Processing Inequality Queries Based on Generalized Semi-Joins

Masatoshi Yoshikawa

Yahiko Kambayashi

Department of Computer Science and Communication Engineering Kyushu University
Hakozaki, Higashi, Fukuoka 812, JAPAN

Department of Information Science Kyoto University
Sakyo, Kyoto 606, JAPAN

Abstract

Bernstein and Goodman showed that natural inequality (NI) queries can be processed efficiently by semi-joins, if there are no multiple inequality join edges, nor cycles with one or zero doublet. In this paper procedures to handle these cases efficiently are given. Multiple inequality join edges can be processed by multi-attribute inequality semi-joins. Two procedures based on generalized semi-joins for cyclic NI queries (with one or zero doublet) are developed.

1. Introduction

Semi-join is a useful operation to reduce the processing cost in distributed databases and database machines [BERNC8101] [BERNG8111]. Its processing power, however, is limited because not all queries can be solved using semi-joins only. When queries consisting of natural joins of relations (called NJ (Natural Join) queries) are considered, queries in the class called tree queries can be solved using semi-joins only but the rest of queries (called cyclic queries) cannot [BERNG8111].

We have introduced generalized semi-joins and developed procedures for cyclic queries using generalized semi-joins [KAMBY8206]. We have also developed several methods to transform cyclic queries into tree ones utilizing data dependencies [KAMBY8305]. Using these processing methods, cyclic queries also can be solved

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VIDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment.
efficiently.
These results cannot be applied directly to natural inequality (NI) queries; queries containing inequality joins. In this paper procedures for NI queries are presented based on the extension of generalized semi-joins used for NJ queries. Bernstein and Goodman showed that a subclass of cyclic NI queries can be solved by semi-joins only as well as tree NI queries [BERNG7912] [BERNG81]. A special combination of inequality specifications is said to form a doublet. Even if there are cycles, the query is proved to be solved by semi-joins only, when two or more doublets are contained in each cycle.

An NI query which cannot be solved by semijoins only satisfies one of the following three conditions [BERNG7912] [BERNG81].
(1) More than one inequality, which cannot be reduced to one inequality, is defined on a pair of relations (existence of multipleinequality edges).
(2) A cycle containing exactly one doublet exists (1-doublet query).
(3) A cycle containing no doublets exists (0-doublet query).
Queries of type (1) are shown to be handled by multi-attribute inequality semi-joins to be introduced in this paper. By extending the concept of generalized semi-joins for NJ queries, any cyclic NI query is shown to be solved. The method is applied to 0-doublet queries and 1doublet *queries.

Generalized semi-joins and processing algorithms utilizing them introduced in this paper include those in [KAMBY8206] as special cases.

In Section 2, basic definitions and background are given. In Section 3, multiattribute inequality semi-joins are defined. A query with multiple inequality edges is processed by this kind of semi-join. In Section 4, procedures for cyclic NI queries are presented. These procedures utilize generalized semi-joins and multi-attribute inequality semi-joins. Section 5 is the conclusion.

2. Basic Concepts and Background

A relation scheme and a relation consisting of attributes $A_{1}, A_{2}, \ldots, A_{m}$ are denoted by $R\left(A_{1}, A_{2}, \ldots, A_{m}\right) \quad$ and $R\left(A_{1}, A_{2}, \ldots, A_{m}\right)$, respectively. If the specification of the set of attributes is not necessary, the notations R and R are used. An attribute A in a relation R is denoted by R.A. A collection of relation schemes is called a database scheme. A collection of relations corresponding to the database scheme is called a database and is denoted by $D\left(R_{1}, R_{2}, \ldots, R_{n}\right)$.

Let A and B be attributes of R, and X be an attribute set such that $X \subseteq R$. Let t be a tuple of a relation R. The following notations of the relational algebra will be used.

The projection of t on $X: t[X]$
The projection of R on $X: R[X]=\{t[X] \mid t \in R\}$
θ-restriction: $\sigma_{A \theta B} R=\{t \mid t[A] \theta t[B], t \in R\}$
(Here, θ is one of the comparison operators $=, \neq,\langle\rangle,, \leq$ and \geq)

A query Q, which consists of a qualification q and a target attribute set $T A$, maps a database $D\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ into the following relation.

$$
\left(\sigma_{q}\left(R_{1} \times R_{2} \times, \ldots, \times R_{n}\right)\right)[T A]
$$

We call $\sigma_{q}\left(R_{1} \quad x \quad R_{2} x, \ldots, \quad x \quad R_{n}\right)\left[R_{i}\right]$ a partial solution of R_{i} (with repect to q). In this paper, we will develop procedures for joins which will obtain partial solutions for all relations involved in the query. Since target attribute sets are not required to be considered in our problem, we will use q to represent a query. If the complete result of the join or its projection on TA is required, our procedures to obtain the partial solutions can be used as a preprocessing step. Throughout this paper, we will assume for simplicity that all partial solutions are non-empty.

Let A and B be attributes of B_{i} and R_{j} ($i \neq j$), respectively. A qualification which is a conjunction of clauses of the form $R_{i}, A \theta R_{j} . B$ ($\theta \in\{=,\langle\rangle,, \leq, 2\}$) is called an inequality-join qualification. Note that we do not consider "f" as a comparison operator in the following discussion.

An inequality-join qualification can be expressed by a join graph $G_{J}\left(V_{J}, E_{J}\right)$ where

$$
\begin{aligned}
& V_{J}=\left\{R_{i}, A \mid A \in R_{i}, i=1,2, \ldots, n\right\} \\
& E_{J} \subseteq V_{J} \times V_{J}
\end{aligned}
$$

G_{J} is a directed graph such that an edge $\left\langle R_{i} \cdot A\right.$, $\left.R_{j}, B\right\rangle$ represents a clause $R_{i}, A \geq R_{j} \cdot B \quad\left(R_{i}, A\right\rangle$ $R_{j} \cdot B$) in q. A clause $R_{i}, A=R_{j} \cdot B$ is represented by a pair of edges $\left\langle R_{i}, A, R_{j}, B\right\rangle$ and $\left\langle R_{j}, B, R_{i}, A\right\rangle$.

Proceedings of the Tenth International Conference on Very Large Data Bases.

Therefore, two nodes $R_{k} \cdot C$ and $R_{1} \cdot D$ are in the same strongly connected component in G_{J} iff the clause $R_{k} \cdot C=R_{1} \cdot D$ can be implied by q. If two nodes from the same relation, say $R_{i} . A$ and $R_{i} \cdot B$, are in the same strongly connected component in G_{J}, we can merge them by performing the restriction operation $\sigma_{A=B} R_{i}$ and replacing all occurrences of one attribute name (say $R_{i} \cdot B$,) in q by another attribute name $\left(R_{1}, A\right)$. Repeating these preprocessing, we can obtain a qualification such that there exists at most one node from a relation in each strongly connected component in the join graph. We will consider only such qualifications hereafter.

