
O~WvIlZlNG STAR QUERIES IN A DISTRIBUTED DATABASE SYSTEM’

Arbee L.P. Chen and Victor O.K. Li

Department of Electrical Engineering
University of Southern California

Los Angeles, California 90089-0272

ABSTRACT

The problem of optimal query processing in

distributed database systems was shown to be NP-

hard. However, for a special type of queries called star

queries, we have developed a polynomial optimal

algorithm. In an earlier paper, we described an

approach to obtain the optimal semi-join program for a

star query by gradually reducing the search space to a

minimal set S without making any assumptions on the

file sizes and the semi-join selectivities. In this paper,

by making certain assumptions on the file sizes and

the semi-join selectivities, the size of S can be

reduced to unity, i.e, given a star query, we can

directly generate the optimal program. Our assumption

on selectivitres IS consrstent in the sense that we

consider the selectivity of a semi-join based on the

current database state, i.e., we take into consideration

the reduction effects of all prior semi-joins. We have

also included an example which compares the

performance of existing heuristic algorithms with our

proposed optimal algorithm.

‘Thos work was supported m part by the Natnonal Science
Foundation under Contract No KS-6204495 and I” part by the

Jomt Services Electronxs Program under Contract No F49620-El-
c-0070.

Permission lo copy without fee all or porr of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage. the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy othern’ise. or to republish. requires a fee
and/or special permission from the Endowment.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

1. INTRODUCTION

A distributed database management system

allows datafiles to be distributed and managed on a

network of computers. The distribution of the data is

transparent to the users who can access the data as if

they were located at one site. In reality, to access data

distributed in different computer sites, the transmission

of data over communication links is needed. Since

communication delay is substantial, an efficient query

processing mechanism has to be designed. In this

paper, we assume the relational data model (see

Codd [ill) in studying the query processing problem.

A query consists of two components. the target

list and the qualification. The target list contains

target attributes that are of interest to the query, i.e.

attributes that will appear in the answer. The

qualification, for simplicity, is assumed to be a

conjunction of selection and equi-join (we shall simply

call it join hereafter) clauses which describe the query.

A join clause “R, joins R, on a” is denoted by R, +Q

R,, where R, and R, are relations, and a is the joining

attribute. Associated with this join are two semi-joins:

R, by R, on a, and R, by R, on a, denoted by R, -% R,,

and R, -% R, respectively. R, -P R2 entails shipping

R,.a, attribute a of R,, to the site where R, resides and

jorning R,.a with R,. From the query qualrfication, we

can construct a ioin graph J = (V,E). The nodeset V

consists of relations referenced in the query, and an

edge (Ri,Ri) belongs to the edgeset E if R, ++ R, is in

the qualification or is an implied join (if joins Ri +p Rj

and Rj *-4 R, are in the qualification, then Ri 4% R, is

an implied join) Under the assumptions that each site

contains one relation, that there is only one copy of

each relation, and that the cost of local processing is

negligible compared to the transmission cost, the

query is usually processed (see Bernstein et. al. 121.

Singapore, August, 1984

429

Black and Luk [4l, Apers, Hevner and Yao ill, Yu et.

al. 1201, Yu and Chang (211) as follows:

1. Initial local processing: all local operations

including selections and projections are
processed.

2. Semi-join processing: the only operations
left after initial local processing are joins
between relations in different sites. A semi-
join program is derived from these
remaining join operations and executed to
reduce the size of joining relations.

3. Final processing: all relations which are
needed to calculate the answer of the
query are transmitted to a final site for final
processing. The final site can be the query
requesting site or the site containing the
largest relation needed for final processing
as suggested by Bernstein et. al. (21.

An optimal semi-ioin program is one which

requires the least total data transmission cost to

process the query. It has been shown by Hevner (151,

Huang I171 and Yu et. al. (201 that even for some

restricted queries, the optimal query processing

problem is still NP-hard. Hevner and Yao [161 also

developed an optimal algorithm for a special class of

queries called simple queries. A simple query is defined

as one where, after initial local processing, each

relation referenced contains only one attribute, which

is the common joining attribute and also the single

target attribute. Another optimal algorithm suggested

by Chiu, Bernstein and Ho (101 is for processing chain

queries, defined as queries having their join graphs

configured as a chain, with the relation containing the

target attributes at one end. Recently, Sugihara et. al.

[19] presented an optimization algorithm which

minimizes the total data transmission cost for simple

queries in a distributed database system managed on a

star network (a star network consists of a single

central computer site and several local computer sites

connected to the central computer site by

communication lines). In this paper, we continue our

earlier research presented in Chen and Li (51, [61 to

develop an optimal algorithm for another special class

of queries, called star queries.

