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ABSTRACT 

A database containing some incomplete 
information is viewed as a set of possible 
states of the real world. The semantics of 
updates is given based on simple set 
operations on the set of states. Some basic 
results concerning the capabilities of known 
models of incomplete databases to handle 
updates are exhibited. 

INTRODUCTION 

In many database applications, the knowledge 
of the real world modeled by the database is 
incomplete. A lot of research has been devoted 
to the problem of querying these so-called 
incomplete databases CC, B, IL1 , R2, Vr, Vsl. 
However, a problem at least as delicate has 
been little studied : The problem of updating 
them. In this paper, we present a general 
framework for studying updates of incomplete 
databases. We then use this framework to 
obtain results on updates in the context of 
three known models for incomplete databases. 

(*) The work of this author was partially 
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Two fundamental aspects of incomplete database 
updates can be distinguished : 

- The database contains some incomplete 
information (e.g. null values) which may be 
affected by the update. This aspect is 
studied for instance in [FUV, KUV]. 

- The update itself is not completely 
This is the case for view updates 

or updates in semantic database models 

Although these two aspects have rarely been 
considered together, they are certainly 
intimately tied. If all updates are completely 
specified, how did some incomplete information 
arrive in the database in the first place? 
Also, if the system is not able to interprete a 
view update, or to (uniquely) propagate the 
update in a semantic database model, an 
alternative to the refusal of the update is 
certainly the acceptance of some incomplete 
information in the database. 

For these various reasons, it is fundamental to 
understand the relationship between incomplete 
information, and updates. 

In our framework, an incomplete database is 
simply viewed as a set of complete instances, 
i.e., the set of all possible states of the 
real world. An update is then seen as a mapping 
Prom sets of instances to sets of instances. We 
present some large classes of updates based on 
classical operations on sets. Some of them 
(e.g., deletion and insertion) are 
generalizations of classical updates. Others 
are more tightly related to the incompleteness 
of the information. In particular, we introduce 
the concept of subjection which is a novel 
usage of the classical notion of dependency in 
the context of updates. 

The second major theme of the paper is a 
validation of these various concepts by 
applying them to three precise models of 
incomplete databases. The three models that are 
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considered here are Codd tables CC, Bl, naive 
tables, and conditional tables [IL1 1. We 
introduce updates for these various tables. We 
then present some important results which 
highlight the abilities of these tables to 
support update operations. We believe that 
this demonstrates that the understanding of 
the update problem is a necessary step towards 
understanding the notion of incomplete 
information at a fundamental level. 

The paper is organized as follows. The first 
sect ion briefly presents some well-known 
concepts of relational databases. In the 
second section, the notion of incomplete 
information is studied at an abtract level. In 
particular, a classification of updates based 
on classical set operations is introduced. The 
concept of representation system of [IL11 is 
then extended to serve as a basis for the 
llimplementation” of these abstract notions. In 
the third section, we move to a more concrete 
ground by presenting three particular known 
models for representing incomplete 
information. We then define updates for these 
three models. The third section also 
contains the results of the paper. The update 
capabilities of representation systems based 
on the three models are exhibited. We also 
give some negative results showing the 
limitations of two of these models. 

I. PRELIFIINARIES 

We assume that the reader is familiar with the 
relational model to the extent of [VI. 

The following notation will be used throughout 
the paper. We assume that the database 
consists of one relation scheme, which is a 
fixed finite set R of attributes. (All results 
are though immediately generalizable to 
multirelational schemata.) We use A, B, . . to 
denote attributes. With each attribute A in R, 
there is an associated set called the domain 
of A, denoted dam(A). The domains are assumed 
to be (countably) infinite. Each element of a 
domain is called a constant. A tuple t over R 
is a mapping over R such that t(A) is in 
dam(A) for each A in R. For a subset X of R, 
the restriction of a tuple t to X is denoted 
tcx1. To precise the value of a particular 
tuple, we shall use the classical notation 
<a, b, c, . ..>. Here a is the value for the 
first attribute, b of the second, etc.. . 
(Some understood ordering of the attributes iS 
assumed.) An instance (or relation) I over R 
is a finite set of tuples. Instances will 
sometimes also be called states. 

For querying the database, we shall use the 
relational algebra obtained using the 
following operation3 : projection, selection, 
union, (natural) join, difference and 
renaming. It is known that this collection of 

operators form a complete relational algebra, 
assuming that there is an infinite collection 
of alternative attribute names Al, A2, . . . 
available for each attribute A. The formula 
used to specify a selection is a boolean 
expression formed using atoms of the form Ala, 
where A is in R, and a is in dam(A). A 
selection will be called positive if its 
formula does not contain negation. 

We will sometimes use the symbol 0 to denote a 
subset of these operations (e.g., Q = [projec- 
tion, join)). By an R-expression, we then mean 
a well-formed expression involving only 
operators in R. For instance, if R = ABC the 
expression “(TAB(R)) W (JTBC(R))” is an 
R-expression for any Q containing projection 
and join. This notion of an Q-expression will 
be extended is the natural way to updates. For 
example, “(delete . . . from R) U (insert . . . 
into R)” illustrates an R-expression for R 
containing at least deletion, union and 
insertion. 

