
Serge Abiteboul Msta Crabne(*)

Institut National de Recherche en Informatique et Automatique
78153 Le Chesnay, CEDEX

FRANCE

ABSTRACT

A database containing some incomplete
information is viewed as a set of possible
states of the real world. The semantics of
updates is given based on simple set
operations on the set of states. Some basic
results concerning the capabilities of known
models of incomplete databases to handle
updates are exhibited.

INTRODUCTION

In many database applications, the knowledge
of the real world modeled by the database is
incomplete. A lot of research has been devoted
to the problem of querying these so-called
incomplete databases CC, B, IL1 , R2, Vr, Vsl.
However, a problem at least as delicate has
been little studied : The problem of updating
them. In this paper, we present a general
framework for studying updates of incomplete
databases. We then use this framework to
obtain results on updates in the context of
three known models for incomplete databases.

(*) The work of this author was partially
supported by the Academy of Finland.

Permission to copy without fee all or part of this material is
g-ranted provided that the copies are not made or distributed for di-
rect commercial advantage+ the VLDB copyright notice and the title
of the publication and its date appear, and notice is given that copy
ing is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

Two fundamental aspects of incomplete database
updates can be distinguished :

- The database contains some incomplete
information (e.g. null values) which may be
affected by the update. This aspect is
studied for instance in [FUV, KUV].

- The update itself is not completely
This is the case for view updates

or updates in semantic database models

Although these two aspects have rarely been
considered together, they are certainly
intimately tied. If all updates are completely
specified, how did some incomplete information
arrive in the database in the first place?
Also, if the system is not able to interprete a
view update, or to (uniquely) propagate the
update in a semantic database model, an
alternative to the refusal of the update is
certainly the acceptance of some incomplete
information in the database.

For these various reasons, it is fundamental to
understand the relationship between incomplete
information, and updates.

In our framework, an incomplete database is
simply viewed as a set of complete instances,
i.e., the set of all possible states of the
real world. An update is then seen as a mapping
Prom sets of instances to sets of instances. We
present some large classes of updates based on
classical operations on sets. Some of them
(e.g., deletion and insertion) are
generalizations of classical updates. Others
are more tightly related to the incompleteness
of the information. In particular, we introduce
the concept of subjection which is a novel
usage of the classical notion of dependency in
the context of updates.

The second major theme of the paper is a
validation of these various concepts by
applying them to three precise models of
incomplete databases. The three models that are

Proceedings of VLDB 85, Stockholm

considered here are Codd tables CC, Bl, naive
tables, and conditional tables [IL1 1. We
introduce updates for these various tables. We
then present some important results which
highlight the abilities of these tables to
support update operations. We believe that
this demonstrates that the understanding of
the update problem is a necessary step towards
understanding the notion of incomplete
information at a fundamental level.

The paper is organized as follows. The first
sect ion briefly presents some well-known
concepts of relational databases. In the
second section, the notion of incomplete
information is studied at an abtract level. In
particular, a classification of updates based
on classical set operations is introduced. The
concept of representation system of [IL11 is
then extended to serve as a basis for the
llimplementation” of these abstract notions. In
the third section, we move to a more concrete
ground by presenting three particular known
models for representing incomplete
information. We then define updates for these
three models. The third section also
contains the results of the paper. The update
capabilities of representation systems based
on the three models are exhibited. We also
give some negative results showing the
limitations of two of these models.

I. PRELIFIINARIES

We assume that the reader is familiar with the
relational model to the extent of [VI.

The following notation will be used throughout
the paper. We assume that the database
consists of one relation scheme, which is a
fixed finite set R of attributes. (All results
are though immediately generalizable to
multirelational schemata.) We use A, B, . . to
denote attributes. With each attribute A in R,
there is an associated set called the domain
of A, denoted dam(A). The domains are assumed
to be (countably) infinite. Each element of a
domain is called a constant. A tuple t over R
is a mapping over R such that t(A) is in
dam(A) for each A in R. For a subset X of R,
the restriction of a tuple t to X is denoted
tcx1. To precise the value of a particular
tuple, we shall use the classical notation
<a, b, c, . ..>. Here a is the value for the
first attribute, b of the second, etc.. .
(Some understood ordering of the attributes iS
assumed.) An instance (or relation) I over R
is a finite set of tuples. Instances will
sometimes also be called states.

For querying the database, we shall use the
relational algebra obtained using the
following operation3 : projection, selection,
union, (natural) join, difference and
renaming. It is known that this collection of

operators form a complete relational algebra,
assuming that there is an infinite collection
of alternative attribute names Al, A2, . . .
available for each attribute A. The formula
used to specify a selection is a boolean
expression formed using atoms of the form Ala,
where A is in R, and a is in dam(A). A
selection will be called positive if its
formula does not contain negation.

We will sometimes use the symbol 0 to denote a
subset of these operations (e.g., Q = [projec-
tion, join)). By an R-expression, we then mean
a well-formed expression involving only
operators in R. For instance, if R = ABC the
expression “(TAB(R)) W (JTBC(R))” is an
R-expression for any Q containing projection
and join. This notion of an Q-expression will
be extended is the natural way to updates. For
example, “(delete . . . from R) U (insert . . .
into R)” illustrates an R-expression for R
containing at least deletion, union and
insertion.

