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ABSTRACT 

The problem of optimal query processing in 

distributed database systems was shown to be NP- 

hard. However, for a special type of queries called star 

queries, we have developed a polynomial optimal 

algorithm. In an earlier paper, we described an 

approach to obtain the optimal semi-join program for a 

star query by gradually reducing the search space to a 

minimal set S without making any assumptions on the 

file sizes and the semi-join selectivities. In this paper, 

by making certain assumptions on the file sizes and 

the semi-join selectivities, the size of S can be 

reduced to unity, i.e, given a star query, we can 

directly generate the optimal program. Our assumption 

on selectivitres IS consrstent in the sense that we 

consider the selectivity of a semi-join based on the 

current database state, i.e., we take into consideration 

the reduction effects of all prior semi-joins. We have 

also included an example which compares the 

performance of existing heuristic algorithms with our 

proposed optimal algorithm. 
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1. INTRODUCTION 

A distributed database management system 

allows datafiles to be distributed and managed on a 

network of computers. The distribution of the data is 

transparent to the users who can access the data as if 

they were located at one site. In reality, to access data 

distributed in different computer sites, the transmission 

of data over communication links is needed. Since 

communication delay is substantial, an efficient query 

processing mechanism has to be designed. In this 

paper, we assume the relational data model (see 

Codd [ill) in studying the query processing problem. 

A query consists of two components. the target 

list and the qualification. The target list contains 

target attributes that are of interest to the query, i.e. 

attributes that will appear in the answer. The 

qualification, for simplicity, is assumed to be a 

conjunction of selection and equi-join (we shall simply 

call it join hereafter) clauses which describe the query. 

A join clause “R, joins R, on a” is denoted by R, +Q 

R,, where R, and R, are relations, and a is the joining 

attribute. Associated with this join are two semi-joins: 

R, by R, on a, and R, by R, on a, denoted by R, -% R,, 

and R, -% R, respectively. R, -P R2 entails shipping 

R,.a, attribute a of R,, to the site where R, resides and 

jorning R,.a with R,. From the query qualrfication, we 

can construct a ioin graph J = (V,E). The nodeset V 

consists of relations referenced in the query, and an 

edge (Ri,Ri) belongs to the edgeset E if R, ++ R, is in 

the qualification or is an implied join (if joins Ri +p Rj 

and Rj *-4 R, are in the qualification, then Ri 4% R, is 

an implied join) Under the assumptions that each site 

contains one relation, that there is only one copy of 

each relation, and that the cost of local processing is 

negligible compared to the transmission cost, the 

query is usually processed (see Bernstein et. al. 121. 
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Black and Luk [4l, Apers, Hevner and Yao ill, Yu et. 

al. 1201, Yu and Chang (211) as follows: 

1. Initial local processing: all local operations 

including selections and projections are 
processed. 

2. Semi-join processing: the only operations 
left after initial local processing are joins 
between relations in different sites. A semi- 
join program is derived from these 
remaining join operations and executed to 
reduce the size of joining relations. 

3. Final processing: all relations which are 
needed to calculate the answer of the 
query are transmitted to a final site for final 
processing. The final site can be the query 
requesting site or the site containing the 
largest relation needed for final processing 
as suggested by Bernstein et. al. (21. 

An optimal semi-ioin program is one which 

requires the least total data transmission cost to 

process the query. It has been shown by Hevner (151, 

Huang I171 and Yu et. al. (201 that even for some 

restricted queries, the optimal query processing 

problem is still NP-hard. Hevner and Yao [161 also 

developed an optimal algorithm for a special class of 

queries called simple queries. A simple query is defined 

as one where, after initial local processing, each 

relation referenced contains only one attribute, which 

is the common joining attribute and also the single 

target attribute. Another optimal algorithm suggested 

by Chiu, Bernstein and Ho (101 is for processing chain 

queries, defined as queries having their join graphs 

configured as a chain, with the relation containing the 

target attributes at one end. Recently, Sugihara et. al. 

[19] presented an optimization algorithm which 

minimizes the total data transmission cost for simple 

queries in a distributed database system managed on a 

star network (a star network consists of a single 

central computer site and several local computer sites 

connected to the central computer site by 

communication lines). In this paper, we continue our 

earlier research presented in Chen and Li (51, [61 to 

develop an optimal algorithm for another special class 

of queries, called star queries. 