An inequality-join qualification satisfying the following condition is called natural:
"There exists at most one node from a relation in each weakly connected component in $G_{J}{ }^{\prime \prime}$
The word "natural" is used because by renaming attributes properly, we can ensure that all clauses in q be represented in the form $R_{i} \in A \theta R_{j} \cdot A$.
Queries which have inequality-join qualifications (natural inequality-join qualifications, resp.) are called inequality-join queries (NI (natural inequality) queries, resp.). NI queries which consist of only clauses having $n=n$ as comparison operators are called NJ (natural-join) queries. We will consider only NI queries in this paper, since most of inequality-join queries can be transformed into a natural one by proper renaming of attributes.

Given an NI query q, let $\left\{c_{i j}^{1}, c_{i j}^{2}, \ldots, c_{i j}^{k}\right\}$ be the set of clauses defined between R_{i} and R_{j} in $\mathrm{q} . \mathrm{C}_{\mathrm{ij}}$ is defined as follows.

$$
c_{i j}^{1 J}=c_{i j}^{1} \wedge c_{i j}^{2} \wedge \ldots \wedge c_{i j}^{k}
$$

A qual graph $G_{q}=(V, E, L)$ corresponding to an NI query q is a labeled undirected graph. V is a set of nodes, where v_{i} in V corresponds to relation R_{i} referred to in q. E is the set of edges and L is the set of labels for E. Two nodes v_{i} and v_{j} corresponding to R_{i} and R_{j} are connected by an edge iff there is a clause $R_{i}, A \theta R_{j} \cdot B$ in q. If $C_{i j}$ is $c_{i j}^{1} \wedge c_{i j}^{2} \wedge \ldots \wedge c_{i j}^{k}$, labels $l_{i j}^{1}, l_{i j}^{2}, \ldots, l_{i j}^{k}$ are attached to the edge $\left\langle R_{i}, R_{j}\right\rangle$. Each label $l_{i j}^{h}$ corresponds to $c_{i j}^{h}$ ($h=1,2, \ldots, k$). Let $c_{i j}^{h}$ be $R_{i}, A \theta R_{j} . B . c_{j i}^{h}$ is used Singapore, August, 1984
to represent the clause $R_{j} \cdot B \theta^{-1} R_{1} . A$, where θ^{-1} represents the inverse of $\theta(n<n, n \leq "$ and $n=n$ are the inverse of $">n, \quad n\rangle^{n}$ and $n=n$, respectively.). We use the following notation.

$$
\begin{aligned}
& \operatorname{at}\left(c_{i j}^{h}, R_{i}\right)=\operatorname{at}\left(c_{j i}^{h}, R_{i}\right)=A \\
& \operatorname{at}\left(c_{i j}^{h}, R_{j}\right)=\operatorname{at}\left(c_{j i}^{h}, R_{j}\right)=B \\
& \operatorname{op}\left(c_{i j}^{h}\right)=\theta \\
& \operatorname{op}\left(c_{j i}^{h}\right)=\theta^{-1}
\end{aligned}
$$

The label $l_{i j}^{h}$ is defined as follows. $I_{i j}^{h}=\left(\left(\operatorname{at}\left(c_{i j}^{h}, R_{i}\right), \quad \operatorname{at}\left(c_{i j}^{h}, R_{j}\right)\right), \quad o p\left(c_{i j}^{h}\right)\right)$
$=((A, B), \theta)$
Also $\left(l_{i j}^{h}\right)^{-1}$, the inverse of $1_{i j}^{h}$ is defined as follows

$$
\begin{aligned}
\left(I_{i j}^{h}\right)^{-1} & =1_{j i}^{h} \\
& =\left(\left(\operatorname{at}\left(c_{i j}^{h}, R_{j}\right), \operatorname{at}\left(c_{i j}^{h}, R_{i}\right)\right),\left(\operatorname{op}\left(c_{i j}^{h}\right)\right)^{-1}\right) \\
& =\left((B, A), \theta^{-1}\right),
\end{aligned}
$$

$L_{i j}$ is used to denote the label set $\left\{I_{i j}^{1}, I_{i j}^{2}\right.$,$\left.\ldots ., l_{i j}^{k}\right\}$ corresponding to the edge $\left\langle R_{i}, R_{j}\right\rangle$.

If a qual graph is not connected, it is sufficient to process each connected component separately. Thus we will assume that a qual graph is connected.

An edge $e=\left\langle R_{i}, R_{j}\right\rangle$ of a qual graph G_{q} is called a multiple edge iff $\left|L_{i j}\right|>1$, otherwise it is called a simple edge. Let $e_{i j}=\left\langle R_{i}, R_{j}\right\rangle$ and $e_{j k}=\left\langle R_{j}, R_{k}\right\rangle$ be simple edges of G_{q}. A pair of edges $e_{i j}$ and $e_{j k}$ is called a doublet iff
(i) $\operatorname{at}\left(c_{i j}, R_{j}\right)=a t\left(c_{j k}, R_{j}\right)$, and
(ii) $o p\left(c_{i j}\right)$ and $o p\left(c_{j k}\right)$ are inequalities of opposite direction; e.g. one is "<" or " \leq " and the other is " \gg " or " 2^{n} (see Fig.2.1.).

Two queries are said to be equivalent iff both will produce the same result for any database state. Two qual graphs are equiyalent iff the corresponding queries are equivalent.

An NJ query is called a tree query if it is equivalent to a query whose qual graph is circuit-free; otherwise it is called cyclic [BERNG8111]. There are tree queries whose qual graphs have cycles [BERNG8111]. All partial solutions for a tree query can be obtained by semi-joins only.

NI queries are also classified into tree and cyclic queries. Note that there exists a tree NI

Fig.2.1 Doublets.
query for which the qual graph has cycles. For example, a query having the qual graph shown in Fig.2.2(a) is a tree NI query because it can be equivalently transformed into the one shown in Fig.2.2(b). A cycle in a qual graph is called an n-doublet cycle if it contains exactly n doublets. If a qual graph contains m cycles each of which is an 1_{j}-doublet cycle $(j=1,2, \ldots, m)$, it is called a k-doublet qual graph for $k=\min (i$, ; $\left.i_{2}, \ldots, i_{m}\right\}$. As shown later, k-doublet cycles in a qual graph for small k are difficult to process in general. Therefore, "k-doublet qual graph" means that the most intractable cycle in the qual graph is a k-doublet one. If a cyclic NI query is equivalent to s queries each of which has a k_{h} doublet qual graph ($h=1,2, \ldots, s$), it is called an n-doublet query for $n=\max \left\{k_{1}, k_{2}, \ldots, k_{s}\right\}$. The maximum value is taken for n because DBMSs, in general, optimize a given query and therefore the intractability of a cyclic query can be measured by the most tractable one in the set of equivalent queries. n-doublet queries are called multi-doublet queries or weak 1-doublet queries when $n \geq 2$ or $n \leq 1$, respectively. A cyclic NI query whose qual graph consists of exactiy one cycle is called a simple cyclic query. If it has n doublets, it is called a simple n-doublet query.