The existence of an infinite set of variables
is also assumed. The variables will mainly be
used to express null-values.

In most commercial database systems, three
types of updates are considered, namely
insertion, deletion and modification. (We use
here the model of updates introduced in [AVll.
A more detailed presentation of these
operations, together with studies on the
equivalence between compositions of updates
(“transactions”), and on optimization of such
transactions can be found there. The
interaction between updates and dependencies is
studied in CAV21.J To formally define the
update operations, we need the auxiliary
concept of “condition”.

An elementary condition over R is an expression
of the form A=a or Afa, where A is in R and a
is in dam(A) . A condition is a conjunction of
elementary conditions. (A condition is thus a
syntactically restricted form of a selection
formula). A tuple t satisfies a condition F if
the condition evaluates to true when each
attribute A appearing in F is substituted by
t[Al. In the following, we consider only
meaningful conditions, that is, conditions that
can be satisfied by some tuple. We now have the
following definitions.

An insertion on R is an expression ins(F),
where F is a condition specifying a complete
tuple t over R (i.e. F lists values for all
attributes in R). The result of performing an
insertion on an instance I is defined by :
ins(F)(I) = I Ut.

A deletion on R is an expression del(F), where
F is a condition over R. The result of
performing a deletion on an instance I is

2

defined by : del(FJ(I) = I - [t 1 t satisfies F).

A modification on R is an expression
mod(F;F’ J, where F and F’ are conditions, the
latter one not containing inequalities. The
result of a modification on an instance’ I is
such that the condition F selects the tuples
to be updated, and F’ lists new values for
some of the attributes.

For instance, if R = {FIRSTNAME, NAME,
ADDRESS], and I is an instance over R, then
mod(FIRSTNAME = toto; ADDRESS = Paris)(I)
changes in I the address of all persons with
firstname tot0 to Paris.

For incomplete databases, we shall define some
additional update operations. They will be
considered in the next section.

To conclude the preliminaries, we present some
notation for operations on sets of instances.
Let X and Y be sets of instances over the same
scheme R.

:Jnion : X UY = 11 1 I in X or I in Y}.

Intersection : X fl Y = {I 1 I in X and in Y].

Difference : X - Y = 11 1 I in X and I not in Y1.

Pairwise union : X (U) Y = {I U I’ I I in X
and I’ in Y].

Pairwise intersection : X (fl) Y = (I n I’ I
I in X and I’ in Y}.

Pairwise difference : X (-) Y = (I - I’ 1
I inXandI* inY}.

II. ON INCOMPLETE INFORMATION

In this section incomplete information is
studied at an abstract level. The meaning of
an incomplete database is expressed in set
theoretic terms. Updates are then defined as
set theoretic operations. Finally, the notion
of representation system introduced by
Imielinski and Lipski [IL11 is extended to
handle updates. As for queries, or in the
context of transactions, it is stressed that
the system should be able to handle
compositions of operators (i.e. expressions)
rather than just single ones. By this, we mean
that the application of one update, and then
another one, should yield the same result as a
single step composition of the two updates.

11.1 Semantics.

Databases containing incomplete information
are usually stored as relations with some sort
of null-values in the tuples. In Figure 11.1,

we see a very simple example of such a
relation. (The symbol @ represents a
null-value. 1

NAME ACTIVITY

tot0 siesta
lulu @

@ music

Figure II.1

The intended meaning of this kindergarten
database is that toto is taking part in the
siesta activity, lulu is involved in some
activity, but we do not know which one, and
there is someone with an unknown name playing
music. This intended meaning has to be
expressed in some formal way by assigning some
semantic interpretation to the database. The
interpretation that we are going to use is that
a possible state of the real world according to
this database can be obtained by substituting
each null-value in the relation by a value from
the proper domain. Thus, if we assume that the
domain of the attribute NAME is {toto, lulu,
zaza1, and that the domain of ACTIVITY is
(siesta, music], then all the possible states
are given in Figure 11.2. (To save space, we
abbreviate NAME and ACTIVITY by N and A, and
use t, 1, z, s, and m for the various names and
activities. 1

NA NA NA NA NA NA
-- - - -- -- -
ts ts ts ts ts ts
Is Is 1s lm lm lm
tm lm zm tm zm

Database X

Figure II.2

For the rest of this section, we will consider
a database with incomplete information simply
as a set of instances one of which corresponds
to the true state of the real world. If this
set contains only one element, we have an
ordinary (complete) database. Now the semantics
of an operation on a database X, i.e., a set X
of instances, can be defined from the operation
and the set X. For instance, consider a query
q. The result of this query q on the database X
is given by q(X) = (q(I) (I in Xl. So, for X
as in Figure 11.2, if we ask for the activities
of toto, by making a selection with the formula
N=toto, the answer will be the set of states in
Figure 11.3.

3

NA NA
- --

ts ts
tm

q(X)

Figure II.3

The obvious meaning of this answer is that
either toto is involved in siesta and music,
or just in the siesta activity. From this, we
know for sure that toto is involved in the
siesta activity. This “for sure” knowledge can
be obtained as I ?n x q(I), i.e. the set of

tuples which appear in all possible states of
the answer.