The following is an outline of this paper. In 

section 2, we summarize the research results described 

in Chen and Li (61. Additional assumptions about file 
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sizes and semi-join selectivities are stated in section 3. 

SeCtiOn 4 contains the optimal algorithm and its proof 

of correctness. An example is also included to compare 

existing heuristic algorithms with the optimal. We 

conclude our approach in Section 5. 

2. SUMMARY OF PREVIOUS RESEARCH RESULTS 

In this section, we summarize the results 

achieved in our earlier research on deriving optimal 

semi-join programs for star queries (see Chen and Li 

[Sl). 

2.1. Execution Graph 

Since it is possible to process and move data in 

parallel in the distributed environment, a semi-join 

program can either be a serial program which will be 

executed serially or a non-serial program which 

contains some parallel processing. We represent semi- 

join programs by an execution graph described as 

follows. 

An execution graph is a directed acyclic graph2 

whose nodes represent relations (or sites which 

contain relations), and whose directed edges represent 

semi-joins. An edge is directed from its predecessor 

node to its successor &. A node which is not a 

predecessor node of any edge is called an end node, 

and if it is not a successor node of any edge, then we 

call it a start node. A node u is said to be upstream 

from a node v, and v is said to be downstream from u, 

if starting from u, one can reach v by following the 

directed edges. Two nodes are @ sequence if one of 

them is upstream from the other. An edge A is said to 

be upstream from an edge B, and B is said to be 

downstream from A, if starting from the successor 

node of A, we can reach the predecessor node of B by 

following the directed edges. Two edges are said to 

be &LI sequence if one of them is upstream from the 

other, and they must be executed serially in the order 

dictated by the directed edges. Edges not in sequence 

may be executed in parallel. If two or more edges have 

the same successor node, say v, then only after all of 

these semi-joins have been executed, can semi-joins 

having v as a predecessor node be executed. All edges 

emanating from v can be executed in parallel. 

2 The execution graph must be acyclic since a cycle will 

correspond to an infinite loop in the associated semi-ioln program 
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Multiple occurrences of a relation or a semi-join 

may exist in an execution graph. We denote the 

occurrence of a relation v in an execution graph by v(i), 

where i is the occurrence number representing the 

“version” of v after all semi-joins which have v(i) as 

the successor node have been executed. If v(i) is a 

start node, then i is designated 0 to specify that v(0) is 

the unprocessed version of relation v. For i c j, each 

semi-join x -+ v(i) will be executed earlier than each y 

-+ v(j). We call v(i) a previous occurrence of v(j) and 

v(j) a next occurrence of v(i) if i < j and no occurrence 

of v has occurrence number n, where i < n < j. When 

there is no ambiguity as to the representation of the 

semi-join program, the occurrence numbers can be 

omitted. 

In the rest of this paper, we assume that all 

occurrences of a relation are in sequence in an 

execution graph. If this is not true, we can always 

transform it to another execution graph where this 

constraint is satisfied without incurring additional cost. 

There are two cases to be considered in the 

transformation procedure. Case 1: there exist two 

occurrences of a relation, which are both start nodes 

in the execution graph. We can combine these two 

start nodes to one to represent an equivalent semi-join 

program which has the same total data transmission 

cost (see figure l(a)). Case 2: there exist two 

occurrences of a relation u, say u(i) and u(j), where u(i) 

is the previous occurrence of u(j) and they are not in 

sequence in the execution graph. If we combine u(i) to 

u(j), then the resultant semi-join program will have no 

greater total data transmission cost than that of the 

original semi-join program (see figure l(b), note that 

u(j) -+ v will cost less than u(i) -+ v). 

u(0) -+ . . . . . . 
=> u(o);+- 

u(0) -+ . . bl . . . 

(a) 

. . . -+ u(i) -+ v . . . “‘\ 
\r u(i)< 

*v . . . 
=> 

-+ u(j) ---c / . . . . . b . . . 

(b) 

Figure 1: Transformation of Execution Graphs 
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example 1: 

The execution graph representation of the 
semi-join program 

R2 -+ R,, R, -+ R,, R, -+ R,, R, -+ R,, 

R2 -+ R,, R, -+ R, 

is as follows: 

R2 -+ R, -+ R2 -+ R, -+ R, -+ R, -+ R, 

which represents a serial program. 

