct steps. First, the data is retrieved, filtered, 
and partitioned. Second, the partitions are accumu- 
lated in a buffer until all relevant data has been exam- 
ined. Finally, the data in the buffer is sorted and pos- 
sibly repartitioned. It then is handed to the host. 
Repartitioning takes place only if the data is to be 
used in subsequent operations. 

The overall configuration expression is: 
host -I= 
[order,part:FL:SRTRk] =o= [stage:FL,BUF’] =o= 
[index,part,select,FL,GP”] === diskm 
The host is connected to the DBM using a 1 to many 
bus (see Appendix B for the definition of the symbols 
used in the configuration expression). The first sub- 
system performs indexing, partitioning and selections 
in a parallel synchronous manner using m general pur- 
pose processors, each of which is connected to a disk. 
The second subsystem stages data in a parallel syn- 
chronous manner and uses I buffer units. The third 
subsystem performs ordering and partitioning, its flow 
is parallel synchronous, and it is realized using k 

hardware sorters. Rings are used to connect the vari- 
ous hardware modules. 

This is further illustrated in the Figure in Appendix 
C. 

5. Discussion 

5.1. Catalogue Observations 

The biggest factor in the performance of a database 
system is the required location and movement of data- 
base data in mass storage. Several strategies have 
been taken by DBMS to deal with this “I/O 
bottleneck” problem. These include parallel search 
( i.e., filtering), use of indexing (with and without 
filtering), clustering, and use of staging to hold fre- 
quently used data. 

The most popular technique seems to be parallel 
searching of the data. Fifteen out of the twenty 
DBMS studied used this technique. In the case of a 
few of these machines, the search was of the entire 
database and on behalf of a single request. This 
greatly limits the potential performance of the 
machine. Only DIRECT, DBMAC, TERADATA, and 
SABRE did searching for more than one request at a 
time. 

Many of the DBMS use metadata (typically, an index 
of some type) to assist in locating data. Two basic 
approaches are used: multiple single attribute indexing 
per relation and a single multi-attribute index per 
relation. In some cases indexing was coupled with 
filtering. Five of the machines, SABRE, DSDC, 
GRACE, DELTA, and VERS03 adopted t,he second 
approach while three machines, DBMAC, TERADTA, 
and IDM-500, adopted the first approach. Generally, 
the use of metadata to reduce search space is known 
to be an excellent, technique. It should be one of the 
major tools in a DBM. It seems reasonable then to 
consider special hardware to make this tool more 
efficient. Surprisingly, only DBC and DBMAC provide 
special hardware for index manipulation (performing 
intersections between indices). The overhead in main- 
taining indices can be quite considerable, particularly 
when they are sophisticated and updated frequently. 

Clustering techniques have not been explored much 
with respect to DBMS. Some orga.nizations could 

3 V$;RSO actually indexes on the minimal subset, of at,t,ri- 
butes necessary to distinguish the first tuple in a block from the 
remaining ones. It thus does not employ a “trut.” multi- 
attribute indexing scheme. 



show a performance gain from clustering and some 
would not. Those DBMs that filtered the entire data- 
base for each request would obviously not benefit. 
Nothing has been said explicitly about using repli- 
cated data (where each copy is clustered on a different 
attribute) to improve performance. 

A fair number of the DBMS employ data staging. 
However it often seems to be a secondary mechanism. 
Very few view the staging memory as a central com- 
ponent of their design. DELTA, RAF’.B, and DIRECT 
do use staging in a significant fashion. However, it is 
not clear whether the size of memory in those 
machines (and in fact, in any DBM) is large enough to 
make this effective in reducing the required I/O 
bandwidth. DELTA which uses a mainframe as a 
memory hierarchy manager seems particularly 
ineffective. There is also the recovery problem when 
data is staged in a memory. Not much seems to have 
been said about this, though it is solvable, at least for 
memories that are not enormous. 

Almost all DBMS utilize some sort of overlap. In fact, 
this overlap almost always takes the form of parallel 
operations. A good example of it is the parallel data 
searching mentioned above as a popular way for solv- 
ing the “I/O bottleneck problem”. In some machines 
there is also pipelining. No machine however has 
tried to take this parallelism to a massive form where 
there are hundreds of parallel operations happening at 
oncee4 Also very few machines do parallel work for 
more than one request at a time. 