A tree NI query not satisfying the following condition (1) can be processed by semi-joins. Besides such tree queries, all partial solutions of a cyclic query not satisfying any one of the

(a)

(b)

Fig.2.2 Equivalent qual graphs.
Singapore, August, 1984
following three conditions can be obtained by semi-joins only [BERNG7912] [BERNG81].
(1) There exists a multiple edge which cannot be reduced to a simple edge.
(2) A 1-doublet query
(3) A 0-doublet query

Procedures for the case (1) are given in Section 3, and Section 4 is dedicated to the cases (2) and (3).

If two tuples $t_{i}\left(\epsilon R_{i}\right)$ and $t_{j}\left(\epsilon R_{j}\right)$ satisfy $C_{i j}\left(c_{h_{j}}^{h}\right.$, resp. $)$, they are denoted by $t_{i}<C_{i j}>t_{j}$ $\left(t_{i}<c_{i j}^{h_{j}}\right\rangle t_{j}$, resp. $)$. Let $p=\left\langle R_{i}=R_{i 0}, R_{i 1}, \ldots, R_{i k-1}\right.$, $R_{i k}=R_{j}>$ be a path in a qual graph. Also let X be an attribute set such as $X \subseteq R_{j}$. A tuple $t_{i} \in R_{i}$ is said to joinwith a tuple $t_{j}[X]\left(t_{j} \in R_{j}\right)$ along p iff there exist tuples $t_{i h} \in_{i h}(h=1,2, \ldots, k-1)$ such that $t_{i n-1}<C_{h-1 ~} h^{>} t_{i h}(h=1,2, \ldots, k)$. As a special case, we will say that $t_{i}\left(\in R_{i}\right)$ joins with $t_{i}[X]$ along the path $\left\langle R_{i}\right\rangle$ for X such that $X \subseteq R_{i}$ and $X \neq \varnothing$. We will also assume that t_{i} does not join with any $t_{i}^{\prime}[X]$ such that $t_{i} \neq t_{i}^{\prime}$ along the path $\left\langle R_{i}\right\rangle$.

Let C be a conjunction of clauses defined between the relations R_{i} and R_{j}. The foin of R_{i} and R_{j} on C is denoted by $R_{i} \mathbb{C} R_{j}$ and defined as follows.

$$
R_{i} \triangle R_{j}=\left\{t_{i} t_{j} \mid t_{i} \in R_{i}, t_{j} \in R_{j}, t_{i}\langle C\rangle t_{j}\right\}
$$

Let c (for example, $R_{i}, A \theta R_{j} \cdot B$) be a clause defined between the relations R_{i} and R_{j}. A (single-attribute) semi-ioin of R_{i} by R_{j} on c is denoted by $R_{i} \propto R_{j}$ (or $R_{i} \times R_{A O B}$) and defined as

$$
R_{i} \aleph_{c} R_{j}=\left(R_{i} \bigotimes_{c} R_{j}\right)\left[R_{i}\right]
$$

A sequence of semi-joins is called a semi-ioin program.

If no further application of semi-join changes the contents of a database, that database is called semi-ioin reduced.

In [BERNG7912], a (single-attribute) semijoin program for processing a tree query or a multi-doublet query with no multiple edge is shown. The program is summarized in Procedure 2.1. Before giving the procedure, the Acyclicity Property must be defined.
[Acyclicity Property]
Let G_{q} be a qual graph. G_{q} is said to satisfy the Acyclicity Property iff there exists a proper assignment of directions on edges in G_{q} so that the resulting digraph, designated by $G_{\text {DOWN }}$,
satisfies the following two conditions.
(i) G DOWN is acyclic.
(ii) A pair of edges having the same destination in $G_{\text {DOWN }}$ is a doublet.

Procedure 2.1: Processing tree queries and multidoublet queries with no multiple edge [BERNG7912] [BERNG81]

Let G_{q} be a tree qual graph (multi-doublet qual graph, resp.) which is equivalent to a given tree (multi-doublet, resp.) query. For G_{q}, there exists a directed acyclic graph $G_{\text {DOWN }}$ since G_{q} satisfies the Acyclicity Property (GDOWN is obtained by applying a modified depth first search algorithm to G_{q}). The directed edge $\left\langle R_{i}\right.$, $R_{j}>$ of $G_{D O W N}$ with label $((A, B), \theta)$ is interpreted as a semi-join operation

$$
R_{j} \propto_{B \theta^{-1}} R_{A}
$$

$G_{\text {DOWN }}$ as a whole is interpreted as a semi-join program consisting of semi-joins represented by its edges, ordered by any topological sort. This semi-join program is called DOWN. $G_{\text {UP }}$ is defined analogously with all edges of $G_{\text {DOWN }}$ reversed, and represents a semi-join program UP. By performing UP•DOWN, the semi-join program UP followed by DOWN, all the partial solutions w.r.t. q are obtained.
[Example 2.1] Consider a multi-doublet query whose qual graph is shown in Fig.2.3(a). Selecting a directed acyclic graph $G_{D O W N}$ as shown in Fig.2.3(b), a semi-join program UP is obtained as

$$
R_{2}{ }_{C D D} R_{3}, R_{1} \underset{A>B}{\propto} R_{2}, R_{4} \underset{E>D}{\propto} R_{3}, R_{1} \underset{A>F}{\propto} R_{4}
$$

Also a semi-join program DOWN is as follows.

(a) a qual graph

(b) $G_{D O W N}$

Fig.2.3 An example of multi-doublet query.

0: The results in [BERNG7912] [BERNG81]
 Δ : The results by this paper

Fig.2.4 Problems for Ni query processing.

The following proposition holds directly from the definition of partial solution.
[Proposition 2.1] Let q be a simple cyclic query consisting of n relations $R_{1}, R_{2}, \ldots, R_{n}$ (Let us assume that the qual graph G_{q} consists of a cycle $\left.R_{1}-R_{2}-\ldots-R_{n-1}-R_{n}-R_{1}.\right)$. A tuple $t_{i}\left(\in R_{i}\right)$ is contained in the partial solution of R_{i} w.r.t. q iff there exists a relation $R_{j}(i \neq j)$ and a tuple $t_{j}\left(\epsilon R_{j}\right)$ such that
(1) t_{i} joins with t_{j} along the path $\left\langle R_{i}, R_{101}, \ldots, R_{j 01}, R_{j}\right\rangle$ in G_{q}, and
(1i) t_{i} joins with t_{j} along the path $\left\langle R_{i}, R_{101}, \ldots, R_{j \in 1}, R_{j}\right\rangle$ in G_{q}.
Here and θ represent addition and subtraction of modulo n , respectively.

In the case of Example 2.1, applying the semi-join program UP.DOWN, a semi-join reduced database is obtained. In that database, any tuple in $R_{1}(1=1,2,4)$ joins with the tuple t_{3} in R_{3} such that $t_{3}[D]=\min \left(R_{3}[D]\right)$ along both of the two paths between R_{1} and R_{3}. Also, any tuple in $R_{j}(j=2,3,4)$ joins with the tuple t_{j} in R_{1} such that $t_{p}[A]=\max \left(R_{1}[A]\right)$ along both of the two paths between R_{j} and R_{1}. Thus, from Proposition 2.1 partial solutions of all relations are obtained.

