
A Mapping Function for the Directory of a
Multidimensional Extendible Hashing.

Ekow J. Otoo

School of Computer Science,
Carleton University, Ottawa.

Canada, KlS 5B6.

Abstract
A generalization of the Extendible Hashing scheme of

Fagin and others is presented for structuring files of records
with d-attribute fields. This generalization reduces to the
problem of defining a storage mapping for an extendible
array with exponential varying order. We define such a
function with element address computation in time O(d),
and we show how the result applies to the design of a mul-
tidimensional extendible hashing. Algorithms for search-
ing, inserting and processing partial-match queries are pre-
sented and we discuss some peculiar characteristics of the
scheme derived primarily by simulation studies done with
both uniform and nonuniform distributed data.

1. Introduction.

Retrieval of records in current database systems often is
by specifying one or more combination of the attribute val-
ues of the records being sought. Such retrieval operations
have been termed associative searching or partial-match re-
trieval. Furthermore, some operational requirement usually
dictate that the records be retrieved ordered on some fields.
Given that the file is structured in some “ideal” form for effi-
cient retrieval, we may require that the records resulting from
operations on the original file be directly structured using the
“ideal” form. This implies that a required characteristic of
an “ideal” file organization is that it be dynamic; i.e., the file
organization should tolerate insertions and deletions without
compromising its retrieval efficiency. This requirement is crit-
ical in a highly volatile database environment.

Combined with the fact that hashing techniques provide
the fastest direct access means to data on secondary storage,

Permission to copy without fee oil or port of this material is gronted
provided thot the copies arc not mode or distributed for direct commercial
odvantoge, the VLDB copyright notice and the title of the publication and its
dote appear, and notice is given that copying is by permission of the Very Large
Doto Base Endowment. To copy otherwise. or to republish. requires o fee
and/or special permission from the Endowment.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

we postulate that a “multidimensional order preserving dy-
namic hashing scheme” satisfies the retrieval requirements of
an “ideal” file organization if one can be realized. Although
the above criteria are not satisfied by any one file organization
method, a number of recent advances, satisfy more than one
of the above requirements.

The various methods developed for efficient associative
searching and partial-match retrieval may be categorized into
two broad classes : a) direct access method as in the file design
schemes in [l, 4, 5, 14, 16, 19, 20, 23, 24, 27, 30, 321, and b)
tree structured file design methods as in (3, 10, 28, 301. These
two classes, however have a common geometric perspective of
the file.

Consider a file F = (rr,re,. . . ,r~), of N records, each
record ri a (ts,kr,..., k+l), being defined by d attribute
values where record retrievals are made by specifying some s
combination of attribute values for 0 5 8 5 d - 1. A geo-
metric interpretation of the file F is as a set of points in a d-
dimensional space where each attribute corresponds to an axis
of the space and the natural ordered distinct attribute values
define descrete points along the respective axes. The presence
of a record ri = (4, tr , . . . , k&r) is denoted by a point at the
coordinate point defined by the values ks, kr,. . . , k&r. Such
a representation is referred to as a multiattribute space model
of the file. The Figure 1.1 illustrates the multiattribute space
model of the file shown in its tabular form in Table 1.1.

Given such a file representation, one easily identities that
the proposed storage scheme for efficient partial-match search-
ing effectively partition the multiattribute space model of the
file into rectangular cells. Differences exist in the manner of
splitting the space, and in the techniques for storing and re-
trieving the records whose point images fall in the cells. For
example, methods such as multiple key hashing 14, 301, and
multipaging [19, 221, assume a rectilinear partitioning of the
space as illustrated by Figure 1.2. Another alternative rect-
angular, but non-rectilinear, partitioning is shown in Figure
1.3. Chang and colleagues [7), refer to such file organizations
as having the Cartesian product property. We may further dis-
tinguish the direct access methods according to whether the
cells represent data pages as in [4, 19, 22, 23, 241, or whether
they represent directory elements of page pointers as in [14,
16, 20, 30, 321.

In the tree structured design schemes, the partitioning
boundary values of the space serve as discreminating values
for the internal nodes of an index tree whose terminal nodes

Singapore, August, 1984

493

are pointers to the pages holding the records. Such design
methods are exemplified by the heteregeneous K-D-Tree [3]
and Quad-Tree [lo]. Tree structured indexes inherently have
the dynamic property except for the fact that they can de-
generate with insertions and deletions. Since B-Trees [2], are
most versatile in maintaining the balance of trees indexes in
a dynamic environment the B-Tree design technique has been
applied in multidimensional tree structures as the K-D-B-Tree
of Robinson 128) and the multidimensional B-Tree of Sheuer-
mann and Ouksel [31]. In a file of n pages, a record retrieval

costs O(log n) page accesses using such tree structured organi&
zation. In this respect multidimensional direct access schemes,
with O(1) page accesses to retrieve a record, appear more at-
tractive. We focus attention then on multidimensional bashing
schemes with dynamic characteristics. A number of different
approaches to the design of a dynamic hashing schemes for
l-dimensional keys have been advanced by Larson (12, 131,
Litwin [15], Fagin and others [9] and Lomet [17,18].

The various methods of dynamic multiattribute hashing
schemes are adaptations of either Linear Hashing [12, 151 or
Extendible Hashing [9]. F or instance the Interpolation Based
Index of Burkhard [5], the Extendible Cell method of Tam-
minen [31] and the Partial-Match Retreival technique of Lloyd
and Ramamohanarao [16] all adapt extendible hashing by gen-
erating a single key from bit shuffling of the binary encoding
of the multiple key values.

Where the attribute values of the records are indepen-
dently considered, the design problem of a multidimensional
dynamic hashing scheme reduces to defining a mapping func-
tion for extendible arrays with prescribed order of expansion.
This is evident in the multidimensional linear hashing method
of Ouksel and Scheuermann [24], the Grid File Method of Niev-
ergelt and colleagues [20] and the multidimensional hashing
schemes presented in (22,231.

The technique being presented in this paper is similar to
the Grid File method in the sense that each attribute value
is independently treated, i.e., the individual binary values of
the attributes are not shuffled to form a single key. The main
distinction of the method from earlier proposed schemes are :-

4

b)

4

The directory is implemented as a d-dimensional ex-
tendible array with exponential expansion.

We define a mapping function for addressing the directory
entries.

Empty pages resulting from page splits are eliminated.