The existence of an infinite set of variables 
is also assumed. The variables will mainly be 
used to express null-values. 

In most commercial database systems, three 
types of updates are considered, namely 
insertion, deletion and modification. (We use 
here the model of updates introduced in [AVll. 
A more detailed presentation of these 
operations, together with studies on the 
equivalence between compositions of updates 
(“transactions”), and on optimization of such 
transactions can be found there. The 
interaction between updates and dependencies is 
studied in CAV21.J To formally define the 
update operations, we need the auxiliary 
concept of “condition”. 

An elementary condition over R is an expression 
of the form A=a or Afa, where A is in R and a 
is in dam(A) . A condition is a conjunction of 
elementary conditions. (A condition is thus a 
syntactically restricted form of a selection 
formula). A tuple t satisfies a condition F if 
the condition evaluates to true when each 
attribute A appearing in F is substituted by 
t[Al. In the following, we consider only 
meaningful conditions, that is, conditions that 
can be satisfied by some tuple. We now have the 
following definitions. 

An insertion on R is an expression ins(F), 
where F is a condition specifying a complete 
tuple t over R (i.e. F lists values for all 
attributes in R). The result of performing an 
insertion on an instance I is defined by : 
ins(F)(I) = I Ut. 

A deletion on R is an expression del(F), where 
F is a condition over R. The result of 
performing a deletion on an instance I is 
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defined by : del(FJ(I) = I - [t 1 t satisfies F). 

A modification on R is an expression 
mod(F;F’ J, where F and F’ are conditions, the 
latter one not containing inequalities. The 
result of a modification on an instance’ I is 
such that the condition F selects the tuples 
to be updated, and F’ lists new values for 
some of the attributes. 

For instance, if R = {FIRSTNAME, NAME, 
ADDRESS], and I is an instance over R, then 
mod(FIRSTNAME = toto; ADDRESS = Paris)(I) 
changes in I the address of all persons with 
firstname tot0 to Paris. 

For incomplete databases, we shall define some 
additional update operations. They will be 
considered in the next section. 

To conclude the preliminaries, we present some 
notation for operations on sets of instances. 
Let X and Y be sets of instances over the same 
scheme R. 

:Jnion : X UY = 11 1 I in X or I in Y}. 

Intersection : X fl Y = {I 1 I in X and in Y]. 

Difference : X - Y = 11 1 I in X and I not in Y1. 

Pairwise union : X (U) Y = {I U I’ I I in X 
and I’ in Y]. 

Pairwise intersection : X ( fl) Y = (I n I’ I 
I in X and I’ in Y}. 

Pairwise difference : X (-) Y = (I - I’ 1 
I inXandI* inY}. 

II. ON INCOMPLETE INFORMATION 

In this section incomplete information is 
studied at an abstract level. The meaning of 
an incomplete database is expressed in set 
theoretic terms. Updates are then defined as 
set theoretic operations. Finally, the notion 
of representation system introduced by 
Imielinski and Lipski [IL11 is extended to 
handle updates. As for queries, or in the 
context of transactions, it is stressed that 
the system should be able to handle 
compositions of operators (i.e. expressions) 
rather than just single ones. By this, we mean 
that the application of one update, and then 
another one, should yield the same result as a 
single step composition of the two updates. 

11.1 Semantics. 

Databases containing incomplete information 
are usually stored as relations with some sort 
of null-values in the tuples. In Figure 11.1, 

we see a very simple example of such a 
relation. (The symbol @ represents a 
null-value. 1 

NAME ACTIVITY 

tot0 siesta 
lulu @ 

@ music 

Figure II.1 

The intended meaning of this kindergarten 
database is that toto is taking part in the 
siesta activity, lulu is involved in some 
activity, but we do not know which one, and 
there is someone with an unknown name playing 
music. This intended meaning has to be 
expressed in some formal way by assigning some 
semantic interpretation to the database. The 
interpretation that we are going to use is that 
a possible state of the real world according to 
this database can be obtained by substituting 
each null-value in the relation by a value from 
the proper domain. Thus, if we assume that the 
domain of the attribute NAME is {toto, lulu, 
zaza1, and that the domain of ACTIVITY is 
(siesta, music], then all the possible states 
are given in Figure 11.2. (To save space, we 
abbreviate NAME and ACTIVITY by N and A, and 
use t, 1, z, s, and m for the various names and 
activities. 1 

NA NA NA NA NA NA 
-- - - -- -- - 
ts ts ts ts ts ts 
Is Is 1s lm lm lm 
tm lm zm tm zm 

Database X 

Figure II.2 

For the rest of this section, we will consider 
a database with incomplete information simply 
as a set of instances one of which corresponds 
to the true state of the real world. If this 
set contains only one element, we have an 
ordinary (complete) database. Now the semantics 
of an operation on a database X, i.e., a set X 
of instances, can be defined from the operation 
and the set X. For instance, consider a query 
q. The result of this query q on the database X 
is given by q(X) = (q(I) ( I in Xl. So, for X 
as in Figure 11.2, if we ask for the activities 
of toto, by making a selection with the formula 
N=toto, the answer will be the set of states in 
Figure 11.3. 
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NA NA 
- -- 

ts ts 
tm 

q(X) 

Figure II.3 

The obvious meaning of this answer is that 
either toto is involved in siesta and music, 
or just in the siesta activity. From this, we 
know for sure that toto is involved in the 
siesta activity. This “for sure” knowledge can 
be obtained as I ?n x q(I), i.e. the set of 

tuples which appear in all possible states of 
the answer. 