The reason why all partial solutions of a multi-doublet query with no multiple edge can be obtained by semi-joins only is explained intuitively because the above discussion holds for every cycle in a multi-doublet qual graph.

Fig. 2.4 summarizes the results by Bernstein and Goodman [BERNG7912] [BERNG81] (denoted by o) and the results by this paper (denoted by Δ). Bernstein and Goodman handled queries which can be processed by single-attribute inequality semijoins. We generalized the result to utilize multi-attribute semi-joins and the case (1) above is solved. For weak i-doublet queries an extension is made to the definition of generalized semi-joins in [KAMBY8206].
3. Multi-attribute Inequality Semi-Joins and Processing Multiple Edges

In this section, we will introduce multiattribute semi-joins, which are a natural extension of singlemattribute ones, for processing multiple edges in a qual graph. The notion of inequality projection is also introduced to clarify the idea of multi-attribute semi-joins.

First we will give an example to illustrate the situation that a multiple edge in a qual graph cannot be processed by single-attribute semi-joins only. Let us consider a multiple-edge shown in Fig.3.1(a). The database shown in Fig.3.1(b) can be easily verified to be (singleattribute) semi-join reduced; therefore further applications of any single-attribute semi-join do not change the database. The relation R_{1}, however, is not the partial solution since the tuple $(2,2)$ does not join with any tuple in R_{2}. Such a situation arises because single-attribute semi-joins can check whether a tuple in one relation joins with tuples in other relations only with respect to one join attribute each time. Therefore, the multiple edge shown in Fig.3.1(a) can be considered to be equivalent to the 0-doublet cycle shown in Fig.3.2 if only
(a)

(b)

Fig.3.1 A multiple edge which cannot be processed by single-attribute semi-joins only.

Fig.3.2 A 0-doublet cycle which is equivalent to the multiple edge in Fig.3.1(a).
single-attribute semi-joins are considered. To check the joinability of tuples on more than one join attributes simultaneously, multi-attribute semi-joins defined below are required.

Let C be a conjunction of join clauses $c_{1}, c_{2}, \ldots, c_{k}$ defined between relations R_{i} and R_{j}. A (multi-attribute) semi-join of R_{i} by R_{j} on C is denoted by $R_{i} \underset{C}{K} R_{j}$ and is defined as follows.

$$
R_{i} \underset{C}{X} R_{j}=\left(R_{i} \underset{C}{X} R_{j}\right)\left[R_{1}\right]
$$

To realize a single attribute semi-join, say $R_{i} \times R_{j}$, not all join attribute values of R_{j} are necessary but it is sufficient to know the information only about the minimum value of $R_{j}{ }^{\prime} s$ join attribute (i.e. min($\left.R_{j}[B]\right)$). For multiattribute semi-joins, we only need to consider minimal tuples in the partial order defined by the projection qualification defined below.

Let $A_{1}, A_{2}, \ldots, A_{k}$ be a collection of attributes, and $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ be a corresponding collection of comparison operators. We call $\left(A_{1} \theta_{1}, A_{2} \theta_{2}, \ldots, A_{k} \theta_{k}\right)$ a projection qualification. Let t and t^{\prime} be tuples defined on the set of attributes including $A_{1}, A_{2}, \ldots, A_{k}$. We say that t is $\left(A_{1} \theta_{1}, A_{2} \theta_{2}, \ldots, A_{k} \theta_{k}\right)$-smaller than $t '$ under the partial order*) defined by the projection qualification iff

$$
\wedge_{i=1}^{k}\left(t\left[A_{i}\right] \theta_{i} t^{\prime}\left[A_{i}\right]\right)
$$

[^0]holds. $\left(A_{1} \theta_{1}, A_{2} \theta_{2}, \ldots, A_{k} \theta_{k}\right)$-minimal tuples can also be defined in the partial order. Using this notion we will define inequality projection, which is an extension of the ordinary projection operation, as follows.
\[

$$
\begin{aligned}
& R\left[A_{1} \theta_{1}, A_{2} \theta_{2}, \ldots, A_{k} \theta_{k}\right] \\
& =\left\{t \in R\left[A_{1}, A_{2}, \ldots, A_{k}\right] \mid t \text { is }\left(A_{1} \theta_{1}, A_{2} \theta_{2}, \ldots, A_{k} \theta_{k}\right)-\right. \\
& \quad \begin{array}{l}
\text { minimal in } \left.R\left[A_{1}, R_{2}, \ldots, A_{k}\right]\right\}
\end{array}
\end{aligned}
$$
\]

$R\left[A_{1} \theta_{1}, A_{2} \theta_{2}, \ldots, A_{k} \theta_{k}\right]$ is called an inequality projection of R on $A_{1} \theta_{1}, A_{2} \theta_{2}, \ldots, A_{k} \theta_{k}$.
[Example 3.1] Consider a relation R shown in Fig.3.3(a). An inequality projection $R[A=, C>]$ can be obtained by first taking a GROUP-BY[A] operation to the ordinary projection of R on $A C$ (see Fig.3.3(b)), and by picking up only maximum C-values in each group. (see Fig.3.3(c).) $R[B>, C \leq]$, which is another example of an inequality projection of R, is a set of ($B>, C \leq$)minimal tuples in R (Fig.3.3(d) shows the Hasse diagram of the partial order, where shows a minimal tuple. The projected relation is given in Fig.3.3(e).).

R

(a)

(d)

Fig.3.3 Inequality projections.

$$
\begin{aligned}
& \text { \#) Strictly speaking, if } n\langle n \text { or } "\rangle " \text { exists in } \\
& \left\{\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right\} \text { the binary relation } \\
& \text { "is }\left(A_{1} \theta_{1}, A_{2} \theta_{2}, \ldots, A_{k} \theta_{k}\right) \text {-smaller than" } \\
& \text { is not a partial order, since it does not } \\
& \text { satisfy reflexive law. However, even in those } \\
& \text { cases we will call the binary relation as } \\
& \text { partial order and will use the word "minimal" } \\
& \text { tuple to represent the tuple } t \text { such that for } \\
& \text { any tuple } t \text { in } R " t ' \text { is }\left(A_{1} \theta_{1}, A_{2} \theta_{2}, \ldots, A_{k} \theta_{k}\right)- \\
& \text { smaller than t" does not hold. }
\end{aligned}
$$

Singapore, August, 1984

Let c_{h} be a join clause of the form $R_{i} \cdot A_{h} \theta_{h} R_{j} \cdot B_{h}$. Let C be a conjunction of join clauses $c_{1}, c_{2}, \ldots, c_{k}\left(1 . e . C=c_{1} \wedge c_{2} \wedge \ldots \wedge c_{k}\right) . A$ projection qualification can be represented using a join qualification as follows.

$$
\begin{aligned}
& R_{i}[C]=R_{i}\left[A_{1} \theta_{1}, A_{2} \theta_{2}, \ldots, A_{k} \theta_{k}\right] \\
& R_{j}[C]=R_{j}\left[B_{1} \theta_{1}^{-1}, B_{2} \theta_{2}^{-1}, \ldots, B_{k} \theta_{k}^{-1}\right]
\end{aligned}
$$

