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Abstract

A generalization of the Extendible Hashing scheme of
Fagin and others is presented for structuring files of records
with d-attribute fields. This generalization reduces to the
problem of defining a storage mapping for an extendible
array with exponential varying order. We define such a
function with element address computation in time O(d),
and we show how the result applies to the design of a mul-
tidimensional extendible hashing. Algorithms for search-
ing, inserting and processing partial-match queries are pre-
sented and we discuss some peculiar characteristics of the
scheme derived primarily by simulation studies done with
both uniform and nonuniform distributed data.

1. Introduction.

Retrieval of records in current database systems often is
by specifying one or more combination of the attribute val-
ues of the records being sought. Such retrieval operations
have been termed associative searching or partial-match re-
trieval. Furthermore, some operational requirement usually
dictate that the records be retrieved ordered on some fields.
Given that the file is structured in some ”ideal” form for effi-
cient retrieval, we may require that the records resulting from
operations on the original file be directly structured using the
*ideal” form. This implies that a required characteristic of
an "ideal” file organization is that it be dynamic; i.e., the file
organization should tolerate insertions and deletions without
compromising its retrieval efficiency. This requirement is crit-
ical in a highly volatile database environment.

Combined with the fact that hashing techniques provide
the fastest direct access means to data on secondary storage,
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we postulate that a "multidimensional order preserving dy-
namic hashing scheme” satisfies the retrieval requirements of
an "ideal” file organization if one can be realized. Although
the above criteria are not satisfied by any one file organization
method, a number of recent advances, satisfy more than one
of the above requirements.

The various methods developed for efficient associative
searching and partial-match retrieval may be categorized into
two broad classes : a) direct access method as in the file design
schemes in [1, 4, 5, 14, 16, 19, 20, 23, 24, 27, 30, 32], and b)
tree structured file design methods as in (3, 10, 28, 30]. These
two classes, however have a common geometric perspective of
the file.

Consider a file F = (r1,r2,...,rN), of N records, each
record r; = (ko,k1,...,k4—1), being defined by d attribute
values where record retrievals are made by specifying some s
combination of attribute values for 0 < s < d—1. A geo-
metric interpretation of the file F is as a set of points in a d-
dimensional space where each attribute corresponds to an axis
of the space and the natural ordered distinct attribute values
define descrete points along the respective axes. The presence
of a record r; = (ko, ki1, ..., ka—1) is denoted by a point at the
coordinate point defined by the values ko, ky,...,k4_y. Such
a representation is referred to as a multiattribute space model
of the file. The Figure 1.1 illustrates the multiattribute space
model of the file shown in its tabular form in Table 1.1.

Given such a file representation, one easily identifies that
the proposed storage scheme for efficient partial-match search-
ing effectively partition the multiattribute space model of the
file into rectangular cells. Differences exist in the manner of
splitting the space, and in the techniques for storing and re-
trieving the records whose point images fall in the cells. For
example, methods such as multiple key hashing [4, 30], and
multipaging {19, 22|, assume a rectilinear partitioning of the
space as illustrated by Figure 1.2. Another alternative rect-
angular, but non-rectilinear, partitioning is shown in Figure
1.3. Chang and colleagues [7], refer to such file organizations
as having the cartesian product property. We may further dis-
tinguish the direct access methods according to whether the
cells represent data pages as in [4, 19, 22, 23, 24], or whether
they represent directory elements of page pointers as in 14,
18, 20, 30, 32).

In the tree structured design schemes, the partitioning
boundary values of the space serve as discreminating values
for the internal nodes of an index tree whose terminal nodes
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are pointers to the pages holding the records. Such design
methods are exemplified by the heteregeneous K-D-Tree [3]
and Quad-Tree [10]. Tree structured indexes inberently have
the dypamic property except for the fact that they can de-
generate with insertions and deletions. Since B-Trees [2], are
most versatile in maintaining the balance of trees indexes in
a dynamic environment the B-Tree design technique has been
applied in multidimensional tree structures as the K-D-B-Tree
of Robinson [28] and the multidimensional B-Tree of Sheuer-
mann and Ouksel [31]. In a file of n pages, a record retrieval
costs O(log n) page accesses using such tree structured organi:
zation. In this respect multidimensional direct access schemes,
with O(1) page accesses to retrieve a record, appear more at-
tractive. We focus attention then on multidimensional hashing
schemes with dynamic characteristics. A number of different
approaches to the design of a dynamic hashing schemes for
1-dimensional keys have been advanced by Larson [12, 13],
Litwin [15], Fagin and others {9] and Lomet [17,18].

The various methods of dynamic multiattribute hashing
schemes are adaptations of either Linear Hashing [12, 15] or
Extendible Hashing [9]. For instance the Interpolation Based
Index of Burkhard [5], the Extendible Cell method of Tam-
minen {31] and the Partial-Match Retreival technique of Lloyd
and Ramamobanarao {16] all adapt extendible hashing by gen-
erating a single key from bit shuffling of the binary encoding
of the multiple key values.