The execution graph representation of the 
semi-join program 

R2 -+ R3, R, -+ R,, R, -+ R,, R, -+ R,, 
R2 -+ R,, R, -+ R, 

is as follows: 

RI 
\ 

R2(0) -* R, -,” R2(1) -+ R, 
\ 
-x 

R, -+ R, 

which represents a non-serial program. R, -+ R, 

and R, -+ R2 can be executed in parallel. However, R, 

-+ R, and R, -+ R, cannot be executed until both of 

the former have been completed. Note that if we 

execute R, -+ R, earlier, i.e., delete the edge R, -+ 

R2(l) and add new edge R, -+ R2(0), then we have the 

same cost for performing this semi-join. However, 

since we reduce R, earlier, the reduction effect can be 

achieved and propagated earlier, and the total data 

transmission cost may be reduced. This technique is 

called early binding in Luk and Luk (18). It is also used 

as one of the enhancement techniques of Algorithm 

OPT in Bernstein et. al. [21. 

Therefore, an execution graph describes the order 

and the identities of the semi-joins to be executed. 

Moreover, since each relation is assumed to reside at 

One Site, it also identifies the origin and destination 

sites of each data transmission. For a semi-join 

Program p, we denote its execution graph by E(P). 

2.2. Deriving Optimal Semi-Join Programs for Star 
Queries 

A star guery is defined as a query whose join 

graph is configured as a star with the relation 
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containing the target attributes as the central node. A 
general form of star queries expressed in QUEL [14] 

and its join graph representation are shown in Figure 2. 

Retrieve Rat,, Ret,. . . . . Rc.t, 

where Rc.x, = R,.x, A Rex2 = R2.x2 A . . . A 
Rc.x, = Rn.xn 

Figure 2: A Star Query and Its Join Graph 

A semi-join S is said to be profitable in a semi- 
join program p if, by deleting S from p, the total data 

traMmiSSiOn cost for query processing is increased, A 
semi-join which is not profitable is said to be 
unprofitable. Under the assumptions that transferring M 
units of data between any two sites in the network 

costs C.M. where C is a constant, and that the query 
requesting site does not contain any relation 
referenced in the query, we have shown (61 that each 
semi-join Ri “i+ R,, i E (1, 2, . . . . n}, is always profitable. 

We call them necessary semi-joins (NSJ’s), i.e., they 
must be included in the optimal program. However, 
without information on selectivities, the profitability of 
each R, ;+ R, cannot be decided. We therefore call 
them non-necessary semi-ioins (non-NSJ’s). Define a 
Semi-iOh Strategy as a semi-join program which 

includes each semi-join associated with the query 
exactly once. Also, define an optimal-embedding 

strategy (OES) as a semi-join strategy from which, by 
discarding unprofitable non-NSJ’s, we can obtain the 
optimal program. We have shown (again, in [61) that for 
a star query, there exists an OES of the form: 

RO-+Ri,-+Rc-+Ri 
2 
-+Ro-+ . . -+R,-+R. 

‘n 
-+R,, 

where, ii E (1, 2. . . . . n} for j = 1, 2, . . . . n. Without 
information on selectivities, we cannot decide the 
profitability of each non-NSJ. That is, each non-NSJ 
may or may not be included in the optimal program. 

Proceedings of the Tenth Intematlonal 
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Therefore, for a star query with n join clauses, there 
are n! l 2” candidate optimal programs. 

Consider a semi-join strategy of the form 

RO -+ R. -+ R, -+ . . . -+ Ri 
‘1 n 

-+ Ro; 

If some of the non-NSJ’s, say R, -+ Ri. is discarded, 
then the resultant program represeAted by the 
execution graph is as follows: 

R. 
‘i \ 

\ 
RO -+ R. -+ R. -+ . . . -+ R 

‘1 0 -+ R. -+ R -+ 
'j-l 0 

R. 
‘j+1 

-+ R, -+ . . . -+ R. -+ R,. 
‘n 

By applying early binding, it becomes 

R. -+ R I. 1 0 -+ R. -+ . . . -+ R, -+ R. 
‘1 ‘j-l 

-+ R, -+ 

R. 
‘j+l 

-+ . . . -+ R. -+ R,. 
‘n 

Therefore, all n!*2” candidate optimal programs will 
cost no less than the following two forms of programs: 

(a) R, -* Ri -+ R, -+ . . . -+ R, -+ Ri -+ R,. 
1 n 

R. 
.” \ 

\r (6) . R,-+Ri,+,-+Ro-+ . . . -+R,-+Rj -+R,, 
n 

* / f 
R. 

