
Optimization of Nested Queries in a Distributed Relational Database

Guy M. L&man?, Dean Daniel& Laura M. Haast, Ruth Kistleff, Patricia G. Sehgeff

fIBM Research Laboratory, San Jose, CA 95193
jCamegie-Mellon University, P&burg, PA 15213

ABSTRACT

This paper describes how nested queries in the SQL language are
processed by R*, an experimental adaptation to the distributed
environment of the well-known centralized relational DBMS, System
R. Nested queries are queries in which a predicate references the
result of another query block (SELECT...FROM...WHERE...),
called a subquery block (subQB). SubQBs may themselves contain
one or more subQBs. Depending upon whether a subQB references
values in other query blocks, it is processed differently, as either
an Evaluate-at-Open or Evaluate-at-Application subQB type. Three
tasks comprise execution of each query block: initiation, evaluation,
and application. When the query’s tables are distributed among
multiple sites, optimization of nested queries requires determining
for each subQB: the site to perform each task, the protocols control-
ling interactions between those tasks, and the costs of each option,
so that a minimal-cost plan can be chosen. R* optimizes each query
block independently, “bottom up”, using only the cost, cardinal&y,
and result site of the subQB in the optimization of its containing
query block.

1. INTRODUCTION

One of the principal advantages of relational query languages is that
they are “closed” in themathematical sense, i.e. that the result of
a query against one or more relations (tables) is itself a relation and
referenceable in another query. Some relational query languages,
such as SQL [SQL] permit this nesting of one query within another
as a single, unified query. This nesting of queries permits the specifi-
cation of very complex queries in a structured way that aids under-
standing by the user and optimixation of the nested queries as a
unified whole. For example, the following query retrieves the names
of all employees assigned to the (presumably unique) shipping de-
partment located in Denver:

Permission to copy without fee all or port of this mater&d is granted
provided that the copies an not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publicati~ and its
date appear, and notice Is given that copying is by permission of the Very Large
Data Base Endowment. To copy othmvlse, or to republish, reqtdres a fee
and/or special pemttision from the Endowment.

Proeaeclingr of tba Tenth International
Confemnca on Very Large Data Bares.

SELECT E.NAME QB 1
FROM EMPLOYEES E
WHERE E.OEPT = (A)

(SELECT O.OEPT# QB 2
FROM DEPARTMENTS 0
WHERE O.LOCATION = 'DENVER'

AND D.NAME = 'SHIPPING' 1; l

Each SELECT...FROM... WHERE... sequence is called a query bluck
(hereafter abbreviated QB). Query blocks are numbered in the order
in which they are specified, and are referred to by number throughout
this paper. The QB within the parentheses in (A) above (QB 2)
returns a single DEPT# of DEPARTMENTS that has LOCATION
= ‘DENVER’ and NAME = ‘SHIPPING’, and this (single) value
is then substituted as though it were a literal for the right-hand side
of the E.DEPT predicate that will be used to test each instance of
the EMPLOYEES table. While this same query may be expressed
without nested queries as:

SELECT E.NAME QB 1
FROM EMPLOYEES E, DEPARTMENTS D (B)
WHERE E.DEPT = D.DEPT#

AND D.LOCATION = 'DENVER'
AND D.NAME = 'SHIPPING';

not all nested.queries may be so transformed without changing the
semantics that are implicit in the nested query structure, and it may
not be optimal to do so. (e.g., evaluate-at-open QBs need be evaluat-
ed less often, as discussed in Section “2.2. Types of Nested Queries“
below). In addition, the nested form is often easier for the user to
formulate and to understand. FinalIy. we wished to maintain compati-
bility in R* with as much of System R’s SQL as possible. It was
for these reasons that we implemented nested queries in R*.

There has been very little discussion of nested queries in the literature
on query optimization, and virtually no discussion on nested query
optimization for distributed databases (e.g., [EPST 781, [YAO 791,
[EPST 801, [NGUY SO], [BERN 811, [CHU 82],~@AMB 821, [KERS
821, [APER 831, [U-IAN 831, [YU 831, etc.). Selinger [SELI 791
discusses the internal processing of nested queries in the (centralized)
DBMS System R, particularly the order of execution of QBs within
a nested query, and how values are passed between QBs. Only Rim
[KIM 821 addresses the optimization of nested queries. His goal
is to transform nested queries into a single QB involving joins, as
was done in Examples (A) and (B) above, in order to utilize existing
join optimization techniques for a single-site database. However, he

1 Table qualifiers are. added to column names in the examples for clarity only: they
are required io SQL only to resolve ambiguity. Similarly, indentation of QBs is
not required but done here only for readability.

Singapom, August, 1984

403

does not consider the consequences of these transformations when
tables that are involved in the query are stored in different databases.

This paper discumes the optimtxation of d&f&& nested queries
in the distributed database management system R*, a prototype
distributed DBMS that is being developed and implemented at JBIvf
San Jose Research Laboratory [HAAS 82, WJLL 82, LOHM 841.
The terminology, types, and execution tasks of nested queries are
introduced in Section 2. In Section 3, the problems of optimixmg
nested queries against a distributed database are contrasted with
those of centralized databases. Se&on 4 provides a detailed deacrip-
tion of how sites are selected for the three major tasks in nested
query processing. The lower-level protocols between pmcemes per-
forming these tasks, and the cost estimates of each, are presented
in Section 5. Section 6 suggests some further refinements to mmimixe
the traffic between sites, for certain types of distributed nested
queries. Section 7 discusses some difficulties encountered while
implementin nested queries in R*. Section 8 concludes with a
summary of the current status of, and future plans for, the R*
optimizer.

To avoid lengthy reviews, we assume that the reader is familiar with
the relational database model, the relational query language SQL
[SQL], and System R [ASTR 76, BLAS 81, CHAM 81b]. As in
System R, query compilation -ofwhichoptimixationisapart-
is essential to efficient R+ execution of SQL queries that are embed-
ded iu an application program [CHAM 81a]. The R* optimizer has
been adapted from the System R opthnixu [SBLJ 791 to permit tables
referenced in a single query to reside at distinct sites. And as in
System R, for each QB in the query, the optimixer enumerates all
“reasonable” combinations of &emative access paths to an individu-
al table (e.g., via an index scan or relation scan) and join methods
(i.e., nested-loop and merge join), incrementally adding tables and
permuting the order in which tables are joined white avoiding joins
that require a Cartesian product. Intermediate alternatives that
produce identical rest& (i.e., the same set of tuples at the same
siteinthesameorder)ancom~,andonly~onewithminimal
coat is retained ILOHM 84). In R*, costs have been extended to
include a linear combination of the number of inter-site messages
and the length of inter-site messages, as well as the System R cost
components of CPU (number of instrWWns executed) and I/O
(pagcsacxased)[DANI82,ulHM 841. Includingslteprotwiq
costs as well as inter-site communfcation costs has been justifii
bad upon an analysis of the relative costs of actual communications,
disk, and CPU resources consumed for typical queries [SEW 801,
and distinguishes R* optimixation from most other distributed data-
base optimizers [LOHM 841.