The simple foundation of the above semantics 
is the following : The database contains all 
the possible states of the real world, and by 
applying the query on all possible states, we 
will get all possible answers. We adopt the 
same simple strategy for all update 
operations. For instance, if we want to insert 
a tuple into an incomplete database, this 
tuple should be inserted into the true state 
of the real world. Since we only know the set 
of possible states, we insert the tuple into 
each possible state, thus obtaining all 
possible results of the operation. 

The situation is not always as simple since 
the update itself can be incompletely 
specified. Suppose that we want to insert the 
fact that zaza is involved in some unknown 
activity. This fact can be expressed as a set 
of one-tuple instances {{<zaza, siesta> 1, 
{<zaza, music>)), i.e. as an incomplete 
database Yl. Inserting this fact about zaza 
into a database X comes to “insertingtq Yl into 
X. One possibility of the result is obtained 
by the insertion of a possibility of Y1 into a 
possibilty of X. Thus the result is 
accomplished by the pairwise union X ( U) Yl. 
We shall call this operation (general) 
insertion. If X is the database in 
Figure II;2, and Y1 as above, the result 
X ( U) Y1 of the insertion of Y1 in X is given 
in Figure 11.4. 

The use of a classical set operation to define 
a class of updates suggests that, more 
generally, updates can be viewed as set 
theoretic operations. Indeed, we now turn to 
other classes of updates which will correspond 
to the set operations defined in the 
preliminaries. The other classes of updates 
are : deletion, integration, subjection, 
negative subjection and augmentation. 

NA NA NA NA NA NA NA NA 
__ _ - - --- --_ -__ - 

ts ts ts ts ts ts ts ts 
1s 1s 1s 1s 1s 1s lm lm 
tm tm lm lm zm zm tm tm 
zs zm zs zm zs zs zm 

NA NA NA NA 
- - -- - 
ts ts ts ts 
lm lm lm lm 
zs zm zm zm 

z s 

x (U) Y, 

Figure II.4 

The first one, namely deletion, is based on 
pairwise difference. If a tuple is to be 
deleted from a set of possible states, this is 
accomplished by deleting it from every possible 
state. A set of possible states Y can be 
deleted from another set of possible states X 
by the set theoretic operation of pairwise 
difference X C-J Y. This is the definition of 
(general) deletion. If we now want to delete 
all facts about toto from the database X in 
Figure 11.2, this is obtained by taking X (-1 
y21 where Y2 is the database ((<toto, siesta>, 
<toto, music>)). (Note that Y2 contains one 
instance with two tuples). The result is shown 
in Figure 11.5. 

NA NA NA NA NA 
- -- - - - 
1s 1s 1s lm lm 

lm zm zm 

x (-) Y2 

Figure II.5 

The knowledge contained in two databases X and 
Y can also be integrated into one database by 
taking the tuples common to a possible state in 
X and a possible state in Y as one possible 
state of the new database. This integration 
update is defined by the palrwise intersection 
x cn) Y. 

There are still three other set theoretic 
operations that we are going to use for 
defining updates. The first one of these is 
intersection. Suppose that we have a database 
X, and that our knowledge of the real world has 
increased so that we know that only some 
specific states are possible. This knowledge 
can for instance be that toto is involved in 
only one activity. Now if we take Y3 as the set 



of all instances where toto is involved in at 
most one activity, this knowledge can be put 
into a database X by keeping only those 
instances in X that also are in Y3, i.e. by 
replacing X with X n Y3. We have thereby 
defined the subjection update. The name 
subjection means that the set of possible 
states are subjected to be among the states in 

y3* To illustrate this operation, let Y3 be as 
just defined (e.g., the set of instances where 
toto is involved in at most one activity), and 
X the database in Figure 11.2. Then the 
subjection of X by Y3 (i.e., X fl Y3) is shown 
in Figure 11.6. 

NA NA NA NA - 
t s ts F-s E-i 
1s 1s lm lm 
lm zm zm 

xny 
3 

Figure II.6 

In a similar fashion, we can incorporate 
negative knowledge into a database. Suppose 
that we know that lulu is not involved in the 
music activity. Let Y4 be the set of all 
instances where lulu is involved in music. Our 
negative knowledge is then incorporated in the 
database by replacing X with X - Y4, i.e. by 
keeping those states in X that are not in Y4. 
(Note that we are making here the closed world 
assumption [Rl] by assuming that the absence 
of a fact in a possible state means that the 
fact is false in that state.) We shall call 
this kind of operations negative subjection. 