'k 

l(k(n. 

That is, the number of candidate optimal 
programs is reduced to 

n! + i=,( ((‘1 ‘(n-k)!, 

where the first term is the number of possible 

programs of form (a) and the second term, that of 
form (6). 

3. ADDITIONAL ASSUMPTIONS 

We now make some assumptions about file sizes 
and semi-join selectivities such that we can continue 
our approach summarized in section 2 to obtain the 
optimal program in polynomial time. The optimal 
a1gorith.m and its correctness will be shown in the next 
section. 
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3.1. Assumptions about Relation Sizes and Attribute 

Sizes 

To simplify the optimality problem, every joining 

attribute, i.e., xi, 1 5 i < n, is assumed to have the 

same “width”, say w bytes. Denote the cardinality of a 

relation Ri by ]Ri], and of an attribute Ri.xi by ]Ri.xi]. 

Since for Ri, 1 5 i 5 n, only joining attribute xi will be 

left after initial local processing, ]R,.xJ = jRi[. For R,, we 

assume that (Ro.x,] = ]Ro.x2( = . . . = (Ro.xn] = IReI, i.e., each 

joining attribute xi is a candidate key of R,. The size 

and the transmission cost from one site to another site 

of attribute Ri.xi are therefore w l ]Ri.xi] and C-w l ]R,.xj] 
respectively. 

3.2. Semi-Join Selectivities 

A semi-join A -x-* B selects the tuples of relation 

B, which have the values of B.x matching those of A.x. 

Therefore, the selectivity P of A -+ B is defined as P = 

(B’( / ]B], where ]B( and (B’] are the original and the 

resultant cardinalities of B respectively. By our 

assumptions in 3.1, also, P = (B’.x( / ]B.x]. 

Denote {A.x} as the set of different values in 

attribute A.x. "n,,[Al as the projection over A.x on 

relation A and a]]b as the concatenation of two tuples a 

and b. The following lemma says that if we project 

over the joining attribute x on relation B after the 

semi-join A -‘+ B is executed, then the resultant set is 

just the intersection of {A.x} and {B.x}. 

Lemma 1: II, x[A * B] = {A.x}n {B.x}. 

Proof: lTax[A -n* B] = lIsK]IIa[A +-+ Bll 

(by the definition of semi-joins, see Bernstein 
and Chiu [3]) 

- IIex[lI,[{a]]b: acA A bcB A a.x = b.x}ll 

(by the definition of joins, see Codd [IZ]) 

= lTs.[{b: acA A bcB A a.x = b.x}] 

= {b.x: acA A bcB A a.x = b.x) 

= {b.x: a.x E {A.x} A b.x E {B.x} A a.x = b.x) 

= {r: r E {A.x) A r E {B.x}} 

From forms (a) and (0) in section 2, we can see 

that each Ri, 1 L i < n, has only one occurrence in the 

execution graph of candidate optimal programs. If it is 

not a start node, we denote it by Ri(l). Also, we see 

that there are three types of semi-joins in the 

execution graph of candidate optimal programs: Ri(0) 

-+ R,,(a), Ri(l) -+ R&a) and Re(b) -+ R,(l), where a > 0 

and b 2 0. Denote Xj as the domain of xi. We assume 

that the selectivity of R,(O) -+ R&a) in the execution 

graph of a candidate optimal program, say p, is P, = 

jR,(O)j / IX,/ = ]Rij / 1X,( (0 < P, ( I). We further assume 

that Pi 5 Pj if and only if ]Ri] 5 ]Rj], 1 5 i, j 5 n. The 

selectivity Pai of R&b) -+ Ri(l) in E(P) is assumed as 

Pai = ]Rc(b)] / IX,], 0 < Pci 5 1. For each Ri(l) -+ R&a) 

in E(P), we have the following lemma for its selectivity 

‘i0’ 

Lemma 2: For each R,(l) ilj+ Ro(a) in c(p), Pfo = Pi. 