Examples used to illustrate this paper are drawn from the folIowing
simplifii database of three tables:

EHPLOYEES(EHP#,NAHE,SAL,MGR,DEPT,HIREDATE,J08#)
DEPARTMENTS(DEPT#,LOCATIDN,NAHE,MANAGER)
JOBS1 JDB#,TITLE 1

Bach employee has a (unique) identifying employee number. a name,
salary, the employee number of his manager, the (unique) identifying
number of his department, his date of hire, and the (unique) munber
of his job. Bach department has a (unique) muuber, location, name,
and the employee number of its manager. Bach job classification
has a (unique) number and name associatul wltb it.

Pmcoodlnga of ttm Tontb tntemattonal
Conferenw on Voty Lerge Data Bnae.

2. NESTED QUERIES

2.1. Nomenclature

The fundamental syntactic shuctum 0ftheSQLquerylanguageis
the query block (hereafter abbreviated as QB):

SELECT select-list
FROM frm-list

<WHERE predicate,

The SBLECT-list is a list of expressions fnvolvlng colmnns of tables
that are contained in the PROM-list, and the optional predicate
contains one or more simple Boolean predicates. A us&d pm&ate
is a simple predicate which takes any one of the fo8owing three
forms:

col-expr DP query-block
EXISTS query-block
NOT EXISTS query-block

where “co1-expr” is an expmsslon involving xero or more a&unns,
and OP may be a scalar comparison operator (=, -=, <, cr. >,
>=), a set membership operator (IN, NOT IN), or a set comparison
operator (OP ALL or OP ANY, where OP is a scalar comparison
operator).’ Scafar comparison operators requfre that the query-block
evaluates to a single value, whereas set operators allow the query-
block to return one or more values [SQL]. A query containing one
ormorenestedprcdicattsisrefemdtoasaneded~,andthe
QBinthepredicateiscaUeda~hbck(~B)orn&aiquwy
hbckofthecontainingorparen@Bwhosepredicatefotmedthe
nesting.2

A subQB may itseff have nested predicates, so that QBs may he
nested to a (theoretica8y) arbitrary level. Also, a QB may have
several subQBs, but only one parentQB. Hence the
parentQB/subQB relationship forms a tree, the root of which is the
fii QB. The fii QB and all of its descendant subQBs win be
referred to coUectively as one query.

2.2. Types of Nested Queries

IfasubaBcontainsa~e~~initspndicatetoacohunnfrom
some table in the PROM-list of one of its ancestor QBs, then it is
saidtobe- tothatanceatmbythatcolumn. ThesubQB
must be re-evaluated for each candidate value of the correlated
UWnllintheamxstor QB. A subQB that is corr&M&
parentQB is referred to as an ev&a+ata
btxause the subQB must be newly evaluated for each application
of the predicate in the parentQB that contains that subQB. Re-
evaluation is necemary because the correlation changes the results
of the subQB. This re-evaluation must be done before the correlated
subQB’s parentQB predicate can be tested for acceptance or rejection
of the candidate tuple [SW 791. For example, cons&r the follow-
ing query to retrieve all employees who work in Denver and are
managers of their department:

shgapore,August, 1984

SELECT E.NAME QB 1
FROM EMPLOYEES E
WHERE E.DEPT IN

(SELECT D,DEPT# QB 2 ('I
FROM DEPARTMENTS D
WHERE D.LOCATION = 'DENVER'
AND D.MANAGER = E.EMP# 1;

For each candidate row of the EMPLOYEES table, the EMP# value
is used for evaluating QB 2. The result is a set of DEPARTMENTS
that is then used to test the “E.DEPT IN” predicate.

If, on the other hand, a subQB and all of its descendant QBs are
not correlated to any tables in the FROM-list of its parentQB, then
it is called an evahute-at-OPEN (EAO) subQB, because absence
of references to values from its parentQB’s tables permit it to be
evaluated at the time of OPEN (when it begins processing) of its
parentQB or one of its ancestor QBs. For example, suppose the
correlating predicate (DMANAGER = E.EMP#) in query (C)
above were removed:

SELECT E.NAME QB 1
FROM EMPLOYEES E
WHERE E.DEPT IN (D)

(SELECT D.DEPT# QB 2
FROM DEPARTMENTS 0
WHERE D.LOCATION = 'DENVER');

QB 2 (on DEPARTMENTS) can be evaluated once upon OPEN
of QB 1 (on EMPLOYEES), and the resulting set of department
numbers (DEPT#) can be stored temporarily for use in evaluating
the nested predicate of QB 1 for each EMPLOYEE.

If a QB, J. is correlated to an ancestor QB other than its hnmedlate
parentQB, i.e. is separated from the QB to which it is correlated
by one or more intermediate QBs, then QB J may be evaluated-
at-OPEN of the “highest” (in terms of ancestry) of the intermediate
QBs. For example:

SELECT E.NAME QB 1
FROM EMPLOYEES E
WHERE E.SAL >

(SELECT AVG(F.SAL) QB 2
FROM EMPLOYEES F (E)
WHERE F.DEPT IN

';;b:CT D.DEPT# QB 3
DEPARTMENTS D

WHERE D.LDCATION = 'DENVER'
AND D.MANAGER = E.EMP# 1 1;

Here evaluation of the last QB (QB 3) requires a specific value for
E.EMP# (from the EMPLOYEES table of QB 1). Since QB 3
contains no references to any tables in QB 2, it is evaluated once
for each new QB 1 candidate tuple from EMPLOYEES, but not
for every QB 2 candidate tuple from EMPLOYEES. So QB 3 is
correlated to QB 1 by column E.EMP#, but is an EAO QB because
it is evaluated at OPEN time of processing QB 2.

A QB, J, acquires the correlations of all of its subQBs, even if they
are evaluated at QB J’s OPEN, because those correlations change
the value of some of QB J’s predicates (those containing the correlat-
ed subQBs). If any of QB J’s subQBs are correlated to QB J’s
parentQB, then QB J must be EAA. For example, in query (E)
above, QB 2 is correlated to QB 1 because its child (QB 3). which
is EAO of QB 2, must be re-evaluated for each new value of E.EMP#,
and that may alter the right-hand-side of the “F.DEPT IN...” predi-
cate. Hence QB 2 must be EAA. If we were to remove the correlating

Proceedings of the Tenth International
Conference on Very Large Data Bases.

predicate, “DMANAGER P E.EMP#“, in QB 3, then both QB 2
and QB 3 would be EAO.

For more examples and a detailed discussion of how subQBs are
processed in a centralized database, see [SELI 791.

2.3. Tasks in SubQB Execution

Processing any subQB requires three successive tasks:

1. lnltiatlon: detects that a predicate is eligible to be evaluated;
provides from ancestor QBs any values for correlated columns
that are needed for that evaluation; and, for EAO QBs only,
causes a temporary relation to be created on disk in which to
store the set of results returned by the evaluation step.

2. Evahutiow uses the values provided by initiation to evaluate the
subQB, and returns the results to the application step. Note that
this may involve processing one or more subQB sequences.

3. Applkation (Parent): uses the results to apply the predicate to
candidate tuples in the parentQB.

For EAO subQBs, initiation and evaluation are performed once (at
OPEN of the QB at whose OPEN it can be evaluated, i.e., the
parentQB or an ancestor QB), and application is repeated once per
candidate tuple of the parentQB by simply reading the results from
the temporary relation. For EAA QBs, initiation and application are
always performed within the parentQB, and all three steps are
repeated for each candidate tuple of the parentQB.