The following is an outline of this paper. In

section 2, we summarize the research results described

in Chen and Li (61. Additional assumptions about file

Proceedings of the Tenth lnternatlonal
Conference on Very Large Data Bases.

sizes and semi-join selectivities are stated in section 3.

SeCtiOn 4 contains the optimal algorithm and its proof

of correctness. An example is also included to compare

existing heuristic algorithms with the optimal. We

conclude our approach in Section 5.

2. SUMMARY OF PREVIOUS RESEARCH RESULTS

In this section, we summarize the results

achieved in our earlier research on deriving optimal

semi-join programs for star queries (see Chen and Li

[Sl).

2.1. Execution Graph

Since it is possible to process and move data in

parallel in the distributed environment, a semi-join

program can either be a serial program which will be

executed serially or a non-serial program which

contains some parallel processing. We represent semi-

join programs by an execution graph described as

follows.

An execution graph is a directed acyclic graph2

whose nodes represent relations (or sites which

contain relations), and whose directed edges represent

semi-joins. An edge is directed from its predecessor

node to its successor &. A node which is not a

predecessor node of any edge is called an end node,

and if it is not a successor node of any edge, then we

call it a start node. A node u is said to be upstream

from a node v, and v is said to be downstream from u,

if starting from u, one can reach v by following the

directed edges. Two nodes are @ sequence if one of

them is upstream from the other. An edge A is said to

be upstream from an edge B, and B is said to be

downstream from A, if starting from the successor

node of A, we can reach the predecessor node of B by

following the directed edges. Two edges are said to

be &LI sequence if one of them is upstream from the

other, and they must be executed serially in the order

dictated by the directed edges. Edges not in sequence

may be executed in parallel. If two or more edges have

the same successor node, say v, then only after all of

these semi-joins have been executed, can semi-joins

having v as a predecessor node be executed. All edges

emanating from v can be executed in parallel.

2 The execution graph must be acyclic since a cycle will

correspond to an infinite loop in the associated semi-ioln program

Singapore, August, 1984

430

Multiple occurrences of a relation or a semi-join

may exist in an execution graph. We denote the

occurrence of a relation v in an execution graph by v(i),

where i is the occurrence number representing the

“version” of v after all semi-joins which have v(i) as

the successor node have been executed. If v(i) is a

start node, then i is designated 0 to specify that v(0) is

the unprocessed version of relation v. For i c j, each

semi-join x -+ v(i) will be executed earlier than each y

-+ v(j). We call v(i) a previous occurrence of v(j) and

v(j) a next occurrence of v(i) if i < j and no occurrence

of v has occurrence number n, where i < n < j. When

there is no ambiguity as to the representation of the

semi-join program, the occurrence numbers can be

omitted.

In the rest of this paper, we assume that all

occurrences of a relation are in sequence in an

execution graph. If this is not true, we can always

transform it to another execution graph where this

constraint is satisfied without incurring additional cost.

There are two cases to be considered in the

transformation procedure. Case 1: there exist two

occurrences of a relation, which are both start nodes

in the execution graph. We can combine these two

start nodes to one to represent an equivalent semi-join

program which has the same total data transmission

cost (see figure l(a)). Case 2: there exist two

occurrences of a relation u, say u(i) and u(j), where u(i)

is the previous occurrence of u(j) and they are not in

sequence in the execution graph. If we combine u(i) to

u(j), then the resultant semi-join program will have no

greater total data transmission cost than that of the

original semi-join program (see figure l(b), note that

u(j) -+ v will cost less than u(i) -+ v).

u(0) -+
=> u(o);+-

u(0) -+ . . bl . . .

(a)

. . . -+ u(i) -+ v . . . “‘\
\r u(i)<

*v . . .
=>

-+ u(j) ---c / b . . .

(b)

Figure 1: Transformation of Execution Graphs

Procredlngr of the Tenth Internatlonal
Conference on Very Large Data Basea.

example 1:

The execution graph representation of the
semi-join program

R2 -+ R,, R, -+ R,, R, -+ R,, R, -+ R,,

R2 -+ R,, R, -+ R,

is as follows:

R2 -+ R, -+ R2 -+ R, -+ R, -+ R, -+ R,

which represents a serial program.