The simple foundation of the above semantics
is the following : The database contains all
the possible states of the real world, and by
applying the query on all possible states, we
will get all possible answers. We adopt the
same simple strategy for all update
operations. For instance, if we want to insert
a tuple into an incomplete database, this
tuple should be inserted into the true state
of the real world. Since we only know the set
of possible states, we insert the tuple into
each possible state, thus obtaining all
possible results of the operation.

The situation is not always as simple since
the update itself can be incompletely
specified. Suppose that we want to insert the
fact that zaza is involved in some unknown
activity. This fact can be expressed as a set
of one-tuple instances {{<zaza, siesta> 1,
{<zaza, music>)), i.e. as an incomplete
database Yl. Inserting this fact about zaza
into a database X comes to “insertingtq Yl into
X. One possibility of the result is obtained
by the insertion of a possibility of Y1 into a
possibilty of X. Thus the result is
accomplished by the pairwise union X (U) Yl.
We shall call this operation (general)
insertion. If X is the database in
Figure II;2, and Y1 as above, the result
X (U) Y1 of the insertion of Y1 in X is given
in Figure 11.4.

The use of a classical set operation to define
a class of updates suggests that, more
generally, updates can be viewed as set
theoretic operations. Indeed, we now turn to
other classes of updates which will correspond
to the set operations defined in the
preliminaries. The other classes of updates
are : deletion, integration, subjection,
negative subjection and augmentation.

NA NA NA NA NA NA NA NA
__ _ - - --- --_ -__ -

ts ts ts ts ts ts ts ts
1s 1s 1s 1s 1s 1s lm lm
tm tm lm lm zm zm tm tm
zs zm zs zm zs zs zm

NA NA NA NA
- - -- -
ts ts ts ts
lm lm lm lm
zs zm zm zm

z s

x (U) Y,

Figure II.4

The first one, namely deletion, is based on
pairwise difference. If a tuple is to be
deleted from a set of possible states, this is
accomplished by deleting it from every possible
state. A set of possible states Y can be
deleted from another set of possible states X
by the set theoretic operation of pairwise
difference X C-J Y. This is the definition of
(general) deletion. If we now want to delete
all facts about toto from the database X in
Figure 11.2, this is obtained by taking X (-1
y21 where Y2 is the database ((<toto, siesta>,
<toto, music>)). (Note that Y2 contains one
instance with two tuples). The result is shown
in Figure 11.5.

NA NA NA NA NA
- -- - - -
1s 1s 1s lm lm

lm zm zm

x (-) Y2

Figure II.5

The knowledge contained in two databases X and
Y can also be integrated into one database by
taking the tuples common to a possible state in
X and a possible state in Y as one possible
state of the new database. This integration
update is defined by the palrwise intersection
x cn) Y.

There are still three other set theoretic
operations that we are going to use for
defining updates. The first one of these is
intersection. Suppose that we have a database
X, and that our knowledge of the real world has
increased so that we know that only some
specific states are possible. This knowledge
can for instance be that toto is involved in
only one activity. Now if we take Y3 as the set

of all instances where toto is involved in at
most one activity, this knowledge can be put
into a database X by keeping only those
instances in X that also are in Y3, i.e. by
replacing X with X n Y3. We have thereby
defined the subjection update. The name
subjection means that the set of possible
states are subjected to be among the states in

y3* To illustrate this operation, let Y3 be as
just defined (e.g., the set of instances where
toto is involved in at most one activity), and
X the database in Figure 11.2. Then the
subjection of X by Y3 (i.e., X fl Y3) is shown
in Figure 11.6.

NA NA NA NA -
t s ts F-s E-i
1s 1s lm lm
lm zm zm

xny
3

Figure II.6

In a similar fashion, we can incorporate
negative knowledge into a database. Suppose
that we know that lulu is not involved in the
music activity. Let Y4 be the set of all
instances where lulu is involved in music. Our
negative knowledge is then incorporated in the
database by replacing X with X - Y4, i.e. by
keeping those states in X that are not in Y4.
(Note that we are making here the closed world
assumption [Rl] by assuming that the absence
of a fact in a possible state means that the
fact is false in that state.) We shall call
this kind of operations negative subjection.

The reader has certainly noted the
resemblance between a subjection update and
dependency enforcement. Indeed, we are going
to use dependencies to define certain
subjection updates. For instance, if we know
that all persons are taking part in at most
one activity, the set Y used for the
subjection can then be the set of all
instances satisfying the functional dependency
NAME -> ACTIVITY. The main difference between
subjection update, and dependency enforcement
is that dependencies are usually regarded as
time independent constraints that the database
has to always obey, whereas the constraint of
a subjection update has to be satisfyed only
immediately after the update is applied.

It may be worthwhile at this point to
emphasize the difference between the updates
based on pairwise operations and the
subjection updates. Suppose that X is updated
with Y. In the pairwise operations, we are
asked to change the content of the database
based on the information in Y. Indeed, the
true state of the database may be altered.

Conversely, in a subjection, the information in
Y is only used to restrict the set of possible
states of the database. The true state of the
database is not modified. It is only our
knowledge of it which is getting more precise.