In our discussions we will use the term “key” to refer to an
attribute or a combination of attributes of the file whose values
uniquely identify each record, and we shall refer to the content
of a file as keys although each record may be comprised of a
set of key fields and either the rest of the fields or a pointer to
a loaction where the complete record is stored. In the rest of
the paper, we present a review of extendible hashing in section
2 and an overview of a design of a multidimensional extendible
hashing in section 3. In section 4, we briefly describe the con-
cepts of uniform extendible arrays of exponential varying order
and specify a storage allocation function for the elements of
such an array in linear consecutive memory locations. Further
details of our file organization scheme are discussed in section
5 where we present algorithms for inserting, deleting and query
processing. The results of some simulation studies using both

Proceedings ot the Tenth Intematlonal
Conference on Very Large Data Bases.

494

uniform and nonuniform distributed data are presented in sec-
tion 6. We conclude in section 7 with some design alternatives
and present suggestions for future work.

2. Review of Extendible Hashing.

We briefly review the concepts of the extendible hashing

scheme of Fagin and others [9]. The reader may consult the

orginal reference for detailed discussion. The file is organized

in two levels: a first level of a directory, D, and a second level

of a set of pages P. The directory is primarily an array whose

elements are pointers to the data pages.

Each key Ki, is transformed by some encoding function

to derive a pseudo-key Ki of binary digits. The directory is

indexed by choosing either the h suffix or prefix bits of K:

and interpreting it as an integer. The value h is called the

global depth of the file. The directory expands and shrinks by

varying the global depth. Suppose the pseudo-key Ki geneates

the index q. Then the element D, gives the page, Ps, where

the record should reside.

Each page Pq retains a local depth Cc’, (h’- 5 h), which

indicates the number of prefix bits of the pseudo-keys in P;

that agree. As a result all directory elements, indexed by the

pseudo-keys whose first A’ bits agree point to the same page.

Let the function for deriving an index into the directory, given

the pseudo-key and the global depth, be denoted by g. If we

take K: = (@s/Ii,. . . ,&-I) where w is the number of bits

allowed in the binary encoding, a definition of g which allows

retrievals in pseudo-key order is

h-l

g= Cp. t2’.
r-0

We shall assume this definition for g in any further reference to

an index function. Let !p denote the binary encoding function

and assume that h = 2. The Figure 2.la shows an instanta-

neous configuration of the directory and data pages. To insert

a key Ki, the pseudo-key K! = tV(Ki), is derived. Let US as-

sume that K,! =’ 0111’. Since h = 2, the bits ‘Ol’, are used

as the index into the directory. This gives the page pointer

Ps as the home page of the key Ki. As insertions continue, a

page may eventually become full. At this point the local level

is increased by 1 causing the keys in the page to split accord-

ing to the h’ bit of the pseudo-keys. One set of keys remains

in the original page. The other is stored in a new allocated

page. The original page is now said to be split. Occasionally

such an increase in the local depth may cause it to exceed the

global depth. The global depth is increased by 1, and the di-

Singapore, August, 1984

b c e f h k n PA,

b 7
5 0
: T

h f
k 6

:: :
h 7
n 6
;: 6

P t

Table 1.1 : A trblr form of 3,
file on 2 ~trlbutra ‘Lo, Al.

.

. .

. .

0 l

. 0 l

. .

. .

l .

Figure 1.2 : A ractilineu partitioning
of an attribute apace.

rectory size is doubled. Suppose in inserting the key Ki into

page 9 the local depth increases to 3, then the global depth

now becomes 3 and the directory must be doubled since the

3 bits can now address twice a~ much directory entries. The

new configuration is depicted in Figure 2.lb.

In the reverBe process, deletions of keys may require that

two pages be merged, and when every local depth becomes less

than the global depth, the directory is halved. In order to

determine the point at which the directory must be halved, a

count of the number of pages having a common value of the

local depth Ai are maintained for i = 1,2,. . . , Ig ud, where

43x = log, X and nd is the directory size. In the next section

we outline the generalization of extendible hashing, which is

abbreviated as EXHASH, to d-dimensional keys which essen-

tially is a d repetition of the concepts of extendible hashing

one along each dimension.
Proceedings ol the Tenth International
Contarence on Vety Large Data Sasea.

0

1

2

4

5

6

7

A1

l

.

l

4

l .

l

0

l 0

Figure 1.1 : A multiattrlbuto apace model
of the file ahoun in Table 1.1.

. .

. .

. b

. . .

. 0

. 4

. .

.Figure 1.8 :
A non-rectilinear but rectangular

partitioning of an attribute apace.

3. An Overview of
Multidimensional Extendible Hashing.

Suppose now that each key Ki is a vector in a d-
dimensional attribute space defined by the De x D1 x . . . x
D,+1, where Dj is the domain corresponding to the jth at-
tribute, i.e., Ki = (ko,kl,. ..,)+I) and kj E Die The
multidimensional extendible hashing, which is abbreviated as
MDEH, essentially duplicates the concept of the I-dimensional
extendible hashing for each of the d attributes, except that
now, the indexes computed, for the individual attributes are
used as components of a d-tuple index of a d-dimensional direc-
tory. That is for each key (b, kr , . . . , k&i), each component
value kj is considered to be used in a separate extendible hash-
ing scheme. We therefore require d distinct values of each of
the parameters in EXHASH. These are defined below including
the definitions of some notations used latter in our discussion.

IVj : The binary encoding function for j& values of the key
vector.

ki : The j’” pseudo-key values derived from the corresponding
encoding function i.e., q = tPj(kj)e

Singapore, August, 1994

495

hi :

0:

ij :

hi :

nd :

np :

D:

N:

b:

6:

1:

00..

10..

01..

11..

DIRECTORY DATA PAGES

011.

Ill.

h'=2 P Figure 2.1s :
A rchematic rrpreaentrtion
oi an extendible hashing with
global depth = 2.

’ h’=3
El

h f= El
DIRECTORY DATA PAGES

The global depth of the file for the j& dimension.

A function for generating an integer index given a pseudo-
key value and a gobal depth.

The index value derived from the jti pseudekey camp+
nent, i.e., ii = g(ki, hi).

The local depth, for dimension j, of the file within a di-
rectory element.

The number of directory entries also refered to as the
directory size.

The number of data page8 allocated.

The directory space. A directory element will be denoted
either by D, or by D < io, il, . . . , id-1 > as may be found
appropriate, where Q = G.(ie, ir , . . . , id-r) for some map-
ping function G. yet to be defined.