Proof: Since R,(l) is not a start node in c(p), we 

know that Ro(a-) % R;(l) ?-+ Ro(a) is in E(P), 

where Ro(a-) is the previous occurrence of 

Ro(a) in c(p). By Lemma 1, 

CR;(l).Xil = flR,r,,xi[Ro@-) ‘+ R,(l)1 

= {Ro(a-).x,>n{Ri.x,>. 

Similarly, {Ro(a).x,} = lIRo(aj,xi[Ri(l) “i+ Ro(a)] 

= {Ri(l ).x,>n {Rob-).x,1 

= CRo(a-).x,ln CR,.x,ln {Ro(a-).x,l 

= {Ro(a-).x,}n {Ri.x,) = {R,(l).x,). 

By the definition of selectivities, 

IRo(a)+I IR,(l).x,l IRi(l)I 
pi0 = ---_-_-_- = --_------ = -------- 

IRob+ lRo(a-).xll IRo( 

tR,@-11 
lR;l . -- -_-_-_ 

IR,I l “0, lx,1 IRiI 
= -------- = ------------- = ---- 

IRoWl IRoW l’il 
= {A.x}n {B.X) QED = Pi. QED 
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3.3. Updating the Cardinality of Refations and 
Attributes 

Lemma 3: After R&a) “i+ Ri(l) in c(p) is 
executed, (Ri( 1)1 = IR,(a)l l P,. 

Proof: IRi( l)[ = lRil l Poi 

(by the definition of selectivities) 

= IRiI l (I&,(a)1 ’ IXiI) 

* IR,,(a)l l CIRiI / IXiIJ 

t IR,Wl l Pi. 

Lemma 4: After R&a-) -* Ri(l) -+ R&a) in 
e(p) is executed, IRi(l)l = IR,(a)l. 

Proof: IRi( 1)l = IR,(a-)I l Pi (by Lemma 3) 

= JR&a-)I*PiO (by Lemma 2) 

= IR,b)l. 

Lemma 5: R,(O) 
. ’ Y 

After . 

jfl 

R,,(a) in c(p) is 

& 

executed, IR,,(a)l = lR,,l* pIPi. = 

QED 

QED 

Proof: By the definition of selectivities, the result 

follows. QED 

3.4. The Probability of Non-NSJ’s 

Each non-NSJ R,,(a) -+ Ri(l) in c(p), 1 5 i 5 n, is 

followed by an NSJ Ri -+ R, which must be included in 

the optimal program. If IRa(a)l < IRd - IRi(l)I, then by 

deleting R&a) -+ R,(l) from c(p), the total data 

transmission cost for p is increased. By definition, R, 

-+ Ri is profitable. By Lemma 3, if IRa(a)l < lRil - IR,(l)(, 

then IR,(a)l c IRd - IRe( l Pi. Therefore, if [R,(a)1 l (1 +Pi) 

< IRj, then R, -+ Ri is profitable. Obviously, when 

IRoW 2 IRiI* R, -+ Ri is unprofitable. 

4. THE OPTIMAL ALGORITHM 
In this section, we present an algorithm for 

generating optimal programs for star queries. A 

correctness proof of this algorithm is also included. 

Proceadlngm of ttw Tenth InternatIonal 
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4.1. the Algorithm OPSTAR 
Since each NSJ Ri -+ R,. 1 ( i 5 n, is included 

in any candidate optimal program p, R, will be fully 

reduced (see Chiu [gl) after p is executed. Since R, is 

the only relation which contains target attributes, once 

we fully reduce R,. we also solve the query and obtain 

the answer. That is, the cost for transmitting the 

answer to the query requesting site for each candidate 

optimal program is the same. Therefore, we need only 

compare the data transmission cost incurred in the 

execution of candidate optimal programs to obtain the 

optimal program. 

We now present the algorithm OPSTAR to 

generate the optimal program for star queries. OPT is a 

queue used to store the optimal program. 

Algorithm OPSTAR; 

begin 

sort and rename R,, i = 1, 2, . . . . n such that 

lR,l I lR,l 5 ... 5. I&I; 

place in OPT a semi-join strategy R, ---t R, 
-+ R 0 -+ R, -+ . . . -+ R, -+ R, -+ Ro; 

for i = 1 Q n & - 

begin 

if lRol* $t,Pk*(l+Pi) < lRil then exit 

a& discard R, -+ Ri from OPT 
(* R. -+ Ri is unprofitable *) 

end. 

