
PROCESSING INEQUALITY QUERIES

Masatoshi Yoshikawa

Department of Information Science
Kyoto University
Sakyo, Kyoto 606, JAPAN

Abstract

Bernstein and Goodman showed that natural
inequality (NI) queries can be processed
efficiently by semi- joins, if there are no
multiple inequality join edges, nor cycles with
one or zero doublet. In this paper procedures to
hand1 e these cases efficiently are given.
Multiple inequality join edges can be processed
by multi-attribute inequality semi- joins. Two
procedures based on generalized semi-joins for
cyclic NI queries (with one or zero doublet) are
developed.

Semi-join is a useful operation to reduce
the processing cost in distributed databases and
database machines [BERNCBlOl] [BERNG81111. Its
processing power, however, is limited because not
all queries can be solved using semi-joins only.
When queries consisting of natural joins of
relations (called NJ (Natural Join) queries) are
considered, queries in the class called tree
queries can be solved using semi-joins only but
the rest of queries (called cyclic queries)
cannot [BERNG81111.

We have introduced generalized semi-joins
and developed procedures for cyclic queries using
generalized semi-joins [KAMBY8206]. We have also
developed several methods to transform cyclic
queries into tree ones utilizing data
dependencies IKAMBY83051. Using these processing
methods, cyclic queries also can be solved

Permission to copy without fee all or part of this moteriol i(granted
provided that the copies ore not made or distributed for direct commerdal
advantage, tht VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

BASED ON GENERALIZED SEMI-JOINS

Yahiko Kambayashi

Department of Computer Science and
Communication Engineering
Kyushu University
Hakozaki, Higashi, Fukuoka 812, JAPAN

efficiently.

These results cannot be applied directly to
natural inequality (RI) queries; queries
containing inequality joins. In this paper
procedures for NI queries are presented based on
the extension of generalized semi-joins used for
NJ queries. Bernstein and Goodman showed that a
subclass of cyclic NI queries can be solved by
semi-joins only as well as tree NI queries
[BERNG7912] [BERNG81]. A special combination of
inequality specifications is said to form a
doublet. Even if there are cycles, the query is
proved to be solved by semi-joins only, when two
or more doublets are contained in each cycle.

An NI query which cannot be solved by semi-
joins only satisfies one of the following three
conditions [BERNG79121 [BERNGBl].
(1) More than one Inequality, which cannot be

reduced to one inequality, is defined on a
pair of relations (existence of multiple-
inequality edges).

(2) A cycle containing exactly one doublet
exists (l-doublet query).

(3) A cycle containing no doublets exists
(O-doublet query).

Queries of type (1) are shown to be handled by
multi-attribute inequality semi- joins to be
introduced in this paper. By extending the
concept of generalized semi-joins for NJ queries,
any cyclic NI query is shown to be solved, The
method is applied to O-doublet queries and l-
doublet l queries.

Generalized semi- joins and processing
algorithms utilizing them introduced in this
paper include those in [KAMBY82061 as special
cases.

In Section 2, basic definitions and
badkground are given. In Section 3, mu1 tl-
attribute inequality semi-joins are defined. A
query with multiple inequality edges Is processed
by this kind of semi-join. In Section 4,
procedures for cyclic NI queries are presented.
These procedures utilize generalized semi-joins
and multi-attribute inequality semi- joins.
Section 5 is the conclusion.

Singapore, August, 1994

416

2, Basic Concepts gnd Background

A relation scheme and a relation consisting
of attributes A,,A2,.-,Am are denoted by

B(A,,A2w.,Am) and R(A, +.. . ,A,),
respectively, If the specification of the set of
attributes is not necessary, the notations B and
R are used. An attribute A in a relation R is
denoted by R.A. A collection of relation schemes
is called a database scheme. A collection of
relations corresponding to the database scheme is
called a database and iS denoted by
D(R, ,R2,...,Rn).

Let A and B be attributes of R, and X be an
attribute set such that XC,&. Let t be a tuple
of a relation R. The following notations of the
relational algebra will be used.

The projection of t on X: t[X]
The projection of R on X: R[X] = {t[X]ithR}
b-restriction: rAeBR = {t:t[A]6't[B], teR)

(Here,Bis one of the comparison operators
=, f, <, >, I and 2)

A m Q, which consists of a qualification
q and a target attribute set TA, maps a database
D(R,,R~,..., Rn) into the following relation.

(Uq(R, x R2 x ,..., x R,))CTAl

We callOh(R, x R2 x ,..., x R,)[%] a

al so1utiq.n of Ri (with repect to q). In

this paper, we will develop procedures for joins
which will obtain partial solutions for all
relations involved in the query. Since target
attribute sets are not required to be considered
in our problem, we will use q to represent a
query. If the complete result of the join or its
projection on TA is required, our procedures to
obtain the partial solutions can be used as a
preprocessing step. Throughout this paper, we
will assume for simplicity that all partial
solutions are non-empty.

Let A and B be attributes of I$ and B ii
(iZj>, respectively. A qualification which is a
conjunction of clauses of the form Ri.ABRj.B

@eI=,<,>,1,2)) is called an Jneaualitv-join
UicatioB Note that we do not consider "fw
as a compaiison operator in the following
discussion.