3. OPTIMIZATION OF NESTED QUERY
BLOCKS

3.1. Dependencies Between Query Blocks

When all tables ln the query are at a single site, optimization of a
nested query is fairly simple, because optimization of a subQB does
not depend upon that of its parentQB, and optimization of the
parentQB depends upon that of its subQBs in a very lhnited way.
Three attributes of a subQB might affect the cost of evaluating its
parentQB: the subQB’s estimated cost, its estimated cardinal@, and
the order of its result. The first. the subQB’s cost. affects the
parentQB’s cost because the cost of a subQB’s evaluation contributes
to the cost of evaluating the parentQB. The second attribute, the
subQB’s cardinality, affects the parentQB’s cost because each subQB
predicate restricts which tuples satisfy the parentQB, so the estimated
cardinality of the subQB is used to estimate the selectivity of the
predicate containing that subQB. Thirdly, the order of a subQB is
important because, if the cohmm on the left-hand-side of the nested
predicate is in a particular order, and the subQB is EAA, we could
save re-evaluating the subQB each time the same column value
occurred. However, System R (and the distributed database manage-
ment system, R*) ignores the limited possible savings of enforcing
such an order&$, so that the parentQB can be optimized once an
estimate has been made for the cost and for the number of values
returned by each of its subQBs. Thus, QBs in a query may be
optimized independently, starting with the most nested QB and

4 See Section “6.1. Exploit Pare.ntQB’s order” for more discussion of this d&on.

Singapore, August, 1994

405

working “bottom up” through the family tree of QBs, with each
subQB passing to its parentQB an estimate of its cost and the number
of values that it returns.

For a nested query in a divtribufed database, the major difficuty
posed in optimizing it is that we can no longer optimixe its QBs
independently in a simple bottom-up fashion, passing up only each
subQB’s cost and cardinal@. This is because the choice of sites at
which the QB result is materialixed introduces another dependency
between QBs, in a&non to the ones relevant in a centrahxed data-
base. Specifically, the site to which a subQB delivers its result --
its delivery she - must necessarily be the site to which the predicate
containing the subQB ls applied -- itx appIkatbn dte. Since the
predicate involves tables belonging to the parentQB, selection of the
application site must be decided during optimization of the parenrQb,
and thus is not yet known when the subQE is being optimized. Ideally
we would optimixe QB 1 to deliver its result to the site to which
the query was submitted (the master site), and its optimization would
dictate the site at which each of its subQBs would be applied, and
so on. However, this “top-down” pmcessing conflicts with the
“bottom-up” dependence of QB optimixation upon the cardinality
and cost estimates of its subQBs, aa described in the previous
wwwh.

R+ resolves this “top down” versus “bottom up” dependency conflict
by postponing selection of the delivery site of a subQB until its
parentQB has been optimlxed. The optimixer essentially keeps its
delivery site options open as it optimizes each QB, permitting it once
again to optimixe QBs bottom up. The result of optig each QB,
S, is a number of candidate plans, each the best plan to deliver S’s
result to its “natural” result sites, plus a “to-bedetermhted-later”
site (these are defined below). Then, during optimization of s’s
parentQB, P, each candidate plan for P determines an application
site to which S’s result should be delivered and uses the best plan
for S to deliver its result to that application site. We say that the
parentQB maelves the postponed decision on the delivery site of its
subQB, once it chooses an application site in this way. The process
of generating all possible site options, and selecting the best one for
each QB, will be discus& in more detail in Section “4. Site Selections
for Nested QBs”.

3.2. Master vs. Apprentice Planning

When a query references objects such as tables or views at multiple
sites, compilation (and optimization) involves multiple sites. In R+,
the site to which the query is submitted and any site having a table
or view involved in a query must participate in the planning process
for that query as the master or an apprentice.

The site to which the query was or@inally presented, the master site,
is responsible for developing a global plan containing all in&r-sift?
decisions, including the site at which all operations (especiahy, joins)
are to be performed, the method of join, the order in which the
tables/composites are joined, and the required order of the result
[DANI 82, LOHM 841. For nested queties, the master site also
decides the site at which subQBs are to be applied (which dictates
the site to which its results should be delivered) and initiated, as
will be described in detail in Section “4. Site Selections for Nested
QBs” below.

All other sites participating in the compilation of a query compile
it as an appren& she. Compilation by each apprentice site is
iuitiated by receiving from the master site a copy of the global plan
and the original query, which it re-parses Each apprentice must (1)
fiid the portions of the global plan that are relevant to it, and (2)

Procoedlnga of the Tenth Intomatlonal
Contmnca on Vwy Lwga Data Baaem.

develop a local plan for itself within the constmlnts imposed upon
it by the global plan. It does this by traversing the global plan and
re-creating its own version of the global plan, using the global plan
for direction on hater-site matters and for making some shortcuts
[DANI 82, LOHM 841. For example, the apprentice uses the global
plan to decide at which sites to apply subQBs, and thus the site at
which each subQB is to deliver its result. So, unlike the master
planner, the apprentice can choose the optimal plan for a QB to
result at the dictated site only, and need not “keep its options open”.
This significantly streamlines apprentice planning.

An apprentice site is granted latitude in planning decisions affecting
only its tables (e.g., alternative access paths, jom methods, and
permutations of ifs tables to join). The only decision involving nested
queries over which the apprentice retains j&dlction is de&ding the
order in which to apply multiple subQBs that the master dictates
should be applied at that site, subject to the mquimment that all
correlated columns have values when their predicates are applied.
Therefore, because the interesthrg de&ions for QBs is at which site
they are applied and initiated, we will be concerned only with master
planning for the remainder of this paper.

4. SITE SELECTIONS FOR NESTED QBS

This section deserlbos the master’s procedure for determirdng at
which site(s) to perform the three tasks - initiation, evaluation, and
application - involved in executing each subQB in a querystatement,
in order to minimize the total cost of executing the entire query
statement. In a distributed query, each of these three tasks may be
executed at different sites, depending upon where the tables refer-
enced in that query are stored, and where the master’s optimizer
chooses to join tables, apply predicates, etc. (see [DANI 821). Each
task may be executed by one or more processes, as followa:

1. Inltialieo usually requires only a single process, which we will
call the IuMator. In cases where the initiator’s slte is different
from the applier’s site (m below), initiation also requires
some work to be done at the applier’s site. The initiator spawns
an agent process, called INI?, to perform this work (see Section
“5. Evaluation Protocols and Costa” for more detailed protocols
between sites).

2. Evahmtiam may require any number of processes. However, all
of these processes are subordinate to a single, fii process that
OPENS processing of the QB and that receives the fll results
of the QB, i.e., the readt &e of that QB. This “chief process
of the QB” is the only process with which the initiator and
applier process interact, and will be referred to as the emluater
process.

3. Applkatlon never requires more than one process, called the
rpplier.

We now discuss in more detail how the procedure chooses the sites
for the evaluator, applier, and initiator processes, in that order.

4.1. Evaluator’s Site Selection

The evaluator’s (delivery) site is chosen from the “natural” result
sites of that QB, plus a “to-be-determined-later” site, as described
below.

