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Abstract 

Bernstein and Goodman showed that natural 
inequality ( NI) queries can be processed 
efficiently by semi- joins, if there are no 
multiple inequality join edges, nor cycles with 
one or zero doublet. In this paper procedures to 
hand1 e these cases efficiently are given. 
Multiple inequality join edges can be processed 
by multi-attribute inequality semi- joins. Two 
procedures based on generalized semi-joins for 
cyclic NI queries (with one or zero doublet) are 
developed. 

Semi-join is a useful operation to reduce 
the processing cost in distributed databases and 
database machines [BERNCBlOl] [BERNG81111. Its 
processing power, however, is limited because not 
all queries can be solved using semi-joins only. 
When queries consisting of natural joins of 
relations (called NJ (Natural Join) queries) are 
considered, queries in the class called tree 
queries can be solved using semi-joins only but 
the rest of queries (called cyclic queries) 
cannot [BERNG81111. 

We have introduced generalized semi-joins 
and developed procedures for cyclic queries using 
generalized semi-joins [KAMBY8206]. We have also 
developed several methods to transform cyclic 
queries into tree ones utilizing data 
dependencies IKAMBY83051. Using these processing 
methods, cyclic queries also can be solved 
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efficiently. 

These results cannot be applied directly to 
natural inequality (RI) queries; queries 
containing inequality joins. In this paper 
procedures for NI queries are presented based on 
the extension of generalized semi-joins used for 
NJ queries. Bernstein and Goodman showed that a 
subclass of cyclic NI queries can be solved by 
semi-joins only as well as tree NI queries 
[BERNG7912] [BERNG81]. A special combination of 
inequality specifications is said to form a 
doublet. Even if there are cycles, the query is 
proved to be solved by semi-joins only, when two 
or more doublets are contained in each cycle. 

An NI query which cannot be solved by semi- 
joins only satisfies one of the following three 
conditions [BERNG79121 [BERNGBl]. 
(1) More than one Inequality, which cannot be 

reduced to one inequality, is defined on a 
pair of relations (existence of multiple- 
inequality edges). 

(2) A cycle containing exactly one doublet 
exists (l-doublet query). 

(3) A cycle containing no doublets exists 
(O-doublet query). 

Queries of type (1) are shown to be handled by 
multi-attribute inequality semi- joins to be 
introduced in this paper. By extending the 
concept of generalized semi-joins for NJ queries, 
any cyclic NI query is shown to be solved, The 
method is applied to O-doublet queries and l- 
doublet l queries. 

Generalized semi- joins and processing 
algorithms utilizing them introduced in this 
paper include those in [KAMBY82061 as special 
cases. 

In Section 2, basic definitions and 
badkground are given. In Section 3, mu1 tl- 
attribute inequality semi-joins are defined. A 
query with multiple inequality edges Is processed 
by this kind of semi-join. In Section 4, 
procedures for cyclic NI queries are presented. 
These procedures utilize generalized semi-joins 
and multi-attribute inequality semi- joins. 
Section 5 is the conclusion. 
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2, Basic Concepts gnd Background 

A relation scheme and a relation consisting 
of attributes A,,A2,.-,Am are denoted by 

B(A,,A2w.,Am) and R(A, +.. . ,A,), 
respectively, If the specification of the set of 
attributes is not necessary, the notations B and 
R are used. An attribute A in a relation R is 
denoted by R.A. A collection of relation schemes 
is called a database scheme. A collection of 
relations corresponding to the database scheme is 
called a database and iS denoted by 
D(R, ,R2,...,Rn). 

Let A and B be attributes of R, and X be an 
attribute set such that XC,&. Let t be a tuple 
of a relation R. The following notations of the 
relational algebra will be used. 

The projection of t on X: t[X] 
The projection of R on X: R[X] = {t[X]ithR} 
b-restriction: rAeBR = {t:t[A]6't[B], teR) 

(Here,Bis one of the comparison operators 
=, f, <, >, I and 2) 

A m Q, which consists of a qualification 
q and a target attribute set TA, maps a database 
D(R,,R~,..., Rn) into the following relation. 

(Uq( R, x R2 x ,..., x R,))CTAl 

We callOh(R, x R2 x ,..., x R,)[%] a 

al so1utiq.n of Ri (with repect to q). In 

this paper, we will develop procedures for joins 
which will obtain partial solutions for all 
relations involved in the query. Since target 
attribute sets are not required to be considered 
in our problem, we will use q to represent a 
query. If the complete result of the join or its 
projection on TA is required, our procedures to 
obtain the partial solutions can be used as a 
preprocessing step. Throughout this paper, we 
will assume for simplicity that all partial 
solutions are non-empty. 

Let A and B be attributes of I$ and B ii 
(iZj>, respectively. A qualification which is a 
conjunction of clauses of the form Ri.ABRj.B 

@eI=,<,>,1,2)) is called an Jneaualitv-join 
UicatioB Note that we do not consider "fw 
as a compaiison operator in the following 
discussion. 

An inequality-join qualification can be 
expressed by a join KraDh GJ(VJ,EJ) where 

VJ = IRi.AI AtEi, i=1,2,...,n) 

EJ 5 VJ x VJ 
GJ is a directed graph such that an edge <Ri.A, 

Rj.B> represents a clause Ri.A 2 Rj.B (Ri.A > 

Rj.B) in q. A clause Ri.A = Rj.B is represented 

by a pair of edges <Ri.A, Rj.B> and <Rj.B, Ri.A>. 