An inequality-join qualification can be
expressed by a join KraDh GJ(VJ,EJ) where

VJ = IRi.AI AtEi, i=1,2,...,n)

EJ 5 VJ x VJ
GJ is a directed graph such that an edge <Ri.A,

Rj.B> represents a clause Ri.A 2 Rj.B (Ri.A >

Rj.B) in q. A clause Ri.A = Rj.B is represented

by a pair of edges <Ri.A, Rj.B> and <Rj.B, Ri.A>.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Therefore, two nodes Rk.C and R1.D are in the

same strongly connected component in GJ iff the
clause Rk.C = R1.D can be implied by q. If two

nodes from the same relation, say Ri.A and Ri.B,

are in the same strongly connected component in

GJ, we can merge them by performing the

restriction operation rAsBRi and replacing all

occurrences of one attribute name (say Ri.B,) in

q by another attribute name (Ri.A). Repeating

these preprocessing, we can obtain a
qualification such that there exists at most one
node from a relation in each strongly connected
component in the join graph. We will consider
only such qualifications hereafter.

An inequality-join qualification satisfying
the following condition is called natural:

"There exists at most one node from a relation
in each weakly connected component in GJ.w

The word "natural" is used because by renaming
attributes properly, we can ensure that all
clauses in q be represented in the form
Ri.ABRj.A.

Queries which have inequality-join qualifications
(natural inequality-join qualifications, resp.)
are called ineaualitv-join aueries (& (natural
inequality) aueries, resp.). NI queries which
consist of only clauses having n=n as comparison
operators are called m (natural-join) auerieq.
We will consider only NI queries in this paper,
since most of inequality-join queries can be
transformed into a natural one by proper renaming
of attributes.

Given an NI query q,

be the set of clauses defined between Ri and R
j

in q, C
ij

is defined as follows.

C
ij = '13 ' AOfjA . . . ACij

A aual FTaDh Gq=(V, E, L) corresponding to

an NI query q is a labeled undirected graph. V is

a set of nodes, where v i in V corresponds to

relation R i referred to in q. E is the set of

edges and L is the set of labels for E. Two nodes

V I and
9

corresponding to Ri and R
J

are

connected by an edge iff there is a clause

Ri.ABRj.B in q. If cij
12 k is CijACijA...ACij'

labels lij, ij,..., ij ' l2 lk are attached to the edge

<Ri, Rj>. Each label lh ij corresponds to ch ij

(h=1,2,...,k). Let cij be Ri.AB Rj.B. c:i is used

Singapore, August, 1994

417

-1 to represent the clause Rj.B 6J-‘R,. A, where e

represents the inverse of 6 (“<“, “in and “zn are
the inverse of “>” “1” and Qn,
We use the follow& notation.

respectively. 1,

at(c:j’Ri) = at(cii,Ri) = A

at(cij, j h RI = at(c&,Rj) = B

h
OP(C,~) = e

OPQ n e-1

h The label lij Is defined as follows.

lh
ij

= ((at(cijr i , h RI at(c;j,Rj)), o~(c;~))

= ((A,B), 8)
h

Aho (lij) -1 h
, the inverse of lij is defined

as follows

(1:,)-l = l!,
SJ J’

= ((at(cij,Rj), at(cijt i h R 11, (o~(c:~))-')

= ((B,A), 6') ,

LiJ
is used to denote the label set (1’ l2 U’ &I

,...,lk) corresponding to the edge <Ri, Rj>.
u

If a qua1 graph is not connected, it is
sufficient to process each connected component
separately. Thus we will assume that a qua1 graph
is connected.

An edge e=<Ri, Rj> of a qua1 graph Gq is

oalled a wle edRq iff ILij 1>1, otherwise it

Is oalled a g$g@e edaq. Let eij =<Ri,RJ> and

ejk=<Rj,Rk> be simple edges of Gq. A pair of

edges eij and ejk is oalled a &&&& iff

(1) at(cij,Rj) = at(cjk,Rj), and
(ii) op(cij) and op(cjk) are inequalities of

opposite direction; e.g. one Is n<n or win
and the other is “>lc or Q* (see Fig.2.1.).

Tuo queries are said to be m iff
both will produce the same result for any
database state. Two qua1 grapha are m
iff the corresponding queries are equivalent.

An NJ query is called a fsee cue= if it is
equivalent to a query whose qua1 graph is
oirouit-free; otherwise it is oalled qyQ&
CB~RNGB~ i i 3. There are tree queriea whose qua1
graphs have cycles [BERNGBlll]. All partial
solutions for a tree query can be obtained by
semi- joins only.

Flg.2.1 Doublets.

query for which the qua1
example, a query having
Flg.2.2(a) is a tree NI
equivalently transformed
Fig.2.2tb). A cycle in a
n-doublet CYC& If it _ __

graph has cycles. For
the qua1 graph ahown in
query because it can be
into the one shown in
qua1 graph is called an

contains exactly n
doublets. If a qua1 graph contains m cycles each
of which is an ij-doublet cycle (j=l,2,...,10), It

is oalled a k-doublet aual gcBpb for k = mln{i,;

i2 ,...,im). As shown later, k-doublet cycles In a

qua1 graph for small k are difficult to process
in general. Therefore, “k-doublet qua1 graph”
meana that the moat intractable cycle in the qua1
graph ia a k-doublet one. If a cyclic NI query Is
equivalent to s queries each of which has a kh-

doublet qua1 graph (h=1,2,...,a), it is called an
n-doublet QMU The for n = max{k, ,k2,. . . ,kal.

maximum value is taken for n because DBMSs, In
general, optimize a given query and therefore the
intractability of a cyclic query can be measured
by the moat tractable one in the set of
equivalent queries. n-doublet queries are called

et aueries or W l-do&let aue&s.g
when Q2 or al, respectively. A cyclic II query
whose qua1 graph consists of exactly one cycle is
called amcvclia If It has n
doublets, it is called a we n-doublet a-.

A tree NI query not satisfying the following
oondition (1) can be processed by semi- joins.
Besides such tree queries, all partial solutions
of a cyclic query not satisfying any one of the

Rl T9

'9 o-33 ((B,C),U
"3

R2 R3

(a) (b)
II queries are also classified into tree and

cyclic queries. Note that there exists a tree NI

Proceedlngr ot the Tenth International
Conference on Very Large Data Seres.