The reader has certainly noted the 
resemblance between a subjection update and 
dependency enforcement. Indeed, we are going 
to use dependencies to define certain 
subjection updates. For instance, if we know 
that all persons are taking part in at most 
one activity, the set Y used for the 
subjection can then be the set of all 
instances satisfying the functional dependency 
NAME -> ACTIVITY. The main difference between 
subjection update, and dependency enforcement 
is that dependencies are usually regarded as 
time independent constraints that the database 
has to always obey, whereas the constraint of 
a subjection update has to be satisfyed only 
immediately after the update is applied. 

It may be worthwhile at this point to 
emphasize the difference between the updates 
based on pairwise operations and the 
subjection updates. Suppose that X is updated 
with Y. In the pairwise operations, we are 
asked to change the content of the database 
based on the information in Y. Indeed, the 
true state of the database may be altered. 

Conversely, in a subjection, the information in 
Y is only used to restrict the set of possible 
states of the database. The true state of the 
database is not modified. It is only our 
knowledge of it which is getting more precise. 

The sixth update is called augmentation. The 
augmentation of a database X with a database Y 
is defined as X lJ Y. The obvious intuitive 
meaning is that we knew (with X) a set of 
possible states, and we now know that other 
states (Y) are also possible. Hence the new set 
of possible states are those.that are either in 
X or in Y. 

To conclude this presentation of general update 
operations, we now present a last class of 
updates which is a generalization of the 
modification operation on complete databases. 
If we want to “modify” an incomplete database, 
the modification has to be done on every 
possible state. Formally, a modification is a 
function f from instances to instances. When 
applied to a database X, a modification 
transforms X into a database f(X) defined by : 
f(X) = If(I) 1 I in X1. Consider the database X’ 
in Figure 11.5, and the modification 
f= mod(N=zaza;A=siesta). The result f (X’ ) is 
shown in Figure 11.7. 

NA NA NA NA NA - 
1 s IS i-s i-i i-ii 

lm zs z s 

f(X’ 1 

Figure II.7 

We note that like the other updates, the 
modification can be incompletely specified. 
Thus, if we want to change either zaza’s or 
lulu’s activity to siesta, this is accomplished 
by the modification F, where F is a set of two 
modification functions. The first one is as in 
the previous example, and the second one is 
modifying the activity of lulu into siesta. The 
result of the modification in this case is 
defined as F(X) = {f(I) 1 f in F and I in Xl. If 
Xl is the database in Figure 11.5, the result 
is given in Figure 11.8. 

NA NA NA NA NA NA 

i-z i-ii i-s i% i-i Is 
lm zs zs zm 

F(X’ ) 

Figure II.8 

II.2 Representation Systems 

In this section, we briefly present the notions 
of strong and weak representation systems 
[ IL1 1, generalizing them to handle updates. 



So far we have only assumed that an incomplete 
information database is a set of complete 
instances, and that one of these instances 
corresponds to the true state of the real 
world. As soon as we move towards an 
implementation of the database we are faced 
with the problem of representin& the database 
in some compacted fashion, especially since we 
want to be able to deal with infinite sets of 
possible states. Representation techniques for 
incomplete databases are often based on 
tables, which are essentially relations with 
null-values of some sort. 

This leads to the notion of representation. A 
representation is a pair <S,rep>, where S is a 
set of tables, and rep is a mapping from S to 
sets of complete instances. Intuitively S is 
the set of all tables of a particular choice, 
rep is the mapping that gives the set of 
states represented by a table. 

Once a way of representing the database is 
chosen, we have to assure that we also are 
able to represent the result of an operation 
(update or query) in the same way. 
Furthermore, since the database is available 
only in the form of its representative, we 
must have an algorithm based on the 
representative to compute the result of 
the operations. 

We are thus interested in systems composed of 
a representation <S,rep>, and a set R of 
allowed operations (e.g. join and insertion). 
To merit the name representation system such a 
system should have some particular properties. 
We are going to distinguish between “strong” 
and l’weak” representation systems. We first 
present the strong version. 

Definition : A triple <S,rep,n> is a strong 
representation system iff for each table T in 
S and each fl-expression f, there exists a 
table T’ in S such that 

1) rep(T’) = f(rep(T)) 
2) There is an algorithm to compute T’ 

from T and f . 

This definition is in a sense the strongest 
requirement that can be made for a 
representation system, since it states that it 
is possible to compute and represent the exact 
result of all allowed expressions. As noted in 
[ILl], this requirement is too strong for some 
kinds of tables even with fl containing only a 
subset of relational algebra. That is, the 
result of some expressi.ons are not 
representable by any table of the particular 
kind. 

When the system is too weak to represent 
results of arbitrary Q-expressions, we may 

accept approximations of those results : 
Suppose that instead being given the answer to 
a query as If (I) 1 I in X1, the user is given 

?? f(I), i.e. only the information that is 
I in X 
true in all possible states of the real world. 
Now, suppose further that this user has a query 
language based on some R at his disposal, and 
that for two databases X and Y and all 
fl-expressions f, n f(I) = n f(I). In 

I in X I in Y 
this case, the user cannot distinguish between 
X and Y. Thus, X and Y are, in some sense, 
equivalent (since they give the same answer to 
all queries). This equivalence is called 
R-equivalence and denoted X En Y. (For a more 

detailed discussion on R-equivalence, see 
CILl I.) The R-equivalence motivates the 
following notion of weak representation 
systems. 