Proceedings of the Tenth International 
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Therefore, two nodes Rk.C and R1.D are in the 

same strongly connected component in GJ iff the 
clause Rk.C = R1.D can be implied by q. If two 

nodes from the same relation, say Ri.A and Ri.B, 

are in the same strongly connected component in 

GJ, we can merge them by performing the 

restriction operation rAsBRi and replacing all 

occurrences of one attribute name (say Ri.B,) in 

q by another attribute name (Ri.A). Repeating 

these preprocessing, we can obtain a 
qualification such that there exists at most one 
node from a relation in each strongly connected 
component in the join graph. We will consider 
only such qualifications hereafter. 

An inequality-join qualification satisfying 
the following condition is called natural: 

"There exists at most one node from a relation 
in each weakly connected component in GJ.w 

The word "natural" is used because by renaming 
attributes properly, we can ensure that all 
clauses in q be represented in the form 
Ri.ABRj.A. 

Queries which have inequality-join qualifications 
(natural inequality-join qualifications, resp.) 
are called ineaualitv-join aueries (& (natural 
inequality) aueries, resp.). NI queries which 
consist of only clauses having n=n as comparison 
operators are called m (natural-join) auerieq. 
We will consider only NI queries in this paper, 
since most of inequality-join queries can be 
transformed into a natural one by proper renaming 
of attributes. 

Given an NI query q, 

be the set of clauses defined between Ri and R 
j 

in q, C 
ij 

is defined as follows. 

C 
ij = '13 ' AOfjA . . . ACij 

A aual FTaDh Gq=(V, E, L) corresponding to 

an NI query q is a labeled undirected graph. V is 

a set of nodes, where v i in V corresponds to 

relation R i referred to in q. E is the set of 

edges and L is the set of labels for E. Two nodes 

V I and 
9 

corresponding to Ri and R 
J 

are 

connected by an edge iff there is a clause 

Ri.ABRj.B in q. If cij 
12 k is CijACijA...ACij' 

labels lij, ij,..., ij ' l2 lk are attached to the edge 

<Ri, Rj>. Each label lh ij corresponds to ch ij 

(h=1,2,...,k). Let cij be Ri.AB Rj.B. c:i is used 
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-1 to represent the clause Rj.B 6J-‘R,. A, where e 

represents the inverse of 6 (“<“, “in and “zn are 
the inverse of “>” “1” and Qn, 
We use the follow& notation. 

respectively. 1, 

at(c:j’Ri) = at(cii,Ri) = A 

at(cij, j h RI = at(c&,Rj) = B 

h 
OP(C,~) = e 

OPQ n e-1 

h The label lij Is defined as follows. 

lh 
ij 

= ((at(cijr i , h RI at(c;j,Rj)), o~(c;~)) 

= ((A,B), 8) 
h 

Aho (lij) -1 h 
, the inverse of lij is defined 

as follows 

(1:,)-l = l!, 
SJ J’ 

= ((at(cij,Rj), at(cijt i h R 11, (o~(c:~))-') 

= ((B,A), 6') , 

LiJ 
is used to denote the label set (1’ l2 U’ &I 

,...,lk ) corresponding to the edge <Ri, Rj>. 
u 

If a qua1 graph is not connected, it is 
sufficient to process each connected component 
separately. Thus we will assume that a qua1 graph 
is connected. 

An edge e=<Ri, Rj> of a qua1 graph Gq is 

oalled a wle edRq iff ILij 1>1, otherwise it 

Is oalled a g$g@e edaq. Let eij =<Ri,RJ> and 

ejk=<Rj,Rk> be simple edges of Gq. A pair of 

edges eij and ejk is oalled a &&&& iff 

(1) at(cij,Rj) = at(cjk,Rj), and 
(ii) op(cij) and op(cjk) are inequalities of 

opposite direction; e.g. one Is n<n or win 
and the other is “>lc or Q* (see Fig.2.1.). 

Tuo queries are said to be m iff 
both will produce the same result for any 
database state. Two qua1 grapha are m 
iff the corresponding queries are equivalent. 

An NJ query is called a fsee cue= if it is 
equivalent to a query whose qua1 graph is 
oirouit-free; otherwise it is oalled qyQ& 
CB~RNGB~ i i 3. There are tree queriea whose qua1 
graphs have cycles [BERNGBlll]. All partial 
solutions for a tree query can be obtained by 
semi- joins only. 

Flg.2.1 Doublets. 

query for which the qua1 
example, a query having 
Flg.2.2(a) is a tree NI 
equivalently transformed 
Fig.2.2tb). A cycle in a 
n-doublet CYC& If it _ __ 

graph has cycles. For 
the qua1 graph ahown in 
query because it can be 
into the one shown in 
qua1 graph is called an 

contains exactly n 
doublets. If a qua1 graph contains m cycles each 
of which is an ij-doublet cycle (j=l,2,...,10), It 

is oalled a k-doublet aual gcBpb for k = mln{i,; 

i2 ,...,im). As shown later, k-doublet cycles In a 

qua1 graph for small k are difficult to process 
in general. Therefore, “k-doublet qua1 graph” 
meana that the moat intractable cycle in the qua1 
graph ia a k-doublet one. If a cyclic NI query Is 
equivalent to s queries each of which has a kh- 

doublet qua1 graph (h=1,2,...,a), it is called an 
n-doublet QMU The for n = max{k, ,k2,. . . ,kal. 

maximum value is taken for n because DBMSs, In 
general, optimize a given query and therefore the 
intractability of a cyclic query can be measured 
by the moat tractable one in the set of 
equivalent queries. n-doublet queries are called 

et aueries or W l-do&let aue&s.g 
when Q2 or al, respectively. A cyclic II query 
whose qua1 graph consists of exactly one cycle is 
called amcvclia If It has n 
doublets, it is called a we n-doublet a-. 