Using these notions, the multi-attribute semijoin $R_{i} \times R_{j}$ can be represented as follows in general, C which implies that only the inequality projection of R on C is necessary to realize the multi-attribute semi-join $R_{1} \underset{C}{X} R_{j}$

$$
R_{i} \underset{C}{X} R_{j}=R_{i} \underset{C}{X} R_{j}[C]
$$

The extension of semi-joins stated above allows the existence of multiple edges in qual graphs of tree queries or multi-doublet queries. Therefore, Procedure 2.1 can be extended to the cases where a qual graph contains multiple edges, and all partial solutions of a tree query or multi-doublet query can be obtained by applying multi-doublet semi-joins only.
4. Generalized Semi-Joins and Processing Keak 1-doublet oueries

In this section, we will introduce the notion of generalized semi-joins, and then utilizing them we will formalize the weak 1doublet query processing algorithms. Generalized semi-joins presented in this section include the one introduced in [KANBY8206] as a special case since only NJ queries are considered in [KAMBY8206].

To process a cycle in qual graphs of NI queries, we need to test for each tuple t_{1} in each relation R_{i} in the cycle whether t_{i} joins with itself along the cycle or not. Let us consider the cycle $R_{1}-R_{2} \ldots-R_{n-1}-R_{n}-R_{1}$. There are the following two basic methods for the test.
(1) [Comparison of Join Attribute Values of Two Adjacent Relations]

Test whether or not there exists the tuple $t_{1}\left(\in R_{1}\right) \quad\left(t_{n}\left(\epsilon R_{n}\right)\right.$, resp. $)$ with which t_{1} joins along the path $R_{1}-R_{1-1} \cdots \cdots-R_{2}-R_{1}\left(R_{1}-\right.$ $R_{1+1} \ldots-n_{n-1}-R_{n}$, resp.), and t_{1} and t_{n} satisfy the join clause defined between R_{1} and R_{n} (see Fig.4.1(a)).
(2) [Comparison of Join Attribute Values of One Relation]

Test whether or not there exists the tuple $t_{j}\left(\epsilon R_{j}\right)(1 \neq j)$ with which t_{i} joins along the

Fig.4.1 Processing of a cycle.
two paths between R_{1} and R_{j} in the cycle (see Fig.4.1(b)).

The following proposition, which can be proved directly from Proposition 2.1, is a basis of method (1). Method (2) is based on Proposition 2.1.
[Proposition 4.1] Let q be a simple cyclic query consisting of n relations $R_{1}, R_{2}, \ldots, R_{n}$ (Let us assume that the qual graph G_{q} consists of a cycle $\left.R_{1}-R_{2} \ldots-R_{n-1}-R_{n}-R_{1}.\right)$. A tuple $t_{i}\left(\in R_{i}\right)$ is contained in the partial solution of R_{i} w.r.t. q iff there exist tuples $t_{1}\left(\epsilon R_{1}\right)$ and $t_{n}\left(\epsilon R_{n}\right)$ such that
(i) t_{i} joins with t_{1} along the path $\left\langle R_{i}, R_{i-1}, \ldots, R_{2}, R_{1}\right\rangle$ in G_{q},
(ii) t_{i} joins with t_{n} along the path $\left\langle R_{1}, R_{i+1}, \ldots, R_{n-1}, R_{n}\right\rangle$ in G_{q}, and
(iii) $t_{1}<C_{1 n}>t_{n}$, where $C_{1 n}$ is the conjunction of join clauses defined between R_{1} and R_{n} in q.

Section 4.1 explains the basic idea of method (1) using simple 0-doublet queries as examples. The definition of generalized semijoins is given in Section 4.2. Query processing strategies based on methods (1) and (2) for simple weak 1-doublet queries are formally given in Sections 4.3 and 4.4 , respectively. The extension for general weak 1-doublet queries is discussed in Section 4.5.

4.1 Basic Consideration on Processing 0-doublet Queries
 Consider a simple 0-doublet query whose qual graph is shown in Fig.4.2. The following procedure gives the partial solution of R_{1}.

[Procedure 4.1] A Basic Procedure to Compute the Partial Solution of R_{i}

Fig.4.2 A simple 0-doublet query.
I. Computation of R_{i}^{\prime}, which shows the correspondence between tuples in R_{i} and $B_{1}-$ values.

$$
\begin{aligned}
& (1-1) R_{j}^{\prime}=R_{1} . \\
& \text { (1-2) Repeat the step }(1-3) \text { for } j=1,2, \ldots, i-1 \text {. } \\
& \text { (1-3) } R_{j+1}^{\prime}=R_{j+1} \bigotimes_{j+1} \theta_{j} A_{j} R_{j}^{\prime}\left[A_{j} B_{1}\right] .
\end{aligned}
$$

II. Computation of R_{i+1}^{1}, which shows the correspondence between tuples in R_{i+1} and $A_{n}-$ values.
(2-1) $R_{n}^{\prime \prime}=R_{n}$.
(2-2) Repeat the step (2-3) for $h=n, n-1, \ldots, i+2$.
(2-3) $R_{h-1}^{\prime \prime}=R_{h}^{\prime \prime}\left[A_{n} B_{h}\right]_{B_{h}} \bigotimes_{h-1} A_{h-1}{ }_{R_{h-1}}$.
III. Computation of $R_{i}^{\prime \prime \prime}$, which shows the correspondence between tuples in R_{i} and $A_{n}-$ values.
(3-1) $R_{i}^{\prime \prime \prime}=R_{i+1}^{\prime \prime}\left[A_{n} B_{i+1}\right] \underset{B_{i+1} \theta_{i} A_{i}}{R_{i}^{\prime}}$.
IV. Computation of the partial solution.
(4-1) $\left(\sigma_{B_{1} \theta_{n} A_{n}}\left(R_{i}^{\prime \prime \prime}\right)\right)\left[R_{i}\right]$
Let us denote the set of tuples t_{1} in R_{1} (t_{n} in R_{n}, resp.) which satisfy the condition (i) ((ii), resp.) in Proposition 4.1 for a given tuple $t_{i}(\epsilon$ R_{i}) as $R_{1}\left(t_{i}\right)\left(R_{n}\left(t_{i}\right)\right.$, resp.). Executing the steps I, II and III of the procedure shown above, we can obtain $R_{i}^{\prime \prime \prime}$, which is the set of tuples t_{i} together with the corresponding $\left(R_{1}\left(t_{i}\right)\right)\left[B_{1}\right]$ and $\left(R_{n}\left(t_{i}\right)\right)\left[A_{n}\right]$ value sets. Comparing the both value sets under the condition of $R_{1} \cdot B_{1} \theta_{n} R_{n} \cdot A_{n}$ at the step IV, the condition (iii) of Proposition 4.1
is tested and the partial solution of R_{i} can be obtained.