Singapon, August, 1964

4.1.1. Result Sites

TO join two tables at different sites, R* generates candidate plans
to perform the join at three different sites [DANI 82, LOHM 841:

(Jl) the inner table's site,
(52) the outer table's site, and
(53) an unknown site (or, more accurately,

a "to-be-determined-later" site,
designated here as II??".

TO illustrate, consider the following distributed version of the query
of example (B):

SELECT E.NAME
FROM EMPLOYEES@SF E, DEPARTMENTS@NY D
WHERE E.DEPT = D.DEPT# (F)

AND D.LOCATION = ‘DENVER’
AND D.NAME = ‘SHIPPING’;

where table EMPLOYBES@SF is stored at site SF and table
DEPARTMENTSaNY is stored at site NY.5 When
DEPARTMENTSGNY is the outer table and EMPLQYBBS@SF
is the inner table of the join in a candidate plan, then the three
different site options for performing this join would be:

(Jl) Ship DEPARTMENTS@NY to SF
and join at SF (result site = SF).

(52) Ship EMPLOYEESpSF to NY
and join at NY (result site = NY).

(53) Ship EMPLOYEES@SF and DEPARTMENTSQNY to
some other site, ??, and join them there.

If this query originated in SF, option (Jl) is likely to be optimal,
whereas option (52) would be favored by a query originating in NY.
The third option is generated in case the query originated at some
third site, say LA, or in case the result of the join is to be joined
later with a thud table at another site, perhaps KC. At the time
EMPLOYEES@SF and DEPARTMENTS@NY are joined, howev-
er, the possible third sites are not yet known. So the third join site
is left “to be determined later”.

By generating all combinations of inner and outer tables, R* will
generate a distinct optimal plan for a QB to result at each site having
one or more tables in the FROM-list of that QB, or in the FROM-lists
of its descendant QBs, plus site ??. We call sites other than ?? the
natural result sites for a QB.

4.1.2. Resolving the Evaluation Site of a QB

Once the delivery site X of a subQB is chosen by the parentQB
(as described earlier), we say that its evaluation site is resolved (to
be X). From the set of all plans for the subQB, each of which result
at one of the subQB’s result sites as described above, R* picks the
cheapest of the following three candidates for the best plan to deliver
the subQB’s result to X:

(Pl)

(P2)

(P3)

The best plan to result at site X.
(This option is viable only if site
X is a natural result site of the subQI3.j
The best plan that results at ??,
where ?? is replaced by X.
The best overall plan for the subQB,
independent of result site, shipped
from its natural result site, Y,
to the dictated delivery site, X.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

As discussed above, the delivery site for QB 1 is the site at which
the query was presented (the master site), and the delivery site for
any other QB is the application site chosen by its parentQB. We
next discuss how this choice is made.

4.2. Application Site Selection

As each table in the parentQB is retrieved and joined to the outer
table (or composite of outer tables), columns are added to the
parentQB composite tuple that may be needed to apply the subQB’s
predicate. A predicate therefore becomes eligible for application only
when the last table containing columns referenced by the predicate
is joined to the composite as the inner table. So, for a given choice
of a (possibly composite) outer table and an inner table, one or more
subQB predicates may become eligible. The problem is at which
site(s) should they be applied? Deciding this determines (resolves)
the desired delivery site for that subQB.

4.2.1. Application Site Options

A subQB may ultimately be applied, i.e., used to evaluate the predi-
cate of which it is a part, at sites other than its natural result sites.
The application site is decided by the subQB’s parentQB, which has
to consider the interactions between sites at which its tables are
located and possibly the natural result sites of its other subQBs. In
this section, we discuss which sites are reasonable sites for the
parentQB to consider applying nested predicates.

Consider the following variation of example query (F) having a
subQB (QB 2), in which the two tables of QB 1 and the one table
of QB 2 are each at different sites:

SELECT E.NAME QB 1
FROM EMPLOYEESgSF E, DEPARTMENTSgNY u
WHERE E.DEPT = D.DEPT#

AND D.LOCATION = ‘DENVER’
AND D.NAME = ‘SHIPPING’
AND E.JOB# = (G)

(;&CT J . JOB# QB 2
JOBS@LA

WHERE J.TITLE = ‘CLERK’);

This query requests the names of all employees that are clerks and
work in the shipping department in Denver. Note that the predicate
containing QB 2 becomes eligible with the addition of table
EMPLOYEES@SF, because its column E.JOB# is referenced in that
predicate.

For any given set of tables already joined as composite C and any
given table T in the parentQB, J, the procedure considers three
(possibly redundant) classes of application sites for a subQB K whose
predicate becomes eligible for application only when table T is joined
to the set:

(Al)
(A21

(A3)

Site of table T
Site of any partial or final computation for QB J (e.g.,
a join between outer composite C and inner table T, or
delivery of QB J’s final result, or application of another
subQB to QB J).
SubQB K’s possible result sites (natural + ??)

5 The site name embedded in the table name does not change, even if the table
is moved to another site. The torrent store site of each table and its name agree
here on&for exposimy musow See [LINJI 811 for a complete description of R*
table-naming conventions.

407

Singapore, August, 1994

with the following qualifications:

l Option (Al) is viable only if the nested predicate containing
subQB K references only columns of table T (or none at all) and
columns of tables in QBs that are ancestors of QB J. Table T
could be any table (inner or outer) in a join. For example, the
predicate containing QB 2 in example query (G) references only
EMPLOYEES@SF, so option (AI) is viable when
EMPLOYEES@SF is table T.

l Options (A2) and (A3) apply the predicate to the result of joining
T to C (if C is not empty) before any final computations for
ordering or grouping QB J’s result.

l Option (A3). when applied to a plan for QB J with result site
??, will cause the ?? to be replaced by subQB K’s result site (which
might also be ??).

. Redundant application site options are not re-evaluated. For
example, if the join site is the inner site (i.e., for option (Jl)) and
if the predicate references only the inner table, then options (Al)
and (A2) are equivalent: only one of the two options need be
evaluated. Similarly, subQB result sites that have already been
covered by options (Al) or (A2) are redundant.

For our example query (G) above, when (again) table
DEPARTMENTSQNY is the outer table and EMPLOYEES@SF
is the inner table and our table T of interest, options (Jl) through
(J3) have the following sub-options for applying the predicate that
contains QB 2:

(Jl) Join site = SF (i.e., ship DEPARTMENTSQNY to SF)

(Al) Apply subQB predicate to EMPLOYEES@SF be-
fore join

(A2) Apply subQB predicate at SF (same as (Al))
(A3) Apply subQB predicate at subQB’s result sites =

(Rl)

(R2)

LA (i.e., ship composite after join to LA,
then apply)
?? (i.e., ship composite after join to ??, then
apply)

(J2) Join site = NY (i.e., ship EMPLOYEES@SF to NY to join)

(Al)

(A2)
(A31

Apply subQB predicate to EMPLOYEES@SF be-
fore shipping it to NY for join
Apply subQB predicate at join site = NY
Apply subQB predicate at subQB’s result sites =
(Rl) LA (i.e., ship composite after join to LA,

then apply)
(R2) ?? (i.e., ship composite after join to ??, then

apply)

(53) Join site = ?? (ship both DEPARTMENTS@NY and
EMPLOYEES@SF to ??)