Where the attribute values of the records are indepen-
dently considered, the design problem of a multidimensional
dynamic hashing scheme reduces to defining a mapping func-
tion for extendible arrays with prescribed order of expansion.
This is evident in the multidimensional linear hashing method
of Ouksel and Scheuermann [24], the Grid File Method of Niev-
ergelt and colleagues [20] and the multidimensional hashing
schemes presented in [22,23].

The technique being presented in this paper is similar to
the Grid File method in the sense that each attribute value
is independently treated, i.e., the individual binary values of
the attributes are not shuffled to form a single key. The main
distinction of the method from earlier proposed schemes are :-

a) The directory is implemented as a d-dimensional ex-
tendible array with exponential expansion.

b) We define a mapping function for addressing the directory
entries.

¢) Empty pages resulting from page splits are eliminated.

In our discussions we will use the term "key” to refer to an
attribute or a combination of attributes of the file whose values
uniquely identify each record, and we shall refer to the content
of a file as keys although each record may be comprised of a
set of key fields and either the rest of the fields or a pointer to
a loaction where the complete record is stored. In the rest of
the paper, we present a review of extendible hashing in section
2 and an overview of a design of a multidimensional extendible
hashing in section 3. In section 4, we briefly describe the con-
cepts of uniform extendible arrays of exponential varying order
and specify a storage allocation function for the elements of
such an array in linear consecutive memory locations. Further
details of our file organization scheme are discussed in section
5 where we present algorithms for inserting, deleting and query
processing. The results of some simulation studies using both
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uniform and nonuniform distributed data are presented in sec-
tion 6. We conclude in section 7 with some design alternatives
and present suggestions for future work.

2. Review of Extendible Hashing.

We briefly review the concepts of the extendible hashing
scheme of Fagin and others [9]. The reader may consult the
orginal reference for detailed discussion. The file is organized
in two levels: a first level of a directory, D, and a second level
of a set of pages P. The directory is primarily an array whose

elements are pointers to the data pages.

Each key K, is transformed by some encoding function
to derive a pseudo-key K! of binary digits. The directory is
indexed by choosing either the A suffix or prefix bits of K!
and interpreting it as an integer. The value h is called the
global depth of the file. The directory expands and shrinks by
varying the global depth. Suppose the pseudo-key K geneates
the index q. Then the element D, gives the page, Py, where

the record should reside.

Each page P, retains a local depth X', (K- < k), which
indicates the number of prefix bits of the pseudo-keys in P;
that agree. As a result all directory elements, indexed by the
pseudo-keys whose first &' bits agree point to the same page.
Let the function for deriving an index into the directory, given
the pseudo-key and the global depth, be denoted by g. If we
take K! = (Bob1,...,Pw—1) where w is the number of bits
allowed in the binary encoding, a definition of ¢ which allows

retrievals in pseudo-key order is

h—1
g= Zﬂr *27

=0
We shall assume this definition for g in any further reference to
an index function. Let ¥ denote the binary encoding function
and assume that A = 2. The Figure 2.1a shows an instanta-
neous configuration of the directory and data pages. To insert
a key K, the pseudo-key K! = ¥(Kj;), is derived. Let us as-
sume that K! =' 011Y. Since h = 2, the bits '01’, are used
as the index into the directory. This gives the page pointer
P, as the home page of the key K;. As insertions continue, a
page may eventually become full. At this point the local level
is increased by 1 causing the keys in the page to split accord-
ing to the A’ bit of the pseudo-keys. One set of keys remains
in the original page. The other is stored in a new allocated
page. The original page is now said to be split. Occasionally
such an increase in the local depth may cause it to exceed the
global depth. The global depth is increased by 1, and the di-
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rectory size is doubled. Suppose in inserting the key K into
page P; the local depth increases to 3, then the global depth
now becomes 3 and the directory must be doubled since the
3 bits can now address twice as much directory entries. The

new configuration is depicted in Figure 2.1b.

In the reverse process, deletions of keys may require that
two pages be merged, and when every local depth becomes less
than the global depth, the directory is halved. In order to
determine the point at which the directory must be halved, a
count of the number of pages having a common value of the
local depth A% are maintained for i = 1,2,...,lgnq4, where
lg X = log, X and ny is the directory size. In the next section
we outline the generalization of extendible hashing, which is
abbreviated as EXHASH, to d-dimensional keys which essen-
tially is a d repetition of the concepts of extendible hashing

one along each dimension.
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A non-rectilinear but rectangular
partitioning of an attribute space.

3. An Overview of
Multidimensional Extendible Hashing.

Suppose now that each key K, is a vector in a d-
dimensional attribute space defined by the Do x Dy x ... X
Dy_y, where D; is the domain corresponding to the 7t at-
tribute, i.e., K; = (ko,k1,...,ka—1) and k; € D;. The
multidimensional extendible hashing, which is abbreviated as
MDEH, essentially duplicates the concept of the 1-dimensional
extendible hashing for each of the d attributes, except that
now, the indexes computed, for the individual attributes are
used as components of a d-tuple index of a d-dimensional direc-
tory. That is for each key (ko, &, ...,ks—1), each component
value k; is considered to be used in a separate extendible hash-
ing scheme. We therefore require d distinct values of each of
the parameters in EXHASH. These are defined below including
the definitions of some notations used latter in our discussion.