A tree NI query not satisfying the following 
oondition (1) can be processed by semi- joins. 
Besides such tree queries, all partial solutions 
of a cyclic query not satisfying any one of the 

Rl T9 

'9 o-33 ((B,C),U 
"3 

R2 R3 

(a) (b) 
II queries are also classified into tree and 

cyclic queries. Note that there exists a tree NI 

Proceedlngr ot the Tenth International 
Conference on Very Large Data Seres. 

418 

Fig.2.2 Equivalent qua1 graphs. 
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following three conditions can be obtained by 
semi-joins only [BERNG7912] CBERNGBl]. 

(1) There exists a multiple edge which cannot be 
reduced to a simple edge. 

(2) A l-doublet query 
(3) A O-doublet query 

Procedures for the case ( 1) are given in 
Section 3, and Section 4 is dedicated to the 
cases (2) and (3). 

If two tuples t,(e R,) and t,(eR,) satisfy 

(Ch cij hijf rem), tiey fe denote: byJti<Cij>tj 

(ti<Cij>tj, resp.). Let P = <RI=RIO,RI,,...,Rlk-,, 

R =R.> be a path in a qua1 graph. Also let X be 
ik J 

an attribute set such as X LB 
j’ 

A tuple tfRi is 

said to join with a tuple tj[X] (tjQRj) along p 

iff there exist tuples tifRih (h=1,2,...,k-1) 

such that t i h-,<Ch,, hXih (h=l,2 ,..., k). As a 

special case, we will say that ti(eRi) joins with 

ti[X] along the path <Ri> for X such that X 5% 

and X # 8. We will also assume that ti does not 

join with any t;[X] such that ti # ti along the 

path <Ri>. 

Let C be a conjunction of clauses defined 
between the relations Ri and R 

3 
. The &&.n of Ri 

and R 
cl 

on C is denoted by R 04 R and defined as 
ic j 

follows. 

R MQR 
ic .I 

= It,tjItfRi, tj”Rj, t,totjl 

Let c (for example, Ri.AB Rj.B) be a clause 

defined between the relations Ri and R . A 
3 

(&&zl.e-attribute) sq~&&&! of Ri by R 
j 

on c is 

denoted by Ri $ Rj (or Ri o( Rj) and defined as 
A8B 

Ri 9 R.i = (Rig R&l 

A sequence -of semi- joins is called a semi-.ioin 
Dropsam. 

If no further application of semi-join 
changes the contents of a database, that database 
is called &&=&in reduced . 

In [BERNG79121, a (single-attribute) semi- 
join program for processing a tree query or a 
multi-doublet query with no multiple edge is 
shown. The program is summarized in Procedure 
2.1. Before giving the procedure, the Acyclicfty 
Property must be defined. 

[Acyclicity Property] 

Let Gq be a qua1 graph. Gq is said to satisfy the 

Acyclicity Property iff there exists a proper 
assignment of directions on edges in G so that 

P 
the resulting digraph, designated by GDOWN, 

Proceedings of the Tenth International 
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satisfies the following two conditions, 

(i) GDOWN is acyclic. 

(ii) A pair of edges having the same destination 

in GDOWN is a doublet. 

procedur 7.1: Processing tree queries and multi- 
doublet lueries with no multiple edge CBERNG79121 
[ BERNG811 

Let G 
9 

be a tree qua1 graph (multi-doublet 

qua1 graph, resp.) which is equivalent to a given 
tree (multi-doublet, resp.) query. For G 

Q’ 
there 

exists a directed acyclic graph GDCWN since G 

satisfies the Acyclicity Property (GDoWN 1: 

obtained by applying a modified depth first 
search algorithm to Gq). The directed edge <Ri, 

Rj> Of GDOWN with label ((A,B),8) is interpreted 

as a semi-join operation 

RJ 

GDOWN as a whole is interpreted as a semi-join 

program consisting of semi-joins represented by 
its edges, ordered by any topological sort. This 
semi-join program is called DOWN. GUP is defined 

analogously with all edges of GDOWN reversed, and 

represents a semi-join program UP. By performing 
UP*DOWN, the semi-join program UP followed by 
DOWN, all the partial solutions w.r.t. q me 
obtained. 

[Example 2.11 Consider a multi-doublet query 
whose qua1 graph is shown in Fig.2.3(a). 
Selecting a directed acyclic graph GDOWN as shown 

in Fig.2.3(b), a semi-join program UP is obtained 
as 

R2K R3, 
QD 

R, D( 
A>B 

R2, R4K R3, 
E>D 

R,K R4 
A>F 

Also a semi-join program DOWN is as follows. 

R2K R,, 
B<A 

R3P( R2, 
XC 

R40( R,, 
F<A 

R3x R4 
D<E 

(a) a qual. graph ( b, GDOWN 

Fig.2.3 An example of multi-doublet query. 
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bblT I*lj( Weak l-doublet _I1 ;s:i:i:::: ,I 
I I Single-attribute I 

1 edges only / 0 
/ 

0 
/ 

A I I inequality semi-join I 
I I- ,I I I 
I Multiple 

in / / 
I I Multi-attribute I 

1 edges 
I permitted I 

A 

1 

A I I inequality semi-join I 

f 4 
-I 

Ii (Section 3) 
1 

.I II 
I Query I All partial solutions ( All partial solutions II 1 
1 processing I can be obtained by I zarl be obtained by II 
I prcedure I semi-joins. I generalized II f 
I I I semi-joins (Section 4). I I I 

0: The results in CBERNGTgl21 [BERNG~~] 
A: The results by this paper 

Fig.2.4 Problems for NI query processing. 

The following proposition holds directly 
from the definition of partial solution. 