(Al)

642)

(A3)

Apply subQB predicate to EMPLOYEES@SF be-
fore shipping it to ?? to join
Apply subQB predicate at join site P ?? (i.e., do
every- thing at site ??)
Apply subQB predicate at subQB’s result sites =
(RI) LA (fii in ?? to be LA, i.e., do everything

at LA)
(R2) ?? (redundant of option (J3)-(A2) above)

Option (Jl)-(A2) is equivalent to (Jl)-(Al) in this example because
the predicate containing QB 2 references only the inner table

Proceedings of the Tenth International
Conference on Very Large Deta Bases.

(EMPLOYEES@SF), and we always apply predicates as soon as
they become eligible (i.e., there is nothing to gain by waiting to apply
the predicate to the composite after the join). Note also that option
(J3)-(A3)-(Rl) could be derived by setting ?? = LA in option
(J3)-(A2).

The above options and suboptions are exhaustive and may all be
reasonable possibilities, depending upon the sizes of the tables and
the ratio of in&a-site costs (CPU and I/O) tl) communications costs.

For this example, the natural result sites for each QB are as follows:

QS 2: LA
QB 1: NY, SF, LA

Note that optimization of QB 1 is likely to choose a delivery site
for QB 2 that is not one of its natural result sites, in which case
the 71 plan for QB 2 will be used.

4.2.2. Applying !3ubQB Predicates Simultaneously

Two subQBs that have the same parentQB and that reference one
or more columns of the same table(s) in the ancestor QBs become
eligible to be applied simultaneously. In such cases, order of applica-
tion of these subQBs is unimportant, unless one subQB is sufficiently
more restrictive than the other and we choose an option that ships
the composite to both of the subQBs’ (different) result sites. In
that case, the more restrictive predicate is applied fit to reduce
the volume of data shipped between the two subQB result sites.

4.3. Initiation Site Selection

For EAA subQBs, selection of the applier’s site necessarily selects
the initiator’s site, since by definition they must be the same. Thus,
selection of the applier’s site chooses a single plan for that subQB.

For EAO subQBs, however, the initiator and the applier may have
different sites and even different QBs. The site at which an EAO
subQB K is initiated is the delivery site of the QB at whose OPEN
QB K is initiated. So, for any given plan for the initiating QB, its
delivery site dictates the initiator’s site for each EAO subQB. thus
choosing a single, optimal plan for it.

4.4. Summary of Global Optimization

An overview of the algorithm for global optimixation of distributed
nested queries is given in Figure 1. The portions newly introduced
for nested queries are shown in bold italics.

5. EVALUATION PROTOCOLS AND COSTS

The protocols between sites and the cost for evaluating a QB depends
upon: (a) whether an individual subQB is EAA or EAO, and (b)
in the latter case, whether the initiator’s site and the applier’s site
are chosen to be the same. A discussion of the protocols between
sites and the evaluation costs for each of the three possible cases
follows.

Singapore, August, 1994

408

Figure 1: Algorithm for Optimizhg Nested Queries h R*

FOR EACH query block, H (bottom up):

Generate tree of possible subsets of tables of H
FOR EACH subset of tables:

Generate tree of possible plans
FOR EACH possible plan:

FOR wt of ALL subQBs of H oligiblo simultanwusly:

Oewrato trw of subQB application sites
FOR EACH sot of wbQB appiiwtion sitar:

FOR EACH subQB J in tha wt:

FOR EACH subQ6 K of QB J
IF subQB K is Evaluated-U-OPEN of QB J
THEN

Rewive initiation sita of subQB K
Add cost of initiating wd avaluating subQB K to wst of QB J

Find best pirn for subQB J to bo dollverod to dictated appliwtion
site for subQB J (ia.. rewlve application site for subQB J)

Rword bwt plw in plw for QB H
Add costs of applying subQB J to costs of QB H
IF subQB J is Evaluate-at-Application
THEN add costs of initiating and avaluating subQB J to costs

of QB H
Find plan for QB H with a matching site & result order
IF new plan cheaper
THEN retain new plan

Add sorts for GROUP BY, ORDER BY, etc., if needed
Pick bwt plan resulting at swh result site of QB H (natural and 771.

FOR TOP query block (QB 1):

FOR EACH result sita of QB 7 (i.e.. for each plan for QB 7):

FOR EACH subQB L in plan:
IF subQB L is Evaluated-at-OPEN of QB 7
THEN

Resolve initiation site of subQB L to be master’s site
Add wst of initiating 8nd evaluating subQB L to wst of QB 7

Find bwt plan for delivery to master-s site (rawlve result site of QB 7)
Distribute master plan to apprentices
Generate access structures to perform plan (see [LOHM 841).

5.1. Evaluate-at-Application SubQB

This is the simplest case, because initiation and application always
take place at the same point in the parentQB, and therefore at the
same site, with only evaluation of the subQB intervening (refer to
Figure 2 and Figure 3). So both the initiator and applier processes

site R Slte B

“EvMuATE a8 Ic’.
- CWTslstlmMlur

+
INITIATOR EVALUATOR

I
I

QB K Result I

t APPLIER
I I
I I

Fiie 2: Evaluate-at-Application (EM) subQB.

Proceedings of the Tenth international
Conference on Very Large Data Bases.

Figure 3: Procedure for Evaluate-at-Application (EM) subQB.

FOR EACH tuple of QB K’s parentQB, QB J:

(1) Initiation: Initiator initiates Evaluator of QB K at Site B:

(1.1) Initiator detects eligibility of QB K’s predicate
(1.2) Initiator sends values of correlated variables

to Evaluator

(2) Evaluation: Evaluator evaluates QB K and
returns results to Initiator at Site A.
who passes them to Applier.

(3) Application: Applier applies results immediately
in predicate in QB J that contains QB K

Note: Site A and Site B may be the same.

Singapore, August, 1984

409

belong to the parentQB, QB J. For each candidate tuple in the
parentQB J, site A sends to the evaluator at site B the values of
all correlated columns for that tuple, and prepares to receive back
the result. The evaluator receives the correlation values, evaluates
the subQB K, and returns a single-valued result to site A. EAA
QBs that might return multiple values (those QBs having a set
membership or set comparison OP in the predicate containing that
QB) can be transformed during optimization into an equivalent QB
that returns only a single value -- EXISTS or NOT EXISTS (see
Section 6.5 below). The initiator receives the result and passes it
to the applier, which applies the results in the predicate and either
accepts or rejects the candidate tuple.

The estimated cardinality and cost of evaluating QB K and delivering
it to the applier at site A for each tuple of the parentQB (J) is
obtained by dictating that QB K deliver its result to site A. This
resolves the evaluator’s site for QB K, yielding an optimal plan for
QB K. Its cost, multiplied by the estimated cardinality of QB J, gives
the total cost to apply this subQB in QB J. This total cost is ad&d
into the cost associated with all candidate plans for QB J that dictate
delivering QB K to site A.

5.2. Evaluate-at-Open SubQB, Applier’s Site =
Initiator’s Site

EAO subQBs are initiated once, evaluated once at that time, and
then sometime later applied repeatedly, once for each candidate tuple
to which the predicate applies (refer to Figure 4 and Figure 5). In
fact, as we saw in example query (E) above, initiation and application
may (but need not) take place in different QBs. So the initiator
process and applier process may belong to different QBs. For this
case, however, we assume that the initiator and applier are at the
same site (site A), even if they belong to different QBs. Recall that
the initiator’s site is defined to be the delivery site of the QB at
whose OPEN the subQB is initiated.