The sixth update is called augmentation. The
augmentation of a database X with a database Y
is defined as X lJ Y. The obvious intuitive
meaning is that we knew (with X) a set of
possible states, and we now know that other
states (Y) are also possible. Hence the new set
of possible states are those.that are either in
X or in Y.

To conclude this presentation of general update
operations, we now present a last class of
updates which is a generalization of the
modification operation on complete databases.
If we want to “modify” an incomplete database,
the modification has to be done on every
possible state. Formally, a modification is a
function f from instances to instances. When
applied to a database X, a modification
transforms X into a database f(X) defined by :
f(X) = If(I) 1 I in X1. Consider the database X’
in Figure 11.5, and the modification
f= mod(N=zaza;A=siesta). The result f (X’) is
shown in Figure 11.7.

NA NA NA NA NA -
1 s IS i-s i-i i-ii

lm zs z s

f(X’ 1

Figure II.7

We note that like the other updates, the
modification can be incompletely specified.
Thus, if we want to change either zaza’s or
lulu’s activity to siesta, this is accomplished
by the modification F, where F is a set of two
modification functions. The first one is as in
the previous example, and the second one is
modifying the activity of lulu into siesta. The
result of the modification in this case is
defined as F(X) = {f(I) 1 f in F and I in Xl. If
Xl is the database in Figure 11.5, the result
is given in Figure 11.8.

NA NA NA NA NA NA

i-z i-ii i-s i% i-i Is
lm zs zs zm

F(X’)

Figure II.8

II.2 Representation Systems

In this section, we briefly present the notions
of strong and weak representation systems
[IL1 1, generalizing them to handle updates.

So far we have only assumed that an incomplete
information database is a set of complete
instances, and that one of these instances
corresponds to the true state of the real
world. As soon as we move towards an
implementation of the database we are faced
with the problem of representin& the database
in some compacted fashion, especially since we
want to be able to deal with infinite sets of
possible states. Representation techniques for
incomplete databases are often based on
tables, which are essentially relations with
null-values of some sort.

This leads to the notion of representation. A
representation is a pair <S,rep>, where S is a
set of tables, and rep is a mapping from S to
sets of complete instances. Intuitively S is
the set of all tables of a particular choice,
rep is the mapping that gives the set of
states represented by a table.

Once a way of representing the database is
chosen, we have to assure that we also are
able to represent the result of an operation
(update or query) in the same way.
Furthermore, since the database is available
only in the form of its representative, we
must have an algorithm based on the
representative to compute the result of
the operations.

We are thus interested in systems composed of
a representation <S,rep>, and a set R of
allowed operations (e.g. join and insertion).
To merit the name representation system such a
system should have some particular properties.
We are going to distinguish between “strong”
and l’weak” representation systems. We first
present the strong version.

Definition : A triple <S,rep,n> is a strong
representation system iff for each table T in
S and each fl-expression f, there exists a
table T’ in S such that

1) rep(T’) = f(rep(T))
2) There is an algorithm to compute T’

from T and f .

This definition is in a sense the strongest
requirement that can be made for a
representation system, since it states that it
is possible to compute and represent the exact
result of all allowed expressions. As noted in
[ILl], this requirement is too strong for some
kinds of tables even with fl containing only a
subset of relational algebra. That is, the
result of some expressi.ons are not
representable by any table of the particular
kind.

When the system is too weak to represent
results of arbitrary Q-expressions, we may

accept approximations of those results :
Suppose that instead being given the answer to
a query as If (I) 1 I in X1, the user is given

?? f(I), i.e. only the information that is
I in X
true in all possible states of the real world.
Now, suppose further that this user has a query
language based on some R at his disposal, and
that for two databases X and Y and all
fl-expressions f, n f(I) = n f(I). In

I in X I in Y
this case, the user cannot distinguish between
X and Y. Thus, X and Y are, in some sense,
equivalent (since they give the same answer to
all queries). This equivalence is called
R-equivalence and denoted X En Y. (For a more

detailed discussion on R-equivalence, see
CILl I.) The R-equivalence motivates the
following notion of weak representation
systems.

Definition : A triple <S,rep,R> is a weak
representation system iff for each table T in S
and each Q-expression f, there exists a table
T’ in S such that

1) rep(T’) GQ f(rep(T)), and

2) There is an algorithm to compute TV
from T and f.

Note that a strong representation systems is
obviously also a weak representation system.

In the next section, we are going to present
three particular representation systems, based
on three different kinds of tables.

III. UPDATRS AND REPRESEWTATIOR SYSTEMS

In this section, we first briefly present three
fundamental models introduced for dealing with
incomplete information, namely Codd, naive and
conditional tables. We also briefly review
well-known results concerning queries on these
tables. We then study the problem of updating
these tables. We present a variety of results
which highlight the possibilities and
limitations of each type of table.

III.1 Tables

The first system that we are going to consider
is based on the notion of Codd table [C,B]. An
example of Codd table is given in Figure 111.1.
As we can see, a Codd table is a relation
containing some particular symbols ’ @’
indicating unknown values. A possible complete
state specified by a Codd table is obtained by
replacing each symbol ’ @’ by a value of the
corresponding domain. Given a Codd table T@.
the set of all possible states is denoted
rep(Tg).