If θ_{n} is an inequality operator, we can reduce the cost of operations without changing the final result. The cost of time-consuming operations appeared at (1-3), (2-3) and (3-1) will be reduced by removing tuples which will not affect the final result. For example, we will assume that θ_{n} is "<n. Let $b_{m}^{1}\left(t_{i}\right)$ be representing the minimum value in $\left(R_{1}\left(t_{i}\right)\right)\left[B_{1}\right]$. Also let $a_{M}^{n}\left(t_{i}\right)$ be representing the maximum value in $\left(R_{n}\left(t_{i}\right)\right)\left[A_{n}\right]$. A tuple $t_{i}\left(\in R_{i}\right)$ is contained in the partial solution of R_{i} iff $b_{I I}^{1}<a_{M}^{n}$ from Propositon 4.1. So, in the steps (1-3), (2-3) and (3-1), it is sufficient to obtain the tuples which is necessary for $R_{i}^{\prime \prime}$ to contain both $b_{m}^{1}\left(t_{i}\right)$ and $a_{M}^{n}\left(t_{i}\right)$ for each t_{i}. The following example illustrates this property.
[Example 4.1] Consider a 0 -doublet query, say q_{0}, of which qual graph is shown in Fig.4.3(a). If the database is in the state as shown in Fig.4.3(b), it is semi-join reduced but any relation is not its partial solution, since tuples marked with x are not in the partial

(a)

(b)

Fig.4.3 A simple 0-doublet query and a example of databases.

Singapore, August, 1984

Proceedings of the Tenth International

 Conference on Very Large Data Bases.solution. A simple method to obtain the partial solutions of, for example, R_{2} is to perform the join of three relations R_{1}, R_{2} and R_{3} under the qualification q_{0} and to project the resultant relation on R_{2}. However, not all tuples in R_{1} (or R_{3}) are necessary in the join as discussed above. For example, let us consider tuples $t_{1}=(3,100)$ and $t_{1}^{\prime}=(2,200)$ in R_{1}. Since the join clause between R_{1} and R_{2} is $R_{1} \cdot A_{1} \geq R_{2} \cdot B_{2}$, if a tuple t_{2} in R_{2} joins with t_{i}, t_{2} also joins with t_{1} along the path $R_{2}-R_{1}$. Moreover, the join clause $R_{1} \cdot B_{1}<R_{3} \cdot A_{3}$ implies that if $t_{i}<C_{13}>t_{3}$ holds for a tuple t_{3} in R_{3}, then $t_{1}<C_{13}>t_{3}$ also holds. These facts mean that whenever t_{1}^{\prime} satisfies the conditions (i) and (iii) of Proposition 4.1, t_{i} also satisfies these two conditions. Thus there is no need to consider the tuple $t_{i}^{\prime}=(2,200)$ in the join of three relations. Similarly the tuple $(4,300)$ becomes unnecessary to be considered due to the tuple $(5,300)$. The same discussion applies to R_{3}, and only two tuples $(500,40)$ and $(200,50)$ in H_{3} are necessary to be considered.

4.2 Generalized Semi-joins

Let c_{h} be a join caluse of the form $R_{i}, A_{h} \theta_{h} R_{j}, B_{h}$. For a conjunction C of join clauses $c_{1}, c_{2}, \ldots, c_{k}$ (i.e. $C=c_{1} \wedge c_{2} \wedge \ldots \wedge c_{k}$), we use the following notation.

$$
\begin{aligned}
& \text { at }\left(C, R_{i}\right) \triangleq \bigcup_{h=1}^{k}\left\{\operatorname{at}\left(c_{h}, R_{i}\right)\right\}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\} \\
& \operatorname{at}\left(C, R_{j}\right) \triangleq \bigcup_{h=1}^{k}\left\{\operatorname{at}\left(c_{h}, R_{j}\right)\right\}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}
\end{aligned}
$$

Let C be a conjunction of join clauses such that at $\left(C, R_{j}\right) \subseteq R_{j}$. A generalized semi-join of R_{i}
by R_{j} on C is denoted by $R_{i} Q R_{j}$ and defined as
$R_{i} \mathbb{C} R_{j}=R_{i} \dot{C}_{\prime} R_{j}[C]$
where C^{\prime} is the conjunction of the clauses c_{h} in C such that at $\left(c_{n}, R_{i}\right) \subseteq R_{1}$. Note that the relation scheme of $R_{i} \mathbb{C} R_{j}$ is $R_{1} \cup$ at $\left(C, R_{j}\right)$. In processing queries, it is required to replace R_{i} by $R_{i} C R_{j}$. This operation is denoted by

$$
R_{i}<-R_{i} \frac{区}{C} R_{j} .
$$

Next we will present processing algorithms for weak 1-doublet queries utilizing generalized semi-joins. We will describe our procedure by means of modification of qual graphs.

4.3 comparison of Join Attribute values of Two Adiacent Reletions
 Consider a query of which qual graph is

 shown in Fig.4.4(a). To make the notation be succinct, we will use C_{i} and L_{i} as the join clause corresponding to the edge $\left\langle R_{i \oplus 1}, R_{i}\right\rangle$ (i.e. $C_{i \oplus 1}{ }_{i}$) and its label set (i.e. $L_{i \not 1} i_{i}$), respectively ($i=1,2, \ldots, n$). As illustrated in Example 4.1, in this method join operations are repeated using only tuples which are sufficient for the testing of the condition (iii) in Proposition 4.1. In Section 4.1, we have shown procedures to obtain the partial solution of only one relation in a cycle. To obtain the partial solutions of all relations, we need to repeat the pranedures for every relation in a cycle. However, as shown in Procedure 4.1 in Section 4.1, R_{j+1}^{\prime} is obtained using R_{j}^{\prime} for $j=1,2, \ldots, n-1$ and $R_{h-1}^{\prime \prime}$ is obtained using $R_{h}^{\prime \prime}$ for $h=n, n-1, \ldots, 2$. Therefore, procedures for obtaining all partial solutions can be "piggybacked". The method is formally described as follows. First the qual graph is transformed to a tree by embedding an edge, say $\left\langle R_{n}, R_{1}\right\rangle$, into all other edges as shown in Fig.4.4(b). Then, label sets L_{i} and L_{n}^{-1} are merged as shown in Fig.4.4(c). L_{i}^{\prime} is defined as
(a)

(b)

(c)

Fig.4.4 Elimination of an edge by embedding into other edges.
follows．

$$
L_{i}^{\prime}<--L_{i} \cup L_{n}^{-1}(i=1,2, \ldots, n-1)
$$

Also let C_{i}^{\prime} be the join qualification corresponding to $L_{i}^{\prime} . \quad C_{i}^{\prime}$ can be obtained as follows．We assume that $c_{n}=c_{n}^{1} \wedge c_{n}^{2} \wedge \ldots \wedge c_{n}^{k}$ where c_{n}^{h} is a join clause $R_{1} \cdot B_{1}^{h} \theta_{n}^{h} R_{n} \cdot A_{n}^{h}$ for $h=1,2, \ldots, k$ ．
（i）$C_{i} \ll C_{i}$
（ii）for each $I_{n}^{h}=\left(\left(B_{1}^{h}, A_{n}^{h}\right), \theta_{n}^{h}\right)$ in L_{n} ，repeat the following step（iii）．
（iii）$C_{i}^{\prime}<--C_{i}^{\prime} \wedge\left(R_{i+1} \cdot A_{n}^{h}\left(\theta_{n}^{h}\right)^{-1} H_{i} \cdot B_{1}^{h}\right)$