[Proposition 2.11 Let q be a simple cyclic query 
consisting of n relations R,,R2,...,Rn (Let us 

assume that the qua1 graph Gq consists of a cycle 

R,-R2-...-Rn,,-R,-R, .). A tuple t,(C Ri) is 

contained in the partial solution of Ri w.r.t. q 

lff there exists a relation Rj(i#j) and a tuple 

“gRj; suc;o;;t 
i with 

5 
along the path 

<RI,Rle,,...,Rje,,Rj> in Gq, and 

(ii) ti joins with 
5 

along the path 

<RI,RIO,,“*,Rje,‘Rj> in Gq. 
Here 8 and 8 represent addition and subtraction 

of modulo n, respectively. 

In the case of Example 2.1, applying the 
semi-join program UPmDOWN, a semi-join reduced 
database is obtained. In that database, any tuple 
in Ri (iz1,2,4) joins with the tuple t3 in R3 

such that t3[D] = min(R3[D]) along both of the 

two paths between Ri and R 
3 

. Also, any tuple in 

Rj (j-2,3,4) joins with the tuple t, in Rl such 

that t,[A] = max(R,[A]) along both of the two 

paths between Rj and R,. Thus, from Proposition 

2.1 partial solutions of all relations are 
obtained. 

The reason why all partial solutions of a 
multi-doublet query with no multiple edge can be 
obtained by semi- joins only is explained 
intuitively because the above discussion holds 
for every cycle in a multi-doublet qua1 graph. 

Procoodingr of thr Tenth Intomational 

Conferonce on Vey Large DMa Baser. 

Fig.2.4 summarizes the results by Bernstein 
and Goodman IBERNG79121 [BERNG81] (denoted by o) 
and the results by this paper (denoted byA). 
Bernstein and Goodman handled queries which can 
be processed by single-attribute inequality semi- 
joins. We generalized the result to utilize 
multi-attribute semi- joins and the case (1) above 
is solved. For weak l-doublet queries an 
extension is made to the definition of 
generalized semi- joins in [KAMBY8206]. 

In this section, we will introduce multi- 
attribute semi- joins, which are a natural 
extension of single-attribute ones, for 
processing multiple edges in a qua1 graph. The 
notion of inequality projection is also 
introduced to clarify the idea of multi-attribute 
semi- joins. 

First we will give an example to illustrate 
the situation that a multiple edge in a qua1 
graph cannot be processed by single-attribute 
semi- joins only. Let us consider a multiple-edge 
shown in Fig.j.l(a). The database shown in 
Flg.j.l(b) can be easily verified to be (single- 
attribute) semi-join reduced; therefore further 
applications of any single-attribute semi-join do 
not ohange the database. The relation R,, 

however, is not the partial solution since the 
tuple (2,2) does not join with any tuple in R2. 
Such a situation arises because single-attribute 
semi-joins oan check whether a tuple In one 
relation joins with tuples in other relations 
only with respect to one join attribute each 
time. Therefore, the multiple edge shown in 
Flg.3.l(a) can be considered to be equivalent to 
the O-doublet cycle shown In Fig.3.2 if only 
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(a) ((A,C),<), ((B,D),2) 

Fig.3.1 A multiple edge which cannot be processed 
by single-attribute semi-joins only. 

((A,C),<) 

c-2 
((B,D) ,2) 

Fig.3.2 A O-doublet cycle which is equivalent 
to the multiple edge in Fig.3.l(a). 

single-attribute semi-joins are considered. To 
check the joinability of tuples on more than one 
join attributes simultaneously, multi-attribute 
semi-joins defined below are required. 

Let C be a conjunction of join clauses 

c1'c2 
,...,ck defined between relations Ri and R 

cl 
. 

A (multi-attribute) &&&,$p of Ri by Rj on C is 

denoted by RiM R and is defined as follows. 
c j 

RibZ R 
c j = (RiY! RJ)cq’ 

To realize a single attribute semi-join, say 
Rib< Rj, 
ne&! 

not all join attribute values of Rj are 

sary but it is sufficient to know the 
information only about the minimum value of Rj,s 

join attribute (i.e. min(RjCBl)). For multi- 

attribute semi-joins, we only need to consider 
minimal tuples in the partial order defined by 
the projection qualification defined below. 

Let A1,A2,...,Ak be a collection of 

attributes, and B,, a2,..., e, be a corresponding 

collection of comparison operators. We call 
(A1B1,A2 62,...,AkBk) a proiection aualification. 
Lett andt, be tuples defined on the set of 
attributes including A,,A2,...,Ak. We say that t 

is U,+A282,u-, AkBk)-smaller than t* under the 

partial order*) defined by the projection 
qualification iff 

fF (t[A$ B,WA,l) 
i=l 

Proceedings of the Tenth International 
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holds. (A,B1, A2e2,...,Ak8k)-minimal tuples can 

also be defined in the partial order. Using this 
notion we will define inequality projection, 
which is an extension of the ordinary projection 
operation, as follows. 

RCA1f$ ,A2@2,-,Ak~k1 

= (ttR[A,,A2,..., A,ll t is (A,B,,fB2,...,Ak~k)- 

minimal in R[A,,R2,...,Akl) 

RCA, +A2 62,-, Akbkl is called an ineauau 

proiectiop of R on AlB1,A282,..,,Ak8k. 

[Example 3.11 Consider a relation R shown in 
Fig.3.3(a). An inequality projection R[A=,C>] can 
be obtained by first taking a GROUP-BYCA] 
operation to the ordinary projection of R on AC 
(see Fig.3.3(b)), and by picking up only maximum 
C-values in each group. (see Fig.3.3(c).) 
RCB>,W, which is another example of an 
inequality projection of R, is a set of (B>,Cg- 
minimal tuples in R (Fig.3.3(d) shows the Hasse 
diagram of the partial order, where l shows a 
minimal tuple. The projected relation is given in 
Fig.3.3leI.I. 