The number of key8 in the file.

The number of key8 grouped per page.

The number of directory element8 grouped per page.

A threshold value used during deletion to determine if two
mergeable pages can be merged.

Procwdlngs ot the Tenth International
Conference on Vwy Large Data Bab(N. 4-e

As in EXHASH, MDEH is organized in two levels: a first
level of a directory and a second level of data pages. The direc-
tory organization constitute8 the distinctive feature of MDEH.
Thie is primarily a uniform extendible array of exponential
varying order which we refer to a8 UXAE. A detailed discus-
sion of such an array is presented in 1221. Other techniques
for the storage allocation of extendible arrays may be found in
[29]. The essential feature8 of a UXAE as they relate to MDEH
is presented in the next section. Essentially it is a rectangular
array with the ability to double the range of index values along
one dimension and a8 such it doubles the size of the array at
each expansion step. The dimension which is expanded next is
determined cyclically, i.e., if M is a variable that denotes the
current dimension being expanded, the next dimension to be
expanded is given by assigning A4 + (M + 1) mod d. We skip
over dimensions that have exhausted the use of their bits. The
reader may want to study Figures 4.la and 4.lb to appreciate
the expansion process of a UXAE.

A directory element D, consist8 of a page pointer,
D,.addr, values for d local depths, D,.hb, D,.h’, , . . ., D,.hk-, ,
and a variable D,.M specifying the next local depth of the file
to be increased to effect a page split. We maintain the local

Singapore, August, 1984

DATA PAGES
DIRECTORY

0 . .

1 . .

Figure &la :

h= (1,1)1 /PO 1 colol,olo] [0001,001] 1

-/
4

I l

CL% 0 I/ ~[1111,000] [1010,010] 1

Fqr, p1JI
[0010;101] [0001,111] 1

(Ll); OkP2 [[0111,100] [0111,111] 1

[1010,110] [1101,101]

A configuration of 8 2-dlnmnsionrl HDEE
with pago rizr b = 4. aftar 12 key lnrertion~.

DATA PAGES

DIRECTORY

00.. 10.. 01.. 11.. i, s
Ona o 1 4 6

1 . . 2 3 5 7

1, f
A

Figure &lb :
Ihr rrwltlng configuration
aftrr rplittiag pSga P*,
aad l IpMding the directory.

,I (23 1); 1 1 1 /
I 4
t I

-I-f+&& ~[0010,101] [0001,111] 1

j (1, 1); ON -p2[[0001,1001 1

4 I

5 (2, 1); 1 I 1 / HP3 1 c1111,1001

Procwdingr ol the Tenth Intom8tlonal
Confomna on Voy krgm Data Baa.& Slngrpom, August, 1984

491

depths in the directory unlike EXHASH where the local depth
is maintained in the data pages. This enables us to avoid re-
taining empty pages that may result from page splitting. A
vector of global depth < he, hr, . . . , h&r > is maintained as
a directory header such that hi 2 D,.$., for j = 0, l,...,d-1,
and q = 0, l,...,nd - 1.

To insert a key Zf = (ke,)I,. . . , k&r), we generate the
vector K’ = (k&, kl, . . . , k&l) where $ = #(kj). Next we
derive for each component of the pseudo-key vector, k$, an
index ii where ii = g(k$,hj). The function g, used as the
directory index function in the EXHASH and defined in section
2, is used here to simply generate an index of a dimension. The
result then is a d-dimensional vector < is, ir , . . . , i&r >, that
addresses the directory entry D,. Finally the destination page
address is given by D,,.addr, where the key is stored, unless the
page is found to be full in which case a page split is initiated.
On the other hand D,.addr may be a null address. In this case,
a new page p is allocated, the key is stored in p, and the address
of p assigned to D,.addr. In general a new page allocated in
this manner may affect more than just one directory entry as
will be realized subsequently. We assume that within a page
the keys are organized by a simple sequential method.

Consider the situation where the page p = D,.addr is
found to be full and must be split. The local depth D,.h:, is
increased by 1, where m = D,.M. Consequently the keys in
p are split into two sets according to whether bit h:, of #,, is
0 or 1. One set of keys are retained in the page p while the
other set is assigned into a new allocated page p*.

The values of the local depths, hk of all directory ele-
ments whose page pointers previously address p are updated.
If D,.hL 5 h,, half of these page pointers are reset to point to
p’, otherwise the global depth h, is increased by 1. The range
of index values of dimension m doubles and causes the direc-
tory size to be doubled. Doubling of the directory involves the
creation, for each directory element, a “buddy” in the second
half. We define the concept of buddy below.

Definition 3.1

Let a directory element be addressed by D <
. .

*O,*I ,..., id-1 >. Then the buddy of D <
io,i*,.. . .,ad-1 > when the global index increases
from h, to h, + 1 is D < is,il,..,i,,, +
2hm , .., id-1 >.

The MDEH organization scheme may be illustrated by in-
serting the following S-dimensional pseudekeys in the order of
occurrence. ((0010, lOl), (0001, ill), (0100, 000), (1111, 000),
(0010, 001) (0101, 010) (0111, loo), (1010, llO), (0001, OOl),
(1010, 010) (0111, 111) (1101, lOl), (0100, llO), (0001, loo),
(0001, loo), (1111, 100) 1. Starting with 4 directory entries, 4
data pages, one page per directory element and a page size of
4, the assignment of the first 12 keys gives the configuration
shown in Figure 3.la. The 13rh key, K’ = (0100,110) hashes
to D2. Since the page P2 is full we initiate a splitting action.
The value D2.M = 0 hence D2.h: is increased from 1 to 2.
This exceeds the corresponding global value. We therefore in-
crease the global depth h, by 1, and double the directory size.

To split the page P2, we allocate the new page P, and
assign Pd to 05 .addr. Note that 05 is a buddy of 02. The local

Proceedings of the Tenth International
Conference on Very Large Data Bases.

depths D2 .G and D5.G are each set to 2. The value Dz.M
and D5.M both become 1. The keys in page P2 are rehashed
to be distributed between P2 and Ps. The new configuration
of the scheme is shown in Figure 3.lb, which includes the rest
of the keys.

the

i.

ii.

. . . 111.

The efficiency of the MDEH scheme will be measured by
following parameters.

The load factor which we denote by o and is defined as

N

O=btn,;

This estimates the storage utilization.

The average number of page reads for a successful exact-
match search which we denote by v,.