¥; : The binary encoding function for 7** values of the key
vector.
k;- : The 5** pseudo-key values derived from the corresponding
encoding function i.e., k) = ¥;(k;).
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DIRECTORY DATA PAGES

: The global depth of the file for the 7** dimension.

: A function for generating an integer index given a pseudo-

key value and a gobal depth.

: The index value derived from the j** pseudo-key compo-

nent, i.e., i; = g(k}, hj).

: The local depth, for dimension j, of the file within a di-

rectory element.

: The number of directory entries also refered to as the

directory size.

: The number of data pages allocated.
: The directory space. A directory element will be denoted

either by D, or by D < 4,4y, ...,%4—1 > as may be found
appropriate, where ¢ = G.(%0, 41, - . . ,¥4—1) for some map-
ping function G, yet to be defined.

: The number of keys in the file.

: The number of keys grouped per page.

: The number of directory elements grouped per page.

: A threshold value used during deletion to determine if two

mergeable pages can be merged.
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As in EXHASH, MDEH is organized in two levels: a first
level of a directory and a second level of data pages. The direc-
tory organization constitutes the distinctive feature of MDEH.
This is primarily a uniform extendible array of exponential
varying order which we refer to as UXAE. A detailed discus-
sion of such an array is presented in [22]. Other techniques
for the storage allocation of extendible arrays may be found in
[29]. The essential features of a UXAE as they relate to MDEH
is presented in the next section. Essentially it is a rectangular
array with the ability to double the range of index values along
one dimension and as such it doubles the size of the array at
each expansion step. The dimension which is expanded next is
determined cyclically, i.e., if M is a variable that denotes the
current dimension being expanded, the next dimension to be
expanded is given by assigning M — (M +1) mod d. We skip
over dimensions that have exhausted the use of their bits. The
reader may want to study Figures 4.1a and 4.1b to appreciate
the expansion process of a UXAE.

A directory element D, consists of a page pointer,
Dg.addr, values for d local depths, Dg.hf, Dg.h}, ..., Dy.h,_,,
and a variable D,. M specifying the next local depth of the file
to be increased to effect a page split. We maintain the local
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A configuration of a 2-dimensional MDEH
with page size b = 4, after 12 key insertioms.

[1010,110] [1101,101]

DATA PAGES
DIRECTORY b= (2,1) [0100,000] [0010,001]
P
0} [0101,0103 - [0001,001]
o| (1, 1); 0 /
= {1111,000] [1010,010]
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5] (2,1); 1 P31[1111,100]
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Figure 3.1b : v
The resulting configuration 4 [0100,110]
after splitting page B, (1, 1); 0
and expanding the directory. 7 ’ g
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depths in the directory unlike EXHASH where the local depth
is maintained in the data pages. This enables us to avoid re-
taining empty pages that may result from page splitting. A
vector of global depth < hg,hy,..., hg—1 > is maintained as
a directory header such that hj > Dg.h}, for j = 0, 1,...,d-1,
and¢g=0,1,...,n4—1.

To insert a key K = (ko, ky,..., ks—1), we generate the
vector K' = (ky, k1, ..., ka—1) where k! = W(k;). Next we
derive for each component of the pseudo-key vector, I:",-, an
index i; where ¢; = g(k};, ;). The function g, used as the
directory index function in the EXHASH and defined in section
2, is used here to simply generate an index of a dimension. The
result then is a d-dimensional vector < tg,¢y,...,14—; >, that
addresses the directory entry D,. Finally the destination page
address is given by D,.addr, where the key is stored, unless the
page is found to be full in which case a page split is initiated.
On the other hand D,.addr may be a null address. In this case,
a new page p is allocated, the key is stored in p, and the address
of p assigned to D,.addr. In general a new page allocated in
this manner may affect more than just one directory entry as
will be realized subsequently. We assume that within a page
the keys are organized by a simple sequential method.

Consider the situation where the page p = Dj.addr is
found to be full and must be split. The local depth Dg.K!, is
increased by 1, where m = Dg,.M. Consequently the keys in
p are split into two sets according to whether bit &', of k., is
0 or 1. One set of keys are retained in the page p while the
other set is assigned into a new allocated page p*.

The values of the local depths, k', of all directory ele-
ments whose page pointers previously address p are updated.
If Dy.k!, < hp, half of these page pointers are reset to point to
p"*, otherwise the global depth A,, is increased by 1. The range
of index values of dimension m doubles and causes the direc-
tory size to be doubled. Doubling of the directory involves the
creation, for each directory element, a "buddy” in the second
half. We define the concept of buddy below.