Amazingly most DBMS lay their database data out in 
maSs storage in the same fashion that the user views 
it, that is as relations. There are some exceptions, 
VERSO and RDBM store unnormalized relations. 
Both machines thus have the potential of supporting 
molecular objects directly. 

DELTA took the approach of storing data as binary 
relations composed of attribute value and tid. This is 
a very interesting approach and may have perfor- 
mance benefits in environments where individual attri- 
butes are more important than entire relations. A 
knowledge based system may be an example of this 
kind of environment. CASSM and DBC associate an 
attribute identifier with each value in the database 

4 There are two possible exceptions to this statement. Ta- 
naka, in 125) which we had time only to skim, may be the excep- 
tion here. He discusses the design of MPDC -- a Massively Paral- 
lel DBM. The NONVON machine is supposed to employ mas- 
sive amounts of parallelism. However, only part of the machine 
has been specified so far and it is thus excluded. 

allowing them the possibility of implementing tran- 
sposed files. DBMAC took the approach of storing 
domains of values in what is called a “data pool” 
approach. The value of this is unclear, 

It is unclear how most DBMS handle large results. 
The DBMS that do not have significant staging capa- 
bility will have to pass the entire result to the user at 

once. DBMS with staging capabilities will be able to 
send the result in parts (i.e., “stream” it). 

The difficulties associated with recovery are often 
glossed over. Certain DBM organizations are not very 
amenable to this. Machines that modify the data in 
place such as RAP.1, VERSO, RARES, EDC, CAFS, 
DBC, and CASSM will have difficulty recovering from 
a failure. 

Mechanisms for concurrency control are often not 
addressed. A good many of the DBMS only handle 
one user request at a time and so this is not a factor. 
Few consider updates at all. 

There seems to have been a trend in DBM desigrl 
where earlier machines like CASSM and RAF’.1 were 
primarily oriented toward locating data and perform- 
ing primitive operations on it; while later DBMS such 
as DELTA, GRACE, and TERADATA deal with high 
level queries. The higher the level of the interfa.ce t,o 
the DBM, the more opportunity there is to optimize 
execution and to take advantage of special hardware 
for speed improvement. 

A final observation is that with time DBM designers 
have become increasingly sophisticated in their use of 
processing primitives. The initial designs used filter- 
ing and nested loops (with and without broadcast) to 
realize the various relational algebra operators. Later 
machines make more use of hashing and sorting with 
GRACE, DELTA, RDBM, DSDC, and TERADATA 
realizing these in special purpose hardware. However, 
few machines have implemented highly parallel sort- 
ing algorithms. 

5.2. Anatomy Observations 

An examination of the anatomy of the DBMS shown 
in Appendix C has led us to place them into five 
classes based on similar characteristics. The common 
characteristics for machines in a group are: 1) t,he 
number of subsystems in the DBM, and 2) the func- 
tions realized by the subsystems. The five classes arr 
named as follows: Two-stage filter (2F), Two-stage 

index-filter (2IF), Three-stage computation (X), 
Three-stage index-filter-sort (XFS), and Three-stage 
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mctadata processor-filter (YMF). 

2F consists of those DBMS that use two subsystems to 
realize filtering and data enhancing or derivation (i.e., 
joins). No indexing is supported by these DBMS. 2IF 
consists of those DBMS that use two subsystems to 
realize filtering, indexing, and data derivation. 3C 
consists of those DBMS that use three subsystems to 
realize coarse (relation-level) indexing, data manipula- 
tion operations (including filtering), and buffering. 
3IFS consists of those DBMS that use three subsys- 
tems to realize filtering, indexing, and sorting. 
Finally, 3MF consists of those DBMS that use three 
subsystems to realize metadata operations and filter- 
ing. Note that in all cases we have specified the 
number of subsystems, the activities performed by the 
subsystems but not the mapping of the activities onto 
the subsystems. 

\Ve now look at each class in more detail. 2F con- 
tains EDC, RAP.l, and CASSM and typifies early 
DBM efforts. All three DBMS use multiple filters in 
SIMD fashion, and no indexing. All other operations 
on the data are performed by a single general purpose 
processor. Historically, this class of DBMS is impor- 
tant because it helped spur interest and further work 
in the area. Practically speaking it has little 
significance. 