418

Fig.2.2 Equivalent qua1 graphs.

Singapore, August, 1994

following three conditions can be obtained by
semi-joins only [BERNG7912] CBERNGBl].

(1) There exists a multiple edge which cannot be
reduced to a simple edge.

(2) A l-doublet query
(3) A O-doublet query

Procedures for the case (1) are given in
Section 3, and Section 4 is dedicated to the
cases (2) and (3).

If two tuples t,(e R,) and t,(eR,) satisfy

(Ch cij hijf rem), tiey fe denote: byJti<Cij>tj

(ti<Cij>tj, resp.). Let P = <RI=RIO,RI,,...,Rlk-,,

R =R.> be a path in a qua1 graph. Also let X be
ik J

an attribute set such as X LB
j’

A tuple tfRi is

said to join with a tuple tj[X] (tjQRj) along p

iff there exist tuples tifRih (h=1,2,...,k-1)

such that t i h-,<Ch,, hXih (h=l,2 ,..., k). As a

special case, we will say that ti(eRi) joins with

ti[X] along the path <Ri> for X such that X 5%

and X # 8. We will also assume that ti does not

join with any t;[X] such that ti # ti along the

path <Ri>.

Let C be a conjunction of clauses defined
between the relations Ri and R

3
. The &&.n of Ri

and R
cl

on C is denoted by R 04 R and defined as
ic j

follows.

R MQR
ic .I

= It,tjItfRi, tj”Rj, t,totjl

Let c (for example, Ri.AB Rj.B) be a clause

defined between the relations Ri and R . A
3

(&&zl.e-attribute) sq~&&&! of Ri by R
j

on c is

denoted by Ri $ Rj (or Ri o(Rj) and defined as
A8B

Ri 9 R.i = (Rig R&l

A sequence -of semi- joins is called a semi-.ioin
Dropsam.

If no further application of semi-join
changes the contents of a database, that database
is called &&=&in reduced .

In [BERNG79121, a (single-attribute) semi-
join program for processing a tree query or a
multi-doublet query with no multiple edge is
shown. The program is summarized in Procedure
2.1. Before giving the procedure, the Acyclicfty
Property must be defined.

[Acyclicity Property]

Let Gq be a qua1 graph. Gq is said to satisfy the

Acyclicity Property iff there exists a proper
assignment of directions on edges in G so that

P
the resulting digraph, designated by GDOWN,

Proceedings of the Tenth International

Conference on Vety Large Data Bases.

satisfies the following two conditions,

(i) GDOWN is acyclic.

(ii) A pair of edges having the same destination

in GDOWN is a doublet.

procedur 7.1: Processing tree queries and multi-
doublet lueries with no multiple edge CBERNG79121
[BERNG811

Let G
9

be a tree qua1 graph (multi-doublet

qua1 graph, resp.) which is equivalent to a given
tree (multi-doublet, resp.) query. For G

Q’
there

exists a directed acyclic graph GDCWN since G

satisfies the Acyclicity Property (GDoWN 1:

obtained by applying a modified depth first
search algorithm to Gq). The directed edge <Ri,

Rj> Of GDOWN with label ((A,B),8) is interpreted

as a semi-join operation

RJ

GDOWN as a whole is interpreted as a semi-join

program consisting of semi-joins represented by
its edges, ordered by any topological sort. This
semi-join program is called DOWN. GUP is defined

analogously with all edges of GDOWN reversed, and

represents a semi-join program UP. By performing
UP*DOWN, the semi-join program UP followed by
DOWN, all the partial solutions w.r.t. q me
obtained.

[Example 2.11 Consider a multi-doublet query
whose qua1 graph is shown in Fig.2.3(a).
Selecting a directed acyclic graph GDOWN as shown

in Fig.2.3(b), a semi-join program UP is obtained
as

R2K R3,
QD

R, D(
A>B

R2, R4K R3,
E>D

R,K R4
A>F

Also a semi-join program DOWN is as follows.

R2K R,,
B<A

R3P(R2,
XC

R40(R,,
F<A

R3x R4
D<E

(a) a qual. graph (b, GDOWN

Fig.2.3 An example of multi-doublet query.

Singapore, August, 1984

419

bblT I*lj(Weak l-doublet _I1 ;s:i:i:::: ,I
I I Single-attribute I

1 edges only / 0
/

0
/

A I I inequality semi-join I
I I- ,I I I
I Multiple

in / /
I I Multi-attribute I

1 edges
I permitted I

A

1

A I I inequality semi-join I

f 4
-I

Ii (Section 3)
1

.I II
I Query I All partial solutions (All partial solutions II 1
1 processing I can be obtained by I zarl be obtained by II
I prcedure I semi-joins. I generalized II f
I I I semi-joins (Section 4). I I I

0: The results in CBERNGTgl21 [BERNG~~]
A: The results by this paper

Fig.2.4 Problems for NI query processing.

The following proposition holds directly
from the definition of partial solution.

[Proposition 2.11 Let q be a simple cyclic query
consisting of n relations R,,R2,...,Rn (Let us

assume that the qua1 graph Gq consists of a cycle

R,-R2-...-Rn,,-R,-R, .). A tuple t,(C Ri) is

contained in the partial solution of Ri w.r.t. q

lff there exists a relation Rj(i#j) and a tuple

“gRj; suc;o;;t
i with

5
along the path

<RI,Rle,,...,Rje,,Rj> in Gq, and

(ii) ti joins with
5

along the path

<RI,RIO,,“*,Rje,‘Rj> in Gq.
Here 8 and 8 represent addition and subtraction

of modulo n, respectively.