Definition 3.1

Let a directory element be addressed by D <

10,%1,...,8d—1 >. Then the buddy of D <
0,%1,...,8d—1 > Wwhen the global index increases
from hy, to hyp, + 1 i8 D < 1o,81,..,8m +

2""‘, vy b1 >

The MDEH organization scheme may be illustrated by in-
serting the following 2-dimensional pseudo-keys in the order of
occurrence. {(0010, 101), (0001, 111), (0100, 000), (1111, 000),
(0010, 001), (0101, 010), (0111, 100), (1010, 110), (0001, 001),
(1010, 010), (0111, 111), {1101, 101}, (0100, 110), (0001, 100),
(0001, 100), (1111, 100) }. Starting with 4 directory entries, 4
data pages, one page per directory element and a page size of
4, the assignment of the first 12 keys gives the configuration
shown in Figure 3.1a. The 13** key, K’ = (0100,110) hashes
to Ds. Since the page P is full we initiate a splitting action.
The value Dy.M = 0 hence D;.hjy is increased from 1 to 2.
This exceeds the corresponding global value. We therefore in-
crease the global depth k., by 1, and double the directory size.

To split the page P, we allocate the new page P, and
assign Py to Ds.addr. Note that Dj is a2 buddy of D;. The local
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depths Dz.hy and Ds.hy are each set to 2. The value Do. M
and Ds.M both become 1. The keys in page P are rehashed
to be distributed between P, and P5. The new configuration
of the scheme is shown in Figure 3.1b, which includes the rest
of the keys.

The efficiency of the MDEH scheme will be measured by
the following parameters.

i. The load factor which we denote by a and is defined as

o= N
_btn,

This estimates the storage utilization.

ii. The average number of page reads for a successful exact-
match search which we denote by x,.

ili. The average number of page reads per key insertion which
is denoted by p.

4. Storage Mapping for the
Directory of MDEH.

The storage mapping function for the directory of the
MDEH scheme is defined by the addressing function for al-
locating elements of a d-dimensional extendible array of expo-
nential varying order. A detailed discussion of such an array
is given in [22,23].

Definition 4.1

Let I denote the set of of non-negative integers
{0,1,2,...}. A d-dimensional uniform extendible array
of exponential varying order denoted by A[0 : ug,0 :
u2,...,0 : u4_1], i8 a rectangular array, whose up-
per bounds on the various dimensions vary under the
following conditions :-

1. Exponential varying condition : u; = 2k — 1, j
=0, 1,...,d-1, for h; € I where
hj varies in unit steps from 0 to
a predefined maximum H;.

2. Uniformity condition : h;, = hj, for any pair of
dimensions, 0 < 71,22 < d -1,
such that h;, < H; and hj, <
H,,.

Let I denote the set of non-negative integers and let J¢
denote the set of d-tuples of non-negative integer elements.
Then given that ug, 4;,...,uq4—; are the upper bounds on the
index values for the various dimensions, we require a map-
ping function, G, : I¢ — I, that maps the d-tuple coordi-

nates < 1p,%1,...,8d4—1 > one-to-one onto the set of integers
d—1

{0,1,2,..,n4—1}, for ng = H (45 +1). The definition of the
j=0
function G, is expressed by Proposition 4.1.

Proposition 4.1.

Let A[0 : uwo,0 : uy,...,0 : ug_y] be a d-
dimensional extendible array of exponential varying
order with wug,u;,...,%4-1 38 the upper bounds of
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the respective dimensions at some instant in time.
Let M<0>, M<1>,..,. M < ng—-1 > de

note a set of consecutive memory locations, where
d—1

ng = H(u,- + 1) and varies according to the u;-a.
J=0

Then the elements of A may be allocated in M such
that at each expansion step of a dimension j, a d-
dimensional subarray of size equal to the previously
allocated array is adjoined. The elements within the
adjoined subarray are allocated in lexicographic order
but with j considered as the leading dimension, such
that A < 4p,1y,...,84~1 > is allocated in M<g>
and q is defined by G, as

q=G.(fo,%1,...,84—1)

d-1 d—1
_ i IT 0+ Yeitsn it maioyin, .. iat) #0
i in
0, otherwise.

where z = the largest subscript such that

lgid = maxQgigfeiy ... fgia—1);

hy = |lgi.};
J. — [min(@*=1,255), if i<z
y min(2*, 274), otherwise

d—1
and ¢; = H J,.

em=j4+3
roky

Proof.

It is obvious that G.(0,0,...,0) evaluates to 0 so that

A<0,0,...,0> is stored in M<0>. For any arbitrary element
A < ig,1y,...,54—y >, each value i; lies between 2*~! and
2*i —1 for some h; except when i; = 0. i.e., 2%~! < §; < 2hi —
1. Call the block of array elements whose range of index values
for dimesnion j lies between 2%~! and 2% — 1 the adjoined
block implied by ¢; Every index value 4; = 0 implies the one
element block of A<0,0,...,0>.