The average number of page reads per key insertion which
is denoted by p.

4. Storage Mapping for the
Directory of MDEH.

The storage mapping function for the directory of the
MDEH scheme is defined by the addressing function for al-
locating elements of a d-dimensional extendible array of expo-
nential varying order. A detailed discussion of such an array
is given in [22,23].

Definition 4.1

Let I denote the set of of non-negative integers
<0,1,2,...). A d-dimensional uniform extendible array
of exponential varying order denoted by A[0 : q,,O :
uz,. . . ,O : (Id-i], is a rectangular array, whose up
per bounds on the various dimensions vary under the
following conditions :-

1. Exponential varying condition : uj = 2’~’ - 1, j
= 0, l,...,d-1, for hi E I where
hi varies in unit steps from 0 to
a predefined maximum ZZi.

2. Uniformity condition : hi, = hi, for any pair of
dimensions, 0 < jr ,& 5 d - 1,
such that hi, 5 Hi, and hi* 5
His *

Let I denote the set of non-negative integers and let Id
denote the set of d-tuples of non-negative integer elements.
Then given that ~0, ur , . . . , u&i are the upper bounds on the
index values for the various dimensions, we require a map
ping function, G, : Id + I, that maps the d-tuple coordi-
nates < is,ii,... ,id-r > one-to-one onto the set of integers

d-l

(0, 1,2, ‘.‘, nd - l}, for nd = n (Uj + 1). The definition of the
j-0

function G. is expressed by Proposition 4 .l.

Proposition 4.1.

Let A[0 : UO, 0 : ~1,. . . ,0 : U&l] be a d--
dimensional extendible array of exponential varying
order with ue,ur,..., u&i as the upper bounds of

Slngapore, August, 1984

498

the respective dimensions at some instant in time.
Let M<O>, M<l>,..., M < nd - 1 > de
note a set of consecutive memory locations, where

d-l

,d=n(’) u, + 1 and varies according to the u;s.

Then ~~1e1ement.s of A may be allocated in M such
that at each expansion step of a dimension j, a d-
dimensional aubarray of size equal to the previously
allocated array is adjoined. The elements within the
adjoined aubarray are allocated in lexicographic order
but with j considered as the leading dimension, such
that A < io,il ,...,&-I > iS allocated in M<q>
and q is defined by G, aa

Q =G,(io,il,...,id-1)

= i=EJj+Ecjij,

I

ij mx(i0,il ~~~~,id-l)#o
j-0
JZ* :;!

0, otherwise.

where z = the largest subscript such that

kgid= max@gi#gid . . . ,lgi&#;

h, = 1ki.J;
if j < r;
otherwise

d-l

and Cj = II J ,’
v-1+1
+a

Proof.

It ia obvious that G,(O,O, . . . ,O) evaluates to 0 ao that
A<O,O,...,O> is stored in M<O>. For any arbitrary element
A < is,ii,... ,id-i >, each value ii Iies between 25-l and
2hj -1 for some hi except when ii = 0. i.e., 2hji-’ 5 ii 5 2s -
1. Call the block of array elements whose range of index values
for dimesnion j lies between 2”j-’ and 2hi - 1 the adjoined
block implied by ii Every index value ii = 0 implies the one
element block of A<O,O ,..., O>.

From the element allocation technique, an arbitrary ele-
ment A < io,il,..., id-1 > is stored in the latest adjoined
block implied by the index values is,ii, . . . ,id-1. But this ia
given by i, where I is the highest subscript such that

The size of dimension z prior to adjoining this block is 2”.
where h, =]lgi,J. The sizes Jj, j = O,l,...., d-l, of all the
dimensions prior to the expansion is given then by

,. = min(2h*+1, 2Hj),
1

if j < 2;
a min(21*, 2Hj), if j 1 z.

The address of the element A < io, ii,. . . ,i,+i > is com-
puted then as the sum of the starting address of the aubarray
block implied by i,, (i.e., address of A < O,O, ..,i,, ..,O >)
and the displacement within the aubarray given by the lexico
graphic ordering of the elements where now z is considered as

Proceeding8 of the Tenth International
conference on Very Large Data BOWS.

the leading subscript. The address of A < 0 0 * I t a-8 $2, a*, 0 > is

given by ‘i J,, and the displacement is given by
j-0

(i. - J,)* 'i Jj + '2 Cjij.

:;: :;:

d-l

where cj = n J,. We have then that the address q of
r-l+1
+z*

the location M<q>, into which A < io,it, . . . ,i&l > is
assigned, is given by

Q
= G,(is,ii,. . . ,&-I)

= E Jj +(i. - Jj) + 'fi Jj + 'f Cj * ij ;

:;!

This establishes Proposition 4.1.

The Figure 4.la shows the schematic storage layout of
a 2-dimeaional UXAE A[O:3,0:3]. Let thin be expanded to
A[O:7,0:3]. Then Figure 4.lb illustrates the new storage lay-
out obtained by adjoining the aubarray which ia the result of
doubling the aise of the first dimension. The element alloca-
tion technique for UXAE is as efficient as the storage of a d-
dimensional array of fixed upper bounds since this is achieved
with 100% storage utiliaation, and taking the logarithmic op
eration as an elementary operation, the time complexity to
compute G, is O(d).

From the manner in which both UXAE and the directory

of MDEH expand, it is easy to appreciate why the function

G, for the UXAE defines the directory addressing function in

MDEH. Recall that in section 3, we indicated that we skip

over attributes that have exhausted the uae of their encoded

bits during the cyclic choice of the next dimension to expand.

This implies, in UXAE, that the corresponding dimensions haa

attained its maximum allowable upper bound.

5. Insertion, Deletion and Query Processing.

5.1 Insertion.

We discuss specific consideration of the key insertion pro-

cess in this section. We first address three issues that cause the

number of secondary storage accesses well beyond 2 during a
key insertion.

a) Whenever the directory is doubled as a result of the

local depth I(,, being greater than the correapond-

ing global depth h,, every directory element D <

Singapofw, August, 1984

0 12 3 lo.

0 0 14 6

2 8 9 10
11

Figure &la :
A uchrmatic atorrge layout
2-dimenulonrl UXAE A[O:3,0:

3 12 13 14 15
r .