In the case of Example 2.1, applying the
semi-join program UPmDOWN, a semi-join reduced
database is obtained. In that database, any tuple
in Ri (iz1,2,4) joins with the tuple t3 in R3

such that t3[D] = min(R3[D]) along both of the

two paths between Ri and R
3

. Also, any tuple in

Rj (j-2,3,4) joins with the tuple t, in Rl such

that t,[A] = max(R,[A]) along both of the two

paths between Rj and R,. Thus, from Proposition

2.1 partial solutions of all relations are
obtained.

The reason why all partial solutions of a
multi-doublet query with no multiple edge can be
obtained by semi- joins only is explained
intuitively because the above discussion holds
for every cycle in a multi-doublet qua1 graph.

Procoodingr of thr Tenth Intomational

Conferonce on Vey Large DMa Baser.

Fig.2.4 summarizes the results by Bernstein
and Goodman IBERNG79121 [BERNG81] (denoted by o)
and the results by this paper (denoted byA).
Bernstein and Goodman handled queries which can
be processed by single-attribute inequality semi-
joins. We generalized the result to utilize
multi-attribute semi- joins and the case (1) above
is solved. For weak l-doublet queries an
extension is made to the definition of
generalized semi- joins in [KAMBY8206].

In this section, we will introduce multi-
attribute semi- joins, which are a natural
extension of single-attribute ones, for
processing multiple edges in a qua1 graph. The
notion of inequality projection is also
introduced to clarify the idea of multi-attribute
semi- joins.

First we will give an example to illustrate
the situation that a multiple edge in a qua1
graph cannot be processed by single-attribute
semi- joins only. Let us consider a multiple-edge
shown in Fig.j.l(a). The database shown in
Flg.j.l(b) can be easily verified to be (single-
attribute) semi-join reduced; therefore further
applications of any single-attribute semi-join do
not ohange the database. The relation R,,

however, is not the partial solution since the
tuple (2,2) does not join with any tuple in R2.
Such a situation arises because single-attribute
semi-joins oan check whether a tuple In one
relation joins with tuples in other relations
only with respect to one join attribute each
time. Therefore, the multiple edge shown in
Flg.3.l(a) can be considered to be equivalent to
the O-doublet cycle shown In Fig.3.2 if only

Singapore, August, 1994

420

(a) ((A,C),<), ((B,D),2)

Fig.3.1 A multiple edge which cannot be processed
by single-attribute semi-joins only.

((A,C),<)

c-2
((B,D) ,2)

Fig.3.2 A O-doublet cycle which is equivalent
to the multiple edge in Fig.3.l(a).

single-attribute semi-joins are considered. To
check the joinability of tuples on more than one
join attributes simultaneously, multi-attribute
semi-joins defined below are required.

Let C be a conjunction of join clauses

c1'c2
,...,ck defined between relations Ri and R

cl
.

A (multi-attribute) &&&,$p of Ri by Rj on C is

denoted by RiM R and is defined as follows.
c j

RibZ R
c j = (RiY! RJ)cq’

To realize a single attribute semi-join, say
Rib< Rj,
ne&!

not all join attribute values of Rj are

sary but it is sufficient to know the
information only about the minimum value of Rj,s

join attribute (i.e. min(RjCBl)). For multi-

attribute semi-joins, we only need to consider
minimal tuples in the partial order defined by
the projection qualification defined below.

Let A1,A2,...,Ak be a collection of

attributes, and B,, a2,..., e, be a corresponding

collection of comparison operators. We call
(A1B1,A2 62,...,AkBk) a proiection aualification.
Lett andt, be tuples defined on the set of
attributes including A,,A2,...,Ak. We say that t

is U,+A282,u-, AkBk)-smaller than t* under the

partial order*) defined by the projection
qualification iff

fF (t[A$ B,WA,l)
i=l

Proceedings of the Tenth International
Conference on Very Large Data Bases.

holds. (A,B1, A2e2,...,Ak8k)-minimal tuples can

also be defined in the partial order. Using this
notion we will define inequality projection,
which is an extension of the ordinary projection
operation, as follows.

RCA1f$,A2@2,-,Ak~k1

= (ttR[A,,A2,..., A,ll t is (A,B,,fB2,...,Ak~k)-

minimal in R[A,,R2,...,Akl)

RCA, +A2 62,-, Akbkl is called an ineauau

proiectiop of R on AlB1,A282,..,,Ak8k.

[Example 3.11 Consider a relation R shown in
Fig.3.3(a). An inequality projection R[A=,C>] can
be obtained by first taking a GROUP-BYCA]
operation to the ordinary projection of R on AC
(see Fig.3.3(b)), and by picking up only maximum
C-values in each group. (see Fig.3.3(c).)
RCB>,W, which is another example of an
inequality projection of R, is a set of (B>,Cg-
minimal tuples in R (Fig.3.3(d) shows the Hasse
diagram of the partial order, where l shows a
minimal tuple. The projected relation is given in
Fig.3.3leI.I.

R

lAlB!Cl
l-l-l-l
I a I 2 I 101
I a I 3 I 101
I a I 3 i 251
I a I 1 I 301
I a I 3 I 301
I b 1 1 I201
I b I 3 1 201
(b) 4 I 201
I c I 2 I 151
I c I 4 I 151
I c I 5 I 301

(a)

Fig.3 -3

IAICI
l-l-l
I a I 101
I 1 251

I I 301

lb)

IAICI
l-l-l
I a I 301
I b I 201
I c I 301

(cl

C
I

30 I
I

251
I

20 I
I

151
I

101
I

12345 B

(d)

IBlCl

1-a
I 4 I 1511
I 4 I 201
151301 (e)

Inequality projections.

s) Strictly speaking, if "<" or “>” exists in
q, f92,-, Sk), the binary relation

"is (A, 81,A282,...,AkBk)-smaller than*
is not a partial order, since it does not
satisfy reflexive law. However, even in those
cases we will call the binary relation as
partial order and will use the word "minimal"
tuple to represent the
any tuple t, in R "tl is

smaller than t" does not

tuple t such that for

hold.
Singapore, August, 1984

421

Let ch be a join clause of the form

Ri.AhehRj.Bh. Let C be a conjunction of join
clauses c,,c 2,..., CR (I.e. C:C,A c2A . . . A c,). A

projection qualification can be represented using
a join qualification as follows.

