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Abstract
Bernstein and Goodman showed that natural
inequality (NI) queries can be processed
efficiently by semi-joins, if there are no

multiple inequality Jjoin edges, nor cycles with
one or zero doublet, 1In this paper procedures to
handle these <cases efficiently are given.
Multiple inequality Jjoin edges can be processed
by multi-attribute inequality semi-joins. Two
procedures based on generalized semi-joins for
cyclic NI queries (with one or zero doublet) are
developed.

1. Introduction

Semi-join is a useful operation to reduce
the processing cost in distributed databases and
database machines [BERNC8101] [BERNG8111]. Its
processing power, however, is limited because not
all queries can be solved using semi-joins only.
When queries consisting of natural Jjoins of
relations (called NJ (Natural Join) queries) are
considered, queries in the class called tree
queries can be solved using semi-joins only but
the rest of queries (called cyclic queries)
cannot [BERNG8111].

We have introduced generalized semi-joins
and developed procedures for cyclic queries using
generalized semi-joins [KAMBY8206]. We have also
developed several methods to transform cyclic
queries into tree ones utilizing data
dependencies [KAMBY8305]. Using these processing
methods, eyclic queries also can be solved
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efficiently.

These results cannot be applied directly to
natural inequality (NI) queries; queries
containing inequality joins. In this paper
procedures for NI queries are presented based on
the extension of generalized semi-joins used for
NJ queries, Bernstein and Goodman showed that a
subclass of cyclic NI queries can be solved by
semi-joins only as well as tree NI queries
[BERNG7912] [BERNG81]. A special combination of
inequality specifications is said to form a
doublet. Even if there are cycles, the query is
proved to be solved by semi-joins only, when two
or more doublets are contained in each cycle.

An NI query which cannot be
Joins only satisfies one of the
conditions [BERNG7912] [BERNG81].

(1) More than one inequality, which cannot be

reduced to one inequality, is defined on a

pair of relations (existence of multiple-

inequality edges).

(2) A cycle containing exactly
exists (1-doublet query).

(3) A cycle containing no doublets exists

(0-doublet query).

Queries of type (1) are shown to be handled by
multi-attribute inequality semi-joins to be
introduced in this paper. By extending the
concept of generalized semi-joins for NJ queries,

solved by semi-
following three

one doublet

any cyclic NI query is shown to be solved. The
method is applied to O-doublet queries and 1-
doublet ‘ queries.

Generalized semi-joins and processing

algorithms wutilizing them introduced in this
paper include those in [KAMBY8206] as special
cases,

In Section 2, basi¢ definitions and
badkground are given, In Section 3, multi-
attribute inequality semi-joins are defined. A
query with multiple inequality edges is processed
by this kind of semi-join, In Section 4,
procedures for c¢yclic NI queries are presented.
These procedures utilize generalized cemi-joins
and multi-attribute inequality semi~ joins.
Section 5 is the conclusion.
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kground

A relation scheme
of attributes

and a relation consisting
are denoted by

R(A.],Az,o-o,Am) R(A1,A2,oo-’Am),

respectively, If the specification of the set of
attributes is not necessary, the notations R and
R are used. An attribute A in a relation R is
denoted by R.A. A collection of relation schemes
is called a database scheme. A collection of
relations corresponding to the database scheme is
called a database and is denoted by
D(R1,R2,...,Rn).

Let A and B be attributes of R, and X be an
attribute set such that X < R, Let t be a tuple
of a relation R. The following notations of the
relational algebra will be used,

A1’A2"..’Am
and

The projection of ¢t on X: t[X]
The projection of R on X: R[X] = {t[X]]|t &R}
8-restriction: (TABBR = {ti{t[Al#t[B], teR}

(Here, # is one of the comparison operators
=, #, <, >, £ and )

A guery Q, which consists of a qualification
q and a target attribute set TA, maps a database
D(R1,R2,...,Rn) into the following relation,

(G'q(R1 X R2 X yeoey X Rn))[TA]

We call GQ(R1 X By X .00y X Rn)[Bi] a
Dartial solution of R, (with repect to q). 1In

this paper, we will develop procedures for joins
which will obtain partial solutions for all
relations involved in the query. Since target
attribute sets are not required to be considered
in our problem, we will use q to represent a
query., If the complete result of the join or its
projection on TA is required, our procedures to
obtain the partial solutions can be used as a
preprocessing step. Throughout this paper, we
will assume for simplicity that all partial
solutions are non-empty.

Let A and B be attributes of Bi and R

J
(i#j), respectively. A qualification which is a
conjunction of clauses of the form

Ri.ABRj.B
(bei{=,<,>,£,2}) is called an jinequality-join
gualification. Note that we do not consider "™
as a comparison operator in the following
discussion,

An inequality-join qualification can be

expressed by a join graph GJ(VJ,EJ) where
VJ = {Ri.Al ACIH, i=1,2,.0.,0}
EJE VJx VJ

GJ is a directed graph such that an edge <Ri.A,

RJ.B> represents a clause Ri'A > Rj.B (Ri.A >
RJ.B) in q. A clause Ri.A = RJ.B is represented
.B, Ri.A>.

by a pair of edges <Ri.A, Rj.B> and <Rj
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Therefore, two nodes Rk.c and R,.D are in the

1

same strongly connected component in GJ iff the
clause Rk.C = Rl'D cah be implied by q. If two
nodes from the same relation, say Ri’A and Ri'B’

are in the same
GJ,
restriction operation @~

strongly connected component in

we can merge them by performing the

-BRi and replacing all
occurrences of one attribute name (say Ri.B,) in

q by another attribute name (Ri.A). Repeating

these preprocessing, we can obtain a
qualification such that there exists at most one
node from a relation in each strongly connected
component in the join graph, We will consider
only such qualifications hereafter,

An inequality-join qualification satisfying
the following condition is called patural:

"There exists at most one node from a relation
in each weakly connected component in GJ."