13
0 1 2 ? 4 5 6

0 0 1 4 6 16 20 24 28

12 3 5 7

The schemzt& byout of the array after
sxpansion to Ato:7,0:3].

io,il, .., i,, .., id--l > is duplicated az the element D <
. .
a~,sl,..,i~ + 2"--l , .&-I >. The number of secondary

storage accesses is equal to 2 * nd where nd is the directory

size before the expansion.

b) If after the increase of h’m, we have &, I h, and suppose

the keys in page p = D,.addr (Dq being the directory ele-

ment whose local depth $, is raised) are now distributed

between p and p* according to bit hk of k’,. Then every

directory element with a pointer to p must be updated.

It is necessary to identify only those directory elements

that must be updated. The number of directory elements

affected during such a page split is given by Proposition

5.1.

c) After a page split, the keys in p, either all remain in p

or may all get reassigned to the page p* depending on

whether the bit h’, of the k!,, component of the pseudo-

key vectors are either all 0 or all 1. If either p or p’

is empty, it is immediately deallocated, and all directory

pointers previously pointing to it reset to null. This case

automatically triggers a further page splits. Identifying

the directory elements whose page pointers must be reset

to null raises a special case of the problem in b).

We wilt first illustrate the technique to identify the direc-

Proceedings of the Tenth International
Conference on Very Large Data Bases.

02 a
31.

tory entries to be updated in (b) and (c) before establishing

the expressions for the number of storage acceses made. Con-

sider a L-dimensional extendible hashing scheme with global

depths ho, hl. Suppose a pseudo-key vector is given as K’ =

(#Bf.. .j?& . . . ,#/3:. . .&, . . .), where j& = (0, 13. Let K’

hash to D,, and assuming the page p = D,.oddr is found to

be full, with h’, < ho, hi < hl and D,.iU = 1. The direc-

tory entries with page pointers to p may be identified as those

addressed by the pseudo-key vectors of the form

(j$p; . . &~xxx,, . . . ,,## . . .~@xxx,, . . .) (1)

and

(k$& . . . /$$=xh, . . . &?; . . .~~~lxx&,, . . .)(2)

where X = fO,l) denotes “don’t carem bits. The set of di-

rectory elements updated during the page split are those ad-

dressed by the pseudo-key vectors (1) and (2), where the se-

quences of (hi - h;) X’s take all possible combinations of 0%

and 1’s. The directory elements whose page pointers are reset

to point to page p’ are given by the pseudekey vector in (2).

Proposition 5.1

Let D, be a directory element with page pointer

D,.taddr, and local depth8 D,.h$, j = OJ,..., d-l.

Blngapore, August, 1994

500

Then the number of storage accesses made in splitting

the page p = l&t&r, with no directory expansion

is 2’+’ + 4 where 4 = E(hj - D8.h:).
j-0

Prod.

Let the page addressed from a directory entry D, be p =

D,.addr and let the local depths in 0, be h’,, hi,. . . , h:-, . If

the corresponding global depths are ho, hr, . . . , her then the

number of directory entries whose page pointers point to p is

given by

41s-h: x 2h’L: x . . . x 2*4-L-h;L:-L

d-1

This is equal to 2’ where 4 = C(S - hi). We require z
j-0

accesses to locate p and detect that it is full and a further

2 accesses to secondary storage to write back the two pages

resulting from the page split and 2 * 24 directory accesses to

update the affected directory entries, hence the Proposition 5.1

follows.

6.6 The InsertIon Algorithm.

The algorithm to insert the key K = (As, &a,. . . , h--l),

tlrst checks that K is not already present. In effect, an exact

match search is first performed. We state this preliminary

search phase as the algorithm FIND, for reading into memory,

the destination page of the key. The algorithm FIND returns

true if the key is already present otherwise it returns false.

The insert algorithm references an array called COUNT whose

significance will be apparent wben we discuss deletion. We

shall assume also that every attribute has the same numebr of

bits in the encoding.

FIND (Given the key K = 00, tr , . . . ,&r-r)) ;

Fl :

F2 :

F3 :

FJ :

Compute)j + *i(ii + 9($, hi), j = O,l,...,d-1;

Compute 9 + C,(is, ir,. . . , id-r);

Access the directory element D,; Set p + D,.eddr;

If p # null then access page p and if K is in p’return

“true” else return “false”.

INSERT (Given the key K = (ts,rLl,. . . , kd-1)) ;

II : If FIND(K) then return “error message”,

12 : If p is null allocate a new page p*, set p + p*, store K in p

and goto 13. If page p is not full then store K in p and re-

turn. Allocate a new page p*; set m + D,.M; if D,.h’, <

h, goto 13. For each d-tuple index < io,i,, . . . ,&-I >

Pracmdln9s ot the Tenth Intemrtloual
Conlerence on Very Large Data Bases.

13 :

14 :

15 :

16 :

17 :

18 :

and for all combinations of values of ii, 0 5 ii 5 2hj - I, j

= OJ,..., d-l, compute r + G&s,. . . ,i,, . . . , idel); t c

G&O,. . . , i, + 2*m , . . .,&-I) and assign Dt + D,. Set

L + h, + 1; n4 + 2 * tar.

Compute ki + #j(kj), set oj + 0 for j = O,l,...,d-1; t +
Cl

c D,.h$, COVNT[z] + COUNT[t] + 1.
j-0

Let hi = D,.h$ for j = 0, l,..., d-l. Insert the (hi - $)-

bit binary representation of sj as the bits h; to hi of 4

and compute ii +- g(~j, hi) for i = 0, 1,. . . ,d - 1. Set

r +- G&i, ,..., id-l); D,.h’- + D,.h:, + 1; D,.M +

(D,.M + 1) mod d. If bit hk of U, is 1 set D, .addr 6 p.

Set j + 0.

Set uj + Vi + 1; if Vi < 2”i-‘; got0 14 otherwise set

uj + 0; j +- j + 1 and if j < d repeat 15.

Store the keys in p into a temporary area Q and clear page

p. For each key K in Q do INSERT(K).

If either page p or p* is empty, reset all pointers in the

directory that point to it to null, and deallocate the page.

Set COUNT[z] + COtXVF[z) - 1 ;

INSERT(K);

Note that the recursive call of INSERT at IQ can never

startup further page split while that at (18) may initiate sub-

sequent splits, and possibly a directory expansion.

6.8 The Deletion Algorithm.

The deletion of a key K = (ks,)I,. . . , k&r) essentially

involves a FIND to locate the page where the key is resident

and then freeing the space occupied by the key. Two problems

need to be considered after a delete operation.

i.

ii.