AiN1 = RI[A,e,,A2B2,...,~8kl

Rj[Cl = Rj[B,8;‘,B2B;’ ,..., B&l

Using these notions, the multi-attribute semi-
JoIn Rf o(Rj oan be represented as follows in
general,C which implies that only the inequality
projection of R on C Is necessary to realize the
multi-attribute semi-join Ri D< R .

RiF Rj = “b RjKl
c j

The extension of semi-joins stated above
allows the existence of multiple edges in qual
graphs of tree queries or multi-doublet queries.
Therefore, Prooedure 2.1 can be extended to the
cases where a qua1 graph oontains multiple edges,
and all partial solutions of a tree query or
multi-doublet query can be obtained by applying
multi-doublet semi-joins only.

4.i weak
1 -doublet Queries

In this section, we will introduoe the
notion of generalized semi- joins, and then
utilizing them we will formaliee the weak l-
doublet query processing algorithms. Generalized
semi-joins presented in this section include the
one lntroduoed in [KAMBY8206] as a special ease
since only NJ queries are considered in
jKAMEY8206J.

To process a cycle in qual graphs of NI
queries, we need to test for each tuple ti In

each relation Ri in the cycle whether ti joins

with itself along the qycle or not. Let us
consider the cycle R,-R2-. ..-Rn,,-Rn-R, . There

are the following two basic methods for the test.

(1) [Comparison of Join Attribute Values of Two
Adjacent Relations]

Test whether or not there exists the tuple
t,(e R,) (t,(6R,), resp.) with which ti

joins along the path RI-RI,,-... -R2-R, (Ri-
R i+, -... -Rnm,-Rn, r-p. 1, and t, and tn
satisfy the join clause defined between R

1
and Rn (see Flg.4.lta)).

(2) [Comparison of Join Attribute Values of One
Relation]

Test whether or not there exists the tuple
tj(dRj) (Uj) with which ti joins along the

Procaadlnga of tha Tenth InternatIonal
Conference on Very Large Data Baaea.

I

(a) (b)

Flg.4.1 Processing of a cycle.

two paths between Ri and R j in the cycle
(see F&4.1(b)).

The following proposition, which can be proved
directly from Proposition 2.1, Is a basis of
method (1). Method (2) is based on Proposition
2.1.

[Proposition 4.11 Let q be a simple cy~li;~z~;
consisting of n relations R, ,R2,. . . ,Rn

assume that the qua1 graph 0, consists of a cycle

R,-R2-...-Rn,,-Rn-R, .).

contained in the partial

lff there exist tuples
that

(i) tS joins with

A -tuple t,(t Ri) is

solution of Ri w.r.t. q

t,(tR,) and t,&RJ such

5
along the path

(ii) ti joins with tn -along the path

<R R
I’ i+l”“‘Rn-lr n R > In Gq, and

(Iii) tl<Cln>tn, where Cln is the conjunction of
join clauses defined between R, and Rn in
Q.

Seotion 4.1 explains the basic idea of
method (1) using simple O-doublet queries as
examples. The definition of generalized semi-
joins is given in Section 4.2. Query processing
strategies based on methods (1) and (2) for
simple weak l-doublet queries are formally given
in Sections 4.3 and 4.4, respectively. The
extension for general weak l-doublet queries ia
disoussed in Section 4.5.

4.1 Basic CB on Prpm 0-dew

Consider a simple O-doublet query whose qua1
graph is shown in Flg.4.2. The following
procedure gives the partial solution of Ri.

[Procedure 4.11 A Basic Procedure to Compute the
Partial Solution of Ri

Singapora, August, 1984

422

Fig.4.2 A simple O-doublet query.

I. Computation of R;, which shows the
correspondence between tuples in Ri and B,-
values.

(l-l) R; = R,.
(l-2) Repeat the step (l-3) for j=l,2,...,1-1.

(l-3) R!
J+l

=R j+l Dc~ R;LAjB1l.
Bj+18jAj

II. Computation of R" i+l' which shows the
correspondence between tuples in Ri+, and An-

values.

(2-l) R" = R n n'
(2-2) Repeat the step (2-3) for h=n,n-1,...,1+2.

(2-3) R& = R~‘[AnRhl tXj
Bheh-lAh- 1

Rh-l'

III. Computation of RI", which shows the

correspondence between tuples in Ri and An-

values.

(3-l) R;" = RiJl [AnBi+llBi+yiAiRI*

IV. Computation of the partial solution.

(4-l) (rB e A (R;“))I~I
Inn

Let us denote the set of tuples t, in R, (tn in

Rn' resp.) which satisfy the condition (i) ((ii),

resp.) in Proposition 4.1 for a given tuple ti(6

Ri) as R,(ti) (R,(ti), resp.). Executing the

steps I, II and III of the procedure shown above,
we can obtain R;", which is the set of tuples ti

together with the corresponding (R,(ti))[B,] and

(Rn(ti))[An] value sets. Comparing the both value

sets under the condition of R,.B,BnRn.An at the

step IV, the condition (iii) of Proposition 4.1

Proceedings of the Tenth International
Conference on Very-Large Data Bases. .^

is tested and the partial solution of Ri can be
obtained.