Performing the following generalized semi－ join programs along the transformed qual graph， we can obtain the partial solutions of all relations．

$$
\begin{align*}
& \ldots, R_{n}<-\cdots R_{n_{C-1}} \mathbb{Q}_{n-1} R_{n-1} \tag{G1}
\end{align*}
$$

$$
\begin{align*}
& R_{n-1}<\cdots R_{n-1} \underbrace{区}_{C_{n-1}^{\prime}} R_{n},{ }^{R_{n-2}}<-\cdots R_{n-2}{ }_{C_{n-2}^{\prime}}^{区} R_{n-1}, \\
& \ldots, R_{1}<-\infty R_{C_{1}^{\prime}}^{\mathrm{R}_{1}} R_{2} \tag{G2}
\end{align*}
$$

By performing the generalized semi－join program （G1），we can obtain a subset of $R_{1}\left[C_{n}\right]$ with which a tuple $t_{i}\left(\in R_{i}\right)$ can join along the path $\left\langle R_{i}, R_{i-1}\right.$ ， $\ldots, R_{1}>$ ．Also，by performing the generalized semi－join program（G2），we can obtain a subset of $R_{n}\left[C_{n}\right]$ with which a tuple $t_{i}\left(\in R_{i}\right)$ can join along the path $\left\langle R_{i}, R_{i+1}, \ldots, R_{n}\right\rangle$ ．We can perform any shuffle of the programs（G1）and（G2）in practice．
［Example 4．2］For the qual graph shown in Fig．4．5（a），we can obtain the qual graph in Fig．4．5（b）by embedding the edge $\left\langle R_{5}, R_{1}\right\rangle$ into all other edges．Generalized semi－join programs corresponding to（G1）and（G2）above is visualized as Fig．4．5（c）and（d），respectively． Edge labels in Fig．4．5（c）and（d）can also be considered to represent projection qualification． The labels of the edge $\left\langle R_{1}, R_{2}\right\rangle$ in Fig．4．5（c） （resp．Fig．4．5（d）），for example，imply that $R_{1}\left[A_{1}=, B_{1}<\right]$（resp．$R_{2}\left[B_{2}=, A_{5}>\right]$ ）is necessary in the corresponding generalized semi－join in（G1） （resp．（G2））．

Proceedings of the Tenth International

 Conference on Very Large Data Bases．

Fig．4．5 Example of the embedding of an edge．

4．4 Comparison of Join Attribute Values of One

 RelationIn this section，we will describe the method to compare two different sets of join attribute values of one relation with which a tuples in another relation in a cycle joins along the two paths．From Proposition 2．1，the following proposition holds．
［Proposition 4．2］Let q be a simple cyclic query consisting of n relations $R_{1}, R_{2}, \ldots, R_{n}$（Let us assume that the qual graph G_{q} consists of a cycle $\left.R_{1}-R_{2}-\ldots-R_{n-1}-R_{n}-R_{1}.\right)$ ．A tuple $t_{i}\left(\in R_{i}\right)$ is contained in the partial solution of R_{i} w．r．t．q iff there exist tuples t_{n} and t_{n}^{\prime} both in R_{n} such that
（i）t_{i} joins with t_{n} along the path $\left\langle R_{i}, R_{i-1}, \ldots, R_{1}, R_{n}\right\rangle$ in G_{q} ，
（ii）t_{i} joins with t_{n}^{\prime} along the path $\left\langle R_{i}, R_{i+1}, \ldots, R_{n-1}, R_{n}\right\rangle$ in G_{q} ，and
（iii）for an attribute set X such that at $\left(C_{n \eta}, R_{n}\right) \leq X \leq R_{n}, t_{n}[X]=t_{n}^{\prime}[X]$ holds．
（Proof）From the conditions（i）and（iii），t_{i}
joins with also t_{n} along the path $\left\langle R_{i}, R_{i-1}\right.$, $\ldots, R_{1}, R_{n}>$ since X includes the join attribute of R_{n}. This fact and the condition (ii) prove the proposition from Proposition 2.1.

Consider again a query whose qual graph is shown in Fig.4.5(a). Let the join attribute X be A_{5}. To test whether or not a tuple t_{i} in R_{1} is in the partial solution for $1=1,2,3,4$ and 5 it is sufficient to obtain the set of A_{5}-values with which t_{i} joins along the path $\left\langle R_{i}, R_{i-1}, \ldots, R_{1}, R_{5}\right\rangle$ and the set of A_{5}-values with which t_{i} joins along the path $\left\langle R_{i}, R_{i+1}, \ldots, R_{5}\right\rangle$. The tuple t_{i} is contained in the partial solution of R_{i} iff the intersection of these two sets are non-empty. Therefore, adding a label $\left(\left(A_{5}, A_{5}\right),=\right)$ to all the edges in the qual graph (see Fig.4.6) and performing generalized semi-joins along the transformed qual graph, all the partial solutions are obtained. Thus, it is sufficient to perform the any shuffle of the following two generalized semi-join programs (G3) and (G4).

where

$$
\begin{aligned}
& C:\left(R_{2} \cdot B_{2}=R_{1} \cdot A_{1}\right) \wedge\left(R_{2} \cdot A_{5}=R_{1} \cdot A_{5}\right) \\
& C_{2}^{\prime}:\left(R_{3} \cdot B_{3} \geq R_{2} \cdot A_{2}\right) \wedge\left(R_{3} \cdot A_{5}=R_{2} \cdot A_{5}\right) \\
& C_{3}^{1}:\left(R_{4} \cdot B_{4}>R_{3} \cdot A_{3}\right) \wedge\left(R_{4} \cdot A_{5}=R_{3} \cdot A_{5}\right) \\
& C_{4}^{1}:\left(R_{5} \cdot B_{5} \leq R_{4} \cdot A_{4}\right) \wedge\left(R_{5} \cdot A_{5}=R_{4} \cdot A_{5}\right) \\
& C_{5}^{\prime}:\left(R_{1} \cdot B_{1}<R_{5} \cdot A_{5}\right) \wedge\left(R_{1} \cdot A_{5}=R_{5} \cdot A_{5}\right)
\end{aligned}
$$

Fig.4.6 Comparison of A_{5}-values by equality condition.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