“IF contains VERSO and the Britton-Lee IDM-500 
DBMS. Common to both DBMS is the use of indexing 
to reduce the search space. However, they differ in 
the storage structures used and the corresponding 
indexing scheme. VERSO employs an unnormalized 
format in which the values within a field are sorted 
whereas the IDM-500 uses a more conventional struc- 
ture in which a normalized relation is clustered on its 
primary key. Neither machine employs parallelism. 
The IDM-500 does have a buffer whereas VERSO does 
not. This class is representative of what we call 
present day potential (and in the case of the IDM-500 
existing) commercial DBMS for the DP application 
environment. Both DBMS are geared towards fast 
execution of selection type queries (although the 
storage structure used in VERSO makes it amenable 
for fast joins in some cases). 

3C contains RAP.2 and DIRECT. Both DBMS use 
relation-level indexing and general purpose processors 
coupled with a large distributed buffer to realize all 
the data manipulation operations. RAP.2 associates 
caach buffer unit with a specific processor and uses 
SIMD type parallelism in the execution of one opera- 
tion whereas DIRECT allows any processor to access 
any memory unit and uses MIMD type parallelism 

within and across operations. Both DBMS are 
representative of the idea that computation and not 
I/O are the main problem in DBM design. Both 
designs were optimized for the “hard” operations, 
such as join. 

31FS contains GRACE, DSDC, TERADATA, DELTA, 
and RDBM. It is probably the most controversial of 
the five classes because there are enough distinguish- 
ing features between the five members of the group to 
place each in a separate class. All five DBMS use 
indexing to reduce the search space and incorporate 
hardware sorters. All but TERADATA incorporate 
hardware filters (in DELTA this is the merge proces- 
sor within the sorter). DELTA and GRACE use a 
buffer. DELTA, RDBM, and TERADATA use general 
purpose processors in addition to special purpose pro- 
cessors. DSDC, TERADATA, RDBM, and DELTA 
support the parallel execution of several operations 
whereas GRACE supports the parallel execution of 
several operations from a single query. Finally, 
TERADATA uses an intelligent switch. 

The last class is 3MF and includes DBC’ and 
DBMAC. Both machines are distinguished by their 
use of special purpose hardware to realize operations 
on metadata. Both machines also uses parallel filters 
although DBC can only handle one operation at a 
time through its filtering subsystem whereas DBMAC 
can handle several. 

5.3. Summary 

In this paper we presented a scheme for describing 
and classifying DBMS. Our scheme is made up of two 
components: a catalogue in which DBMS are described 
using seven attributes and an anatomy in which the 
hardware organization of DBMS is dissected. Using 
the catalogue a DBM can be described quickly and an 
overview of the general mechanisms it uses to accom- 
plish its work is given. The anatomy provides a con- 
venient mechanism for capturing the detailed archi- 
tecture of DBMS. 

Two important contributions are made in this paper. 
The first is the scheme itself and the second is the xJ- 
lection of insights into existing DBM designs (see S-C- 
tions 5.1 and 5.2). 

Previous taxonomies of DBMS seem to be based on 
two attributes: degree of parallelism used and starch 
strategy employed. For example, Bray and Fr(:?man 

5 We are assuming that a Post Processing Irnit makes UIJ 
the third subsystem of DBC. 



151 propose five categories based on number of proces- 
sors and type of search. Song [22] proposes distin- 
guishing between machines based on three attributes: 
placement of logic (secondary versus primary 
memory), allocation of logic (static versus dynamic), 
and degree of logic distribution (a range of “low” to 
“high”). Dewitt and Hawthorn (71 partition machines 
based on the number of and coupling type of logic 
and secondary memory. Hsiao [l l] distinguishes 
among machines based on their use of software (i.e., 
conventional processors) versus hardware (i.e., special 
purpose processors) and whether parallelism is used. 
Only Qadah [lG] takes a broader look by distinguish- 
ing among machines based on the following three 
attributes: Processor-Memory organization (SISD, 
SIMD, and MIMD), Query Processing Place (On-Disk, 
Off-Disk, and Hybrid), and Indexing Level (Page, 
Relation, and Database). 