If 8, is an inequality operator, we can

reduce the cost of operations without changing
the final result. The cost of time-consuming
operations appeared at (l-3), (2-3) and (3-l)
will be reduced by removing tuples which will not
affect the final result. For example, we will

assume that Bn is "<*. Let bA(ti) be representing

the minimum value in (R,(ti))CB,l. Also let

a"(t) M i be representing the maximum value in

(Rn(ti))[An]. A tuple ti(tRi) is contained in the

partial solution of Ri iff b: < ai from

Propositon 4.1. So, in the steps (l-3), (2-3) and
(3-l), it is sufficient to obtain the tuples

which is necessary for Ri' to contain both bi(ti)

and ai for each ti. The following example

illustrates this property.

[Example 4.13 Consider a O-doublet query, say q ,
of which qua1 graph is shown in Fig.4.3(a). Pf
the database is in the state as shown in
Fig.'+.3(b), it is semi-join reduced but any
relation is not its partial solution, since
tuples marked with x are not in the partial

(a)

R2 IB IA'
I-- 21 2
lli45
I4 I35

x I 4 I 45
I 5 I 101

R1 R3 1 A !B!
I 3l 3l
I50011101

I 4 I 300 I I 400 I 301
I 3 I 1001 I 200 I 501

x I 2 I 200 I x I 2001 201

(b)

Fig.4.3 A simple O-doublet query and a example
of databases.

Singapore, August, 1984

solution. A simple method to obtain the partial
solutions of, for example, R2 Is to perform the
join of three relations R,,R2 and R3 under the

qualification q0 and to project the resultant

relation on J2. However, not all tuples in R, (or
R3) are necessary in the join as discussed above.

For example, let us consider tuples t, z (3,100)
and t; = (2,200) in R1. Since the join clause
between R, and R2 is R1.A1Xf2.B2, If a tuple t2
in R2 joins with ti , t2 also joins with t, along
the path R2-R,. Moreover, the join clause
R1.Bl<R3.A3 implies that if ti<C13>t3 holds for a
tuple t3 in R

3
, then t1<C,3>t3 also holds. These

facts mean that whenever ti satisfies the

conditions (I) and (Iii) of Proposition 4.1, t
1

also satisfies these two conditions. Thus there
is no need to consider the tuple t; = (2,200) in

the join of three relations. Similarly the tuple
(4,300) becomes unnecessary to be considered due
to the tuple (5,300). The same discussion applies
to R 3’

and only two tuples (500,110) and (200,50)

in R
3

are necessary to be considered.

Let ch be a join caluse of the form

Ri.AhBhRj.Bh. For a conjunction C of join clauses

Cl’C2’““Ck (i.e. C=c,A c2A . . . Ack), we use the

following notation.

at(C,Ri) e k
hi,

(at(ch,Ri)) = (A, ,A2,* l l ,Ak)

at(C,Rj) * k hU,(at(ch,Rj)) = (B1,B2~~~~~Bk)
=

Let C be a conjunction of join clauses such
a that at(C,Rj) C Bj. A med sq&j~j,n of Ri

by R-, on C is denoted by Ri F R j and defined as

“Ri 9 Rj = Ri$ Rjfcl
where C1 is the conjunotion of the olauses ch in

C such that at(oh,Ri) r%. Note that the

relation scheme of Ri 9 Rj is %Uat(C,Rj). In

processing queries, it is required to replace Ri

by Ri+ Rj. This operation Is denoted by

Ri <--- R g R .
ic cl

Next we will present processing algorithms
for weak l-doublet queries utilizing generalized
semi-joins. We will describe our procedure by
means of modification of qua1 graphs.

4 .? cwlson of Jai-

Consider a query of which qua1 graph is
shown in Fig.4.4(a). To make the notation be
succinct, we will use Ci and Li as the join

clause corresponding to the edge <Rie,,Ri> (i.e.

C iol i 1 and its label set (i.e. Lie1 ,),

respectively (i= 1,2,. . . , n) . As illustrated in
Example 4.1, in this method join operations are
repeated using only tuples which are sufficient
for the testing of the condition (iii) in
Proposition 4.1. In Section 4.1, we have shown
procedures to obtain the partial solution of only
one relation in a cycle. To obtain the partial
solutions of all relations, we need to repeat the
pr^?edures for every relation in a cycle. However,
as shown in Procedure 4.1 in Section 4.1, R’ j+l is
obtained using R; for j=l,2 ,..., n-l and R& is

obtained using RA’ for h=n,n-1 , . . . ,2. Therefore,

procedures for obtaining all partial solutions
can be npiggybackedn. The method is formally
described as follows. First the qua1 graph is
transformed to a tree by embedding an edge, say
<R,,R,>, into all other edges as shown In

Fig.4.4(b). Then, label sets Li and Li’ are

merged as shown In Fig.4.4(c). Li is defined as

(a) (b) (cl

Fig.4.4 Elimination of an edge by embedding into other edges.
Procsedlngs ot ths Tenth Intsmational Singapore, August, 1984
Contrrencs on Very Large Data Basss.

424

follows.

L, <--- LiULi' (1=1,2,..,,n-1) i
Also let Cl be the join qualification
corresponding to L;. 5 can be obtained as
follows. We assume that Cn = tin 02,~ . ..A 0;

where ch n is a join clause R,.BF8: Rn.Ai for
h=1,2,...,k.

(i) Cl <--- ci
(ii) for each l", = ((B:,AE), 8:) in Ln, repeat

the following step (iii). (a)

(iii) C; <--- Ci A (~i+,.Ai (e"n)-' Ri.B;)

Performing the following generalized semi-
join programs along the transformed qua1 graph,
we can obtain the partial solutions of all
relations.