From the element allocation technique, an arbitrary ele-
ment A < 1p,%1,...,54—1 > i8 stored in the latest adjoined
block implied by the index values t9,1;,...,54—;. But this is
given by ¢, where z is the highest subscript such that

l_lgs',_l: max@_gid,l!gil_l, e ,|l_gi4._J) .
The size of dimension z prior to adjoining this block is 2%+
where h, = |lgs,]. The sizes J;, j = 0,1,....,d-1, of all the
dimensions prior to the expansion is given then by
__ [min(2%:1, 285y, ifj < z;
77 L min(2*+, 25), if j > 2.
The address of the element A < +¢p,%;,...,44—1 > is com-
puted then as the sum of the starting address of the subarray
block implied by i,, (i.e., address of A < 0,0,..,5,,..,0 >)
and the displacement within the subarray given by the lexico-
graphic ordering of the elements where now z is considered as
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the leading subscript. The address of A < 0,0, ..,,,..,0 > is
d-1

given by H Jr, and the displacement is given by

J=0
d—1 d—1
(52 — Js) * H Ji + Zc,t,

F—8 FL ]
P iks

d-1

where ¢; = H Jr. We have then that the address q of
ramg 41

roky
the location M<q>, into which A < 1p,%1,...,84—1 > is
assigned, is given by

= G.(f0,81,.-.,8d-1)

d-1 d—1 d—1
IIJ,--F(:’,— i)+ HJ,'+ z:ci*t',' ;

I

— fror] rd
j=0 Y ivks
d—1 d—1
=it JL 4+ 3 eits
jome Iy
foks Foks

This establishes Proposition 4.1.

The Figure 4.1a shows the schematic storage layout of
a 2-dimesional UXAE A[0:3,0:3]. Let this be expanded to
A[0:7,0:3]. Then Figure 4.1b illustrates the new storage lay-
out obtained by adjoining the subarray which is the result of
doubling the size of the first dimension. The element alloca-
tion technique for UXAE is as efficient as the storage of a d-
dimensional array of fixed upper bounds since this is achieved
with 100% storage utilization, and taking the logarithmic op-
eration as an elementary operation, the time complexity to
compute G, is O(d).

From the manner in which both UXAE and the directory
of MDEH expand, it is easy to appreciate why the function
G, for the UXAE defines the directory addressing function in
MDEH. Recall that in section 3, we indicated that we skip
over attributes that have exhausted the use of their encoded
bits during the cyclic choice of the next dimension to expand.
This implies, in UXAE, that the corresponding dimensions has

attained its maximum allowable upper bound.

5. Insertion, Deletion and Query Processing.

5.1 Insertion.

We discuss specific consideration of the key insertion pro-
cess in this section. We first address three issues that cause the
number of secondary storage accesses well beyond 2 during a

key insertion.

a) Whenever the directory is doubled as a result of the
local depth A, being greater than the correspond-
ing global depth h,,, every directory element D <
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Figure 4.1a :
2 8 9 10 11 A schematic storage layout of a
2-dimensional UXAE A[0:3,0:3].

3 12 13 14| 15
1,7 L

0 23 4 5 6 YA R
0 0 1 4 6 16 20 el 28
192 3 5 (7 17| 21| 25| 29
218 | 9 ) w1 [Ji8] 22| 26| 30
3 12 13 14 | 15 19 23 27 31
1.7 Figure 4.1b :

The schematic layout of the array after

expansion to A[0:7,0:3].

0,%1,-%m; - 8d—1 > i8 duplicated as the element D <
$0,81,.y8m + 2871 44, >. The number of secondary
storage accesses i8 equal to 2 *ny where ng is the directory

size before the expansion.

b) If atter the increase of A/, we have h!, < h,, and suppose
the keys in page p = D,.addr (D, being the directory ele-
ment whose local depth k', is raised) are now distributed
between p and p* according to bit k', of k!,. Then every
directory element with a pointer to p must be updated.
It is necessary to identify only those directory elements
that must be updated. The number of directory elements
affected during such a page split is given by Proposition
5.1.

After a page split, the keys in p, either all remain in p

o
—

or may all get reassigned to the page p* depending on
whether the bit Al of the k!, component of the pseudo-
key vectors are either all 0 or all 1. If either p or p*
is empty, it is immediately deallocated, and all directory
pointers previously pointing to it reset to null, This case
automatically triggers a further page splits. Identifying
the directory elements whose page pointers must be reset
to null raises a special case of the problem in b).

We will first illustrate the technique to identify the direc-
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tory entries to be updated in (b) and (c) before establishing
the expressions for the number of storage acceses made. Con-
sider a 2-dimensional extendible hashing scheme with global
depths hg, hy. Suppose a pseudo-key vector is given as K’ =
(pgﬁf...pg. ...,B3B} ...Bh, ...), where B; = {0, 1}. Let K’
hash to D,, and assuming the page p = D,.addr is found to
be full, with Ay < ho, h{ < hy and Dg.M = 1. The direc-
tory entries with page pointers to p may be identified as those
addressed by the pseudo-key vectors of the form

(B3 .- PRy XXXny ..., BoBY .. Bps OXX X, ) oo, (1
and
(B2BY - PRy XXXy .-, B3B1 - PRy 1XX Xy ) o (2)

where X = {0,1} denotes "don’t care” bits. The set of di-
rectory elements updated during the page split are those ad-
dressed by the pseudo-key vectors (1) and (2), where the se-
quences of (h; — h};) X’s take all possible combinations of 0’s
and 1’s. The directory elements whose page pointers are reset

to point to page p°* are given by the pseudo-key vector in (2).