At OPEN of the initiating query block, QB I, the initiator starts
evaluation of QB K at site B by the evaluator, and receives back
the results, which the initiator stores in a temporary relation at site
A. Later, when the predicate containing QB K is encountered and
needs to be applied, the applier process retrieves the results from
the temporary relation to use in applying the predicate, once for each
candidate tuple.

“OulwlE 90 K”.
- cowmlauon~hla

. b
INITIATOR EVALUATOR

RESULTS LIST

I APPLIER

Figure 4: Evaluate-at-OPEN (EAO) subQB,
Initiator’s site 5: Applier’s site.

Procaodlngr o? the Tenth Intornatlonrl
Conference on Very Large Data Baur.

The cost of evaluating QB K and of shipping correlation values from
A to B and subQB K’s results from B to A is incurred only once:
a significant savings. However, there are additional costs at site A
for storing the result in the temporary relation and for reading from
that relation each time. And because a temporary relation is not
indexable in R*, retrieval from it cannot be in order or subsetted
by a predicate without scanning the relation until the desired value
is found. For purposes of optimization, the applier (QB J) is assessed
only the cost of reading one half of the temporary table (on the
average) N times, where N is the cardinality of QB J. The cost
of initiating and evaluating QB K, and writing its results in the
temporary relation at site A, is assessed to the initiator (QB I), not
the applier. The reason that this cost assessment is different from
that for EAA subQBs will become apparent when we contrast this
case with case 3 below.

5.3. Evaluate-at-Open SubQB, Applier’s Site #
Initiator’s Site

It may happen that the initiator’s site of an EAO query is not the
same as the applier’s site, in which case two sites are involved in
initiation, as shown in Figure 6. Here site C is responsible for
initiating the evaluation of QB K. but will not receive the results.
So steps (1.2) and (1.3) of case 2 must be augmented into steps
(1.2) through (1.4), as shown in Figure 7. The initiator INIT spawns
an agent process at site A, called INIT’ in Figure 6 and Figure 7,
which performs the usual functions of the initiator described in the
second case. In addition, INI?J must “close the loop” of communica-
tions that INIT started, by acknowledging the successful completion
of evaluation (step (2.4)) to INIT at Site C.

Figure 5: Procehre for Evaluate-at-OPEN (EAO) subQB,
Initiator’s site = Applier’s site.

(1) Initiation: Initiator initiates Evaluator at Site 6:

(1.1) initiator’s OPEN triggers initiation of QB K processing
(1.2) Initiator creates a temporary relation to accept

result(s) of QB K
(1.3) Initiator sends values of correlated variables, if any,

to Evaluator at Site B

(2) Evaluation: Evaluator at Site B evaluates QB K:

(2.1) Evaluaioi evaluates QB K
(2.2) Evaluator returns result(s) to Initiator
(2.3) Initiator stores result(s) in temporary relation created

in Step (1.2). enabling Application at a later time

(3) Application: FOR EACH tuple in QB K’s parentQB, QB J,
the predicate containing QB K is applied:

(3.1) Applier detects eligibility of QB K’s predicate
(3.2) Applier reads QB K result(s) from temporary relation
(3.3) Applier applies predicate to its candidate tuple

Note:

l Site A and Site B may be the same.
l Initiator must be the first computation within its QB

Singapore, Augurt, 1984
410

Site C Slte A Slte t3

As in case 2, the costs of initiation and evaluation are assessed to
the initiating QB, but in this case there are additional communications
costs for procedure steps (1.2) and (2.4).

Fiie 7: Procedure for Evaluate-at-OPEN (EAO) subQB,
Initiator’s site # Applier’s site.

(1) Initiation: Initiator at Site C (INIT) initiates QB K at Site B:

(1 .I) INIT’s OPEN triggers initiation of QB K
(1.2) INIT sends values of correlated variables, if any,

to an agent process, INIT’, that it spawns at Site A
(1.3) INIT’ creates temporary relation

to accept result(s) of QB K
(1.4) INIT’ forwards values of correlated variables,

if any, to Evaluator at Site B

(2) Evaluation: Evaluator at Site B evaluates QB K:

(2.1) Evaluator evaluates QB K
(2.2) Evaluator returns result(s) to INIT’ at Site A
(2.3) INIT’ stores result(s) in temporary relation

that was created in Step (1.3)
(2.4) INIT’ acknowledges proper completion to INIT

at Site C, enabling Application at a later time

(3) Application: FOR EACH tuple in QB J,
predicate containing QB K is applied:

(3.1) Applier detects eligibility of QB K’s predicate
(3.2) Applier reads QB K result(s) from temporary relation
(3.3) Applier applies predicate to its candidate tuple

Note:

. Only Steps (1.2),(1.4), and (2.4) are different from case of
Figure 4.

l Site A and Site B may be the same.
. When Site C = Site B, see previous case.
. Initiator must be the first computation within its QB

Proceedings of the Tenth International
Conference on Very Large Data Bases.

LIST 1

PB K Resulta

Figure 6: Evaluate-at-OPEN (EAO) subQB, Initiator’s site # Applier’s site.

One difficulty with EAO QBs is that the optimizer does not know
whether case 2 or case 3 will happen until a delivery site is known
for QB I, the initiating QB. Hence the plan for an EAO QB cannot
be finalized until that QB’s initiating QB -- not applying QB -- is
optimized. Internally, the optimizer keeps different plans for both
cases 2 and 3, with costs for each, so that when it optimizes QB
I it can try both alternatives and choose the one having minimal
cost.

6. STREAMLINING EAA SUBQUERY BLOCKS

When the initiator and evaluator for an EAA subQB are at different
sites, a great deal of inefficient communication traffic is generated:
one exchange of correlation values and subQB results per parentQB
tuple (see Figure 2). This section presents several possible ways
to reduce this traffic, using the following distributed query that
contains an EAA subQB:

SELECT E.NAME QB 1
FROM EMPLOYEESQSF E
WHERE E.DEPT = (HI

(SELECT D.DEPT# QB 2
FROM DEPARTMENTSeNY D
WHERE D.LOCATION = 'DENVER'

AND D.NAME = 'SHIPPING'
AND D.MANAGER = E.EMP#);

6.1. Exploit ParentQB’s Order

As suggested in Section “3.1. Dependencies Between Query Blocks”,
when the values for both the column in the nested predicate (E.DEPT
in example (H)) and the correlation values of QB 1 (E.EMP#) are
repeated in the next tuple, the evaluation of QB 2 will have the same
result. Therefore, redundant evaluations as well as the communica-
tions to and from the initiator could be saved if the parentQB were
ordered on those columns, so that duplicate values of those columns
could be detected and redundant evaluation avoided. While R* in
fact does exploit duplicate correlation values when it detects them,
it does not plan it that way. The optimizer could trade off the
estimated savings of enforcing a particular order for the parentQB

Singapore, August, 1984

111

against the higher costs of either sorting the composite or using an
index scan (if one existed on the predicate and correlation columns)
to achieve that order. The problem is that, given the statistics
currently maintained for each table, it is very difficult to estimate
reliably the number of tuples having duplicate values of just the
predicate and correlation columns, and thus the potential savings.
For this reason, the R* optimizer does not consider this option.