R 

lAlB!Cl 
l-l-l-l 
I a I 2 I 101 
I a I 3 I 101 
I a I 3 i 251 
I a I 1 I 301 
I a I 3 I 301 
I b 1 1 I201 
I b I 3 1 201 
( b ) 4 I 201 
I c I 2 I 151 
I c I 4 I 151 
I c I 5 I 301 

(a) 

Fig.3 -3 

IAICI 
l-l-l 
I a I 101 
I 1 251 

I I 301 

lb) 

IAICI 
l-l-l 
I a I 301 
I b I 201 
I c I 301 

(cl 

C 
I 

30 I 
I 

251 
I 

20 I 
I 

151 
I 

101 
I 

12345 B 

(d) 

IBlCl 

1-a 
I 4 I 1511 
I 4 I 201 
151301 (e) 

Inequality projections. 

s) Strictly speaking, if "<" or “>” exists in 
q, f92,-, Sk), the binary relation 

"is (A, 81,A282,...,AkBk)-smaller than* 
is not a partial order, since it does not 
satisfy reflexive law. However, even in those 
cases we will call the binary relation as 
partial order and will use the word "minimal" 
tuple to represent the 
any tuple t, in R "tl is 

smaller than t" does not 

tuple t such that for 

hold. 
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Let ch be a join clause of the form 

Ri.AhehRj.Bh. Let C be a conjunction of join 
clauses c,,c 2,..., CR (I.e. C:C,A c2A . . . A c,). A 

projection qualification can be represented using 
a join qualification as follows. 

AiN1 = RI[A,e,,A2B2,...,~8kl 

Rj[Cl = Rj[B,8;‘,B2B;’ ,..., B&l 

Using these notions, the multi-attribute semi- 
JoIn Rf o( Rj oan be represented as follows in 
general,C which implies that only the inequality 
projection of R on C Is necessary to realize the 
multi-attribute semi-join Ri D< R . 

RiF Rj = “$b$ RjKl 
c j 

The extension of semi-joins stated above 
allows the existence of multiple edges in qual 
graphs of tree queries or multi-doublet queries. 
Therefore, Prooedure 2.1 can be extended to the 
cases where a qua1 graph oontains multiple edges, 
and all partial solutions of a tree query or 
multi-doublet query can be obtained by applying 
multi-doublet semi-joins only. 

4.i weak 
1 -doublet Queries 

In this section, we will introduoe the 
notion of generalized semi- joins, and then 
utilizing them we will formaliee the weak l- 
doublet query processing algorithms. Generalized 
semi-joins presented in this section include the 
one lntroduoed in [KAMBY8206] as a special ease 
since only NJ queries are considered in 
jKAMEY8206J. 

To process a cycle in qual graphs of NI 
queries, we need to test for each tuple ti In 

each relation Ri in the cycle whether ti joins 

with itself along the qycle or not. Let us 
consider the cycle R,-R2-. ..-Rn,,-Rn-R, . There 

are the following two basic methods for the test. 

(1) [Comparison of Join Attribute Values of Two 
Adjacent Relations] 

Test whether or not there exists the tuple 
t,(e R,) (t,(6R,), resp. ) with which ti 

joins along the path RI-RI,,-... -R2-R, ( Ri- 
R i+, -... -Rnm,-Rn, r-p. 1, and t, and tn 
satisfy the join clause defined between R 

1 
and Rn (see Flg.4.lta)). 

(2) [Comparison of Join Attribute Values of One 
Relation] 

Test whether or not there exists the tuple 
tj(dRj) (Uj) with which ti joins along the 

Procaadlnga of tha Tenth InternatIonal 
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(a) (b) 

Flg.4.1 Processing of a cycle. 

two paths between Ri and R j in the cycle 
(see F&4.1(b)). 

The following proposition, which can be proved 
directly from Proposition 2.1, Is a basis of 
method (1). Method (2) is based on Proposition 
2.1. 

[Proposition 4.11 Let q be a simple cy~li;~z~; 
consisting of n relations R, ,R2,. . . ,Rn 

assume that the qua1 graph 0, consists of a cycle 

R,-R2-...-Rn,,-Rn-R, .). 

contained in the partial 

lff there exist tuples 
that 

(i) tS joins with 

A -tuple t,(t Ri) is 

solution of Ri w.r.t. q 

t,(tR,) and t,&RJ such 

5 
along the path 

(ii) ti joins with tn -along the path 

<R R 
I’ i+l”“‘Rn-lr n R > In Gq, and 

(Iii) tl<Cln>tn, where Cln is the conjunction of 
join clauses defined between R, and Rn in 
Q. 

Seotion 4.1 explains the basic idea of 
method (1) using simple O-doublet queries as 
examples. The definition of generalized semi- 
joins is given in Section 4.2. Query processing 
strategies based on methods (1) and (2) for 
simple weak l-doublet queries are formally given 
in Sections 4.3 and 4.4, respectively. The 
extension for general weak l-doublet queries ia 
disoussed in Section 4.5. 

4.1 Basic CB on Prpm 0-dew 

Consider a simple O-doublet query whose qua1 
graph is shown in Flg.4.2. The following 
procedure gives the partial solution of Ri. 

[Procedure 4.11 A Basic Procedure to Compute the 
Partial Solution of Ri 
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Fig.4.2 A simple O-doublet query. 

I. Computation of R;, which shows the 
correspondence between tuples in Ri and B,- 
values. 

(l-l) R; = R,. 
(l-2) Repeat the step (l-3) for j=l,2,...,1-1. 

(l-3) R! 
J+l 

=R j+l Dc~ R;LAjB1l. 
Bj+18jAj 

II. Computation of R" i+l' which shows the 
correspondence between tuples in Ri+, and An- 

values. 