6

SUPPLIER ADDRESS PRODUCT
-------- .---.----__--

@ Romorantin nails
tot0 @ bolts
zaza @ nuts

Codd table Tg

Figure III.1

The second system is based on the notion of
naive table [IL1 1. An example of a naive table
is given in Figure 111.2. A naive table is a
relation containing constants (e.g., nails,
zaza, . ..I. and variables (x, y, . ..I. The
variables are used to indicate unknown values.
Moreover , since a variable can appear more
than once in the table, one has the
possibility to represent knowledge like: “the
addresses of toto and zaza are unknown, but we
know that they have the same address”. A
possible state is obtained by first assigning
a value to each variable, then replacing each
variable by its assigned value. Given a naive
table T the
denoted !%p(TN).

set of all possible states is

SUPPLIER ADDRESS PRODUCT
-__-_-_---------_--.-----_-

X Romorantin nails
tot0 Y bolts
zaza Y nuts

Naive table T

Figure III.2

The last system is based on the notion of
conditional table (C-table) [ILlI. An example
of a conditional table is given in
Figure 111.3. Like in naive tables, we have
constants and variables. The table has also a
global condition, and each tuple has a local
condition. A global or local condition is any
boolean combination of elementary conditions.
In the example, I’y # Romorantin” is the global
condition, and ‘lx f mimi”, “true” are local
conditions. To obtain a possible state, one
must first have an assignment of the variables
which make the global condition true, then in
each tuple such that the local condition is
true (for that assignment) replace the
variables by their associated values. (Tuples
with false local condition are just
discarded). Intuitively, a C-table allows us
to also represent information like: “If x is
not mimi, then x is supplying nails”. Note
that if naive tables allow to state equalities
between unknown values, C-tables allow also to
state inequalities. Given a C-table TC, the
set of possible states is denoted rep(TC). For
TC as in Figure 111.3, two instances in
rep(TC) are given in Figure 111.4.

SUPPLIER ADDRESS PRODUCT CON 1 y f Romorantin
-----_---

X Romorantin nails x f mimi
tot0 Y bolts true
zaza Y nuts true

Conditional table TC

Figure III.3

SUPPLIER ADDRESS PRODUCT

lulll
tot0
zaza

Romorantin nails
London bolts
London nuts

SUPPLIER ADDRESS PRODUCT

tot0
zaza

Paris
Paris

bolts
nuts

Two instances in rep(TC)

Figure III.4

III.2 Tables and relational algebra

We will study representation systems based on
these three types of tables : Codd tables,
naive tables and conditional tables.
Representation systems based on these tables
were extensively studied in [IL11 with R being
a subset of relational algebra. The following
results were demonstrated there.

Theorem [IL11 : <S,rep,R> is a strong
representation system for S being the set of
all conditional tables, and R consisting of
projection, selection, union, join, difference
and renaming.

<S,rep,R> is a weak representation system for S
being the set of all naive tables, and R
consisting of projection, positive selection,
union, join and renaming.

<S, rep, D> is a weak representation system for
S being the set of all Codd tables, and Q
consisting of projection and selection.

The conditional tables in [IL1 1 do not contain
a global condition. The notion of conditional
table with global condition (as found here) was
introduced in CC] in order to handle
dependencies. The result of [IL1 1 on C-tables
was also extended in CC] to C-tables with
global conditions.

The above result for naive tables is
particularly attractive since the algorithms to
perform queries on naive tables are essentially

the same as those for the complete case. The
variables can be treated as domain values that

incomplete instances defined by insT(X) = X
(u) rep(T) for each incomplete instance X.

are pairwise different and ditferent rrom all
“real” domain values. The attractiveness Or
the naive tables is though severely
diminished, as we shall see later, by their
weak ability to support update operations.

We will be of course interested in applying
insT to instances represented by tables in S.
We now present an example or insertion of a
C-table “into” a C-table.

The following theorem shows the limitations of
the tables for handling queries. (We shall
present in the next section, limitations for
handling updates.)

Theorem : <S,rep,R> is not a weak -
representation system if

a) S is the set of all naive tables and D
contains

i) projection and selection, or
ii) projection and difference.

b) S is the set of all Codd tables and R
contains

or
i) projection, selection and union,

ii) projection and join, or
iii) selection and difference.

Parts ali), b)i) and b)ii) were proved in
[IL1 1. Note that Codd tables can support only
unary operations. (Parts a)ii and b)i really
require the assumption that the database
scheme consists or at least two relation
schemes 1.

III.3 Updating tables

We now turn our attention to update operations
on tables. In the previous section, we
introduced seven very general classes 0r
updates. In this section, we use tables to
specify some particular incomplete instances.
We now specify some particular updates on
these incomplete instances.

We will present several kinds of updates.
These updates are all specific cases of the
updates introduced in the previous section :
insertion, deletion, integration, modification,
subjection and augmentation. An update will be
specified by a table, a condition, or a
dependency. We do not claim that every
conceivable update can thereby be expressed.
However, we believe that this leads to a quite
powerful update language which can be used as
a yardstick for update capabilities.

In the following, S is a set of tables (e.g.,
the set of C-tables).

We first define insertion.