To retain a high load factor, two pages addressed by di-

rectory elements that are buddies must be merged if this

can be done without incurring overflows.

The directory size must be halved whenever every direc-

tory element points to the same page as its sibling.

To resolve (i), a threshold value r defined as the the frac-

tion of the page capacity that must be utilised is specified.

Suppose a key is deleted from page p. Let D, be the directory

element whose page pointer addresses p, and let D,- be the

buddy of D, where p* = D,..addr. Then p’ is merged into p

if the sum of their contents is less than r * b, where b is the

page capacity.

Detecting when the directory must be halved to resolve the

SIngepore, August, 1984

501

problem in (ii) is done with the aid of a l-dimensional array

COUNT[O..(lgn.J], (ud is the directory size). The entries of the

COUNT array are the number of data pages that are addressed

by directory elements with a common value of the local depth.

The sum of the local depths serves as the index into the array

COUNT. The directory is halved whenever COUNT[lgnd] =

0. We state the algorithm for deletion as follows. We shall

assume, as in INSERT, that we do not skip over any attributes.

DELETE (Given key K = (ko,)I,. . . , k&-l)) ;

Dl :

D2:

D3:

If not FIND(K) then return “error message”.

D4 :

D5 :

Delete the key by freeing the space occupied by K in p.

Compute ki + !P(tj) for j = 0, 1,. . . , d - 1. Set m c

(D,.M + d - 1) mod d. Reverse the bit /arm of 1’,.

Compute ii + g(k$, hi), j = 0, 1,. . . , d - I; and set q* c

G,(io, il , . . . , id-l). Access page p’ = D,. .addr.

If the sum of the keys in p and p* is greater than r * 6

then return. <If D, is addressed using (kb, ik{, . . . , A$-r)

such that bit h’, of k’, is 0, reverse the role of D,. and

D, as well as p* and p in Dt3 - D9.)

DB : Assign the keys in p* to p; and set Vi + 0, j = 0, l,..., d-l.
d-l

Set 2 + c D,. .h;; COUNT[z] + COUNT[z] - 1.
j-0

D7 : Insert the (hi - h;)-bit binary representation of uj as the

bits h$ to hi of $. and compute ii + g(ki, hi) for j =

0, 1, . . . , d - 1. Set r + G,(ie,ir ,..., id-r), D,.h’& +

D,.h’, - 1, D,.M + (D,.M + d - 1) mod d. If bit h’, of

k’m is 1, set D, .addr + p. Set j + 0.

DS :

D9 :

Set Vj + tij + 1; if Uj < 2hi-hi goto D7 otherwise set

uj + 0; j + j + 1; and if j < d repeat D8.

If nd > 1 then if COUm[lgfld] = 0, halve the range of

index values of dimension D,.M and free the space of the

lower half of the directory elements; nd + r&d/2. Return.

5.4 Query Processing.

We consider the algorithm for processing partial-match
seacb in this section. The algorithm to process an exact-match
search is equivalent to the FIND algorithm specified in the
preceding section. Where the binary encoding function is order
preserving, the partial-match algorithm, yet to be stated, is
easily adapted for processing range and partial-range queries.
Precise definitions of the various query classes may be found in
[l, 3, 22, 27, 311. A partial-match query requires the retrieval
of all keys that match some s out of d specified combination
of attribute values, where e I d. Let an unspeci5ed value be
denoted by asterisk (‘*‘). The algorithm Partial-Match given
below retrieves all pages containing keys whose s corresponding
attributes match the specified attribute values.

Procwdlngr of the Tenth International
Conbronco on Very Large Data Base%

JO2

Partial-&latch (Given ks, kj,. . . , kd-1, of which d-s of them
are asterisks)

PM1 :For each value Aj, j = 0, l,...,d-1 do the following. If tj f’
*’ then lj + Uj + g(!P(Aj), hi); else set lj + O,uj + 24.

PM2 :Set ij + lj, j = 0, l,..., d-l;

PM3 :Compute q + G,(ie,il, . . . ,id-I); Access D,; p t
D4.addr; If page p has not been read then read page p
and retrieve all keys K in p, whose corresponding s com-
ponents match the specified s values. Set j + 0.

PM4 :Set ii + ii + 1; if ii < Uj goto PM3, otherwise set ii 6
lj, j + j + 1; and if j < d repeat PM4 else return.

Let s be the cardinality of the set S of the specified at-
tributes of the key. Examination of the steps of the partial-
match algorithm above reveals that the number of directory
elements is equal to (d-s)-dimensional block of size nd/ fl 24.

it39
The number of actual data page accesses is less than or equal
to this number since in the worst case there would be one page
for each directory element. If the encoding functions for the
various attributes are order preserving, the partial-match al-
gorithm may be modified to handle range queries in an obvious
way by appropriate initialization of the lj’s and the uj’s.

8. Simulation.

Three performance criteria for a data organization system
are the load factor (a), the average number of secondary stor-
age accesses required for an exact-match search (x,), and the
average number of secondary storage accesses made to insert
a key (p). We describe some, simulation experiments done to
estimate these measures of performance. The objectives of the
experiments are primarily to

a) assess the average load factor with increasing file size.

b) assess the average number of disk accesses for a successful
exact-match search when I/O buffering is used.

c) assess the average number of disk reads reqiured to insert
a key.

d) assess the directory size with the file growth.

The estimates (a) to (d) above were done with varying
page sizes and for two different data distributions in the at-
tribute space; i) Independent Uniform distribution, and ii)
Non-uniform distribution using a Multivariate Normal. We
present results for page sizes of 20 and 50 only and for the di-
mensionality d = 2, since our experiments show no significant
changes when d is either 3 or 4.

6.2 The Simulation Model.

The two distribution of keys used in the experiments are
derived as follows.
Uniform distribution (Case I).

The attribute values kj, j = 0, l,...,d-1, are generated
independently of each other and uniform between 0 and MAX,
where MAX is the maximum integer in a 32 bit word.
Multivariate Normal (Case II).

Slngapore, August, 1994

The values of the kl.8 are derived by discretizing from a
multivariate normal distribution with a covariance matrix of

[
1.0 0.8
0.8 1.0 1

values in Case I. This highlights the importance of using a ran-
domizing function for the binary encoding of the key values to
achieve almost uniform distribution of the pseudo-keys. Some
randomizing techniques are discussed in [S,ll).

The spatial patterns of the two distributions are shown in the
Figures 6.1 and 6.2.