The word
attributes properly,
clauses in q be
R,.A&R_.A,

1 J

"natural® is used because by renaming
we can ensure that all
represented in the form

Queries which have inequality-join qualifications

(natural inequality-join qualifications, resp.)
are called inequality-join queries (NI (natural

inequality) gqueries, resp.). NI queries which
consist of only clauses having "=" as comparison
operators are called NJ (natural-join) queries.
We will consider only NI queries in this paper,
since most of inequality-join queries can be
transformed into a natural one by proper renaming
of attributes.

1 2 k
let {°ij’°ij""’°ij

}
set of clauses defined between Ri and Rj

Given an NI query q,
be the
in q. Cij is1defi;ed as foliows.
C. =cij/\cij/\.../\0ij

i
A gqual graph Gq:(v, E, L) corresponding to
an NI query q is a labeled undirected graph. V is
in V corresponds to
E is the set of

a set of nodes, where \
relation Ri referred to in q.
edges and L is the set of labels for E. Two nodes
vi and vJ
connected by an edge iff there is a clause

corresponding to Ri and Rj are

1 2 k
Ri.AORj.B in q. If Cij is eijAcijA'”Acij’
1,2 k
labels lij’lij""’lij are attached to the edge

h h
<Ri’ Rj>‘ Each label 1ij corresponds to C

3

h h
(h=1,2,...,k). Let oy be Ri.AB Rj.B. ° is used
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to represent the clause Ry.B 9'1R1.A, where 51
represents the inverse of § ("<", "C" and "=" are
the inverse of ">", my® and ®="  prespectively.),
We use the following notation. ((4,B),<)

@
6

? ?
HEREEUCIERE (o Co—C—®
at(ciJ'Ri) = at(cji,R Y= A
at(cij Ry) = at(sy,Ry) = B ((4,B),9 _((B,C),> i(A,B),z) i(B,C).()
°p(°1,j) =0 @ @ @ | @
op(ch ) = 6r1
i ((4,B),8 ((B,C),2) (4,B),2) ((B,C),S
The label lg 3 is defined as follows, @
h h h h
1. . = ({at(c,,,R,), at(e,.,R.,)), op(c,.))
13 137 1377977 T Fig.2.1 Doublets.
= ((4A, B) 8)
Also (l ) 1, the inverse of l: is defined query for which the qual graph has cycles, For
f 13 J example, a query having the qual graph shown in
as 0110"5 h Fig.2.2(a) is a tree NI query because it can be
(1 ) i equivalently transformed into the one shown in
iJ j -1 Fig.2.2(b). A cycle in a qual graph is called an
= ((at(c J’Rd)' at(e J,R ), (op(c N n=doublet cvcle if it contains exactly n
1 iJ doublets., If a qual graph contains m cycles each
= ((B,A), 8 ) , of which is an 1J-doub1et cycle (J=1,2,...,m), it
Lij is used to denote the label set {11‘1,11‘1 is called a k=doublet qual graph for k = min{i1;
""'lij} corresponding to the edge <R1’ RJ>. 12,...,im}. As shown later, k-doublet cycles in a
qual graph for small k are difficult to process
If a qual graph is not connected, it is in general, Therefore, "k-doublet qual graph"

sufficient to process each connected component
separately. Thus we will assume that a qual graph
is connected.

An edge e=<Ri, RJ> of a qual graph Gq is
called a gultiple edge iff {Lijl>1, otherwise it

is called a gimple edge. Let e J=<R1'RJ> and
eJk=<RJ,R > be simple edges of G . A pair of
edges eij and eJk is called a gguplgg iff
(1) at(cij,RJ) = at(cjk,RJ), and
(i1) °p(°1j) and op(ch) are inequalities of
opposite direction; e.g. one is "<" or "("
and the other is "™>" or ")" (see Fig.2.1.).
Two Qqueries are said to be equivalent iff
both will produce the same result for any

database state. Two qual graphs are equivalent
iff the corresponding queries are equivalent,

An NJ query is called a iree guery if it is
equivalent to a query whose qual graph is
circuit-free; otherwise it is called cgyclic
[BERNG8111]. There are tree queries whose qual
graphs have cycles [BERNG8111]. All partial
solutions for a tree query can be obtained by
semi-Jjoins only.

NI queries are also classified into tree and
cyclie queries. Note that there exists a tree NI
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means that the most intractable cycle in the qual
graph is a k-doublet one. If a cyclic NI query is

equivalent to s queries each of which has a kh-

doublet qual graph (h=1,2,...,8), it is called an
n=doublet query for n = max{k,,k,,...,k.}. The

maximum value is taken for n because DBMSs, in
general, optimize a given query and therefore the
intractability of a cyclic query can be measured
by the most tractable one in the set of
equivalent queries, n-doublet queries are called
multi-doublet gueries or weak 1-doublet queries
when n22 or n<i, respectively. A cyclic NI query
whose qual graph consists of exactly one cycle is

called a gsimple cvclic query. If it bas n
doublets, it is called a .