: Example Consider the C-table T of Figure
III.?,. Suppose that we want to insert the fact
that there is a supplier named lili in Tokyo
who supplies an unknown product. This insertion
is accomplished by taking the one-tuple C-table
<lili, Tokyo, v, true> (the global condition
equals true 1, and inserting it into rep(TC).
The result of this insertion is the incomplete
instance rep(T’C) where TIC is the C-table in
Figure 111.5.

SUPPLIER ADDRESS PRODUCT CON 1 y f Romorantin
-- _-- e--e---

X Romorantin nails x f mimi
tot0 Y bolts true
zaza Y nuts true
lili Tokio V true

Figure III.5

The next operation to be considered is
deletion. In complete databases, deletion is
defined by a condition. (The tuples to be
deleted are all the tuples satisfying the
condition.) In incomplete databases, we allow
incompletely specified updates. Hence we need
the notion of extended conditions.

An extended condition F is a couple <Fl ,F2>
where Fl is a conjunction of extended
elementary conditions of the form Aax, A=a,
A~x, or Ada, and F2 is a global condition.

An example of extended condition is:
<NAME=v,v=toto or v=zaza>.

An extended condition F= <Fl ,F2> defines a set
of complete instances KF in the following way :
KF = [{t 1 satisfies F’) 1 F’ a valuation of Fl
respecting F21 (A valuation F’ of Fl respects
F2 if F2 is true for the values assigned to
variables in transforming Fl to Ft. 1

For example, the condition F above defines the
set KF = {It It[NAME] = toto),{t) t[NAME]=zazal}.

We are now ready to define the deletion
operation.

Deletion : Let F be an extended condition. Then
del(F) is the operation on incomplete instances
defined by : del(F)(X) = X (-1 KF, for each
incomplete instance X.

Insertion : Let T be a table in some S. Then
the insertion of T is the operation on

We now illustrate the use of deletion. Suppose
that we want to delete either toto or zaza
from the database specified by the table TC in
Figure III. 3. This can be accomplished by
taking the extended condition F, as defined
above, and performing the operation
del(F)(rep(TC)). A table representing the
result of this operation is given in
Figure 111.6. The reader can easily verify
that in any complete instance represented by
the table below either the second or third
tuple is discarded.

SUPPLIER ADDRESS PRODUCT CON 1 yfftomorantin

--i

and (v=toto ----------------I--
or v=zaza)

I

X Romorantin nails xfmimr-an’TI ..*.....

tot0 Y bolts tot0 # v
zaza Y nuts zaza f v

Figure III.6

Modification on incomplete databases is
defined in a manner similar to that of [AVl 1.
However, since we are dealing with incomplete
information, we allow extended conditions (as
for deletions) to be used.

Modification : Let F and F’ be extended
conditions. Then mod(F;F’) is the operation on
incomplete instances defined by

mod(F;F’)(X) E H(X)

where H is the set of complete modifications
obtained by valuating F and F’ in mod(F;F’).

We now illustrate the modification by an
example. For the sake of simplicity, we use
only complete conditions in the example.

: Example We want to make a modification to
the database specified by the table TC in
Figure III.3 : Change the parts supplied by
suppliers in Helsinki to screws. The corres-
ponding modification is mod<ADDRESS=Helsinki;
PART=screws>. The result of this operation on
TC is represented by the table in
Figure 111.7. Note that the table contains
some disjunctive information. (If the address
of toto is Helsinki, then the part supplied is
screws, otherwise it remains unchanged.)

SUPPLIER ADDRESS PRODUCT CON 1 yfRomorantin
l_---._-_--____- -------

X Romorantin nails x # mimi
tot0 Y bolts y # Helsinki
tot0 Y screws y = Helsinki
zaza Y nuts y f Helsinki
zaza Y screws y # Helsinki

We now present integration.

Integration : Let T be a table in S. Then the
integration of T is the operation on incomplete
instances defined by

intT(x) = x (n) rep(T) for each
incomplete instance X.

Next we consider subjection updates. The
subjection that is considered here is a special
case of the general subjection defined in the
previous section, and is based on an extension
of “equality generating dependencies”.

In the following, we call dependency
equality generating dependency CBVI whe::
constants may appear. The following sentence g
is an example of a dependency :

g= V t (t(SUPPLIER)= toto => t(ADDRESS)=Paris).

The knowledge expressed by this dependency is
that the hitherto unknown address of toto is
Paris. In the update, we want to maintain the
knowledge that zaza’s address is the same as
toto’ 5. This will be accomplished by the
subjection update.

For a set G of dependencies, sat(G) is the set
of complete instances satisfying G. Now we
have:

Subjection : Let G be a set of dependencies.
Then the subjection by G is the operation on
incomplete instances defined by

SUbjG(X) = X n sat(C) for each incomplete
instance X.

The following example illustrates this notion
of subjection.

Example : Consider again the instance rep(TC)
for TC as in Figure 111.3. Consider also the
dependency g defined above. Then
sWg(repI($)i= ;;-~~T’c~)~~~f’or~~~‘c inpo;m;ti&;
Figure . .
x # toto was also inferred. This is due to the
fact that the address of the supplier x is
Romorantin; hence x cannot be toto.