The execution graph representation of the
semi-join program

R2 -+ R3, R, -+ R,, R, -+ R,, R, -+ R,,
R2 -+ R,, R, -+ R,

is as follows:

RI
\

R2(0) -* R, -,” R2(1) -+ R,
\
-x

R, -+ R,

which represents a non-serial program. R, -+ R,

and R, -+ R2 can be executed in parallel. However, R,

-+ R, and R, -+ R, cannot be executed until both of

the former have been completed. Note that if we

execute R, -+ R, earlier, i.e., delete the edge R, -+

R2(l) and add new edge R, -+ R2(0), then we have the

same cost for performing this semi-join. However,

since we reduce R, earlier, the reduction effect can be

achieved and propagated earlier, and the total data

transmission cost may be reduced. This technique is

called early binding in Luk and Luk (18). It is also used

as one of the enhancement techniques of Algorithm

OPT in Bernstein et. al. [21.

Therefore, an execution graph describes the order

and the identities of the semi-joins to be executed.

Moreover, since each relation is assumed to reside at

One Site, it also identifies the origin and destination

sites of each data transmission. For a semi-join

Program p, we denote its execution graph by E(P).

2.2. Deriving Optimal Semi-Join Programs for Star
Queries

A star guery is defined as a query whose join

graph is configured as a star with the relation

Singapore, Augurt, 1994

431

containing the target attributes as the central node. A
general form of star queries expressed in QUEL [14]

and its join graph representation are shown in Figure 2.

Retrieve Rat,, Ret,. Rc.t,

where Rc.x, = R,.x, A Rex2 = R2.x2 A . . . A
Rc.x, = Rn.xn

Figure 2: A Star Query and Its Join Graph

A semi-join S is said to be profitable in a semi-
join program p if, by deleting S from p, the total data

traMmiSSiOn cost for query processing is increased, A
semi-join which is not profitable is said to be
unprofitable. Under the assumptions that transferring M
units of data between any two sites in the network

costs C.M. where C is a constant, and that the query
requesting site does not contain any relation
referenced in the query, we have shown (61 that each
semi-join Ri “i+ R,, i E (1, 2, n}, is always profitable.

We call them necessary semi-joins (NSJ’s), i.e., they
must be included in the optimal program. However,
without information on selectivities, the profitability of
each R, ;+ R, cannot be decided. We therefore call
them non-necessary semi-ioins (non-NSJ’s). Define a
Semi-iOh Strategy as a semi-join program which

includes each semi-join associated with the query
exactly once. Also, define an optimal-embedding

strategy (OES) as a semi-join strategy from which, by
discarding unprofitable non-NSJ’s, we can obtain the
optimal program. We have shown (again, in [61) that for
a star query, there exists an OES of the form:

RO-+Ri,-+Rc-+Ri
2
-+Ro-+ . . -+R,-+R.

‘n
-+R,,

where, ii E (1, 2. n} for j = 1, 2, n. Without
information on selectivities, we cannot decide the
profitability of each non-NSJ. That is, each non-NSJ
may or may not be included in the optimal program.

Proceedings of the Tenth Intematlonal
Conference on Very Large Deta Bases.

Therefore, for a star query with n join clauses, there
are n! l 2” candidate optimal programs.

Consider a semi-join strategy of the form

RO -+ R. -+ R, -+ . . . -+ Ri
‘1 n

-+ Ro;

If some of the non-NSJ’s, say R, -+ Ri. is discarded,
then the resultant program represeAted by the
execution graph is as follows:

R.
‘i \

\
RO -+ R. -+ R. -+ . . . -+ R

‘1 0 -+ R. -+ R -+
'j-l 0

R.
‘j+1

-+ R, -+ . . . -+ R. -+ R,.
‘n

By applying early binding, it becomes

R. -+ R I. 1 0 -+ R. -+ . . . -+ R, -+ R.
‘1 ‘j-l

-+ R, -+

R.
‘j+l

-+ . . . -+ R. -+ R,.
‘n

Therefore, all n!*2” candidate optimal programs will
cost no less than the following two forms of programs:

(a) R, -* Ri -+ R, -+ . . . -+ R, -+ Ri -+ R,.
1 n

R.
.” \

\r (6) . R,-+Ri,+,-+Ro-+ . . . -+R,-+Rj -+R,,
n

* / f
R.

'k

l(k(n.

That is, the number of candidate optimal
programs is reduced to

n! + i=,(((‘1 ‘(n-k)!,

where the first term is the number of possible

programs of form (a) and the second term, that of
form (6).

3. ADDITIONAL ASSUMPTIONS

We now make some assumptions about file sizes
and semi-join selectivities such that we can continue
our approach summarized in section 2 to obtain the
optimal program in polynomial time. The optimal
a1gorith.m and its correctness will be shown in the next
section.

Slmre, August, 1984

432

3.1. Assumptions about Relation Sizes and Attribute

Sizes

To simplify the optimality problem, every joining

attribute, i.e., xi, 1 5 i < n, is assumed to have the

same “width”, say w bytes. Denote the cardinality of a

relation Ri by]Ri], and of an attribute Ri.xi by]Ri.xi].