A tree NI query not satisfying the following
condition (1) can be processed by semi-joins,
Besides such tree queries, all partial solutions
of a cyclic query not satisfying any one of the

(a)

(b)

Fig.2.2 Equivalent qual graphs.
Singapore, August, 1984



following three conditions can be obtained by
semi-joins only [BERNG7912] [BERNG81].

(1) There exists a multiple edge which cannot be
reduced to a simple edge.
(2) A 1=-doublet query
(3) A O-doublet query
Procedures for the case (1) are given in
Section 3, and Section 4 is dedicated to the
cases (2) and (3).

If two tuples t (é-R ) and tj(éRj) satisfy

j (; 5! they are denoted by t <Cij>tJ
(ti<°ij>tj’ resp.). Let p = <R1=R10’R11""’Rik-1’
Also let X be
A tuple t €R, is

resp.),

-RJ) be a path in a qual graph.
an attribute set such as X E‘Bj'

i1
said to _join with a tuple t.[x] (tjéRj) along p
iff there exist tuples tih ih (h=1,2,0.4,k=1)
such that t, h—1<ch 1 vt in (h=1,2,...,k), A&s a

special case, we will say that ti(é Ri) joins with
ti[X] along the path <Ri> for X such that X‘E'Bi
and X £ &.
join with any ti[x]
path <Ri>'

Let C be a conjunction of

clauses defined

between the relations Ri and Rj’ The Joip of Ri
and R
J

on C is denoted by R, P4 R, and defined as
follows.
R

1Cj
Rivg Ry = {tyt 1t eR,
Let ¢ (for example, Ri A8 RJ.B)

defined between the relations Ri and Hj‘ A
(single-attribute) semi-join of Ri by Rj on c is
denoted by R D< R, (or R X R,) and defined as

3 1pep J
RO By = (RBP4 R)R]

We will also assume that ti does not
such that ti # ti along the

t.6R ti<c>tj}

be a clause

J
A sequence of semi-joins is called a semi-join
Rprogram.
If no further application of semi-join

changes the contents of a database, that database

is called semi~join reduced.

In [BERNG7912], a (single-attribute) semi-
join program for processing a tree query or a
multi-doublet query with no multiple edge is
shown, The program is summarized in Procedure
2.1. Before giving the procedure, the Acyclicity
Property must be defined.

[Acyclicity Property]

Let Gq be a qual graph, Gq is said to satisfy the

Acyclicity Property iff there exists a proper
assigmment of directions on edges in Gq so that

the resulting digraph, designated by G

DOWN’
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satisfies the following two conditions.
(1) GpouN
(ii) A pair of edges having the same destination

in GDOWN is a doublet,

is acyclic.

Procedure 2.1: Processing tree queries and multi-
doublet queries with no multiple edge [BERNG7912]

[BERNG81]
Let Gq

qual graph, resp.) which is equivalent to a given
tree (multi-doublet, resp.) query., For Gq, there

since G
q

be a tree qual graph (multi-doublet

exists a directed acyclic graph GDOWN
Acyclicity Property (G is

satisfies the DOWN

obtained by applying a modified depth first
search algorithm to Gq). The directed edge <Ri’
Rj> of GDOWN with label ((A,B), #) is interpreted
as a semi-join operation

R b< R..
Jpgty ¥

GDOWN as a whole 1is interpreted as a semi-join

program consisting of semi-joins represented by
its edges, ordered by any topological sort. This

semi-join program is called DOWN. GUP is defined

analogously with all edges of G reversed, and

DOWN
represents a semi-join program UP, By performing
UP¢DOWN, the semi-join program UP followed by
DOWN, all the partial solutions w.r.t, q are
obtained,

[Example 2.1] Consider a multi-doublet query
whose qual graph is shown in Fig.2.3(a).

Selecting a directed acyeclic graph GDOHN as shown

in Fig.2.3(b), a semi-join program UP is obtained
as

R X R3, R, X R

, By X R
2c5p 2

R, 1°4 R,
1458 YEsp

1
37 T
Also a semi-join program DOWN is as follows.

RZX R1; R

X R,, R, X R,, R, KX R
B<A 2" 7y 1

D<C F<A 3p¢e

(%)
@ (%)
Cs)

{b) G

3

(a) a qual graph

DOWN

Fig.2.3 An example of multi-doublet query,
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I\ Query ! | Cyelic ] {
| structure | Tree | 1 Semi-join |
| Type 1 |  Multi-doublet | Weak 1-doublet 1 procedure
| of edges l | | i |
Pr——— ' :: |
Simple ! ] Single-attribute |
| edges only ! CD | C> | ICS || inequality semi-join |
| | | | I |
| Multiple ! 133 | ! |1 Multi-attribute !
| edges ! ! | ZCS {! inequality semi-join |
| permitted H ! ZCS | !l (Section 3) }
| | | } I |
] | | I |
! Query ! All partial solutions | All partial solutions i H
| processing | can be obtained by ! 2an be obtained by i |
| prcedure ! semi-joins, | generalized H |
| | | I }

semi-joins (Section 4).

o: The results in [BERNG7912] [BERNG81]

A: The results by this paper

Fig.2.4 Problems for NI query processing.

The following proposition holds directly
from the definition of partial solution.

[Proposition 2.1]
consisting of n relations R1,R2,...,Rn

Let ¢ be a simple cyclic query
(Let us
assume that the qual graph Gq consists of a cycle
R1-R2-...-Rn_1-Rn-R1.). A tuple ti(é Ri) is
contained in the partial solution of Ri q

iff there exists a relation R,(i#j) and a tuple

w.r.t.