(2-l) R" = R n n' 
(2-2) Repeat the step (2-3) for h=n,n-1,...,1+2. 

(2-3) R& = R~‘[AnRhl tXj 
Bheh-lAh- 1 

Rh-l' 

III. Computation of RI", which shows the 

correspondence between tuples in Ri and An- 

values. 

(3-l) R;" = RiJl [AnBi+llBi+yiAiRI* 

IV. Computation of the partial solution. 

(4-l) (rB e A (R;“))I~I 
Inn 

Let us denote the set of tuples t, in R, (tn in 

Rn' resp.) which satisfy the condition (i) ((ii), 

resp.) in Proposition 4.1 for a given tuple ti(6 

Ri) as R,(ti) (R,(ti), resp.). Executing the 

steps I, II and III of the procedure shown above, 
we can obtain R;", which is the set of tuples ti 

together with the corresponding (R,(ti))[B,] and 

(Rn(ti))[An] value sets. Comparing the both value 

sets under the condition of R,.B,BnRn.An at the 

step IV, the condition (iii) of Proposition 4.1 

Proceedings of the Tenth International 
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is tested and the partial solution of Ri can be 
obtained. 

If 8, is an inequality operator, we can 

reduce the cost of operations without changing 
the final result. The cost of time-consuming 
operations appeared at (l-3), (2-3) and (3-l) 
will be reduced by removing tuples which will not 
affect the final result. For example, we will 

assume that Bn is "<*. Let bA(ti) be representing 

the minimum value in (R,(ti))CB,l. Also let 

a"(t ) M i be representing the maximum value in 

(Rn(ti))[An]. A tuple ti(tRi) is contained in the 

partial solution of Ri iff b: < ai from 

Propositon 4.1. So, in the steps (l-3), (2-3) and 
(3-l), it is sufficient to obtain the tuples 

which is necessary for Ri' to contain both bi(ti) 

and ai for each ti. The following example 

illustrates this property. 

[Example 4.13 Consider a O-doublet query, say q , 
of which qua1 graph is shown in Fig.4.3(a). Pf 
the database is in the state as shown in 
Fig.'+.3(b), it is semi-join reduced but any 
relation is not its partial solution, since 
tuples marked with x are not in the partial 

(a) 

R2 IB IA' 
I-- 21 2 
lli45 
I4 I35 

x I 4 I 45 
I 5 I 101 

R1 R3 1 A !B! 
I 3l 3l 
I50011101 

I 4 I 300 I I 400 I 301 
I 3 I 1001 I 200 I 501 

x I 2 I 200 I x I 2001 201 

(b) 

Fig.4.3 A simple O-doublet query and a example 
of databases. 
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solution. A simple method to obtain the partial 
solutions of, for example, R2 Is to perform the 
join of three relations R,,R2 and R3 under the 

qualification q0 and to project the resultant 

relation on J2. However, not all tuples in R, (or 
R3) are necessary in the join as discussed above. 

For example, let us consider tuples t, z (3,100) 
and t; = (2,200) in R1. Since the join clause 
between R, and R2 is R1.A1Xf2.B2, If a tuple t2 
in R2 joins with ti , t2 also joins with t, along 
the path R2-R,. Moreover, the join clause 
R1.Bl<R3.A3 implies that if ti<C13>t3 holds for a 
tuple t3 in R 

3 
, then t1<C,3>t3 also holds. These 

facts mean that whenever ti satisfies the 

conditions (I) and (Iii) of Proposition 4.1, t 
1 

also satisfies these two conditions. Thus there 
is no need to consider the tuple t; = (2,200) in 

the join of three relations. Similarly the tuple 
(4,300) becomes unnecessary to be considered due 
to the tuple (5,300). The same discussion applies 
to R 3’ 

and only two tuples (500,110) and (200,50) 

in R 
3 

are necessary to be considered. 

Let ch be a join caluse of the form 

Ri.AhBhRj.Bh. For a conjunction C of join clauses 

Cl’C2’““Ck (i.e. C=c,A c2A . . . Ack), we use the 

following notation. 

at(C,Ri) e k 
hi, 

(at(ch,Ri)) = (A, ,A2,* l l ,Ak) 

at(C,Rj) * k hU,(at(ch,Rj)) = (B1,B2~~~~~Bk) 
= 

Let C be a conjunction of join clauses such 
a that at(C,Rj) C Bj. A med sq&j~j,n of Ri 

by R-, on C is denoted by Ri F R j and defined as 

“Ri 9 Rj = Ri$ Rjfcl 
where C1 is the conjunotion of the olauses ch in 

C such that at(oh,Ri) r%. Note that the 

relation scheme of Ri 9 Rj is %Uat(C,Rj). In 

processing queries, it is required to replace Ri 

by Ri+ Rj. This operation Is denoted by 

Ri <--- R g R . 
ic cl 

Next we will present processing algorithms 
for weak l-doublet queries utilizing generalized 
semi-joins. We will describe our procedure by 
means of modification of qua1 graphs. 

4 .? cwlson of Jai- 

Consider a query of which qua1 graph is 
shown in Fig.4.4(a). To make the notation be 
succinct, we will use Ci and Li as the join 

clause corresponding to the edge <Rie,,Ri> (i.e. 