Definition : A triple <S,rep,R> is a weak 
representation system iff for each table T in S 
and each Q-expression f, there exists a table 
T’ in S such that 

1) rep(T’) GQ f(rep(T)), and 

2) There is an algorithm to compute TV 
from T and f. 

Note that a strong representation systems is 
obviously also a weak representation system. 

In the next section, we are going to present 
three particular representation systems, based 
on three different kinds of tables. 

III. UPDATRS AND REPRESEWTATIOR SYSTEMS 

In this section, we first briefly present three 
fundamental models introduced for dealing with 
incomplete information, namely Codd, naive and 
conditional tables. We also briefly review 
well-known results concerning queries on these 
tables. We then study the problem of updating 
these tables. We present a variety of results 
which highlight the possibilities and 
limitations of each type of table. 

III.1 Tables 

The first system that we are going to consider 
is based on the notion of Codd table [C,B]. An 
example of Codd table is given in Figure 111.1. 
As we can see, a Codd table is a relation 
containing some particular symbols ’ @’ 
indicating unknown values. A possible complete 
state specified by a Codd table is obtained by 
replacing each symbol ’ @’ by a value of the 
corresponding domain. Given a Codd table T@. 
the set of all possible states is denoted 
rep(Tg). 
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SUPPLIER ADDRESS PRODUCT 
-------- .---.----__-- 

@ Romorantin nails 
tot0 @ bolts 
zaza @ nuts 

Codd table Tg 

Figure III.1 

The second system is based on the notion of 
naive table [IL1 1. An example of a naive table 
is given in Figure 111.2. A naive table is a 
relation containing constants (e.g., nails, 
zaza, . ..I. and variables (x, y, . ..I. The 
variables are used to indicate unknown values. 
Moreover , since a variable can appear more 
than once in the table, one has the 
possibility to represent knowledge like: “the 
addresses of toto and zaza are unknown, but we 
know that they have the same address”. A 
possible state is obtained by first assigning 
a value to each variable, then replacing each 
variable by its assigned value. Given a naive 
table T the 
denoted !%p(TN). 

set of all possible states is 

SUPPLIER ADDRESS PRODUCT 
-__-_-_---------_--.-----_- 

X Romorantin nails 
tot0 Y bolts 
zaza Y nuts 

Naive table T 

Figure III.2 

The last system is based on the notion of 
conditional table (C-table) [ILlI. An example 
of a conditional table is given in 
Figure 111.3. Like in naive tables, we have 
constants and variables. The table has also a 
global condition, and each tuple has a local 
condition. A global or local condition is any 
boolean combination of elementary conditions. 
In the example, I’y # Romorantin” is the global 
condition, and ‘lx f mimi”, “true” are local 
conditions. To obtain a possible state, one 
must first have an assignment of the variables 
which make the global condition true, then in 
each tuple such that the local condition is 
true (for that assignment) replace the 
variables by their associated values. (Tuples 
with false local condition are just 
discarded). Intuitively, a C-table allows us 
to also represent information like: “If x is 
not mimi, then x is supplying nails”. Note 
that if naive tables allow to state equalities 
between unknown values, C-tables allow also to 
state inequalities. Given a C-table TC, the 
set of possible states is denoted rep(TC). For 
TC as in Figure 111.3, two instances in 
rep(TC) are given in Figure 111.4. 

SUPPLIER ADDRESS PRODUCT CON 1 y f Romorantin 
-----_--- 

X Romorantin nails x f mimi 
tot0 Y bolts true 
zaza Y nuts true 

Conditional table TC 

Figure III.3 

SUPPLIER ADDRESS PRODUCT 

lulll 
tot0 
zaza 

Romorantin nails 
London bolts 
London nuts 

SUPPLIER ADDRESS PRODUCT 

tot0 
zaza 

Paris 
Paris 

bolts 
nuts 

Two instances in rep(TC) 

Figure III.4 

III.2 Tables and relational algebra 

We will study representation systems based on 
these three types of tables : Codd tables, 
naive tables and conditional tables. 
Representation systems based on these tables 
were extensively studied in [IL11 with R being 
a subset of relational algebra. The following 
results were demonstrated there. 

Theorem [IL11 : <S,rep,R> is a strong 
representation system for S being the set of 
all conditional tables, and R consisting of 
projection, selection, union, join, difference 
and renaming. 

<S,rep,R> is a weak representation system for S 
being the set of all naive tables, and R 
consisting of projection, positive selection, 
union, join and renaming. 

<S, rep, D> is a weak representation system for 
S being the set of all Codd tables, and Q 
consisting of projection and selection. 

The conditional tables in [IL1 1 do not contain 
a global condition. The notion of conditional 
table with global condition (as found here) was 
introduced in CC] in order to handle 
dependencies. The result of [IL1 1 on C-tables 
was also extended in CC] to C-tables with 
global conditions. 