Proposition 5.1

Let D, be a directory element with page pointer
Dq.addr, and local depths Dg.h}, j = 0,1,...,d-1.
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Then the number of storage accesses made in spiitting

the page p = Dg.addr, with no directory expansion

é—1
is 24! + 4 where ¢ = ) _(h; — D,.K}).
=0
Prool.

Let the page addressed from a directory eniry Dy be p =
Dgy.addr and let the local depths in D, be hy, A,... A, ,. I
the corresponding global depths are hg, h;,. .., hs—; then the
number of directory entries whose page pointers point to p is
given by

gho—he  ghi=hy o | x gha-1—hL,
d—1
This is equal to 2% where ¢ = z(h,- - K;). We require 2
accesses to locate p and detect t’h-;: it is full and a further
2 accesses to secondary storage to write back the two pages
resulting from the page split and 2 + 2¢ directory accesses to
update the affected directory entries, hence the Proposition 5.1

follows.

§.2 The Insertion Algorithm.

The algorithm to insert the key K = (ko, ky,...,k4—1),
first checks that K is not already present. In effect, an exact-
match search is first performed. We state this preliminary
search phase as the algorithm FIND, for reading into memory,
the destination page of the key. The algorithm FIND returns
true if the key is already present otherwise it returns false.
The insert algorithm references an array called COWNT whose
significance will be apparent when we discuss deletion. We
shall assume also that every attribute has the same numebr of
bits in the encoding.

FIND (Given the key K = (ko, k1, ..., ka-1)) ;

F1: Compute k; — ¥;(k;); i; — g(k;, b)), j = 0,1,...,d-1;

F2 : Compute ¢ — G.(t0,%1,...,%d-1);

F3 : Access the directory element D; Set p «— Dg.addr;

F4 : If p 5 null then access page p and if K is in preturn

*true” else return "false”.
INSERT (Given the key K = (ko, k1,...,k4-1)) ;
11 : If FIND(K) then return "error message”,

12 : If p is null allocate a new page p°, set p — p°, store K in p
and goto I3. If page p is not full then store K in p and re-
turn. Allocate a new page p*; set m — Dg. M if Dy.h, <
hn goto 13. For each d-tuple index < 1p,%;,...,84—1 >
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and for all combinations of values of 5;,0 < §; < 2% -1, j
= 0,1,..., d-1, compute r — G,(to,-..,5m,---,%d—1); t —
Ge(fo,...,8m + 2*™,...,44—y) and assign Dy «— D,. Set
Ay — hpy +1; ng — 2 ng

I3 : Compute k}; — ¥;(k;), set v; — 0 for j = 0,1,....d-1; z

1

)" D,.K;, COUNT|z] — COUNTIz] + 1.

F=0 .

Let h}; = Dg.k; for j = 0, 1,...,d-1. Insert the (h; — h})-
bit binary representation of v; as the bits A} to A; of ¥}
and compute i; + g(k}, h;) for j = 0,1,...,d - 1. Set
r — Galio,51, ... 54—1); DKy — Dy.K +1; D,.M +
(D,-M + 1) mod d. If bit Al of k., is 1 set D,.addr « p.
Set 5 — 0.

I4:

tSet vy —v; +1;ifv; < 248 goto 14 otherwise set
vj+—0;5+—j+1andif j < drepeat I5.

: Store the keys in p into a iemporary area Q and clear page

p. For each key K in Q do INSERTY(K).

If either page p or p* is empty, reset all pointers in the

directory that point to it to null, and deallocate the page.

Set COUNT|z] — COUNT [z} -1 ;

INSERT(K);

Note that the recursive call of INSERT at 16 can never

startup further page split while that at (I8) may initiate sub-

17 :

sequent splits, and possibly a directory expansion.

5.3 The Deletion Algorithm.

The deletion of a key K = (ko, k1, ..., ki—1) essentially
involves a FIND to locate the page where the key is resident
and then freeing the space occupied by the key. Two problems
need to be considered after a delete operation.

i. To retain a high load factor, two pages addressed by di-
rectory elements that are buddies must be merged if this
can be done without incurring overflows.

jii. The directory size must be halved whenever every direc-
tory element points to the same page as its sibling.

To resolve (i), a threshold value r defined as the the frac-
tion of the page capacity that must be utilized is specified.
Suppose a key is deleted from page p. Let Dy be the directory
element whose page pointer addresses p, and let D,- be the
buddy of Dy where p* = Dge.addr. Then p° is merged into p
if the sum of their contents is less than r + b, where b is the
page capacity.