SUPPLIER ADDRESS PART CON 1 xftoto
----- --. ---__--------

X Romorantin nails x f mimi
tot0 Paris bolts true
zaza Paris nuts true

Subjection

Figure III.8

The structure of the information in
dependencies is such that it will be more

Modification

Figure III.7

convenient to introduce negative information
through negative dependencies instead of
through negative subjection. By a negative
dependency we mean a formula obtained by
replacing, in a dependency, all equalities at
the right hand side of the implication by
inequalities. The following sentence g’ is an
example of negative dependency :

g’= Y t (t(SUPPLIER)=toto => t(ADDRESS)4Paris).

The definition of the subjection remains the
same, but we shall call it a subjection with a
negative dependency to distinguish the type of
information introduced. For the next example
we want to incorporate the knowledge expressed
by the negative dependency g’ above into the
database specified by the table TC of
Figure 111.3. The result is rep(T’C), for TIC
in Figure 111.9.

SUPPLIER ADDRESS PRODUCT CON yfRomorantin
-e-.-_-F-- -----{ and y#Paris

X Romorantin nails x. .$.m*m*----

tot0 Y bolts true
zaza Y nuts true

Subjection by a negative dependency

Figure III.9

The last operation to be defined is
augmentation. We augment the database
specified by one table with the information
specified by another table. The formal
definition is as follows.

Augalentation : Let T be a table in S. Then the
augmentation of T is the operation on
incomplete instances defined by aug (X1 =
X Urep(T) for each incomplete instance 2

III.4 Results

We are now ready to present the main results
of the paper. These results characterize the
ability of the three particular tables to
support update and query operations. For a
table-based update in a representation system
<St rep, D>, we assume that the table used to
specify the update is also in S, and that
there are no variables in common in the two
tables involved. Also, the variables used in
specifying an update have to be “fresh”, i.e.
not used before. In particular, one cannot use
the same variable in two different updates in
an expression.

Theorem : <S,rep,G> is a strong
representation system for S being the set of
all conditional tables, and Q consisting of

all relational algebra operators and all six
update operations.

The theorem shows the strength of conditional
tables. The various updates are treated in the
proof of the theorem in the following way :

Insertion, deletion and integration can be
embedded in a slight extension of the
relational algebra on C-tables.

A simple algorithm to compute the effect of a
modification on a table can be exhibited.

The ability to support subjection follows
from Ccl. The result of a subjection can be
computed as ChaseG(T), where Chase is a
generalization of the well known Chase
algorithm CMMSI.

Subjection by a negative dependency can be
obtained by a modification of this
generalized chase.

Augmentation is achieved by adding a
condition x=0 to every tuple in T, and the
condition xf0 to all the tuples in T’ , and
taking the (set theoretic) union of the two
tables. Here x is a variable not appearing
elsewhere in the tables. If we denote the
global conditions for T and T’ by G and Cl ,
the global condition for the new table will
be (C and X=0) or (G’ and X+0).

If conditional tables are very powerful with
respect to update operations, the same cannot
be said about naive tables. Even if naive
tables can support quite a large subset of
relational algebra, they are not very well
suited for update operations.

Theorem : <S,rep,R> is a weak representation
system if S is the set of all naive tables, and
R consists of projection, positive selection,
union, join, renaming, insertion, integration
and subjection by positive dependencies without
constants.

Insertion and integration are obtained using
relational union and intersection. A result in
[IL2]; which states that naive tables can be
81chased11 in the same way as tableaux CMMSI, can
be used for subjection. For the limits of naive
tables, we have established the following
negative result.

Theorem : <S,rep,R> is not a weak
representation svstem if S is the set of all
naive tables, and R contains

a) positive selection, projection and deletion
(even with complete condition). or

b) positive selection, projection and
modification (even with complete condition),
or

10

c) positive selection, projection and
augmentation or

d) positive selection, projection and
(general) subjection.

The main reason for this negative result is
that naive tables cannot handle disjunctive
information. Negative subjections are not
supported since we cannot express inequalities
on the null-values.

Our next result indicates a (limited) Power of
Codd tables.

Theorem : <S,rep,R> is a weak representation
system if S is the set of all Codd tables, and
n consist3 of projection, selection, . _
insertion, integration and deletion with
complete condition.

Insertion and integration are achieved through
union and intersection. Since the inserted or
integrated table is independent from the
operand, these operations are in effect unary,
and thus weaker than their relational
counterparts. Deletion is obtained by deleting
all tuples that possibly match the deletion
condition. “Possibly match” means that there
exist3 at least one substitution of the
null-values which makes the comparison true.
For this purpose, the evaluation rules are
given by: “@=a” = true and “@=@‘I = true.

Finally, we present some limitions of Codd
tables.

Theorem : <S,rep,Q> is not a weak
representation system if S is the set of all
Codd tables, and R contains

a) selection and modification (even with
complete conditions) , or

b) selection and subjection, or

c) selection and augmentation.

This result is a consequense of the facts that
Codd tables cannot support disjunctive
information. The failure to support
subjections follows from the fact that we can
neither equate two unknown values (which we
could do with naive tables), nor express
inequalities between them.

IV CONCLUSIONS

The results obtained in the last section were
not surprising: more complicated tables can
support more update operations. However, the
results are quite discouraging for naive
tables : Naive tables can handle queries in a
simple and elegant manner, but they are quite
inadequate with respect to updates. Indeed,

only C-tables could support updates in a
reasonable fashion. This strongly suggests that
C-tables should be used as the basis for an
implementation of incomplete databases.