The above result for naive tables is 
particularly attractive since the algorithms to 
perform queries on naive tables are essentially 



the same as those for the complete case. The 
variables can be treated as domain values that 

incomplete instances defined by insT(X) = X 
(u) rep(T) for each incomplete instance X. 

are pairwise different and ditferent rrom all 
“real” domain values. The attractiveness Or 
the naive tables is though severely 
diminished, as we shall see later, by their 
weak ability to support update operations. 

We will be of course interested in applying 
insT to instances represented by tables in S. 
We now present an example or insertion of a 
C-table “into” a C-table. 

The following theorem shows the limitations of 
the tables for handling queries. (We shall 
present in the next section, limitations for 
handling updates.) 

Theorem : <S,rep,R> is not a weak - 
representation system if 

a) S is the set of all naive tables and D 
contains 

i) projection and selection, or 
ii) projection and difference. 

b) S is the set of all Codd tables and R 
contains 

or 
i) projection, selection and union, 

ii) projection and join, or 
iii) selection and difference. 

Parts ali), b)i) and b)ii) were proved in 
[ IL1 1. Note that Codd tables can support only 
unary operations. (Parts a)ii and b)i really 
require the assumption that the database 
scheme consists or at least two relation 
schemes 1. 

III.3 Updating tables 

We now turn our attention to update operations 
on tables. In the previous section, we 
introduced seven very general classes 0r 
updates. In this section, we use tables to 
specify some particular incomplete instances. 
We now specify some particular updates on 
these incomplete instances. 

We will present several kinds of updates. 
These updates are all specific cases of the 
updates introduced in the previous section : 
insertion, deletion, integration, modification, 
subjection and augmentation. An update will be 
specified by a table, a condition, or a 
dependency. We do not claim that every 
conceivable update can thereby be expressed. 
However, we believe that this leads to a quite 
powerful update language which can be used as 
a yardstick for update capabilities. 

In the following, S is a set of tables (e.g., 
the set of C-tables). 

We first define insertion. 

: Example Consider the C-table T of Figure 
III.?,. Suppose that we want to insert the fact 
that there is a supplier named lili in Tokyo 
who supplies an unknown product. This insertion 
is accomplished by taking the one-tuple C-table 
<lili, Tokyo, v, true> (the global condition 
equals true 1, and inserting it into rep(TC). 
The result of this insertion is the incomplete 
instance rep(T’C) where TIC is the C-table in 
Figure 111.5. 

SUPPLIER ADDRESS PRODUCT CON 1 y f Romorantin 
-- _-- e--e--- 

X Romorantin nails x f mimi 
tot0 Y bolts true 
zaza Y nuts true 
lili Tokio V true 

Figure III.5 

The next operation to be considered is 
deletion. In complete databases, deletion is 
defined by a condition. (The tuples to be 
deleted are all the tuples satisfying the 
condition.) In incomplete databases, we allow 
incompletely specified updates. Hence we need 
the notion of extended conditions. 

An extended condition F is a couple <Fl ,F2> 
where Fl is a conjunction of extended 
elementary conditions of the form Aax, A=a, 
A~x, or Ada, and F2 is a global condition. 

An example of extended condition is: 
<NAME=v,v=toto or v=zaza>. 

An extended condition F= <Fl ,F2> defines a set 
of complete instances KF in the following way : 
KF = [{t 1 satisfies F’) 1 F’ a valuation of Fl 
respecting F21 (A valuation F’ of Fl respects 
F2 if F2 is true for the values assigned to 
variables in transforming Fl to Ft. 1 

For example, the condition F above defines the 
set KF = {It It[NAME] = toto),{t ) t[NAME]=zazal}. 

We are now ready to define the deletion 
operation. 

Deletion : Let F be an extended condition. Then 
del(F) is the operation on incomplete instances 
defined by : del(F)(X) = X (-1 KF, for each 
incomplete instance X. 

Insertion : Let T be a table in some S. Then 
the insertion of T is the operation on 



We now illustrate the use of deletion. Suppose 
that we want to delete either toto or zaza 
from the database specified by the table TC in 
Figure III. 3. This can be accomplished by 
taking the extended condition F, as defined 
above, and performing the operation 
del(F)(rep(TC)). A table representing the 
result of this operation is given in 
Figure 111.6. The reader can easily verify 
that in any complete instance represented by 
the table below either the second or third 
tuple is discarded. 

SUPPLIER ADDRESS PRODUCT CON 1 yfftomorantin 

--i 

and (v=toto ----------------I-- 
or v=zaza) 

I 

X Romorantin nails xfmimr-an’TI ..*..... 

tot0 Y bolts tot0 # v 
zaza Y nuts zaza f v 

Figure III.6 

Modification on incomplete databases is 
defined in a manner similar to that of [AVl 1. 
However, since we are dealing with incomplete 
information, we allow extended conditions (as 
for deletions) to be used. 

Modification : Let F and F’ be extended 
conditions. Then mod(F;F’) is the operation on 
incomplete instances defined by 

mod(F;F’ )(X) E H(X) 

where H is the set of complete modifications 
obtained by valuating F and F’ in mod(F;F’). 