Since for Ri, 1 5 i 5 n, only joining attribute xi will be

left after initial local processing,]R,.xJ = jRi[. For R,, we

assume that (Ro.x,] =]Ro.x2(= . . . = (Ro.xn] = IReI, i.e., each

joining attribute xi is a candidate key of R,. The size

and the transmission cost from one site to another site

of attribute Ri.xi are therefore w l]Ri.xi] and C-w l]R,.xj]
respectively.

3.2. Semi-Join Selectivities

A semi-join A -x-* B selects the tuples of relation

B, which have the values of B.x matching those of A.x.

Therefore, the selectivity P of A -+ B is defined as P =

(B’(/]B], where]B(and (B’] are the original and the

resultant cardinalities of B respectively. By our

assumptions in 3.1, also, P = (B’.x(/]B.x].

Denote {A.x} as the set of different values in

attribute A.x. "n,,[Al as the projection over A.x on

relation A and a]]b as the concatenation of two tuples a

and b. The following lemma says that if we project

over the joining attribute x on relation B after the

semi-join A -‘+ B is executed, then the resultant set is

just the intersection of {A.x} and {B.x}.

Lemma 1: II, x[A * B] = {A.x}n {B.x}.

Proof: lTax[A -n* B] = lIsK]IIa[A +-+ Bll

(by the definition of semi-joins, see Bernstein
and Chiu [3])

- IIex[lI,[{a]]b: acA A bcB A a.x = b.x}ll

(by the definition of joins, see Codd [IZ])

= lTs.[{b: acA A bcB A a.x = b.x}]

= {b.x: acA A bcB A a.x = b.x)

= {b.x: a.x E {A.x} A b.x E {B.x} A a.x = b.x)

= {r: r E {A.x) A r E {B.x}}

From forms (a) and (0) in section 2, we can see

that each Ri, 1 L i < n, has only one occurrence in the

execution graph of candidate optimal programs. If it is

not a start node, we denote it by Ri(l). Also, we see

that there are three types of semi-joins in the

execution graph of candidate optimal programs: Ri(0)

-+ R,,(a), Ri(l) -+ R&a) and Re(b) -+ R,(l), where a > 0

and b 2 0. Denote Xj as the domain of xi. We assume

that the selectivity of R,(O) -+ R&a) in the execution

graph of a candidate optimal program, say p, is P, =

jR,(O)j / IX,/ =]Rij / 1X,((0 < P, (I). We further assume

that Pi 5 Pj if and only if]Ri] 5]Rj], 1 5 i, j 5 n. The

selectivity Pai of R&b) -+ Ri(l) in E(P) is assumed as

Pai =]Rc(b)] / IX,], 0 < Pci 5 1. For each Ri(l) -+ R&a)

in E(P), we have the following lemma for its selectivity

‘i0’

Lemma 2: For each R,(l) ilj+ Ro(a) in c(p), Pfo = Pi.

Proof: Since R,(l) is not a start node in c(p), we

know that Ro(a-) % R;(l) ?-+ Ro(a) is in E(P),

where Ro(a-) is the previous occurrence of

Ro(a) in c(p). By Lemma 1,

CR;(l).Xil = flR,r,,xi[Ro@-) ‘+ R,(l)1

= {Ro(a-).x,>n{Ri.x,>.

Similarly, {Ro(a).x,} = lIRo(aj,xi[Ri(l) “i+ Ro(a)]

= {Ri(l).x,>n {Rob-).x,1

= CRo(a-).x,ln CR,.x,ln {Ro(a-).x,l

= {Ro(a-).x,}n {Ri.x,) = {R,(l).x,).

By the definition of selectivities,

IRo(a)+I IR,(l).x,l IRi(l)I
pi0 = ---_-_-_- = --_------ = --------

IRob+ lRo(a-).xll IRo(

tR,@-11
lR;l . -- -_-_-_

IR,I l “0, lx,1 IRiI
= -------- = ------------- = ----

IRoWl IRoW l’il
= {A.x}n {B.X) QED = Pi. QED

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Singapore, August, 1994

433

3.3. Updating the Cardinality of Refations and
Attributes

Lemma 3: After R&a) “i+ Ri(l) in c(p) is
executed, (Ri(1)1 = IR,(a)l l P,.

Proof: IRi(l)[= lRil l Poi

(by the definition of selectivities)

= IRiI l (I&,(a)1 ’ IXiI)

* IR,,(a)l l CIRiI / IXiIJ

t IR,Wl l Pi.

Lemma 4: After R&a-) -* Ri(l) -+ R&a) in
e(p) is executed, IRi(l)l = IR,(a)l.