R2 <--- R2tX R,, R3 <--- R3g R2,
Y %

. . . . Rn <--- RnK Rn-, (Gl)
%-1

(cl (d)
R n-l <--- R n-1 g

?I-,
Rn' 'Rn,2 '--- Rn-2 ' Rn,l '

S-2
. . . . R, <--- R,iU12

Y

(G2)

By performing the generalized semi-join program
(Gl), we can obtain a subset of R,[C,] with which

a tuple ti(CRi) can join along the path <Ri,Ri,,,

. . ..R.>. Also, by performing the generalized
semi-join program (G2), we can obtain a subset of
Rn[Cnl with which a tuple ti(ERi) can join along

the path <Ri,Ri+,,...,R,>. We can perform any
shuffle of the programs (Gl) and (G2) in
practice.

[Example 4.21 For the qua1 graph shown in
Fig.4.5(a), we can obtain the qua1 graph in
Fig.4,5(b) by embedding the edge <R5,R,> into all

other edges. Generalized semi-join programs
corresponding to (Gl) and (G2) above is
visualized as Fig.4.5(c) and (d), respectively.
Edge labels in Fig.4.5(c) and (d) can also be
considered to represent projection qualification.
The labels of the edge <R,,R2> in Fig.4.5(c)

(resp. Fig.4.5(d)), for example, imply that
R,CA,=, B,<l (resp. R2CB2=, A5>]) is necessary in
the corresponding generalized semi-join in (Gl)
(resp. (G2)).

(b)

0 R5

(Labels of (c), (d) are same as (b), and are witted.)

Fig.4.5 Example of the embedding of an edge.

4.4 Comuarison of Join Attribute Values of One
R&&&&Q

In this section, we will describe the method
to compare two different sets of join attribute
values of one relation with which a tuples in
another relation in a cycle joins along the.two
paths. From Proposition 2.1, the following
proposition holds.

[Proposition 4.21 Let q be a simple cyclic query
consisting of n relations R,,R2,...,Rn (Let us

assume that the qua1 graph G consists of a cycle
9

R,-R2-...-Rn_,-Rn-R,.). A tuple ti(e Ri) is

contained in the partial solution of Ri w.r.t. q

iff there exist tuples tn and t: both in Rn such

that

(1) ti joins with tn along the path

'Ri,Ri,,,"*,R,,Rn' in Gqv
(ii) ti joins with 34 along the path

<Ri,Ri+,,.,.,Rn-,,Rn> in Gq, and

(iii) for an attribute set X such that

NC,, , Rn) C X ,c#, t,[X] = t;[X] holds.

(Proof) From the conditions (i) and (iii), ti

Singapore, August, 1994 Proceedings of the Tenth International
Conference on Very Large Data Bases.

425

joins with also t; along the path <Ri,Ri,,,

.,.,R,,R,> shoe X inaludes the join attribute of

Rn’ This fact and the condition (ii) prove the
proposition fram Proposition 2.1.

Consider again a query whose qua1 graph Is
shown in Fig.4.5(a). Let the join attribute X be

5
To test whether or not a tuple ti in Ri is in

the partial solution for i=l,2,3,4 and 5 it Is
sufficient to obtain the set of A5-values with

which ti joins along the path <Ri,Bi,, ,. . . ,R, ,R5>

and the set of A5-values with which ti joins

along the path <Ri,Ri+,,...,R5>. The tuple ti Is

contained in the partial solution of Ri iff the

intersection of these two sets are non-ermpty.
Therefore, adding a label ((A5,A5),=) to all the

edges in the qua1 graph (see Fig.4.6) and
performing generalized semi-joins along the
transformed qua1 graph, all the partial solutions
are obtained. Thus, it is sufficient to perform
the any shuffle of the following
semi-join programs (G3) and (G4).

R, <--- R, $ R5,

%

R2 <--- R,lX R, ,
ci

R4 <--- R4g R3,

c;

R5 <--- R5g R4
5

R4 <--- R4g R5, R3 <-- R3K R4,

5 9
R, <--- R,g R2

‘i

two generalized

R3 <--- R3t’& R2r

%

(031

R2 <--- R2” R ,
c; 3

where c;: (R2.B2 = R,.A,) I\ (R2.A5 = R1.A5)

C;: (R3.B3 1 R2.A2)1\ (R3.A5 = R2.A5)
cj: (R4.B4 > R~.A~) A (R~.A~ = R~.A~)

Ci: (R5.B5 I R4.A4)A (R5.A5 = R4.A5)

C$: (R,.B, < R5.A5)A (R,.A5 2: R5.A5)

(GJI)

Fig.4.6 Comparison of
condition.

A5-values by equality

Procwdingr ot the Tenth Intematlonal
Conference on Very Large Data Bases.

In the above example, since the comparison
operator oorresponding to the edge <R1,R5> is

“<“, if a tuple ti in Ri joins with a tuple

t5(t R5) such that t5[A51 = aG along the path

<R1,R1,,,..., R1,R5>, ti joins also with any tuple

t.;(tR5) such that t;[A51 2 aG. Thus to know the

set of A5-values with which ti joins along the

path <Ri,Ri,,,...’ R, ,R5h the information on the

minimum value am In that set is sufficient. Also,

let % represent the maximum value in A5 with

which ti joins along the path <Ri,Ri+,,...,R5>.

We can say that ti is included in the partial

solution iff am I s (see Fig.4.7.). Therefore

any shuffle of the following two generalized
semi- join programs (G5) and (06) can be used in
place of (03) and (G4).