J
tJ(é R;j) such that
(1) ti joins with tj along the path
<R1’R101”"’RJO1'RJ> in Gq, and
(11) ti joins with tj along the path
<Ri’R101""’RJO1’Rj> in Gq.

Here & and & represent addition and subtraction
of modulo n, respectively.

In the case of Example 2.1, applying the
semi-join program UP<DOWN, a semi-join reduced
database is obtained. In that database, any tuple
in Ri (1=1,2,4) joins with the tuple t3 in R3
such that t3[D] s min(R3[D]) along both of the
two paths between R1 and R3.

RJ (j=2,3,4) Joins with the tuple t1 in R1 such
that t1[A] = max(R1[A]) along both of the two

Thus, from Proposition

Also, any tuple in

paths between R\j and R

2.1 partial
obtained,
The reason why all partial solutions of a
multi-doublet query with no multiple edge can be
obtained by =semi-joins only is explained
intuitively because the above discussion holds
for every cycle in a multi-doublet qual graph.

1.
solutions of all relations are
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Fig.2.4 summarizes the results by Bernstein
and Goodman [BERNG7912] [BERNG81] (denoted by o)
and the results by this paper (denoted bya).
Bernstein and Goodman handled queries which can
be processed by single-attribute inequality semi-
Joins. We generalized the result to utilize
multi-attribute semi-joins and the case (1) above

is solved. For weak 1=-doublet queries an
extension 1is made to the definition of
generalized semi-joins in [KAMBY8206].

- b - S d

(-]

In this section, we will introduce multi-

attribute semi-joins, whiech are a natural
extension of single~attribute ones, for
processing multiple edges in a qual graph. The
notion of inequality projection is also
introduced to clarify the idea of multi-attribute
semi-~joins,

First we will give an example to illustrate
the situation that a multiple edge in a qual
graph cannot be processed by single-attribute
semi~joins only. Let us consider a multiple-edge
shown in Fig.3.1(a). The database shown in
Fig.3.1(b) can be easily verified to be (single-
attribute) semi-join reduced; therefore further
applications of any single-attribute semi-join do
not change the database. The relation R1,

however, is not the partial solution since the
tuple (2,2) does not Jjoin with any tuple in R2.

Such a situation arises because single-attribute
semi-joins c¢an check whether a tuple 4in one
relation Jjoins with tuples in other relations
only with respect to one Join attribute each
time, Therefore, the multiple edge shown in
Fig.3.1(a) can be considered to be equivalent to
the O0O=-doublet cycle shown in Fig.3.2 if only
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Fig.3.1 A multiple edge which cannot be processed
by single-attribute semi-joins only.

((A,C),<)

G ®

((B,D),2)

Fig.3.2 A O-doublet cycle which is equivalent
to the multiple edge in Fig.3.1(a).

single~attribute semi-joins are considered. To
check the joinability of tuples on more than one
Jjoin attributes simultaneously, multi-attribute
semi-joins defined below are required.

Let C be a conjunction of join clauses
c1,02,...,ck defined between relations Ri and RJ.

A (multi-attribute) semi-join of R, by Rj on C is
denoted by Rip( Rj and is defined as follows,
c
Ribé Rj = (Ribg RJ)[B:I.]

To realize a single attribute semi-join, say
Rib( R,, not all join attribute values of Rj are

neéggsary but it is sufficient to know the
information only about the minimum value of Rj's

join attribute (i.e. min(RJ[B])). For multi-

attribute semi-joins, we only need to consider
minimal tuples in the partial order defined by
the projection qualification defined below.

collection of

Let A1,A2,...,Ak be a

attributes, and 6“, 92,..., 9k be a corresponding

collection of comparison operators. We call
(A,0,+8,8,,...,4,6,) a projection qualification.

Let t and t' be tuples defined on the set of

attributes inecluding A1,A2,...,Ak. We say that t
- t

is (A1&1,A202,...,Ak9k) smaller than t' under the

partial order*) defined by the projection

qualification iff
k )
A, (810,80 D
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holds. (A101, AZGE,...,Aka)-minimal tuples can

also be defined in the partial order, Using this
notion we will define inequality projection,
which i1s an extension of the ordinary projection
operation, as follows,

R[A1B1 ,A26’

2,.0.,Akak]
= {téR[A1,A2,...,Ak]I t is (A181,A282,...,Ak9k)-
minimal in R[A1,R2,...,Ak]}

R[A1 91,A2 62,...,Ak9k] is called an inequality
projection of R on A191,A292,...,Ak0k.

[Example 3.1] Consider a relation R shown in
Fig.3.3(a). An inequality projection R[A=,C>] can
be obtained by first taking a GROUP-BY[A]
operation to the ordinary projection of R on AC
(see Fig.3.3(b)), and by picking up only maximum
C-values in each group. (see Fig.3.3(c).)
R[B>,C<], which is another example of an
inequality projection of R, is a set of (B>,CQ)-
minimal tuples in R (Fig.3.3(d) shows the Hasse
diagram of the partial order, where e shows a
minimal tuple. The projected relation is given in

Fig.3.3(e).).