Proof: IRi(1)l = IR,(a-)I l Pi (by Lemma 3)

= JR&a-)I*PiO (by Lemma 2)

= IR,b)l.

Lemma 5: R,(O)
. ’ Y

After .

jfl

R,,(a) in c(p) is

&

executed, IR,,(a)l = lR,,l* pIPi. =

QED

QED

Proof: By the definition of selectivities, the result

follows. QED

3.4. The Probability of Non-NSJ’s

Each non-NSJ R,,(a) -+ Ri(l) in c(p), 1 5 i 5 n, is

followed by an NSJ Ri -+ R, which must be included in

the optimal program. If IRa(a)l < IRd - IRi(l)I, then by

deleting R&a) -+ R,(l) from c(p), the total data

transmission cost for p is increased. By definition, R,

-+ Ri is profitable. By Lemma 3, if IRa(a)l < lRil - IR,(l)(,

then IR,(a)l c IRd - IRe(l Pi. Therefore, if [R,(a)1 l (1 +Pi)

< IRj, then R, -+ Ri is profitable. Obviously, when

IRoW 2 IRiI* R, -+ Ri is unprofitable.

4. THE OPTIMAL ALGORITHM
In this section, we present an algorithm for

generating optimal programs for star queries. A

correctness proof of this algorithm is also included.

Proceadlngm of ttw Tenth InternatIonal
Conforencr on Vary Lam Data Baaas.

4.1. the Algorithm OPSTAR
Since each NSJ Ri -+ R,. 1 (i 5 n, is included

in any candidate optimal program p, R, will be fully

reduced (see Chiu [gl) after p is executed. Since R, is

the only relation which contains target attributes, once

we fully reduce R,. we also solve the query and obtain

the answer. That is, the cost for transmitting the

answer to the query requesting site for each candidate

optimal program is the same. Therefore, we need only

compare the data transmission cost incurred in the

execution of candidate optimal programs to obtain the

optimal program.

We now present the algorithm OPSTAR to

generate the optimal program for star queries. OPT is a

queue used to store the optimal program.

Algorithm OPSTAR;

begin

sort and rename R,, i = 1, 2, n such that

lR,l I lR,l 5 ... 5. I&I;

place in OPT a semi-join strategy R, ---t R,
-+ R 0 -+ R, -+ . . . -+ R, -+ R, -+ Ro;

for i = 1 Q n & -

begin

if lRol* $t,Pk*(l+Pi) < lRil then exit

a& discard R, -+ Ri from OPT
(* R. -+ Ri is unprofitable *)

end.

The complexity of Algorithm OPSTAR is

O(n l logzn).

From the algorithm, it can easily be seen that the

optimal program has either of the following two forms:

(y) R, --. R1 --, Rc -* -* R, -* Rn -* R,

RI

(0) :
‘\

R ‘+R -+R
/’ O k’+’ O

-+ . . . -+R O-+Rn-+Ro

‘/
%

llk’sn.

Singapore, August, 1994

434

example 2:

Given a star query:

retrieve R,.t
where R,,.x, = R,.x, A Ra.xz = Rz.xz A

Rr,.x3 = Rs.xs A Ro.x4 = R4.x4

and: lRc[= 90, jR,l = 40, [Rzl = 50. [RJ = 100.
lR41 = 900. IX,1 = 100, IX,1 = 100.
1X,(= 125, IX,1 = 1000,

we apply OPSTAR as follows:

1. Since IRcj*(l+P,) = 90*(1+0.4) = 126 > IR,/,
R, -+ R, is unprofitable and discarded.

2. Since IR,I*P,*(l+P,) = 90*0.4*(1+0.5) = 54
> lR,I, R, -* R, is unprofitable and
discarded.

3. Since lRol’P, l P,*(l+P,)
90*0.4’0.5*(1+0.8) = 32.4 < (R,I, th:
algorithm stops and the optimal program is:

R,
“u

R, -+ R, -+ R, -+ R, -+ R,.
.M

Rf

4.2. The Correctness of Algorithm OPSTAR

Lemma 6: For R&a-) ---c R,(l) -+ R,,(a) -+

R,+,(l) in E(P) where Pi+,1 L IRiI*
if R&a-) -+ R,(l) is profitable, then
R&a) -+ Ri+,(l) is also profitable.

Proof: Since R&a-) -+ R,(l) is profitable,

Since IRi+,l 1 IRiI > (R&a-)j*(l+P,)

= (R&a-)\ + IR&a-)I* P,

2 IR&a-)l*Pi + IRc(a-)l*P,*P,+,

= IRi(l)l*(l+Pi+,) (by Lemma 3)

= lRo(a)lg(l+Pi+,) (bv Lemma 4)

\R,(a)l l (1 +Pi+,) < IR,+,(. Therefore.