Our approach has been to concentrate on the design 
of a scheme to describe DBMS resulting in an open- 
ended grouping. The grouping itself is only of secon- 
dary importance since it seems likely that no single 
grouping will capture future machine designs. How- 
ever, we believe our scheme to be sufficiently general 
to enable the description of future machine designs. 

The observations made in Sections 5.1 and 5.2 reveal 
several important weaknesses and some trends in 
existing DBM designs which the designer of a future 
DBM should benefit from. The main negative state- 
ments are: the I/O bottleneck has been dealt with 
naively and emphasis was placed on improving 
response time for a single operation (or query) rather 
than increasing the overall throughput of the system. 
An interesting trend is the use of sorting as a basic 
processing primitive in most of the recent designs. 
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In this appendix we describe 20 database machines. Table 1 consists of the descriptors for the seven 
attributes making up the catalogue for all 20 machines. 

DATABASE MACHINE CATALOGUE - SUMMARY 

Index 
DBMAC A Tree Sev L&P No Intrsction Inverted Inverted j14] 

Domains Domains 

DELTA R.4 OP Few L&P Buf Srbmrg 2-Iv1 Att. w. PI 
Index TIDS 

DIRECT A Tree Sev L&P BUT GP Proc Reln-iv1 unr [“I 
Index 

DSDC l3.A OP 1 L&P No Sort Reln-lvl Encoded WI 
Search Index Rel’ns 

EDC RA OP 1 L No Nested DB-Iv1 unr 1271 
Loops Filt,er 

GRACE A Tree 1 L&P Buf Hash Multi Att macnr 14 
Sort Index 

HYPER- RA OP 1 L BUT Hash NA unr [lOI 
TREE Sort 

LIDM-500 A Tree 1 NO Buf N.4 Index sacnr 18; 
8 
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NONVON 

RAP.1 

RAP.2 

RARES 

RDBM 

RA OP 

RA OP 

RAOP 

Assoc 
Access 
A Tree 

1 L No Brdcst NA “ill. [201 , 
Nstd-lps 

1 L No Filtered DB-lvl unr w. iI51 
Smjoin Filter Mrk Bits 

1 L No Filtered Reln-lvl unr w. 1171 
Smjoin Index Mrk Bits 

1 L No No DBlvl unr 1131 
Filter 

Few L&P BUT sort Reln-Iv1 Unnorm 1191 

REPT RAOP 
SABRE RAOP 

TERA- RA OP 

1 
Few 

Sev 

Index Relns 
L NA GP Proc NA unr l- 
P Buf GP proc Multi Att macnr 1:; 

Index 
L Buf Srtmrg NA unr 1261 

DATA 
VERSO RA OP 1 No No Sort Primary Unnorm PI 

Index Sorted 

Table 1’ 

Appendix B - Anatomy BNF 

<dbm> ..- ..- host <ic> <funnel> <ic> <home-rep> 
<funnel > ::= <subsystem> 1 <ic> <subsystem> <ic> <funnel> 
<ic> a.- ..- ic-type 
<subsystem > ::= [<function> : <flow> : <config>] 
<function> ::= function-type 1 function-type , <function> 
<flow> ..- 
<config> I& 

flow-type 
<module><Cnt’ 1 <config> <ic> <module><Cnt> 

<module > ::= module-type 
<cnt> ..- ..- integer letter 1 
<home-rep > ::= diskcc h t’ 1 disk-cyl<Cnt> 1 disk-trackcCnt> 

[c-type ::= 
--- pt-to-pt 
-x= l-to-m switched 
-o= l-to-m ring 
-I= l-to-m bus 
=x- m-to-l switched 
=O- m-to-l ring 
=I- m-to-l bus 
=x= m-to-m switched 
=o= m-to-m ring 
=I= m-to-m bus 
--- --- parallel pt-to-pt 

module-type ::= 
AP 
BUF 
CTRL 
FLTR 
GP 
HASH 
IP 
MRGR 
SRTR 

(arithmetic processor) 
(buffer) 
(controller) 
(filter) 
(general purpose processor) 
(hasher) 
(index processor) 

function-type ::= 
stage 
order 
index 
select 
f.3 proc (general purpose computing) 
part (partition) 
meta proc (metadata processing) 

1 The abbreviations used in the Storage Structures column are defined in Section 3.2. 
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