7. Discussions and Design Variants.

We assume a paged memory environment with 16 page
frames. A data page has capacity for b keys while a direc-
tory page has capacity for 6 directory elements. The results
presented are for d = 63 and b = 20, 50. The least recently
used (LRU) page replacement policy is enforced. We observe
the parameters a, x,, p and nd for every 200 insertions as the
file grows from N = 1 to N= 10000 keys, both for Case I and
Case II.

A number of noteworthy features have been demonstrated
by our preliminary simulation results.

1.

2.

3.

Even with buffering, the average number of page accesses
to locate a key soon reaches the upper bound of 2.

The load factor or occupancy ratio a, fluctuates about a
mean value of 0.69 and is independent of the data distri-
bution and the page size.

6.3 Simulation Results.

The graphs of the variation of the average number of ac-
tual disk accesses required to perform a successful exact-match
search with increasing file size is shown in Figure 6.3. Even
with buffering, the parameter X. eventually attains the value
of 2. The value of 2 is attained faster with non-uniform dis-
tributed key values. This behaviour is attributed to the fact
that Case II sustains an initial faster rate of growth of the di-
rectory which soon results in a page fault occuring each time
the directory is accessed. There is little effect on the param-
eter X, in Case II when the page size is increased. However,
in the case of uniform distributed values, the values of I, sig-
nificantly decreases when the page size is increased from 20 to
50.

To maintain a relatively small directory size, the encod-
ing functions should be a good randomizing function to
generate components of the pseudo-keys that are uniform
and independent. Unfortunately the scheme under such
conditions looses its order preserving property and conse-
quently its ability for efficient range searching.

The load factor values observed for page sizes of 20 and
50 as the file size increases are shown in Figure 6.4. The load
factor values for uniform distributed keys oscillates between
0.65 and 0.74 for a page size of 20. The amplitude of oscil-
lation is about 0.1 for a page size of 50. The average value
is about 0.7. For Case II, the load factor values show gradual
increasing values with little fluctuations, which eventully settle
at about 0.67 for the two different page sizes. It appears that
irrespective of the distribution and the page sizes, the aver-
age load factor value is eventually about 0.69. This seemingly
asymtotic average value of 0.69 has been observed in similar
page splitting file design schemes in [2, 16, 20, 241.

Our presentation has been based on a splitting policy that
assumes that each attribute in the data space is equally likely
to be specified in a query. This is not generally true in practice.
Where the probability of an attribute participation in a query
is known, a design objective will be to minimize the number of
directory and page accesses for a partial-match search. This
issue is discussed in [16,25]. Essentially, a derived vector called
a “choice vector” dictates the dimension to be expanded next.
The use of such a “choice vector” is easily accommodated in
MDEH by a slight redefinition of the mapping function G,
and retaining the starting element address of each adjoined
subdirectory block at each expansion step. See [19,21,22] on
the use of such techniques. This requires an extra storage of
size O(lg “d) and a time complexity of O(lg nd) to compute C,.

Figure 6.5 shows the graphs of the average number of
actual disk accesses required per key insertion. The variation
of p for keys uniformly distributed in the key space is not only
significantly lower than the values for non-uniform distributed
keys but also shows a steady smooth slow growth unlike Case
II which shows a more oscillatory variation. Such a behaviour
is expected of the multivariate normal distribution since the
keys hash mainly into the directory positions corresponding
to the cells along the diagonal. The result is a high rate of
collision and consequently a high rate of page splitting and a
relatively large directory size particularly for small page sizes.

The Figure 6.6 depicts the growth of the directory size.
The values of nd, are shown on a logarithmic scale. The graphs
exhibit a staircase-like variation as the file grows. The jump
points represent the instants at which the directory size dou-
bles. For the same number of key insertions and the same page
size, the directory sizes in Case II are about 16 to 32 times the

Proceedings of the Tenth International
Conference on Very Large Data Bases.

503

A problem related to the growth of the directory size is the
expected number of prefixed bits used per attribute given N
key insertions. The problem has been independently addressed
by Devroye [8] and Regnier [26]. Assuming that the attribute
values are independent and the keys are grouped b per page,

it is our conjecture that if Sk = ‘2 hi, is the sum of global

depths of the file after N keys ir&:tions, then the expected
value Of & is

E(s)‘) = (1 - l/6) * lg nd ;

where nd is the directory size. We address this problem and
other related analytical results in a follow up paper. Issues
such as the concurrent manipulation of such structures are be-
ing studied and an implementation of the scheme for use in
practice is currently under way at Carleton University in the
design of an integrated data organization method for azsocia-
tive searching.

Singapore, August, 1904

1 113&!
11 2221
121 211

122 1211
1111 1
&ii ; *L.l
12
y;:

1 11 2

11 t121 1
1 212

2 1112

111 1

1A

t 31
21

4

1t1 i

1 11

l3t:
2 21

3

1 1 21x;1131
21

1 1 2 II

l4
212 111

3 112
21 1 22 3

3111 1

i : z;;

:1212-1
3122 112

11 112 1
122 112 21

1 112112

I

312
1

:3;1 1
1 113 5411

1 2113??43??1 “4.” YYY
1 11324687653 1

1114?33713 12
4 34959421121

133?645563 1 1 YY
23 35321223

21312552

2 l Y
1

2
2

:
1

1

Figure 6.1 :
The spatial pattern of a l-dimensional
uniform distributed kern.

Figure 6.2 :
The spatial pattern of a 2-dimensional
multivariate normal distributed kaya.

Figure

I’ 2 3 4 5’6 7 8 9 10

6.3 : The average number disk reads for a succmmful
exact-match search.

-b = 20

-b = 20

ii-++++-b = 50

Figure 6.4 : The arerags load factor with increasing f i1.o size.

Proceedings of the Tenth International
Conference on Very Large Dats Basas.

504

Singapore, August, 1984

7

?
6

5 -

4 -

3 -

2-

1

d
.A

< cc-a

-c r+
c, c---

c-
c)- ~ _ _ c b=20

r’/ -.- + 4 -.b=50 Case
/ A d--b=20

* -I+ -+ -x-b=50 ,>
Case:

I I I v r 1 I F c -
1 2 3 4 5 6 7 8 g 10 x lo3

Figure 6.5 : The warago numbrr of disk rrada par insertion.