C-tables can be criticized for the complexity
of query computation. Two solutions can be
adopted :

(1) The database is stored as a C-table, but
for query purposes, only the naive part of
the table is used. (Answer to queries are
therefore only approximations.) All the
information of the C-table is used for
updates. Hence, the content of the database
is always viewed as close as possible to
the known reality.

(2) If conditions are assumed to be rare, then
the complexity argument against C-tables
does not hold anymore. A physical
implementation can then be used offering
the full advantage of C-tables, but
treating most of the information with tools
developped for naive tables.

The first solution may be chosen for
applications where queries are much more
frequent than updates if an approximation of
the correct answer is acceptable. The second
solution should be prefered if conditions are
essentially used to handle exceptions, and are
thus quite rare.

A final remark on the semantic nature of update
operations should be made. The semantics we
have used is in essence algebraic in that we
consider updates as operations, i.e. as
mappings from databases to databases. Another
approach which appeared in the literature is
the proof theoretic one CFUV,KUV]. In the proof
theoretic approach, the update is specified by
some properties that the resulting database
should satisfy. The method is thus completely
unconstructive. (One can note that databases
specified by tables can be viewed as a set of
axioms of a first order theory (see [I]).
However, since we deal with closed world
databases, updates are a form of non-monotonic
reasoning, and thus the methodology proposed
for instance by [FUV] is not applicable). The
difference between the “algebraic” and the
“proof theoretic” approaches is somewhat
similar to the difference between relational
algebra and relational calculus. An interesting
topic for further research is the comparison of
the two approaches in search of some sort of
equivalence between them.

REFERENCES

[AH] Abiteboul S., R. Hull, Update
Propagation is Semantic Database Models,
(1984), Proceedings of the International
Conference on Foundations of Data
Organization, Kyoto (1985).

11

[AVll

CA’G’1

CBS]

[BVI

[Bl

cc1

fFUV1

-. -,

cc1

[II

CILl I

CIL21

[KUVI

CMMSI

Abiteboul, S., V. Vianu, Transactions
in Relational Databases. Proc. 10th
Internat. Conf. on Very Large Data
Bases, Singapore (1984).

Abiteboul, S., V. Vianu, Transactions
and Constraints.. Proc. ACM SIGACT -
SICMOD Symp. on Principles of Database
Systems, Portland, Oregon, (1985).

Bancilhon, F., N. Spyratos, Update
Semantics of Relational Views. ACM
Trans. Database Syst. 6,4 (1981);

Beeri, C., M. Vardi, Formal Systems
for Tuple and Equality Generating
Dependencies. SIAM. J. Comput. 13, 1
(1984).

Biskup, J., A Foundation of Codd's
Relational Maybe - operations. ACM
Trans. Database Syst. 8, 4 (1983).

Codd, E.F., Extending the Relational
Model to Capture more Meaning. ACM
Trans. Database Syst. 4, 4 (1979)'.

Fagin, R., J.D. Ullman, M. Vardi, On
the Semantics af Updates in Databases.
Proc ACM SIGACT-SIGMOD Symp#. on
Principles of Database Sys-terns,
Atlanta (1983).

Grahne, G., Dependency Satisfaction in
Databases with Incomplete Information.
Proc. 10th Internat. Conf. on Very
Large Data Bases, Singapore (1984).

Imielinski, T., On Algebraic query
processing in logical databases. In
Advances in Database Theory, vol. 2
(H. Gallaire, J. Minker and J.M.
Nicolas, eds.) (1984).

Imielinski, T., W. Lipski, Incomplete
Information in Relational Databases.
J. Assoc. Comput. Mach. 31, 4 (1984).

Imielinski, T., W. Lipski, Incomplete
Information and Dependencies in
Relational Databases. Proc. ACM SIGMOD
Internat. Conf. on Management of Data,
San Jose,(19831.

Kuper, G., J.D. Ullman, M. Vardi, On
the Equivalence of Logical Databases.
Proc. ACM SIGACT-SIGMOD Symp. on
Principles of Database Systems,
Waterloo, Ontario, (1984)

Maier, D., A.O. Mendelzon, Y. Sagiv,
Testing Implication of Data Dependen-
cies. ACM Trans. Database Syst. 4, 4
(1979)

CR11 Reiter, R, On Closed World Databases. In
'Logic and Data Bases' (H. Gallaire'and
J. Minker, eds.), Plenum Press, New York
(1978)

CR21 Reiter, R., A Sound and Sometimes
Complete Query Evaluation Algorithm for
Relational Databases with Null Values.
Techn. Rep., Dept. of Computer Science;
Univ:of British Columbia, Vancouver, BC
(1983)

GUI Ullman, J. D., Principles of Database
Systems, Second Edition. Computer
Science Press, Potomac, MD (1'982)

CVrl Vardi, M., Querying Logical Databases,
Proc. ACM SIGACT-SIGMOD Symp. on
Principles
Portland, Oregi:,

Database Systems,
(1985).

CVsl Vassiliou, Y., Null Values in Data Base
Management, a Denotational Semantics
Approach. Proc. ACM SIGMOD Internat.
Conf. on Management of Data, Boston, MA
(1979).

12