The complexity of Algorithm OPSTAR is 

O(n l logzn). 

From the algorithm, it can easily be seen that the 

optimal program has either of the following two forms: 

(y) R, --. R1 --, Rc -* -* R, -* Rn -* R, 

RI 

(0) : 
‘\ 

R ‘+R -+R 
/’ O k’+’ O 

-+ . . . -+R O-+Rn-+Ro 

‘/ 
% 

llk’sn. 

Singapore, August, 1994 

434 



example 2: 

Given a star query: 

retrieve R,.t 
where R,,.x, = R,.x, A Ra.xz = Rz.xz A 

Rr,.x3 = Rs.xs A Ro.x4 = R4.x4 

and: lRc[ = 90, jR,l = 40, [Rzl = 50. [RJ = 100. 
lR41 = 900. IX,1 = 100, IX,1 = 100. 
1X,( = 125, IX,1 = 1000, 

we apply OPSTAR as follows: 

1. Since IRcj*(l+P,) = 90*(1+0.4) = 126 > IR,/, 
R, -+ R, is unprofitable and discarded. 

2. Since IR,I*P,*(l+P,) = 90*0.4*(1+0.5) = 54 
> lR,I, R, -* R, is unprofitable and 
discarded. 

3. Since lRol’P, l P,*(l+P,) 
90*0.4’0.5*(1+0.8) = 32.4 < (R,I, th: 
algorithm stops and the optimal program is: 

R, 
“u 

R, -+ R, -+ R, -+ R, -+ R,. 
.M 

Rf 

4.2. The Correctness of Algorithm OPSTAR 

Lemma 6: For R&a-) ---c R,(l) -+ R,,(a) -+ 

R,+,(l) in E(P) where Pi+,1 L IRiI* 
if R&a-) -+ R,(l) is profitable, then 
R&a) -+ Ri+,(l) is also profitable. 

Proof: Since R&a-) -+ R,(l) is profitable, 

Since IRi+,l 1 IRiI > (R&a-)j*(l+P,) 

= (R&a-)\ + IR&a-)I* P, 

2 IR&a-)l*Pi + IRc(a-)l*P,*P,+, 

= IRi(l)l*(l+Pi+,) (by Lemma 3) 

= lRo(a)lg(l+Pi+,) (bv Lemma 4) 

\R,(a)l l (1 +Pi+,) < IR,+,(. Therefore. 

R&a) -+ R,+,(l) is profitable. 

Proceedings of the Tenth International 
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Lemma 7: For a semi-join strategy R, -+ R, 
-+ R,, -+ R 

2 
-+ . . . -+ R -+ R. -a 

R, -* . . . -+ R0 -+ Rn -d R,, where 
lR,l 5 IR,I 5 . . L. IR,I, if R, -+ Ri is 
a profitable non-NSJ then R, -+ Rj, 
i < i 5 n are also profitable. 

Proof: By inductively applying Lemma 6, the 

result follows. QED 

Theorem 1: Algorithm OPSTAR generates 
optimal programs. 

Proof: We prove the optimality by considering 

four cases: 

C(y) ( C(a), C(y) 5 C(8), C(a) I C(a) and 

C(a) I C(8), 

where C(i) denotes the data transmission cost for 

executing semi-join programs of form (i). Also, denote 

llRill as the cost to transmit the data size W*IRj from 

one site to another site, 0 5 i ( n. 

Case 1, C(y) 5 C(o): 

By Lemma 3 and Lemma 4, after R&a-) -+ RI(l) 

-+ R,,(a) in E(P) is executed, IR&a)( = IRi(l)l = IRe(a-)I* P,. 

Therefore, C(y) = llR& + 211R,llP, + 2I)R,IIP,P, + 

. . . + 2IIR,II’ “,:f’a + IIR,II k,Pi 

Similarly, C(a) = llRcj[ + 2~~R,~JP,, + 2/jR,JIP, P, + 
12 

. . + 4lR,ll “‘iiF’; + llf$,ll ‘i P 
J=l ') 

Since by assukmption, kP, 5 P, L . . . 5 P”, for 

each k, 1 5 k 5 n, l&P, 5 II Pi. 
;=1 ; 

Therefore, C(y) 5 C(a). 