We now illustrate the modification by an 
example. For the sake of simplicity, we use 
only complete conditions in the example. 

: Example We want to make a modification to 
the database specified by the table TC in 
Figure III.3 : Change the parts supplied by 
suppliers in Helsinki to screws. The corres- 
ponding modification is mod<ADDRESS=Helsinki; 
PART=screws>. The result of this operation on 
TC is represented by the table in 
Figure 111.7. Note that the table contains 
some disjunctive information. (If the address 
of toto is Helsinki, then the part supplied is 
screws, otherwise it remains unchanged.) 

SUPPLIER ADDRESS PRODUCT CON 1 yfRomorantin 
l_---._-_--____- ------- 

X Romorantin nails x # mimi 
tot0 Y bolts y # Helsinki 
tot0 Y screws y = Helsinki 
zaza Y nuts y f Helsinki 
zaza Y screws y # Helsinki 

We now present integration. 

Integration : Let T be a table in S. Then the 
integration of T is the operation on incomplete 
instances defined by 

intT(x) = x (n) rep(T) for each 
incomplete instance X. 

Next we consider subjection updates. The 
subjection that is considered here is a special 
case of the general subjection defined in the 
previous section, and is based on an extension 
of “equality generating dependencies”. 

In the following, we call dependency 
equality generating dependency CBVI whe:: 
constants may appear. The following sentence g 
is an example of a dependency : 

g= V t (t(SUPPLIER)= toto => t(ADDRESS)=Paris). 

The knowledge expressed by this dependency is 
that the hitherto unknown address of toto is 
Paris. In the update, we want to maintain the 
knowledge that zaza’s address is the same as 
toto’ 5. This will be accomplished by the 
subjection update. 

For a set G of dependencies, sat(G) is the set 
of complete instances satisfying G. Now we 
have: 

Subjection : Let G be a set of dependencies. 
Then the subjection by G is the operation on 
incomplete instances defined by 

SUbjG(X) = X n sat(C) for each incomplete 
instance X. 

The following example illustrates this notion 
of subjection. 

Example : Consider again the instance rep(TC) 
for TC as in Figure 111.3. Consider also the 
dependency g defined above. Then 
sWg(repI($)i= ;;-~~T’c~)~~~f’or~~~‘c inpo;m;ti&; 
Figure . . 
x # toto was also inferred. This is due to the 
fact that the address of the supplier x is 
Romorantin; hence x cannot be toto. 

SUPPLIER ADDRESS PART CON 1 xftoto 
----- --. ---__-------- 

X Romorantin nails x f mimi 
tot0 Paris bolts true 
zaza Paris nuts true 

Subjection 

Figure III.8 

The structure of the information in 
dependencies is such that it will be more 

Modification 

Figure III.7 



convenient to introduce negative information 
through negative dependencies instead of 
through negative subjection. By a negative 
dependency we mean a formula obtained by 
replacing, in a dependency, all equalities at 
the right hand side of the implication by 
inequalities. The following sentence g’ is an 
example of negative dependency : 

g’= Y t (t(SUPPLIER)=toto => t(ADDRESS)4Paris). 

The definition of the subjection remains the 
same, but we shall call it a subjection with a 
negative dependency to distinguish the type of 
information introduced. For the next example 
we want to incorporate the knowledge expressed 
by the negative dependency g’ above into the 
database specified by the table TC of 
Figure 111.3. The result is rep(T’C), for TIC 
in Figure 111.9. 

SUPPLIER ADDRESS PRODUCT CON yfRomorantin 
-e-.-_-F-- -----{ and y#Paris 

X Romorantin nails x. .$.m*m*---- 

tot0 Y bolts true 
zaza Y nuts true 

Subjection by a negative dependency 

Figure III.9 

The last operation to be defined is 
augmentation. We augment the database 
specified by one table with the information 
specified by another table. The formal 
definition is as follows. 

Augalentation : Let T be a table in S. Then the 
augmentation of T is the operation on 
incomplete instances defined by aug (X1 = 
X Urep(T) for each incomplete instance 2 

III.4 Results 

We are now ready to present the main results 
of the paper. These results characterize the 
ability of the three particular tables to 
support update and query operations. For a 
table-based update in a representation system 
<St rep, D>, we assume that the table used to 
specify the update is also in S, and that 
there are no variables in common in the two 
tables involved. Also, the variables used in 
specifying an update have to be “fresh”, i.e. 
not used before. In particular, one cannot use 
the same variable in two different updates in 
an expression. 

Theorem : <S,rep,G> is a strong 
representation system for S being the set of 
all conditional tables, and Q consisting of 

all relational algebra operators and all six 
update operations. 

The theorem shows the strength of conditional 
tables. The various updates are treated in the 
proof of the theorem in the following way : 

Insertion, deletion and integration can be 
embedded in a slight extension of the 
relational algebra on C-tables. 

A simple algorithm to compute the effect of a 
modification on a table can be exhibited. 