C iol i 1 and its label set (i.e. Lie1 ,), 

respectively ( i= 1,2,. . . , n) . As illustrated in 
Example 4.1, in this method join operations are 
repeated using only tuples which are sufficient 
for the testing of the condition (iii) in 
Proposition 4.1. In Section 4.1, we have shown 
procedures to obtain the partial solution of only 
one relation in a cycle. To obtain the partial 
solutions of all relations, we need to repeat the 
pr^?edures for every relation in a cycle. However, 
as shown in Procedure 4.1 in Section 4.1, R’ j+l is 
obtained using R; for j=l,2 ,..., n-l and R& is 

obtained using RA’ for h=n,n-1 , . . . ,2. Therefore, 

procedures for obtaining all partial solutions 
can be npiggybackedn. The method is formally 
described as follows. First the qua1 graph is 
transformed to a tree by embedding an edge, say 
<R,,R,>, into all other edges as shown In 

Fig.4.4(b). Then, label sets Li and Li’ are 

merged as shown In Fig.4.4(c). Li is defined as 

(a) (b) (cl 

Fig.4.4 Elimination of an edge by embedding into other edges. 
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follows. 

L, <--- LiULi' (1=1,2,..,,n-1) i 
Also let Cl be the join qualification 
corresponding to L;. 5 can be obtained as 
follows. We assume that Cn = tin 02,~ . ..A 0; 

where ch n is a join clause R,.BF8: Rn.Ai for 
h=1,2,...,k. 

(i) Cl <--- ci 
(ii) for each l", = ((B:,AE), 8:) in Ln, repeat 

the following step (iii). (a) 

(iii) C; <--- Ci A (~i+,.Ai (e"n)-' Ri.B;) 

Performing the following generalized semi- 
join programs along the transformed qua1 graph, 
we can obtain the partial solutions of all 
relations. 

R2 <--- R2tX R,, R3 <--- R3g R2, 
Y % 

. . . . Rn <--- RnK Rn-, (Gl) 
%-1 

(cl (d) 
R n-l <--- R n-1 g 

?I-, 
Rn' 'Rn,2 '--- Rn-2 ' Rn,l ' 

S-2 
. . . . R, <--- R,iU12 

Y 

(G2) 

By performing the generalized semi-join program 
(Gl), we can obtain a subset of R,[C,] with which 

a tuple ti(CRi) can join along the path <Ri,Ri,,, 

. . ..R.>. Also, by performing the generalized 
semi-join program (G2), we can obtain a subset of 
Rn[Cnl with which a tuple ti(ERi) can join along 

the path <Ri,Ri+,,...,R,>. We can perform any 
shuffle of the programs (Gl) and (G2) in 
practice. 

[Example 4.21 For the qua1 graph shown in 
Fig.4.5(a), we can obtain the qua1 graph in 
Fig.4,5(b) by embedding the edge <R5,R,> into all 

other edges. Generalized semi-join programs 
corresponding to (Gl) and (G2) above is 
visualized as Fig.4.5(c) and (d), respectively. 
Edge labels in Fig.4.5(c) and (d) can also be 
considered to represent projection qualification. 
The labels of the edge <R,,R2> in Fig.4.5(c) 

(resp. Fig.4.5(d)), for example, imply that 
R,CA,=, B,<l (resp. R2CB2=, A5>]) is necessary in 
the corresponding generalized semi-join in (Gl) 
(resp. (G2)). 

(b) 

0 R5 

(Labels of (c), (d) are same as (b), and are witted.) 

Fig.4.5 Example of the embedding of an edge. 

4.4 Comuarison of Join Attribute Values of One 
R&&&&Q 

In this section, we will describe the method 
to compare two different sets of join attribute 
values of one relation with which a tuples in 
another relation in a cycle joins along the.two 
paths. From Proposition 2.1, the following 
proposition holds. 

[Proposition 4.21 Let q be a simple cyclic query 
consisting of n relations R,,R2,...,Rn (Let us 

assume that the qua1 graph G consists of a cycle 
9 

R,-R2-...-Rn_,-Rn-R,.). A tuple ti(e Ri) is 

contained in the partial solution of Ri w.r.t. q 

iff there exist tuples tn and t: both in Rn such 

that 

(1) ti joins with tn along the path 

'Ri,Ri,,,"*,R,,Rn' in Gqv 
(ii) ti joins with 34 along the path 

<Ri,Ri+,,.,.,Rn-,,Rn> in Gq, and 

(iii) for an attribute set X such that 

NC,, , Rn) C X ,c#, t,[X] = t;[X] holds. 

(Proof) From the conditions (i) and (iii), ti 

Singapore, August, 1994 Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

425 



joins with also t; along the path <Ri,Ri,,, 

.,.,R,,R,> shoe X inaludes the join attribute of 

Rn’ This fact and the condition (ii) prove the 
proposition fram Proposition 2.1. 

Consider again a query whose qua1 graph Is 
shown in Fig.4.5(a). Let the join attribute X be 

*5* 
To test whether or not a tuple ti in Ri is in 

the partial solution for i=l,2,3,4 and 5 it Is 
sufficient to obtain the set of A5-values with 

which ti joins along the path <Ri,Bi,, ,. . . ,R, ,R5> 

and the set of A5-values with which ti joins 

along the path <Ri,Ri+,,...,R5>. The tuple ti Is 

contained in the partial solution of Ri iff the 

intersection of these two sets are non-ermpty. 
Therefore, adding a label ((A5,A5),=) to all the 

edges in the qua1 graph (see Fig.4.6) and 
performing generalized semi-joins along the 
transformed qua1 graph, all the partial solutions 
are obtained. Thus, it is sufficient to perform 
the any shuffle of the following 
semi-join programs (G3) and (G4). 

R, <--- R, $ R5, 

% 

R2 <--- R,lX R, , 
ci 

R4 <--- R4g R3, 

c; 

R5 <--- R5g R4 
5 

R4 <--- R4g R5, R3 <-- R3K R4, 

5 9 
R, <--- R,g R2 

‘i 

two generalized 

R3 <--- R3t’& R2r 

% 

(031 

R2 <--- R2” R , 
c; 3 

where c;: (R2.B2 = R,.A,) I\ (R2.A5 = R1.A5) 

C;: (R3.B3 1 R2.A2)1\ (R3.A5 = R2.A5) 
cj: (R4.B4 > R~.A~) A (R~.A~ = R~.A~) 

Ci: (R5.B5 I R4.A4)A (R5.A5 = R4.A5) 

C$: (R,.B, < R5.A5)A (R,.A5 2: R5.A5) 

(GJI) 

Fig.4.6 Comparison of 
condition. 