R Cc
1A}l B i c : : Al C | |
e e — 30| oa——Q+——@
lal2l10] |al 10l | ‘i:\\
l a3 10} | | 251 25} 0,
tal3125] | |30 RN
lal11l30l {7572 20 9
lal 31 30 | ¢ 151 |
v {12 | 1|30} 15} O——8
v 131 20} | :
|l bl 4} 20} 10}
Lel2] 15 (®) |
el 4} 15 — 12 3 4 5
tels |30} | A ! C : (d)
—l
| a | 30}
(a) | b | 201 B 1cl
| ¢ | 30] Il
1 31 10}
| 4} 15}
(e) Iy} 20]
15130 (e)
Fig.3.3 Inequality projections,
#) Strictly speaking, if "<" or ">" exists in

{01, Boseees 0k}, the binary relation
nis (A.1 &1,Azég,...,Akﬂk)-smaller thann

is not a partial order, since it does not
satisfy reflexive law. However, even in those
cases we will ecall the binary relation as
partial order and will use the word "minimal®™
tuple to represent the tuple t such that for

1 "et -
any tuple t!' in R "t' is (A1&1,A202,...,Ak0k)
smaller than t%" does not hold.
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Let , be a Jjoin clause of the form

Ri AhGhRJ Bh

clauses °1’°2""’°k (i.e. C=c

Let C be a conjunction of join

1A czA...Ack). A
projection qualification can be represented using

a Join qualification as follows.
Ri[C] Ri[A101,A 8, ,...,Akok]

-1
R.[C] 265 1eeesBy 0 S

3 R [B 61 B
Using these notions, the multi-attribute semi-
Join Rib( RJ can be represented asa follows in

general,c which implies that only the inequality
projection of R on C is necessary to realize the
multi-attribute semi-join R, {X R

17y
R, X RJ = Ry p( R,[C]

The extension of semi-joins stated above
allows the existence of multiple edges in qual
graphs of tree queries or multi=doublet queries,
Therefore, Procedure 2.1 can be extended to the
cases where a qual graph contains multiple edges,
and all partial solutions of a tree query or
multi-doublet query can be obtained by applying
multi-doublet semi-joins only.

3. Generalized Semi-Joins and Processing Weak
J1-doublet Queries

In this section, we will introduce the
notion of generalized semi~joins, and then
utilizing them we will formalize the weak 1~
doublet query processing algorithms. Generalized
semi~joins presented in this section include the
one introduced in [KAMBY8206] as a special case
since only NJ queries are considered in
{KAMBY8206] .

To process a cycle in qual graphs of NI

queries, we need to test for each tuple ti in

each relation R, in the cycle whether ti Joins

i
with itself along the oycle or not. Let us
consider the cycle R1-RZ-...-Rn_1-RnfR1. There

are the following two basic methods for the test,

(1) [Comparison of Join Attribute Values of Two
Adjacent Relations]

Test whether or not there exists the tuple

t1(6 R1) (tn(éﬁn), resp.) with which ti

Joins along the path R1 =R ...-RZ-R1 (Ri-

R, .~...=R -Rn, and t, and tn

i+1 n-1 1
satisfy the Join clause defined between R

and Rn (see Fig.l.1(a)).

(2) [Comparison of Join Attribute Values of One
Relation]
Test whether or not there exists the tuple
tj(éRJ) (1#3) with which ti Joins along the
Proceedings of the Tenth international
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resp.),
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Vo
Vo
' R — R — R —
N == \‘m/'
| i*n | t
| | !

1 | | d
(a) (b)
Fig.4.1 Processing of a cycle.
two paths between Ri and RJ in the cycle

(see Fig.l.1(b)).

The following proposition, which can be proved
directly from Proposition 2.1, is a basis of
method (1). Method (2) is based on Proposition
2.1,

[Proposition 4.1] Let q be a simple cyclic query
consisting of n relations RysRypeees Ry (Let us
assume that the qual graph G_ consists of a cycle
R1-Rz-...-Rn_1-Bn-R1.). A tuple ti(é Ri) is
contained in the partial solution of Ri w.r.t. q

iff there exist tuples t. (éR )and t (en ) such
that

(1) t1 Jjoins with t1 along the path
<RysRy_yseeesRysRe> 40 G,

(i1) ti Joins with tn along the path
(Ri'Ri+1’.oo,Rn-1an> in Gq' and

(111) ¢t <C1 >tn, vhere C1 is the conjunction of
Join clauses defined between n1 and R in
q.

Section 4.1 explains the basic idea of

method (1) wusing simple O-doublet queries as
examples, The definition of generalized semi-~
Joins is given in Section 4.2. Query processing
strategies based on methods (1) and (2) for
simple weak 1-doublet queries are formally given
in Sections 4.3 and 4.4, respectively. The
extension for general weak 1-doublet queries is
discussed in Section 4,5.

4.1 Basic Consideration on Processing O-doublet
Queries

Consider a simple 0-doublet query whose qual
graph is shown in Fig.4.2. The following
procedure gives the partial solution of Ri'

[Procedure 4.1] A Basic Procedure to Compute the
Partial Solution of R1

Singaporoa, August, 1984



Fig.4.2 A simple O-doublet query.

I. Computation of Bi, which  shows the

correspondence between tuples in Ri and B, -

1
values,
(1-1) R! = R..
1 1

(1-2) Repeat the step (1=-3) for j=1,2,...,i-1,

(1-3) R}, . = R, bq RYA.B. 1.
J+1 J+1 373
Bia1f5hy
II. Computation of Ri11, which shows the

correspondence between tuples in R and An-

i+1

values,

(2-1) Rﬁ' = Rn.
(2-2) Repeat the step (2-3) for h=n,n-1,...,i+2.