R&a) -+ R,+,(l) is profitable.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Lemma 7: For a semi-join strategy R, -+ R,
-+ R,, -+ R

2
-+ . . . -+ R -+ R. -a

R, -* . . . -+ R0 -+ Rn -d R,, where
lR,l 5 IR,I 5 . . L. IR,I, if R, -+ Ri is
a profitable non-NSJ then R, -+ Rj,
i < i 5 n are also profitable.

Proof: By inductively applying Lemma 6, the

result follows. QED

Theorem 1: Algorithm OPSTAR generates
optimal programs.

Proof: We prove the optimality by considering

four cases:

C(y) (C(a), C(y) 5 C(8), C(a) I C(a) and

C(a) I C(8),

where C(i) denotes the data transmission cost for

executing semi-join programs of form (i). Also, denote

llRill as the cost to transmit the data size W*IRj from

one site to another site, 0 5 i (n.

Case 1, C(y) 5 C(o):

By Lemma 3 and Lemma 4, after R&a-) -+ RI(l)

-+ R,,(a) in E(P) is executed, IR&a)(= IRi(l)l = IRe(a-)I* P,.

Therefore, C(y) = llR& + 211R,llP, + 2I)R,IIP,P, +

. . . + 2IIR,II’ “,:f’a + IIR,II k,Pi

Similarly, C(a) = llRcj[+ 2~~R,~JP,, + 2/jR,JIP, P, +
12

. . + 4lR,ll “‘iiF’; + llf$,ll ‘i P
J=l ')

Since by assukmption, kP, 5 P, L . . . 5 P”, for

each k, 1 5 k 5 n, l&P, 5 II Pi.
;=1 ;

Therefore, C(y) 5 C(a).

Case 2, C(y) 5 C(8):

C(8) = !$IR,.Il + llRoll I k,“,. + 2ll’QlI k$‘ii + ... I

+ 2IIRoII “E:Pj; + IlRoll “n P.
a=1 ‘i

C(y) = llR,ll + 211Rsl(P, + + 2((R,,ll kn P + ,Li ’

+ ‘IIR,II “ilf’i + IIR~II ~,Pi

QED

Singapore, August, 1984

435

= @,ll + ll%,llP, + llf$,b’, + . . . + llf$,il h,f’, SE

+ llR,ll b,Pi + 2IIRoII ‘!,Pi + ..*

+ 2IIRJI “,e:Pi + IlRoll k,f’i

= IIRoll(l+P,) + IIR,IIP,(l+P,) + . . .

+ llR& k$l,Pi(l+Pk) + llR,ll)lpi + “0 i

By Lemma 7, every non-NSJ in form (y) is

profitable, we know that IRc] ‘y,Pi(l+Pr) < IR,1 1 3 r (
I

k. Furthermore, since IR,I (IR,I 5 . . . 5 IR,I, ~,IIR.J 5

k
E,IIRjiII. IIROII(l+f’1) + IIROIIP,(l+f’2) + ... + IlRoll kz,pi(l+pk)

< ;,llR,ll I ;,tIRj,k

By the similar argument as in case 1,

rfI,Pi < k,Pi, for k 1. r c n. -
t

Therefore, C(y) 5 C(S).

Case 3, C(a) 5 C(a):

C(a) = E i=,llR,ll + IlRoll k,Pi + ‘IIRJI ‘i:Pi + ‘*.

+ ‘IIRoII “F:f’i + IlRoll F,Pi i 0
C(a) = llRcl[+ 2(IR,jlPi

1
+ . . . + 2llRcll !I P. + . . .

j-1 ‘j

+ ‘IIRoII “!:Pii + IlRoll p,Pii

= IlRoll + IIRoIIf’i, +IIR,IIPi, + ... + IPoll k,Pii

+ llRojl k,Pii + 211R,,llk;i’P + . . .
1=1 'j

=)lR,ll(1 +Pi,) + . . . + IIR& k~~‘~j(l+Pi 1
k

+ llRc/ !i P + . . .
jsl ‘j

From form (a), we knory, that R, -* R, 1 (r 1. k’

are all unprofitable, i.e., IRcl &Pi(l+P,) 2 IR,I.

Since P, 5 P, 5 .., 5 P,, ir Pi (‘n Pi for k’ <
i=l ,?,I i

r I n. AWL IR,I I lRol r$,p,(l+pr) L lR,j ,~,f’ii(l+PI 1 for = r
ltrsk’.