Detecting when the directory must be halved to resolve the
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problem in (ii) is done with the aid of a 1-dimensional array
COUNT0..(Ig ny)], (nq is the directory size). The entries of the
COUNT array are the number of data pages that are addressed
by directory elements with a common value of the local depth.
The sum of the local depths serves as the index into the array
COUNT. The directory is halved whenever COUNT[Ig n4] =
0. We state the algorithm for deletion as follows. We shall
assume, as in INSERT, that we do not skip over any attributes.

DELETE (Given key K = (ko, k1,...,k4—1));
D1 : If not FIND(K) then return "error message”.
D2: Delete the key by freeing the space occupied by K in p.

D3: Compute k;. — ¥(k;) for § = 0,1,...,d — 1. Set m «

(Dg-M +d ~ 1) mod d. Reverse the bit h’, of k!,,.
D4 : Compute i; «— g(k}, hj),7 =0,1,...,d - 1; and set ¢* ~
Ge(f0,11,--.,94—1). Access page p* = Dy.addr.

D5 : If the sum of the keys in p and p* is greater than r * b
then return. {If D, is addressed using (kj, k},...,k,_,)
such that bit k), of ki, is 0, reverse the role of Do and

D, as well as p* and p in D6 - D9.}

DB : Assign the keys in p* to p; and set v; — 0, j =0, 1,...,d-1.

d-1
Set z — Y_ Dg=.h;; COUNT(z] — COUNT(z] - 1.
j=0
D7 : Insert the (h; — h})-bit binary representation of v, as the
bits h’; to h; of k; and compute i; «— g(k, h;) for j =
0,1,...,d ~—1. Setr «~ Ge(io,t'l,...,id_l), D,h’m
D, K, ~1,D,. M~ (D, M +d—1) mod d. If bit k', of

K, is 1, set D,.addr — p. Set 5 — 0.

—

2h;—h’.

D8: Set v; «— v; + 1; if v; < i goto D7 otherwise set

vj —0;5+~ 5+ 1;and if j < d repeat D8.

D9 : If ng > 1 then if COUNT|lgny] = 0, halve the range of

index values of dimension D,.M and free the space of the

lower half of the directory elements; ngy — nq4/2. Return.

5.4 Query Processing.

We consider the algorithm for processing partial-match
seach in this section. The algorithm to process an exact-match
search is equivalent to the FIND algorithm specified in the
preceding section. Where the binary encoding function is order
preserving, the partial-match algorithm, yet to be stated, is
easily adapted for processing range and partial-range queries.
Precise definitions of the various query classes may be found in
11, 3, 22, 27, 31]. A partial-match query requires the retrieval
of all keys that match some s out of d specified combination
of attribute values, where 8 < d. Let an unspecified value be
denoted by asterisk (**’). The algorithm Partial-Match given
below retrieves all pages containing keys whose s corresponding
attributes match the specified attribute values.
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Partial-Match ( Given ko, k;, .. ., ks—1, of which d-s of them
are asterisks)

PM1 :For each value k;, j =0, 1,...,d-1 do the following. If k, 7'
+' then l; «— uj — g(¥(k;), hy); else set I; — 0,u; — 2%

PM2 Set ¢; «— I;,j =0, 1,...,d-1;

PM3 :Compute ¢ «— G(fo,%1,...,84—1); Access Dg; p +—
D,.addr; If page p has not been read then read page p
and retrieve all keys K in p, whose corresponding s com-
ponents match the specified s values. Set 7 «— 0.

PM4 :Set ¢; «— i; + 1; if 1; < u; goto PM3, otherwise set i; «—
l;, 7 —7+1;and if j < d repeat PM4 else return.

Let s be the cardinality of the set S of the specified at-
tributes of the key. Examination of the steps of the partial-
match algorithm above reveals that the number of directory
elements is equal to (d-s)-dimensional block of size nq/ H 2hi,

€S
The number of actual data page accesses is less than ;r equal
to this number since in the worst case there would be one page
for each directory element. If the encoding functions for the
various attributes are order preserving, the partial-match al-
gorithm may be modified to handle range queries in an obvious
way by appropriate initialization of the I;’s and the u;’s.

8. Simulation.

Three performance criteria for a data organization system
are the load factor (a), the average number of secondary stor-
age accesses required for an exact-match search (x,), and the
average number of secondary storage accesses made to insert
a key (p). We describe some simulation experiments done to
estimate these measures of pérformance. The objectives of the
experiments are primarily to

a) assess the average load factor with increasing file size.

b) assess the average number of disk accesses for a successful
exact-match search when I/O buffering is used.

c) assess the average number of disk reads reqiured to insert
a key.

d) assess the directory size with the file growth.

The estimates (a) to (d) above were done with varying
page sizes and for two different data distributions in the at-
tribute space; i) Independent Uniform distribution, and ii)
Non-uniform distribution using a Multivariate Normal. We
present results for page sizes of 20 and 50 only and for the di-
mensionality d = 2, since our experiments show no significant
changes when d is either 3 or 4.

8.2 The Simulation Model.

The two distribution of keys used in the experiments are
derived as follows.
Uniform distribution (Case I).