(2-3) R'* = R''TAB ] I R .
= “h=1 h *“n h‘B B"" A he=1
h"h-1"h~1
III. Computation of Ri", which shows the
correspondence between tuples in R, and 4 -
i n
values.
- t1y - RU? ]
(3-1) R}"" = RiL[AB;,00 M Ry
Bi+1eiAi

IV. Computation of the partial solution.
(4-1) (g (R *))[R, 1]
B, O A 1 2

Let us denote the set of tuples t1 in R1 (tn in
Rn’ resp.) which satisfy the condition (1) ((ii),
esp.) in Proposition 4.1 for a given tuple t (&
Ri) as R1(ti) (Rn(ti), resp.). Executing the

steps I, iI énd IiI 6f the procedure shown above,
we can obtain R!'', which is the set of tuples t,
-~ -

together with the corresponding (R1(ti))[B1] and
(Rn(ti))LAn] value sets. Comparing the both value
sets under the condition of R,.B,&van.An at the
step IV, the condition (iii) éf ér;position 4.1

Proceedings of the Tenth International
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is tested and the partial solution of Ri can be
obtained.
If Bn is an inequality operator, we can

reduce the cost of operations without changing
the final result. The cost of time-consuming
operations appeared at (1-3), (2-3) and (3-1)
will be reduced by removing tuples which will not
affect the final result. For example, we will

assume that aﬁ is <", Let bl(t{) be representing

the mninimum value in (R1(ti))[B1]. Also let

be representing the maximum value in

partial solution

n. N
aM(ti)
(R.(t.))[A J. A tuple t,(¢R,) is contained in the
Il 4 Il 4 4 n
iff bm < 2y from
Propositon 4.1. So, in the steps (1-3), (2-3) and
(3-1), it is sufficient to obtain the tuples

of R. 1
1
which is necessary for Ri' to contain both bé(ti)

and aﬁ(t.i) for each t‘i’ The following example

illustrates this property.

[Example 4.1] Consider a O~doublet query, say q.,
of which qual graph is shown in Fig.4.3(a). gf
the database is in the state as shown in
Fig.4.3(b), it is semi-join reduced but any
relation is not its partial solution, since
tuples marked with x are not in the partial

N >
R R
((B, ,A,),<)3
11 3 ?
(a)

2 5

212

T

i 41 35

x4} 45

151 10}

R R
L A1B, | 3 a8t
i > 12
| 51 300! | 500} 40!
i 4| 300! | 400} 30!
i 31 100} | 200} 50}
x {21 2001 X | 200) 20}

(b)
Fig.4.3 A simple O~doublet query and a example

of databases.,
Singapore, August, 1984



solution. A simple method to obtain the partial
solutions of, for example, R2 is to perform the
Join of three relations R1,R2 and R3 under the
qualification qo and to project the resultant
relation on 32. However, not all tuples in R1 {or
R3) are necessary in the join as discussed above.
For example, let us consider tuples t1 = (3,100)
and t; = (2,200) in R,.  Since the join clause
between R1 and R2 is R1.A1232.Ba, if a tuple t2
in R2 Jjoins with t{ ’ t2 also joins with t1 along
the path RZ-R1' Moreover, the join clause
R1.B1<R3.A3 implies that if t{<c13>t3 holds for a
tuple t3 in R3, then t1<c >t. also holds.

13°%3 These
facts mean that whenever t; satisfies the
conditions (i) and (iii)

of Proposition 4.1, t1
also satisfies these two conditions, Thus there

is no need to consider the tuple t; = (2,200) in

the join of three relations. Similarly the tuple
(4,300) becomes unnecessary to be considered due
to the tuple (5,300). The same discussion applies
to R3, and only two tuples (500,40) and (200,50)
in R, are necessary to be considered.

3

Let , be a Join caluse of the form

Ri.AhohRJ.Bh. For a conjunction C of join clauses

Cq1CopecesCy (i.e, C=c1A c2A ves Ack), we use the

following notation.

ud

at(C,R,) h’g1{at(ch,ni)} TV

at(c,R

k
4 2 h‘;,1{111:(%,!13)} {B,4B,. .. ,B,}

Let C be a conjunction of join clauses such

that at(c,RJ) snj. A generalized semi-join of R,

(a)

by Ry on C is denoted by R1% R, and defined as
L
Ri% RJ =z Ri ' RJ[C]
where C' is the conjunction of the clauses c¢_ in

h
<
€ such that at(ch,Ri) "Bi' Note that the

relation scheme of Ri % RJ is Riv at(C,RJ). In

processing queries, it is required to replace Ri

by Ri% Rj' This operation is denoted by
-~ R K
Ri < Ri C RJ‘

Next we will present processing algorithms
for weak 1-doublet queries utilizing generalized
semi-joins, We will describe our procedure by
means of modification of qual graphs.

4.3 Comparison of Join Attribute Values of Two
Adiacent Relations

Consider a query of which qual graph is
shown in Fig.4.4(a). To make the notation be
suceinct, we will use Ci and Li as the join

clause corresponding to the edge <Rio1’Ri> (i.e.
C, .) and its label set
iel i

(i.e. L101 i)’
respectively (i=1,2,...,0). As illustrated in
Example 4,1, in this method join operations are
repeated using only tuples which are sufficient
for the testing of the condition (iii) in
Proposition 4,1, In Section 4.1, we have shown
procedures to obtain the partial solution of only
one relation in a cycle. To obtain the partial
solutions of all relations, we need to repeat the
pr~~edures for every relation in a cycle. However,

as shown in Procedure 4.1 in Section 4.1, R3+1 is

obtained using R3 for j=1,2,...,n0=1 and Rﬁl1 is

obtained using Rﬁ' for h=n,n~-1,...,2. Therefore,

procedures for obtaining all partial solutions
can be "piggybacked", The method is formally
described as follows. First the qual graph is
transformed to a tree by embedding an edge, say

<Rn,R1>, into all other edges as shown in
Fig.4.4(b). Then, label sets L, and L;1 are
merged as shown in Fig.l.li(c). Li is defined as
-1 -1
LL, - VL,
(=) 21
-1 -1
LVl L ML

(c)

Fig.4.4 Elimination of an edge by embedding into other edges.