-b=20
+-,-b=50

-b=20
+x-k-*=50

1 2 3 4 5 6 7 8 g 10 x 103
Figure 6.6 : A log-normal plot of the variation of the

directoq aixe rlth the file IY~EO.

I

.I1

Proceedings of the Tenth International

Conference on Very Large Data Bases.
505

Singapore, August, 1994

Acknowledgement.

This research is supported in part by grants from the Na-
tional Research Council of Canada and GR5 grant from Car-
leton University. I would also like to thank N. Santoro for his
helpful comments and Nel Holtz for facilitating the typing of
this paper.

References.

[l] Aho A. V. and Ullman J. D. Optimal Partial-Match Re-
trieval When Fields are Independently Specified. ACM
Trans. Databore Syat., 4, 2 (Jan 1979) 168-179.

[2] Bayer R. and McCreight E. Organization and Maintenance
.

PI

PI

151

PI

PI

PI

PI

PI

1111

I121

P31

P41

I151

PI

of Large Ordered Indexes. Ada Informatica I, 8 (I 972),
178-l 89.

Bentley J. L. Multidimensional Binary Search Tree Used
For Associative searching. Comm. ACM 18, 9 (Sep.
1975), 509-517.

Bolour A. Optimality Properties of Multiple Key Hashing
Functions. J. ACM 26, 2 (Apr. 1979), 196-210 .

Burkhard W. A. Interpolation-Based Index Maintenance.
Proc. 2nd Symp. on Principle6 of Ddabare Syrtcmr
(1988), 76-88 .

Carter J. L. and Wegman M. N. A Universal Class of
Hash Functions. Journal of Comput. and Syd. Science,
18, (1979)* 1~8-15~ .

Chang C. C., Lee R. C. T. and Du H. C. Some Properties
of Cartesian Product Files. ACM SICMOD Conf., Santa
Monica, (May 1980), 157-168.

Devroye L. A Probabilistic Analysis of the Height of Tries
and the Complexity of Trie Sort. (To Appear).

Fagin R., Nievergelt J., Pippenger N. and Strong H. R.
Extendible Hashing: A Fast Access Method for Dynamic
Files. ACM. Tranr. Databore Syrt., /, 8 (Sep. 1979),
815-8~~.

Finkel R. A. and Bentley J. L. Quad Trees: A Data Struc-
ture for Retrieval on Composite Keys. Acta Informatica,
4, 1 (197/), l-9.

Knuth D. E. The Art of Computer Programming. Vol. 3:
Sorting and Searching. Addison Werley, Reading Mcrr.
1978.

Larson P. A. Dynamic Hashing. Bit, 18, 2 (1978), 184-
201.

Larson P. A. Linear Hashing With Partial Expansion.
Proc. 6th intern. Conj. VLDB, Montreal (1980), 2&-
282.

Liou J. H. and Yao S. B. Multidimensional Clustering for
Database Organization. Inform. Syst., 2, 4 (1977), 187-
198.

Litwin W. Linear Hashing: A New Tool for File and Table
Addressing. Proc. 6th Intern. Conj. VLDB, Montreal
(1980), 212-228.

Lloyd J. W. and Ramamohanarao K. Partial-Match Re-
trieval for Dynamic Files. Bit, 99 (1989), 150-168.

Proceexiings of the Tenth International
Conference on Very Large Data Bases.

117) Lomet D. Bounded Index Exponential Hashing. ACM.
Trans. Database Syst., 8, 1, (Mar. 1988), 136-165.

[18] Lomet D. A High Performance Universal, Key Associative
Access Method. Proc. ACM SIGMOD Conj. (1983), 120-
188.

1191 Merrett T. H. and Otoo E. J. Dynamic Multipaging: A

PO1

WI

w

1231

Storage Structure for Large Shared Data banks. Proc.
2nd Intern. Conf. on Databases. Improving Usabili@ and
Re6pOn6iVcnc66, Academic he66 (1982), 287-256.

Nievergelt J., Hinterbeger H. and Sevcik K. C. The Grid
File: An Adaptatable Symmetric Multi-Key File Struc-
ture. Eidgenisrische Techniahe Hochschule Zlrich. Insti-
tut jtir Informatik (Dec. 1981).

Otoo E. J. and Merrett T. H. A Storage Scheme for Ex-
tendible Arrays. Computing J! (1988), l-9.

Otoo E. J. Low Level Structures in the Implementation of
the Relational Algebra. Ph. D. Thesis, School of Com-
puter Science, McGill Univerrity (Aug. 1988).

Otoo Ekow J. Dynamic Multidimensional Hashing for
Files With Composite Keys. Technical Report (1984),
School of Computer Science, Carleton Univercity, (Sub-
mitted).

P41

1251

w

1271

P81

P91

I391

WI

PI

Ouksel M. and Scheuermann P. Storage Mapping for
Multidimensional Linear Dynamic Hashing. Proc. 2”d
Symp. on Principle6 of Databwe Syrtemr, Atlanta, Geor-
gia (1988), 90-105.

Pfaltz J. L., Berman W. J. and Cagley E. M. Partial-Match
Retrieval Using Indexed Descriptor Files. Comm. ACM,
28, 9 (Sep. 1980), 522-528.

Regnier M. On The Average Height of Tries in Digital
Search and Dynamic Hashing. Inform. Proc. Lett., l$, 2
(Nov. 1981) 64-65.

Rivest R. L. Partial-Match Retrieval Algorithms. SIAM
Journal of Comput., 5, 1 (Apr. 1976), 19-50.

Robinson J. T. The K-D-B-Tree: A Search Structure for
Large Multidimensional Dynamic Indexes. ACM SIGMOD
Conf. Ann-Abor (Apr. 1981), 10-18.

Rosenberg, A. L. Managing Storage for Extendible Arrays.
SIAM J. Comput. 4, 8 (Sep. 1975), 287-806.

Rothnie J. B. and Lozano T. Attribute Based File Orga-
nization in Paged Memory Environment. Comm. ACM,
17, 2 (Feb. 1974), 68-69.

Scheuermann P. and Ouksel M. Multidimensional B-Trees
for Associative Searching in Database Systems. Inform.
Sy6t., 7, 2 (1982, 128-187.

Tamminen M. The EXCELL Method for Efficient Geo-
metric Access to Data. Acta Polytechnica Scandinavica.
Mathematic and Computer Science Se&r No 34, 11981).
CAD Project, Heknki, Univerrity of Technology, Labora-
tory of Information Processing Science.

Singapore, August, 1994

506