Therefore, llR,ll 5 llR,,ll ‘1 P. (l+Pi) for 1 5 r 5 k’

and C(a) 5 C(a).
jll ‘j r

Case 4, C(u) 5 C(6):

Proceedinga of the Tenth Intematlonal
Conference on Vary Large Data Bases.

436

C(fJ) = k,lIRiII + IIRJI F,Pi + 2IIRJI “g:Pi + ‘..

+ 2IIRJI “Fl,P, + IlRoll ?I;,Pi

C(B) = ‘t: llRiill + IlRJl h P. + 2IIRJI ‘z,Pj, + **a
i=l I=1 ‘I I

+ 2IIRJI “t:f’j. + IIRJI F,P,, I az
(i) if k - k’, then it is easy to see that

C(u) 5 C(8).

(ii) if k’ < k then

C(O) x ~,IIRiII + IIRJI ‘fi Pi + IIRJI “‘Pi
i-1 i=l

+ IIRoII ~~~Pi + *** + llR,ll),Pi r I

+ IlRoll IfI.,Pi + 2IIRJI “$,Pi + .‘.

* 1C:,IIRiII + llR,ll ’ Pi(l+‘L.+,) + ...
i=l

+ IIRJI ki,pi(l+pk) + IIRJI k,“i + ...

< Ifi,llRjl + ii,!piII + IlRoll !J.,“i + ‘.*

(since R, -+ Ri, k’+l 5 i (k, are profitable)

= i,IIRiII + IIRJI ’ Pi + 1.’
i=l

Therefore, C(u) 1. C(S).

(iii) if k < k’, then

C(B) * k,IIRj,II + IIRJI k,Pii + IIRJI “z,“ii

+ llR,,ll “‘n’ P. + ... + llR,ll
i=l 4

$.
I

+ llRoll j$. + 2llR,Il ‘,i;Pi. + ... I
+ 2lIRJI “~~Pii + IlRoll i,‘jy

z ‘E IIR’II + llR,ll ~,Pj.(l+P,k+l) + ..’
i=l 4

+ IIRJI ‘~:Pji(‘+f’jk~‘+ IlRoll k,Pj, + ..* 8

Since R, ---* R, k+l L r 5 k’, are unprofitable,

IR,I ‘j,P,(l+P,) 1 IR,I. That is. llR,ll I llR,ll ‘$,P,(l+P> 5 I

IlRJl r~,P,i(‘+‘jr)’ k+l I r I k’.

Therefore, C(6) 2 ~,IIRjiII + tJ!yJl + II&-J1 k,‘j. +
. . . 1 c(a. QkD

Blngapon, August, 1984

4.3. A Comparison of Heuristic Algorithms

In example 2, we apply Algorithm OPSTAR to

obtain the optimal program

RI
‘x

/

R, -+ Rs -+ R, -+ R, -+ R,.

R2

Assume that IR,.t(= jRol and IIR,.y,ll = IRi.yJ, where

0 5 i 5 4 and y, = t, x,, x2, xs or x4; The costs for

each semi-join execution and data transmissions to the

query requesting site (indicated by ====>) are shown

as follows:

Rl

\,fO 18 14.4 14.4 12.96 12.96
RO---*R3---~RO---~R4---~Ro===>

5qr

R*’

The total cost is 162.72.

If we apply Algorithm GENERAL(TOTAL) developed

by Apers, Hevner and Yao [ll to the same query, then

we have the following solution:

40 36 36
R, ----+ R, ---- + R, z===>

90 45
R, ----+ R, ====>

90 72
R. e--e--, R, ====>

90 81
R. ----+ R, ==r=>

RI
‘to 90

50//R
Ro ====>

R2

The total cost is 760

The solution for METHOD-D suggested by

Cheung 181 is:

RO

RO

12.96

with a total cost of 435.96.

Finally, Algorithm OPT in SLID-1 [2] gave the

following solution:

90
Ro----+R,,

The total cost is 331.56.

For this example, Algorithm GENERAL(TOTAL)

generates the worst solution. The major reason is that

it transmits all the relations referenced in the query to

the query requesting site and it also reduces each

relation independently. METHOD-D is an improved

algorithm of Algorithm GENERAL(TOTAL). Since it

identifies two sets of relations referenced in the query,

i.e., the elimination set and the destination set, and

transmits only the destination set (in this example, only

R. is in this set) to the query requesting site. For

Algorithm OPT, some redundant semi-joins (e.g., Ro(0)

-+ R,) are present in the semi-join program, which

cause the total cost to be about twice that of the

optimal. Note that if we apply the improvement

algorithms proposed in Chen and Li 171, then all of

these three solutions can be improved to the optimal.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