Proceedings of the Tenth international
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follows.
-1
Li {mmm LiULn (1=1,2,...,0-1)

Also let Ci be the Join qualification
corresponding to Li. Ci can be obtained as

v 2 k
follows, Weawmetmtcn-%A%A“Jcn

h h _h h
where , is a Jjoin clause R1.B10ran.An for
h=1,2,...,k.

(1)
(1i)

HE O
Ci < Ci

h h .h h
for each ln = ((B1,An), Bn) in Ln, repeat
the following step (iii).

.B%)

h h-1
! dmmm
(ii1) €} <==- C; A (R, ,.A (8) " R,.B,

Performing the following generalized semi-
join programs along the transformed qual graph,
we can obtain the partial solutions of all
relations,

Ry <= R,E Ry, Ry <= R.ER
2 €

2)

sevwy Rn <"-- Rncg Rn-
n=~1

1 (c1)

R o Rn_1g% Rn' R

n-1 n-2 < Rn—2g§ Rp-1?
n-1 n=-2
coes By Comm 315'122 (62)

1

By performing the generalized semi-join program
(G1), we can obtain a subset of R1[CnJ with which

a tuple ti(éRi) can join along the path <Ri,R
...,R1>. Also,

semi-join program (G2), we can obtain a subset of
Hn[cn] with which a tuple ti(éRi) can join along

i-1?
by performing the generalized

the path <Ri,Ri+1,...,Rn>. We can perform any
shuffle of the prograns (G1) and (G2) in
practice,

[Example 4.2] For the qual graph shown in
Fig.4.5(a), we can obtain the qual graph in
Fig.4.5(b) by embedding the edge <R5,R1> into all

other edges. Generalized semi-join programs
corresponding to (G1) and (G2) above is
visualized as Fig.l.5(c) and (d), respectively.
Edge labels in Fig.4.5(c¢) and (d) can also be
considered to represent projection qualification.
The labels of the edge <R1,R2> in Fig.4.5(c)

(resp. Fig.4.5(d)), for example, imply that
R1[A1=,B1<] (resp. R2[BZ=,A5>]) is necessary in

the corresponding generalized semi-join in (G1)
(resp. (G2)).

Proceedings of the Tenth International
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(d)

(Labels of (c), (d) are same as (b), and are omitted.)

(e)

Fig.4.5 Example of the embedding of an edge.

ison n i € ues of One
e ion

In this section, we will describe the method
to compare two different sets of join attribute
values of one relation with which a tuples in
another relation in a cycle joins along the. two
paths. From Proposition 2.1, the following

proposition holds.
[Proposition 4.2] Let q be a simple cyclic query
consisting of n relations R1,R2,...,Rn (Let us
assume that the qual graph Gq consists of a cycle
-R. = - -R ~R..). t R is
R1 R2 cee Rn_1 Rn R1 ) A tuple i(e i)
contained in the partial solution of Ri w.r.t. q
iff there exist tuples tn and t; both in Rn such
that

(1) ti joins with tn along the path
<Ri,Ri_1,...,R1,Rn> in Gq,

(ii) ti joins with t; along the path
<Ri’Ri+1""’Rn—1’Rn> in Gq, and

(iii) for an attribute set X such that

at(C .,R) € X <SR, ¢t [X]= t}[X] holds.

(Proof) From the conditions (1) and (iii), ti
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Joins with also ta along the path <Ri’Ri-1'
...,R1,Rn> since X includes the join attribute of

Rn’ This fact and the condition (ii) prove the
proposition from Proposition 2.1.

Consider again a query whose qual graph is
shown in Fig.l4.5(a). Let the join attribute X be

A5. To test whether or not a tuple ti in Ri is in

the partial solution for 1=1,2,3,4 and 5 it is
sufficient to obtain the set of As-values with
which ti joins along the path <R1,Ri_1,...,R1,R5>

and the set of As-values with which ti Joins

along the path <Ri’R1+1"“’R5>’ The tuple ti is
1 iff the

intersection of these two sets are non-empty.
Therefore, adding a label ((AS,AS),=) to all the

edges in the qual graph (see Fig.4.6) and
performing generalized semi-joins along the
transformed qual graph, all the partial solutions
are obtained. Thus, it is sufficient to perform
the any shuffle of the following two generalized
semi-join programs (G3) and (Gi4).

contained in the partial solution of R

R, <--- 313' Rgy R, <-—- RZB'R1, R3 (e R3E'R2:
c c c
5 1 2
Ry <~-- Rug'ny Ry <--- ng,Ru (G3)
3 Y
Ru (== RI‘K'RS, R3 <-- R3KRu’ Rz {=en sz R31
c c! c!
y 3 2
Ry (== 315'32 (G%)
1
vhere C;: (RZ'BZ = R1.A1)A (RZ'AB = R1.A5)
[ Y -
Cy: (n3.33 2 Ry.A5) A (R3.A5 = R2.A5)
Te -
c3. (Ru.Bu > R3.A3)A (R .As = R3.A5)
Te -
cj: (115.135 £ Ru.Au)/\(Rs.As = Ru.AS)
| Y 3
cl: (R,.B, < RS.AS))\ (R1.A5 = Rs.As)