R, <-- R, E R5, R2 <--- R2 g R, , R3 <---
C”

R3 g R2,

5
C’ ’

1
C’ ’

2

R <---
4 R4cy3' R5 <--- R5c7'R4 (05)

3

R4 <--- R4z R5, R3 <-- R3g R4, R2 <--- R2g R3,
C’ ’

4
C”

3
C"

2

R, <--- R, B R2 (G6)
C” 1

where c; I: (R~.B~
M

= R, .*,)A (R2.A5 2 R,.A;)

(2”: (R3.B3 2 R2.A2) A (R3.AF 2 R2.A;) 2

Cl’: (R4.B4 > R3.A3)~ (R4.$ 1 R~.A;)
3

C”: (R5.B5 I R4.A4)/\(R5.A; 2 R4.A;) 4

I

Fig.4.7 Tuples in R5 which join with ti.

Singapore, August, 1904

426

c;f: (R,.B, < R5.A5)A (R,.A~ 2 R,.A:)

We assume that the relation R5 is augmented

before query processing to include attributes A;

and AM of which values are same as A5. In

genera:, given a qua1 graph shown in Fig.4.4(a),

first transform a label l”, in Ln Into a label li,
as shown in Table 4.1.

which Is the set of Ii,,

Then add the label LA,

to all the label sets in

the qua1 graph as shown below.

Li <--- LiU LA (i=1,2,...,n)

After these transformations, executing
generalized semi-join programs along the two
directed paths <Rn,R,,R2,...,Rn> and <R,,R,,,,

. . ..R.> all the partial solutions can be

obtained.

1 ((B, ,A&=) I ((A;,A;),=) i
I I I
/ ((B,,A,),U j CCA~,A;),2) i

f ((B,,A),<I ! (U;,A;),2) i
I

I I ((B, ,A),2) i C<Apf,Am>,I) i
i (0, ,A,),>) ; UAff,A;),I) : I , I

Table 4.1 Labels to be added.

4.5 A St@ ew k
l-doublet Oueries

In this section, we will give a strategy for
processing general weak l-doublet queries using
an example. The processing strategy given here is
based on the same idea as presented in
CK~bfBY8206 I. Given a cyclic qua1 graph Gq, first

a spanning tree T is chosen. Next each edge e in
Gq-T is "embedded" in the edges e,,e2,...,ek in T

such that the addition of e to T yields a cycle
consisting of e,e 19e29"*9ek* Then a node in G

9
is selected as a root of T. By performing
generalized semi-joins along the resultant T
first from leaf to root and then from root to
leaf, partial solutions of all relaions are
obtained. For example, consider a query whose
qua1 graph is shown in Fig.4.8(a). By selecting
the spanning tree T shown by the bold-line edges
In Fig.4.8(b), and embedding edges e(CGq - T) in

T, a tree qua1 graph shown in Fig.4.8(c) is
obtained. Performing generalized semi-joins along
this tree just like the semi-join program
UPeDOWN, all the partial solutions are obtained.

Proceedings of the Tenth Intemationrl

Conferonce on Very Large Data Baee8.

-1

Fig.4.8 Embedding edges in a sapnnlng tree.

5. Conclusion

In this paper, we have presented processing
algorithms for NI queries whose qua1 graphs
contain
(1) Multiple edges,
(2) l-doublet cycles, or
(3) O-doublet cycles.
To handle the case (11, we have introduced multi-
doublet inequality semi-joins which are natural
extension of ordinary (single-attribute)
inequality semi-joins. Although the NJ queries
processed by multi-attribute natural semi-joins
are strictly characterized by tree queries
[BERNG8111], the characterization of the class of
queries processed by multi-attribute inequality
semi-joins are not known. Since the power of
multi-attribute semi-joins are strictly stronger
than that of single-attribute semi-joins, some
weak l-doublet queries can be solved using multi-
attribute semi-joins only.

We have obtained the following results
related to this paper.
(1)

(2)

(3)

Sufficient bonditions for qua1 graphs to be
processed using multi-attribute semi-joins
only.
Efficient procedures utilizing the property
of doublets for processing l-doublet cycles.
Effective data oompression methods which
reduce the data transmission ' cost
significantly In distributed databases or
database machines.

Singapore, August, 1994

421

The authors are grateful to Professor Shuzo
Yajima and Dr. Hlroto Yasuura of Kyoto University
and other members of Yajima Lab. for helpful
discussions. Their heartful thanks are also due
to Professor Tim Merrett of McGill University for
useful comments for the presentation of this
paper.

[BERNC8101] Bernstein, P. A. and Chiu,D.M., “Using
Semi-Joins to Solve Relational Queries”, JACM,
Vo1.28, No.1, pp,25-40, Jan. 1981.

IBERNG79121 Bernstein,P.A. and Goodman,N.,
“Inequality Semi- Joinsn, CCA Report, No.CCA-790
28, Dec.15, 1979.

[BERIG 1 Bernstein, P. A. and Goodman,N., “The
Power of Inequality Semi joIns”, Information
Systems, Vo1.6, No.4, pp.2550265, 1981.

EBERNG81111 Bernstein, P. A. and Goodman, N., “Power
of Natural Semijoinsw, SIAM J. Comput., Vol.10,
No.4, pp.751-771, Nov. 1981.

IKAMBY82061 Ksmbayashi,Y., Yoshikawa,M. and
Yajima,S,, Wuery Processing for Distributed
Databases Using Generalized Semi-Joins. (I, Proo.
ACM SIGMOD Intl. Cenf . on Management of Data,
pp.151-160, June 1982.

lKAMBY83051 Kambayashi,Y. and Yoahikawa,H.,
“Query Processing Utilizing Dependencies and
Horizontal Decomposition”, Proc. ACM SIGMGD Intl.
Conf. on Management of Data, pp.55067, May 1983.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

$lngspore, August, 1904

428