6.2. Transform Correlated QBs to Join

Kim has noted that EAA subQBs may be transformed to joins under
certain circumstances [KIM 821. For example, query (H) can be
transformed to a single QB:

SELECT E.NAME
FROM EMPLOYEES@SF E, OEPARTMENTSBNY
WHERE E.OEPT = O.DEPT# (Hl)

AND D.LOCATION = 'DENVER'
AND D.NAME = 'SHIPPING'
AND D.MANAGER = E.EMP#;

The benefit of such a transformation is that the optimizer is given
more leeway in deciding how the query is to be processed. By placing
the DEPARTMENTSaNY table in a subQB in query (H), the user
effectively undermines the optimizer’s function by dictating to the
optimizer that a nested loop join with EMPLOYEES@SF as the
outer table wig be done. As transformed in (Hl), existing mecha-
nisms within the optimizer could evaluate alternative join methods
(possibly exploiting orderings of both tables to do a merge scan join),
storing the inner table at the join site to save re-shipping it, and
using either EMPLOYEES@SF or DEPARTMENTSQNY as the
outer table.

The difficulty is that (Hl) is semantically not equivalent to (H) when
the values of the SELECT-column of the subQB (D.DEPT) are not
unique. As stated in Section “2.1. Nomenclature”, the “=” operator
in a nested predicate implies that a unique value is expected from
the evaluation of the subQB, but there is no such implication in a
join predicate. Furthermore, not all EAA subQBs may be so trans-
formed. For example, in example (C) QB 2 cannot be transformed
to a join with its parentQB because its nested predicate contains
a set operator (...E.DEPT IN...) that is not expressible as a join with
equivalent semantics when the subQB returns duplicate values match-
ing E.DEPT: the nested query form would result in only one qualify-
ing tuple, but the join form would result in one tuple per matching
value found.

6.3. Move Correlations into Nesting Predicate

Tbis transformation converts EAA subQBs to EAO subQBs by
moving all correlation predicates into the nesting predicate, which
now must permit more than one column to be specified. Query (H)
thus becomes:

SELECT E.NAME QB 1
FROM EMPLOYEES@SF E
WHERE (E.DEPT, E.EMP#) = (H2)

(SELECT D.DEPT#, O.MANAGER QB 2
FROM DEPARTMENTSQNY D
WHERE D.LOCATION = 'DENVER'

AND D.NAME = 'SHIPPING');

Since QB 2 is now EAO, it need be evaluated only once, instead
of once per tuple of EMPLOYEES@SF. On the other hand, the

ProendIngs of tba Tenth Intemstlonal
Confrrenu on Very Large Data Barea.

subQB’s result in (HZ) could be much bigger without the correlation
predicate. So we might end up shipping more data from NY to SF
with the transformation, but we save the multiple evaluations of the
subQB and the communications overhead of a conversation between
SF and NY for each new value of EMPLOYEES@SF. And as with
the previous transformation, not all EAA subQBs can be trans-
formed: for example, we cannot move the correlation predicate in
query (C) because its scalar operator does not match the set operator
of the nesting predicate. For this reason, and because allowing
multiple columns in the nested predicate required significant changes
to the semantics of SQL and the implementation of subQBs in R+,
this transformation was also shelved.

6.4. Ship Subset of ParentQB to SubQB

Inspired by semijoins, this strategy still ships a subset of an entire
table only once, but is the opposite of the previous transformation
in that the parentQB -- not the subQB -- is the table to be shipped.
For example, in query (H) we would ship EMPLOYEES@SF,
projected on columns DEPT and EMP# (and restricted if there were
other predicates on EMPLOYEES@SF), once to NY. At NY, each
tuple in the subset would be re-read, used to evaluate the subQB,
and either accepted or rejected by applying the nested predicate
there. while this again reduces the number of conversations between
SF and NY, it does not reduce the number of times the subQB is
evaluated and has the added cost of storing and m-reading the subset
of the parentQB if it does not fit in a buffer.

Note that the last two transformations would effectively be cousid-
ered as alternative join options (shipping the inner table to the site
of the outer, or vice versa) if Kim‘s transformation to a join predicate
were done.

6.5. Return Only Single SubQB Result

The R* optimizer transforms the internal (parse-tree) representation
of an EAA SubQB that may return a set of values into that of an
equivalent subQB that returns exactly one value: FOUND or NOT
FOUND. For example, when the nested predicate operator of
example query (H) contains a set operator (IN) instead of a scalar
operator (=):

it is modified to appear as:

SELECT E.NAME WJ 1
FROM EMPLOYEES@SF E
WHERE E.DEPT IN (I)

(SELECT D.DEPT# QB 2
FROM DEPARTMENTS@NY D
WHERE D.LOCATION = 'DENVER'

AND D.NAME = 'SHIPPING'
AND D.MANAGER = E.EMP# 1;

SELECT E.NAME
FROM EMPLOYEES@9 E
WHERE E.DEPT IS NOT NULL

AND EXISTS
(SELECT <any columns>
FROM DEPARTMENTSQNY D
WHERE D.LOCATION = 'DENVE

AND D.NAME = 'SHIPPING'
AND D.MANAGER = E.EMP#
AND E.DEPT = D.DEPT#

QB 1

(11)

QB 2

:R'

1;

Because. QB 2 reiums only a single value rather than a potentially

Singapore, August, 1984

412

long set of values, communications volume may be substantially
reduced. Evaluation of QB 2 may be cut short as soon as it finds
a qualifying tuple in (11). whereas in the original query the subQB
had no hint from its nesting predicate that it need not scan all of
DEPARTMENTSaNY to ensure that the subQB had a unique
value. Finally, this transformation saved us having to implement
new mechanisms for looping through multiple values of the right-
hand-side of a predicate, looking for a match, for this type of
predicate only.

7. IMPLEMENTATION CONSIDERATIONS

The extensions to R* to properly plan and execute nested queries
required adding code to the optimizer: (1) to retain optimal plans
for each natural result site of each QB plus the “unknown” site,
rather than just the best overall plan for the QB; (2) to generate
the application site alternatives ; (3) to evaluate the three possible
cases for subQB execution; and (4) to determine for each apprentice
those portions of the global plan pertaining to it. In addition, the
run-time routines to execute .the directives of the chosen plan had
to be coded.

The additional bookkeeping required to keep track of optimal plans
for each natural result site of each QB significantly increased the
storage required and the code complexity. Because option (A3) adds
a subQB’s natural result sites to those of its parentQB (as described
in Section “4.2.1. Application Site Options” above), the number of
alternative application sites are compounded as the optimizer works
its way up to the top QB. So the number of candidate plans may
grow exponentially with the number of tables, if each table is at
a different site ati all tables are joined via a nested predicate. This
problem was graphically illustrated by the simple example in Section
“4.2.1. Application Site Options” (query (G)), which generated 10
different plans for joining two tables and applying one subQB, for
a single join order, join method, and access method for each table.
When the R* optimizer considers all feasible combinations of merge
scan joins, alternative inner table transfer strategies (store the inner
table at the join site versus re-fetch as needed), and EMPLOYEES
as the outer table of the join (see [DAM 821 and [LOHM 84]),
the costs of 48 different plans are evaluated. This is three times the
number when no subquery is to be applied, and ten times the number
of plans considered when all tables are at the same site. When the
partial plans for single tables are included, the distributed query of
example (G) considers 64 partial or complete plans. Each plan is
composed of a “miniplan” for each table, inter-site transfer, or
subQB application in the plan.