The attribute values k;, j = 0, 1,...,d-1, are generated
independently of each other and uniform between 0 and MAX,
where MAX is the maximum integer in a 32 bit word.
Multivariate Normal (Case II).
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The values of the Ic;-s are derived by discretizing from a
multivariate normal distribution with a covariance matrix of

o5 1o]

The spatial patterns of the two distributions are shown in the
Figures 6.1 and 6.2.

We assume a paged memory environment with 16 page
frames. A data page has capacity for b keys while a direc-
tory page has capacity for § direcfory elements. The results
presented are for § = 63 and b = 20, 50. The least recently
used (LRU) page replacement policy is enforced. We observe
the parameters a, x,, p and ny for every 200 insertions as the
file grows from N = 1 to N= 10000 keys, both for Case I and
Case II.

6.3 Simulation Results.

The graphs of the variation of the average number of ac-
tual disk accesses required to perform a successful exact-match
search with increasing file size is shown in Figure 6.3. Even
with buffering, the parameter x, eventually attains the value
of 2. The value of 2 is attained faster with non-uniform dis-
tributed key values. This behaviour is attributed to the fact
that Case II sustains an initial faster rate of growth of the di-
rectory which soon results in a page fault occuring each time
the directory is accessed. There is little effect on the param-
eter x, in Case Il when the page size is increased. However,
in the case of uniform distributed values, the values of x, sig-
nificantly decreases when the page size is increased from 20 to
50.

The load factor values observed for page sizes of 20 and
50 as the file size increases are shown in Figure 6.4. The load
factor values for uniform distributed keys oscillates between
0.65 and 0.74 for a page size of 20. The amplitude of oscil-
lation is about 0.1 for a page size of 50. The average value
is about 0.7. For Case II, the load factor values show gradual
increasing vaiues with little fluctuations, which eventully settle
at about 0.67 for the two different page sizes. It appears that
irrespective of the distribution and the page sizes, the aver-
age load factor value is eventually about 0.69. This seemingly
asymtotic average value of 0.69 has been observed in similar
page splitting file design schemes in {2, 18, 20, 24].

Figure 6.5 shows the graphs of the average number of
actual disk accesses required per key insertion. The variation
of p for keys uniformly distributed in the key space is not only
significantly lower than the values for non-uniform distributed
keys but also shows a steady smooth slow growth unlike Case
Il which shows a more oscillatory variation. Such a behaviour
is expected of the multivariate normal distribution since the
keys hash mainly into the directory positions corresponding
to the cells along the diagonal. The result is a high rate of
collision and consequently a high rate of page splitting and a
relatively large directory size particularly for small page sizes.

The Figure 6.6 depicts the growth of the directory size.
The values of ng4, are shown on a logarithmic scale. The graphs
exhibit a staircase-like variation as the file grows. The jump
points represent the instants at which the directory size dou-
bles. For the same number of key insertions and the same page
size, the directory sizes in Case Il are about 18 to 32 times the
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values in Case I. This highlights the importance of using a ran-
domizing function for the binary encoding of the key values to
achieve almost uniform distribution of the pseudo-keys. Some
randomizing techniques are discussed in {6,11].

7. Discussions and Design Variants.

A number of noteworthy features have been demonstrated
by our preliminary simulation results.

1. Even with buffering, the average number of page accesses
to locate a key soon reaches the upper bound of 2.

2. The load factor or occupancy ratio a, fluctuates about a
mean value of 0.69 and is independent of the data distri-
bution and the page size.

3. To maintain a relatively small directory size, the encod-
ing functions should be a good randomizing function to
generate components of the pseudo-keys that are uniform
and independent. Unfortunately the scheme under such
conditions looses its order preserving property and conse-
quently its ability for efficient range searching.

Our presentation has been based on a splitting policy that
assumes that each attribute in the data space is equally likely
to be specified in a query. This is not generally true in practice.
Where the probability of an attribute participation in a query
is known, a design objective will be to minimize the number of
directory and page accesses for a partial-match search. This
issue is discussed in {16,25]. Essentially, a derived vector called
a "choice vector” dictates the dimension to be expanded next.
The use of such a "choice vector” is easily accommodated in
MDEH by a slight redefinition of the mapping function G,
and retaining the starting element address of each adjoined
subdirectory block at each expansion step. See [19,21,22] on
the use of such techniques. This requires an extra storage of
size O(lgny) and a time complexity of O(Ig ng) to compute G..

A problem related to the growth of the directory size is the
expected number of prefixed bits used per attribute given N
key insertions. The problem has been independently addressed
by Devroye [8] and Regnier [26]. Assuming that the attribute

values are independent and the keys are grouped b per page,
d—1

it is our conjecture that if §) = E h;, is the sum of global
J=0

depths of the file after N keys insertions, then the expected

value of Sy, is

E(Sh) = (1-1/b) * lg nq;

where ny is the directory size. We address this problem and
other related analytical results in a follow up paper. Issues
such as the concurrent manipulation of such structures are be-
ing studied and an implementation of the scheme for use in
practice is currently under way at Carleton University in the
design of an integrated data organization method for associa-
tive searching.
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