In the above example, since the comparison operator corresponding to the edge $\left\langle R_{1}, R_{5}\right\rangle$ is " $<n$, if a tuple t_{i} in R_{1} joins with a tuple $t_{5}\left(\in R_{5}\right)$ such that $t_{5}\left[A_{5}\right]=a_{0}$ along the path $\left\langle R_{i}, R_{i-1}, \ldots, R_{1}, R_{5}\right\rangle, t_{i}$ joins also with any tuple $t_{5}^{\prime}\left(\epsilon R_{5}\right)$ auch that $t_{5}^{!}\left[A_{5}\right] \geq a_{0}$. Thus to know the set of A_{5}-values with which t_{i} joins along the path $\left\langle R_{i}, R_{i-1}, \ldots, R_{1}, R_{5}\right\rangle$, the information on the minimum value a_{m} in that set is sufficient. Also, let a_{M} represent the maximum value in A_{5} with which t_{i} joins along the path $\left\langle R_{i}, R_{i+1}, \ldots, R_{5}\right\rangle$. We can say that t_{i} is included in the partial solution iff $a_{m} \leq a_{M}$ (see Fig.4.7.). Therefore any shuffle of the following two generalized semi-join programs (G5) and (G6) can be used in place of (G3) and (G4).

$$
\begin{align*}
& R_{4}<--R_{4}{\underset{C}{3}}_{\mathbb{Z}}^{1} R_{3}, R_{5}<-\infty R_{5} \mathbb{C}_{4}^{!}, R_{4} \tag{G5}
\end{align*}
$$

$$
\begin{align*}
& R_{1}<-=-R_{1} \frac{\mathbb{Z}}{C_{1}^{\prime}} R_{2} \tag{G6}\\
& \text { where } \\
& C_{1}^{\prime \prime}:\left(R_{2} \cdot B_{2}=R_{1} \cdot A_{1}\right) \wedge\left(R_{2} \cdot A_{5}^{M} \geq R_{1} \cdot A_{5}^{m}\right) \\
& C_{2}^{\prime \prime}:\left(R_{3} \cdot B_{3} \geq R_{2} \cdot A_{2}\right) \wedge\left(R_{3} \cdot A_{5}^{M} \geq R_{2} \cdot A_{5}^{m}\right) \\
& C_{3}^{\prime \prime}:\left(R_{4} \cdot B_{4}>R_{3} \cdot A_{3}\right) \wedge\left(R_{4} \cdot A_{5}^{M} \geq R_{3} \cdot A_{5}^{m}\right) \\
& C_{4}^{\prime \prime}:\left(R_{5} \cdot B_{5} \leq R_{4} \cdot A_{4}\right) \wedge\left(R_{5} \cdot A_{5}^{M} \geq R_{4} \cdot A_{5}^{m}\right)
\end{align*}
$$

Fig.4.7. Tuples in R_{5} which join with t_{i}.
Singapore, August, 1984

$$
C_{5}^{\prime \prime}:\left(R_{1} \cdot B_{1}<R_{5} \cdot A_{5}\right) \Lambda\left(R_{1} \cdot A_{5}^{M} \geq R_{5} \cdot A_{5}^{m}\right)
$$

We assume that the relation R_{5} is augmented before query processing to include attributes A_{5}^{m} and A_{5}^{M} of which values are same as A_{5}. In general, given a qual graph shown in Fig.4.4(a), first transform a label l_{n}^{h} in L_{n} into a label l_{n}^{h} as shown in Table 4.1. Then add the label L_{n}^{\prime}, which is the set of $l_{n}^{h_{1}}$, to all the label sets in the qual graph as shown below.

$$
L_{i}<-\infty L_{i} \cup L_{n}^{\prime}(i=1,2, \ldots, n)
$$

After these transformations, executing generalized semi-join programs along the two directed paths $\left\langle R_{n}, R_{1}, R_{2}, \ldots, R_{n}\right\rangle$ and $\left\langle R_{n}, R_{n-1}\right.$, $\left.\ldots, R_{1}\right\rangle$ all the partial solutions can be obtained.

Table 4.1 Labels to be added.

4.5 A Strategy for Processing General Weak

 1-doublet QueriesIn this section, we will give a strategy for processing general weak 1-doublet queries using an example. The processing strategy given here is based on the same idea as presented in [KAMBY8206]. Given a cyclic qual graph G_{q}, first a spanning tree T is chosen. Next each edge e in $G_{q}-T$ is "embedded" in the edges $e_{1}, e_{2}, \ldots, e_{k}$ in T such that the addition of e to T yields a cycle consisting of $e, e_{1}, e_{2}, \ldots, e_{k}$. Then a node in G_{q} is selected as a root of T. By performing generalized semi-joins along the resultant T first from leaf to root and then from root to leaf, partial solutions of all relaions are obtained. For example, consider a query whose qual graph is shown in Fig.4.8(a). By selecting the spanning tree T shown by the bold-line edges in Fig.4.8(b), and embedding edges $e\left(\epsilon G_{q}-T\right)$ in T, a tree qual graph shown in Fig.4.8(c) is obtained. Performing generalized semi-joins along this tree just like the semi-join program UP-DOWN, all the partial solutions are obtained.

Fig.4.8 Embedding edges in a sapnning tree.

5. Conclusion

In this paper, we have presented processing algorithms for NI queries whose qual graphs contain
(1) Multiple edges,
(2) 1-doublet cycles, or
(3) 0-doublet cycles.

To handle the case (1), we have introduced multidoublet inequality semi-joins which are natural extension of ordinary (single-attribute) inequality semi-joins. Although the NJ queries processed by multi-attribute natural semi-joins are strictly characterized by tree queries [BERNG8111], the characterization of the class of queries processed by multi-attribute inequality semi-joins are not known. Since the power of multi-attribute semi-joins are strictly stronger than that of single-attribute semi-joins, some weak 1 -doublet queries can be solved using multiattribute semi-joins only.

We have obtained the following results related to this paper.
(1) Sufficient conditions for qual graphs to be processed using multi-attribute semi-joins only.
(2) Efficient procedures utilizing the property of doublets for processing 1-doublet cycles.
(3) Effective data compression methods which reduce the data transmission cost significantly in distributed databases or database machines.

Acknowledgments

The authors are grateful to Professor Shuzo Yajima and Dr. Hiroto Yasuura of Kyoto University and other members of Yajima Lab. for helprul discussions. Their heartful thanks are also due to Professor Tim Merrett of McGill University for useful comments for the presentation of this paper.

References

[BERNC8101] Bernstein,P.A. and Chiu,D.M., NUsing Semi-Joins to Solve Relational Queries", JACM, Vol.28, No.1, pp,25-40, Jan. 1981.
[BERNG7912] Bernstein,P.A. and Goodman,N., "Inequality Semi-Joins", CCA Report, No.CCA-7928, Dec.15, 1979.
[BERNG81] Bernstein, P.A. and Goodman,N., "The Power of Inequality Semijoins", Information Systems, Vol.6, No.4, pp.255-265, 1981.
[BERNG8111] Bernstein, P.A. and Goodman, N., nPower of Natural Semijoins", SIAM J. Comput., Vol.10, No.4, pp.751-771, Nov. 1981.
[KAMBY8206] Kambayashi,Y., Yoshikawa,M. and Yajima,S., "Query Processing for Distributed Databases Using Generalized Semi-Joins.", Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp.151-160, June 1982.
[KAMBY8305] Kambayashi,Y. and Yoshikawa,M., "Query Processing Utilizing Dependencies and Horizontal Decomposition", Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp.55-67, May 1983.

[^0]: Proceedings of the Tenth International Conference on Very Large Data Bases.