Case 2, C(y) 5 C(8): 

C(8) = !$IR,.Il + llRoll I k,“,. + 2ll’QlI k$‘ii + ... I 

+ 2IIRoII “E:Pj; + IlRoll “n P. 
a=1 ‘i 

C(y) = llR,ll + 211Rsl(P, + + 2((R,,ll kn P + ,Li ’ 

+ ‘IIR,II “ilf’i + IIR~II ~,Pi 

QED 
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= @,ll + ll%,llP, + llf$,b’, + . . . + llf$,il h,f’, SE 

+ llR,ll b,Pi + 2IIRoII ‘!,Pi + ..* 

+ 2IIRJI “,e:Pi + IlRoll k,f’i 

= IIRoll(l+P,) + IIR,IIP,(l+P,) + . . . 

+ llR& k$l,Pi(l+Pk) + llR,ll )lpi + “0 i 

By Lemma 7, every non-NSJ in form (y) is 

profitable, we know that IRc] ‘y,Pi(l+Pr) < IR,1 1 3 r ( 
I 

k. Furthermore, since IR,I ( IR,I 5 . . . 5 IR,I, ~,IIR.J 5 

k 
E,IIRjiII. IIROII(l+f’1) + IIROIIP,(l+f’2) + ... + IlRoll kz,pi(l+pk) 

< ;,llR,ll I ;,tIRj,k 

By the similar argument as in case 1, 

rfI,Pi < k,Pi, for k 1. r c n. - 
t 

Therefore, C(y) 5 C(S). 

Case 3, C(a) 5 C(a): 

C(a) = E i=,llR,ll + IlRoll k,Pi + ‘IIRJI ‘i:Pi + ‘*. 

+ ‘IIRoII “F:f’i + IlRoll F,Pi i 0 
C(a) = llRcl[ + 2(IR,jlPi 

1 
+ . . . + 2llRcll !I P. + . . . 

j-1 ‘j 

+ ‘IIRoII “!:Pii + IlRoll p,Pii 

= IlRoll + IIRoIIf’i, +IIR,IIPi, + ... + IPoll k,Pii 

+ llRojl k,Pii + 211R,,llk;i’P + . . . 
1=1 'j 

= )lR,ll( 1 +Pi,) + . . . + IIR& k~~‘~j(l+Pi 1 
k 

+ llRc/ !i P + . . . 
jsl ‘j 

From form (a), we knory, that R, -* R, 1 ( r 1. k’ 

are all unprofitable, i.e., IRcl &Pi(l+P,) 2 IR,I. 

Since P, 5 P, 5 .., 5 P,, ir Pi ( ‘n Pi for k’ < 
i=l ,?,I i 

r I n. AWL IR,I I lRol r$,p,(l+pr) L lR,j ,~,f’ii(l+PI 1 for = r 
ltrsk’. 

Therefore, llR,ll 5 llR,,ll ‘1 P. ( l+Pi ) for 1 5 r 5 k’ 

and C(a) 5 C(a). 
jll ‘j r 

Case 4, C(u) 5 C( 6): 
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C(fJ) = k,lIRiII + IIRJI F,Pi + 2IIRJI “g:Pi + ‘.. 

+ 2IIRJI “Fl,P, + IlRoll ?I;,Pi 

C(B) = ‘t: llRiill + IlRJl h P. + 2IIRJI ‘z,Pj, + **a 
i=l I=1 ‘I I 

+ 2IIRJI “t:f’j. + IIRJI F,P,, I az 
(i) if k - k’, then it is easy to see that 

C(u) 5 C(8). 

(ii) if k’ < k then 

C(O) x ~,IIRiII + IIRJI ‘fi Pi + IIRJI “‘Pi 
i-1 i=l 

+ IIRoII ~~~Pi + *** + llR,ll ),Pi r I 

+ IlRoll IfI.,Pi + 2IIRJI “$,Pi + .‘. 

* 1C:,IIRiII + llR,ll ’ Pi(l+‘L.+,) + ... 
i=l 

+ IIRJI ki,pi(l+pk) + IIRJI k,“i + ... 