A5-values by equality 

Procwdingr ot the Tenth Intematlonal 
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In the above example, since the comparison 
operator oorresponding to the edge <R1,R5> is 

“<“, if a tuple ti in Ri joins with a tuple 

t5(t R5) such that t5[A51 = aG along the path 

<R1,R1,,,..., R1,R5>, ti joins also with any tuple 

t.;(tR5) such that t;[A51 2 aG. Thus to know the 

set of A5-values with which ti joins along the 

path <Ri,Ri,,,...’ R, ,R5h the information on the 

minimum value am In that set is sufficient. Also, 

let % represent the maximum value in A5 with 

which ti joins along the path <Ri,Ri+,,...,R5>. 

We can say that ti is included in the partial 

solution iff am I s (see Fig.4.7.). Therefore 

any shuffle of the following two generalized 
semi- join programs (G5) and (06) can be used in 
place of (03) and (G4). 

R, <-- R, E R5, R2 <--- R2 g R, , R3 <--- 
C” 

R3 g R2, 

5 
C’ ’ 

1 
C’ ’ 

2 

R <--- 
4 R4cy3' R5 <--- R5c7'R4 (05) 

3 

R4 <--- R4z R5, R3 <-- R3g R4, R2 <--- R2g R3, 
C’ ’ 

4 
C” 

3 
C" 

2 

R, <--- R, B R2 (G6) 
C” 1 

where c; I: (R~.B~ 
M 

= R, .*,)A (R2.A5 2 R,.A;) 

(2”: (R3.B3 2 R2.A2) A (R3.AF 2 R2.A;) 2 

Cl’: (R4.B4 > R3.A3)~ (R4.$ 1 R~.A;) 
3 

C”: (R5.B5 I R4.A4)/\(R5.A; 2 R4.A;) 4 

I 

Fig.4.7 Tuples in R5 which join with ti. 
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c;f: (R,.B, < R5.A5)A (R,.A~ 2 R,.A:) 

We assume that the relation R5 is augmented 

before query processing to include attributes A; 

and AM of which values are same as A5. In 

genera:, given a qua1 graph shown in Fig.4.4(a), 

first transform a label l”, in Ln Into a label li, 
as shown in Table 4.1. 

which Is the set of Ii,, 

Then add the label LA, 

to all the label sets in 

the qua1 graph as shown below. 

Li <--- LiU LA (i=1,2,...,n) 

After these transformations, executing 
generalized semi-join programs along the two 
directed paths <Rn,R,,R2,...,Rn> and <R,,R,,,, 

. . ..R.> all the partial solutions can be 

obtained. 

1 ((B, ,A&=) I ((A;,A;),=) i 
I I I 
/ ((B,,A,),U j CCA~,A;),2) i 

f ((B,,A ),<I ! (U;,A;),2) i 
I 

I I ((B, ,A ),2) i C<Apf,Am>,I) i 
i (0, ,A,),>) ; UAff,A;),I) : I , I 

Table 4.1 Labels to be added. 

4.5 A St@ ew k 
l-doublet Oueries 

In this section, we will give a strategy for 
processing general weak l-doublet queries using 
an example. The processing strategy given here is 
based on the same idea as presented in 
CK~bfBY8206 I. Given a cyclic qua1 graph Gq, first 

a spanning tree T is chosen. Next each edge e in 
Gq-T is "embedded" in the edges e,,e2,...,ek in T 

such that the addition of e to T yields a cycle 
consisting of e,e 19e29"*9ek* Then a node in G 

9 
is selected as a root of T. By performing 
generalized semi-joins along the resultant T 
first from leaf to root and then from root to 
leaf, partial solutions of all relaions are 
obtained. For example, consider a query whose 
qua1 graph is shown in Fig.4.8(a). By selecting 
the spanning tree T shown by the bold-line edges 
In Fig.4.8(b), and embedding edges e(CGq - T) in 

T, a tree qua1 graph shown in Fig.4.8(c) is 
obtained. Performing generalized semi-joins along 
this tree just like the semi-join program 
UPeDOWN, all the partial solutions are obtained. 

Proceedings of the Tenth Intemationrl 
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Fig.4.8 Embedding edges in a sapnnlng tree. 

5. Conclusion 

In this paper, we have presented processing 
algorithms for NI queries whose qua1 graphs 
contain 
(1) Multiple edges, 
(2) l-doublet cycles, or 
(3) O-doublet cycles. 
To handle the case (11, we have introduced multi- 
doublet inequality semi-joins which are natural 
extension of ordinary (single-attribute) 
inequality semi-joins. Although the NJ queries 
processed by multi-attribute natural semi-joins 
are strictly characterized by tree queries 
[BERNG8111], the characterization of the class of 
queries processed by multi-attribute inequality 
semi-joins are not known. Since the power of 
multi-attribute semi-joins are strictly stronger 
than that of single-attribute semi-joins, some 
weak l-doublet queries can be solved using multi- 
attribute semi-joins only. 

We have obtained the following results 
related to this paper. 
(1) 

(2) 

(3) 

Sufficient bonditions for qua1 graphs to be 
processed using multi-attribute semi-joins 
only. 
Efficient procedures utilizing the property 
of doublets for processing l-doublet cycles. 
Effective data oompression methods which 
reduce the data transmission ' cost 
significantly In distributed databases or 
database machines. 
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