The ability to support subjection follows 
from Ccl. The result of a subjection can be 
computed as ChaseG(T), where Chase is a 
generalization of the well known Chase 
algorithm CMMSI. 

Subjection by a negative dependency can be 
obtained by a modification of this 
generalized chase. 

Augmentation is achieved by adding a 
condition x=0 to every tuple in T, and the 
condition xf0 to all the tuples in T’ , and 
taking the (set theoretic) union of the two 
tables. Here x is a variable not appearing 
elsewhere in the tables. If we denote the 
global conditions for T and T’ by G and Cl , 
the global condition for the new table will 
be (C and X=0) or (G’ and X+0). 

If conditional tables are very powerful with 
respect to update operations, the same cannot 
be said about naive tables. Even if naive 
tables can support quite a large subset of 
relational algebra, they are not very well 
suited for update operations. 

Theorem : <S,rep,R> is a weak representation 
system if S is the set of all naive tables, and 
R consists of projection, positive selection, 
union, join, renaming, insertion, integration 
and subjection by positive dependencies without 
constants. 

Insertion and integration are obtained using 
relational union and intersection. A result in 
[IL2]; which states that naive tables can be 
81chased11 in the same way as tableaux CMMSI, can 
be used for subjection. For the limits of naive 
tables, we have established the following 
negative result. 

Theorem : <S,rep,R> is not a weak 
representation svstem if S is the set of all 
naive tables, and R contains 

a) positive selection, projection and deletion 
(even with complete condition). or 

b) positive selection, projection and 
modification (even with complete condition), 
or 
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c) positive selection, projection and 
augmentation or 

d) positive selection, projection and 
(general) subjection. 

The main reason for this negative result is 
that naive tables cannot handle disjunctive 
information. Negative subjections are not 
supported since we cannot express inequalities 
on the null-values. 

Our next result indicates a (limited) Power of 
Codd tables. 

Theorem : <S,rep,R> is a weak representation 
system if S is the set of all Codd tables, and 
n consist3 of projection, selection, . _ 
insertion, integration and deletion with 
complete condition. 

Insertion and integration are achieved through 
union and intersection. Since the inserted or 
integrated table is independent from the 
operand, these operations are in effect unary, 
and thus weaker than their relational 
counterparts. Deletion is obtained by deleting 
all tuples that possibly match the deletion 
condition. “Possibly match” means that there 
exist3 at least one substitution of the 
null-values which makes the comparison true. 
For this purpose, the evaluation rules are 
given by: “@=a” = true and “@=@‘I = true. 

Finally, we present some limitions of Codd 
tables. 

Theorem : <S,rep,Q> is not a weak 
representation system if S is the set of all 
Codd tables, and R contains 

a) selection and modification (even with 
complete conditions) , or 

b) selection and subjection, or 

c) selection and augmentation. 

This result is a consequense of the facts that 
Codd tables cannot support disjunctive 
information. The failure to support 
subjections follows from the fact that we can 
neither equate two unknown values (which we 
could do with naive tables), nor express 
inequalities between them. 

IV CONCLUSIONS 

The results obtained in the last section were 
not surprising: more complicated tables can 
support more update operations. However, the 
results are quite discouraging for naive 
tables : Naive tables can handle queries in a 
simple and elegant manner, but they are quite 
inadequate with respect to updates. Indeed, 

only C-tables could support updates in a 
reasonable fashion. This strongly suggests that 
C-tables should be used as the basis for an 
implementation of incomplete databases. 

C-tables can be criticized for the complexity 
of query computation. Two solutions can be 
adopted : 

(1) The database is stored as a C-table, but 
for query purposes, only the naive part of 
the table is used. (Answer to queries are 
therefore only approximations. ) All the 
information of the C-table is used for 
updates. Hence, the content of the database 
is always viewed as close as possible to 
the known reality. 

(2) If conditions are assumed to be rare, then 
the complexity argument against C-tables 
does not hold anymore. A physical 
implementation can then be used offering 
the full advantage of C-tables, but 
treating most of the information with tools 
developped for naive tables. 

The first solution may be chosen for 
applications where queries are much more 
frequent than updates if an approximation of 
the correct answer is acceptable. The second 
solution should be prefered if conditions are 
essentially used to handle exceptions, and are 
thus quite rare. 

A final remark on the semantic nature of update 
operations should be made. The semantics we 
have used is in essence algebraic in that we 
consider updates as operations, i.e. as 
mappings from databases to databases. Another 
approach which appeared in the literature is 
the proof theoretic one CFUV,KUV]. In the proof 
theoretic approach, the update is specified by 
some properties that the resulting database 
should satisfy. The method is thus completely 
unconstructive. (One can note that databases 
specified by tables can be viewed as a set of 
axioms of a first order theory (see [I]). 
However, since we deal with closed world 
databases, updates are a form of non-monotonic 
reasoning, and thus the methodology proposed 
for instance by [FUV] is not applicable). The 
difference between the “algebraic” and the 
“proof theoretic” approaches is somewhat 
similar to the difference between relational 
algebra and relational calculus. An interesting 
topic for further research is the comparison of 
the two approaches in search of some sort of 
equivalence between them. 
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