< Ifi,llRjl + ii,!piII + IlRoll !J.,“i + ‘.* 

(since R, -+ Ri, k’+l 5 i ( k, are profitable) 

= i,IIRiII + IIRJI ’ Pi + 1.’ 
i=l 

Therefore, C(u) 1. C(S). 

(iii) if k < k’, then 

C(B) * k,IIRj,II + IIRJI k,Pii + IIRJI “z,“ii 

+ llR,,ll “‘n’ P. + ... + llR,ll 
i=l 4 

$. 
I 

+ llRoll j$. + 2llR,Il ‘,i;Pi. + ... I 
+ 2lIRJI “~~Pii + IlRoll i,‘jy 

z ‘E IIR’II + llR,ll ~,Pj.(l+P,k+l) + ..’ 
i=l 4 

+ IIRJI ‘~:Pji(‘+f’jk~‘+ IlRoll k,Pj, + ..* 8 

Since R, ---* R, k+l L r 5 k’, are unprofitable, 

IR,I ‘j,P,(l+P,) 1 IR,I. That is. llR,ll I llR,ll ‘$,P,(l+P> 5 I 

IlRJl r~,P,i(‘+‘jr)’ k+l I r I k’. 

Therefore, C(6) 2 ~,IIRjiII + tJ!yJl + II&-J1 k,‘j. + 
. . . 1 c(a. QkD 
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4.3. A Comparison of Heuristic Algorithms 

In example 2, we apply Algorithm OPSTAR to 

obtain the optimal program 

RI 
‘x 

/ 

R, -+ Rs -+ R, -+ R, -+ R,. 

R2 

Assume that IR,.t( = jRol and IIR,.y,ll = IRi.yJ, where 

0 5 i 5 4 and y, = t, x,, x2, xs or x4; The costs for 

each semi-join execution and data transmissions to the 

query requesting site (indicated by ====>) are shown 

as follows: 

Rl 

\,fO 18 14.4 14.4 12.96 12.96 
RO---*R3---~RO---~R4---~Ro===> 

5qr 

R*’ 

The total cost is 162.72. 

If we apply Algorithm GENERAL(TOTAL) developed 

by Apers, Hevner and Yao [ll to the same query, then 

we have the following solution: 

40 36 36 
R, ----+ R, ---- + R, z===> 

90 45 
R, ----+ R, ====> 

90 72 
R. e--e--, R, ====> 

90 81 
R. ----+ R, ==r=> 

RI 
‘to 90 

50//R 
Ro ====> 

R2 

The total cost is 760 

The solution for METHOD-D suggested by 

Cheung 181 is: 

RO 

RO 

12.96 

with a total cost of 435.96. 

Finally, Algorithm OPT in SLID-1 [2] gave the 

following solution: 

90 
Ro----+R,, 

The total cost is 331.56. 

For this example, Algorithm GENERAL(TOTAL) 

generates the worst solution. The major reason is that 

it transmits all the relations referenced in the query to 

the query requesting site and it also reduces each 

relation independently. METHOD-D is an improved 

algorithm of Algorithm GENERAL(TOTAL). Since it 

identifies two sets of relations referenced in the query, 

i.e., the elimination set and the destination set, and 

transmits only the destination set (in this example, only 

R. is in this set) to the query requesting site. For 

Algorithm OPT, some redundant semi-joins (e.g., Ro(0) 

-+ R,) are present in the semi-join program, which 

cause the total cost to be about twice that of the 

optimal. Note that if we apply the improvement 

algorithms proposed in Chen and Li 171, then all of 

these three solutions can be improved to the optimal. 
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5. CONCLUSION 

In an earlier paper, we have developed a 
procedure for deriving optimal programs for star 

queries. In this paper, we have made assumptions 

about the file sizes and the semi-join selectivities to 

further simplify this procedure. Epstein and 
Stonebraker’s (13) analysis of distributed database 
processing strategies shows that good selectivity 

models are crucial to query processing models. We 

derive the selectivity of different types of semi-joins in 

a semi-join program individually based on the database 

state right before the semi-join under consideration is 

executed. The selectivity model is therefore consistent 
in the sense that the effect of prior semi-joins is 

considered. Since our algorithm can also generate 
optimal programs which minimize the total data 

transmission cost for solving simple queries in a star 
network environment, our approach can be seen as a 
generalization of Sugihara et. al.‘s work (191. 
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