Singapore, August, 1984

431

5. CONCLUSION

In an earlier paper, we have developed a
procedure for deriving optimal programs for star

queries. In this paper, we have made assumptions

about the file sizes and the semi-join selectivities to

further simplify this procedure. Epstein and
Stonebraker’s (13) analysis of distributed database
processing strategies shows that good selectivity

models are crucial to query processing models. We

derive the selectivity of different types of semi-joins in

a semi-join program individually based on the database

state right before the semi-join under consideration is

executed. The selectivity model is therefore consistent
in the sense that the effect of prior semi-joins is

considered. Since our algorithm can also generate
optimal programs which minimize the total data

transmission cost for solving simple queries in a star
network environment, our approach can be seen as a
generalization of Sugihara et. al.‘s work (191.

ReferBnces

1. P.M.G. Apers, A.R. Hevner and S.0. Yao.
‘Optimization Algorithms for Distributed Queries.”
IEEE Trans. on Software Engineering
SE-g, 1 (Jan. 1983). 57-68.

2. Bernstein, P.A., et. al. “Query Processing in a
System for Distributed Databases(SDD- l).” ACM
Trans. on Database Systems 6,4 (Dee 1981)
602-625.

3. P.A. Bernstein and D.M. Chiu. “Using Semi-Joins to
Solve Relational Queries.” JACM 28, 1 (Jan. 1981)
25-40.

4. P.A. Black and W.S. Luk. A New Hueristic for
Generating Semi-Join Programs for Distributed Query
Processing. Proc. IEEE COMPSAC, December, 1982, pp.
581-588.

5. A.L.P. Chen and V.O.K. Li. Properties of Optimal
Semi-Join Programs for Distributed Query Processing.
Proc. IEEE COMPSAC, November, 1983, pp. 476-483.

6. A.L.P. Chen and V.O.K. Li. Deriving Optimal Semi-
Join Programs for Distributed Query Processing. Proc.
IEEE INFOCOM, April, 1984.

7. A.L.P. Chen and V.O.K. Li. Improving Semi-Join
Programs for Distributed Guery Processing. To appear
in Proc. IEEE COMPSAC, November, 1984.

6. Cheung, T. “A Method for Equijoin Queries in
Distributed Relational Databases.” IEEE Trans. on
Computer C-31, 8 (August 1982). 746-751.

Proceedings et the Tenth tntemtionrl
Conference on Vary Large Data Bases.

9. D.M. Chiu. Optimal Query Interpretation
for Distributed Databases. Ph.D Th.. Harvard
University, December 1979.

10. Chiu, D.M., Bernstein, P.A. and Ho, Y.C. “Optimizing
Chain Queries in A Distributed Database System.’
SIAM J. COMPUT. 13, 1 (February 1984), 116-134.

11. E.F. Codd. “A Relational Model of Data for Large
Shared Data Banks.” Communications of the
ACM 13, (June 1970), 377-387.

12. E.F. Codd. “Relational Completeness of Data Base
Sublanguages.” Data Base Systeins, Courant
Computer Scfence Symposia Series 6 (1972).

65-90.

13. Epstein, R. and Stonebraker, M. Analysis of
Distributed Data Base Processing Strategies. Proc.
Sixth International Conference on Very Large Data
Bases, May, 1980, pp. 92-101.

14. G.D. Held, M.R. Stonebraker and E. Wong. INGRES
- A Relational Data Base System. Proc. NCC, 1975.

15. A. Hevner. Query Optfmizat ion in
Distrfbuted Database Systems. Ph.D. Th., U. of
Minnesota, 1979.

16. A.R. Hevner and S.8. Yao. “Query Processing in
Distributed Databases.” IEEE Tran. on Software
Eng. SE-5, 3 (May 1979). 177-187.

17. K.T. Huang. Query Optimization in
Distributed Databases. Ph.D. Th., M.I.T.,
December 1982.

16. W.S. Luk and Lydia Luk. Optimizing Semi-Join
Programs for Distributed Query Processing. Proc.
Second International Conference on Databases,
August, 1983.

19. Sugihara, K., et. al. Optimization Algorithms for
Processing Simple Queries in Star Networks. Proc. IEEE
COMPSAC, November, 1983, pp. 547-554.

20. CT. Yu, et. al. Promising Approach to Distributed
Query Processing. Proc. 7th Berkeley Workshop on
Distributed Data Management and Computer Networks,
Aug. 1982, pp. 363-390

21. Yu, C.T. and Chang, C.C. On the Design of A
Query Processing Strategy in A Distributed Database
Environment. Proc. ACM SIGMOD Int. Conf. on Man. of
Data, 1983, pp. 30-39.

slngsporo, August, 1984

438