Fig.4.6 Comparison of

As-values by equality
condition,
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In the above example, since the comparison
operator ocorresponding to the edge <R1,R5> is

n¢n, if a tuple ti in Ri Joins with a tuple
t5(t R5) such that tS[Asl = a, along the path
<Ri,Ri_1,...,R1,R5>, ti Joins also with any tuple
té(éRs) such that t%[ASJ 2 8,. Thus to know the
set of As-values with which ti Jjoins along the
path <R1,R1_1,...,R1,R5>, the information on the
minimum value a, in that set is sufficient. Also,
let aM represent the maximum value in A5 with
which ti joins along the path <Ri,R1+1,...,R5>.
We can say that ti is included in the partial
solution iff a S_aH (see Fig.4.7.). Therefore

any shuffle of the following two generalized
semi-join programs (G5) and (G6) can be used in
place of (G3) and (GU).

R, wm~ R,‘K RS’ R2 === Raﬂ R1' R3 <=~ R, B RZ'

1 Cél C;' 3Cél
By <--- R, 1§'R3, R5 {mem RSX“Ru (G5)
c c
3 Y
R, <-— R, 5'35, Ry (== nacxnnu, R, <--- R, 63”123,
] 3 2
R1 {mem R1é§'R2 (G5)
1
where C11: (R..B. = R,.A A (R..AY > R, .AD)
1 ¢ HpeBy = Hyefy 2°f5 & Nyt
M m
C3's (Ry.By 2 Ryuhy) A(Ry.hy 2 Ry.A)
M ]
C4's (RyBy > Ro-A) A (Ry.hg > Ry.h)

M m
C"". (R5.35 < RH'AR)A(RS'AS 2 Ru.As)

-t -~
e — 1 =
” \\
rd ~
rd ~
e b Y
s A Y
’
4 \\
1
’ \
' \
' \
) '
: % !
!
1 A B
\ 5 5 /I
‘ 4
\ e // ’
N LT a 514 ’
X P R II'
‘\ . / / /// __:7’
~ VNN - ’

S SSOS N NSNS N ‘

Fig.4.7 Tuples in R_ which join with ti.
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cn

. M m
Lt (R1.B1 < RS.AS)A (R1.A5 2,R5.A5)

We assume that the relation RS is augmented
before query processing to include attributes Ag
and Ag of which values are same as A5. In
general, given a qual graph shown in Fig.4.4(a),
first transform a label 1% in L_into a label 10"
Then add the label LB'
which is the set of lz', to all the label sets in
the qual graph as shown below.

as shown in Table 4.1,

L, <==- L,UL! (i=1,2,...,n)

After these transformations, executing
generalized semi-~join programs along the two
directed paths <Rn,R1,R2,...,Rn> and <Rn,R

n~-1'
...,R1> all the partial solutions can be
obtained,
I h i h i
[ 1 ! 1 |
| A |
}((BJ.AH),=> | ““n"‘n"=’§
1
| (B0 | (8%, 0%),2) |
i
:((B,,An>,<> ; (a1, :
i
ICHINE I (A%, 80,9 |
| (B | ((Aﬁ,ﬁ),gi
Table 4.1 Labels to be added.
y o] e k
o e [<]

In this section, we will give a strategy for
processing general weak 1-doublet queries using
an example. The processing strategy given here is
based on the same idea as presented in
[KAMBY8206]. Given a cyclic qual graph Gq, first

a spanning tree T is chosen. Next each edge e in
Gq—T is "embedded" in the edges €118 500018 inT

such that the addition of e to T yields a cycle
consisting of ©,€11€5500 0180 Then a node in Gq

is selected as a root of T. By performing
generalized semi-joins along the resultant T
first from leaf to root and then from root to
leaf, partial solutions of all relaions are
obtained. For example, consider a query whose
qual graph is shown in Fig.l4.8(a). By selecting
the spanning tree T shown by the bold-line edges
in Fig.4.8(b), and embedding edges e(&Gq «T) in

T, a tree qual graph shown in Fig.4.8(c) is
obtained, Performing generalized semi-joins along
this tree Just 1like the semi-join program
UP«DOWN, all the partial solutions are obtained.
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Conference on Very Large Data Bases.

427

-1 -
L3V (Lyy) 7'V (L)

Fig.h.B Embedding edges in a sapnning tree,

5, Conclugion

In this paper, we have presented processing
algorithms for NI queries whose qual graphs
contain . :

(1) Multiple edges,

(2) 1-doublet cycles, or

(3) 0-doublet cycles.

To handle the case (1), we have introduced multi-
doublet inequality semi-joins which are natural
extension of ordinary (single-attribute)
inequality semi-joins, Although the NJ queries
processed by multi-attribute natural semi-joins
are strictly characterized by tree queries
[BERNG8111], the characterization of the class of
queries processed by multi-attribute inequality
semi~joins are not known. Since the power of
nulti-attribute semi-joins are strictly stronger
than that of single-attribute semi-joins, some
weak 1-doublet queries can be solved using multi=~
attribute semi-joins only.

We have obtained the following results
related to this paper.

(1) Sufficient conditions for qual graphs to be
processed using multi-attribute semi-joins
only.

Efficient procedures utilizing the property
of doublets for processing 1-doublet cycles.
Effective data compression methods which
reduce the data transmission = cost
significantly in distributed databases or
database machines.,

(2)
(3)
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