The plan storage problem has been somewhat ameliorated by re-
structuring the optimizer to store a plan only if it improves upon
an existing plan to produce the same result (same tuples) in the same
order at the same site, or if it provides a new result, order, or result
site. Previously, all plans were allocated space that was not reclaimed
even when the plan was later found to be dominated by another
plan. Although evaluating all of the alternative plans sounds costly,
in practice it is not noticeable to an interactive user, and for each
alternative that is considered, one can construct cases in which it
significantly out-performs all other alternatives. In addition, practical
limits on the number of tables, and the inability of users to formulate
queries that are nested sufficiently deep, should prevent the space
and time demands from becoming too severe.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

8. CONCLUSIONS

We have presented in this paper the problems associated with opti-
mixing nested queries in a distributed relational database manage-
ment system, and the approach used by R* to solve these problems.
In particular, R* postpones determining the result site of a subQB
until it optimizes its parentQB (applying QB), or, in the case of
evaluate-at-open subQBs, its initiating QB. We have itemized the
cases possible for both evaluate-at-application and evaluate-at-open
types of QBs, and discussed algorithms for processing each case.
In addition, we have presented the breakdown of work among sites
cooperating in a distributed nested query, and how agreement upon
plans for executing the query is coordinated by a master site while
allowing the other (apprentice) sites a degree of site autonomy in
matters pertaining to their own tables.

Nested queries for distributed databases have been implemented in
R*, and have been tested for correct execution of complex queries
involving up to five nested query blocks. To do this, we developed
a test program that automatically varies the location of tables using
SYNONYMS and tests the results of the queries against a table of
expected results.

In the near future we intend to evaluate and validate the performance
of the R* extensions to the System R optimizer, much as was done
for System R by [ASTR 801, and in more detail than was done for
Distributed INGRES [STON 821. We also hope to improve the cost
formulas to better conform to reality, and to isolate and improve
situations for which bad plans are chosen or performance is anoma-
lous. Sensitivity analyses will aid us in deciding where to concentrate
improved detail in our modeling, and where the model can be
simplified. Perhaps some heuristics or “rules of thumb” can be
gleaned from this empirical analysis, which should help us to prune
our enumeration tree of alternative plans further, without risking the
omission of a truly optimal plan.

9. ACKNOWLEDGEMENTS

The authors are indebted to Morton Astrahan, She1 Finkelstein, Won
Kim, Bruce Lindsay, Paul Wii, and Bob Yost, who carefully and
constructively reviewed an earlier draft of this paper. We also wish
to acknowledge members of the R* project who also suggested some
of the transformations of Section “6. Streamlining EAA Subquery
Blocks”: Elisa Bertino suggested the transformation of Section “6.3.
Move Correlations into Nesting Predicate”, and C. Mohan suggested
that of Section “6.4. Ship Subset of ParentQB to SubQB”.

10. REFERENCES

[APER 831 P.M.G. Apers, A.R. Hevner, and S.B. Yao, “Opti-
mixing Algorithms for Distributed Queries”, IEEE
Transactions on Software Engineering, SE-9, 1 (Janu-
ary 1983), pp. 57-68.

IASTR 761 M.M. Astrahan et al., “System R: Relational Ap-
proach to Database Management”, ACM Transac-
tions on Database Systems 1, 2 (June 1976) pp.
97-137.

Singapore, August, 1984

413

(ASTR 801

[BERN 8lbj

[BLAS 811

ICHAM 81al

[CHAM 8lbI

[CHAN 821

[CHAN 831

ICHU 821

[DANI 821

IEPST 781

M.M. Astrahan, W. Kim. and M. Schkolnick. “Eval-
uation of the System R Access Path Selection Mech-
anism”, Proc. of 1980 IFIP Congress, North-
Holland Publishing, 1980. Also available as IBM
Research Laboratory RJ2797, San Jose, Calif., April
1980.

P.A. Bernstein, N. Goodman, E. Wang, C.L. Reeve,
J. Rothnie, “Query Processing in a System for Dis-
tributed Databases (SDD-1)“. ACM Transactions on
Database @stems 6, 4 (December 1981). pp.
602-625.

M.W. Blasgen, M.M. Astrahan, D.D. Chamberlin.
J.N. Gray, W.F. King, B.G. Lindsay, R.A. Lorle,
J. W. Mehl, T.G. Price, G.R. Putzolu, M. Schkolnick,
P.G. Selinger, D.R. Slutz. H.R. Strong, I.L. Traiger,
B.W. Wade, and R.A. Yost, “System R: An Archl-
tectural Overview”, IBM Systems Journal 20, 1
(1981). pp. 41-62.

D.D. Chamberlin, M.M. Astrahan, W.F. King, R.A.
Lorie, J.W. Mehl, T.G. Price, M. Schkolnick, P.
Griffiths Selinger, D.R. Slutz, B.W. Wade, and R.A.
Yost, “Support for Repetitive Transactions and Ad
Hoc Queries in System R”, ACM Trerrractions on
Database Systems 6, 1 (March 198 1). Also available
as IBM Research Laboratory RJ2551. San Jose,
Calii., May 1979.

D.D. Chamberlin, M.M. Astraban, M.W. Blasgen.
J.N. Gray, W.F. King. B.G. Lindsay, R. Lotie, J.W.
MehI, T.G. Price, F. Putzolu, P.G. Selinger, M.
Schkolmck. D.R. Slutz, IL. Traiger, B.W. Wade,
R.A. Yost, “A History and Evaluation of System
R”, Communications of the ACM, 24, 10 (October
1981). Also available as IBM Research Laboratory
RJ2843, San Jose, Callf., June 1980.

J-M. Chang, “A Heuristic Approach to Distributed
Query Processing”, Procs. of the Eighth International
Conference on Very Large Data Bases, Mexico City,
VLDB Endowment, Saratoga, CA, September 1982,
pp. 54-61.

A. Chan, U. Dayal, S. Fox, N. Goodman, D. Ries,
D. Skeen, “Overview of An ADA Compatible Dis-
tributed Database Manager”, Proc. SIGMOD 83,
May 1983.

W.W. Chu and P. Hurley, “Optimal Query Process-
ing for Distributed Database Systems”, IEEE Trans.
on Computers, C-31, 9 (September 1982). pp.
835-850.

D. Danlels, P.G. Selinger, L.M. Haas, B.G. Lindsay,
C. Mohan, A. Walker, P. Wilms. “An Introduction
to Distributed Query Compilation in R*“, Proceed-
ings Second International Conference on Distributed
Databases, Berlin, Sept. 1982. Also available as
IBM Research Laboratory RJ3497, San Jose, Calif.,
June 1982.

R. Epstein, M. Stonebraker, and E. Wong, “Distrib-
uted Query Processing in a Relational Data Base

Proceedings of the Tenth International
Conference on Very Large Data Bases.

IEPST 801

[HAAS 82)

[HEVN 791

IKIM 821

[KERS 821

INGUY 80)

[ONUE 831

[SELI 791

[SELI 801

System”, Proceedings of ACM-SIGMOD, Austin,
TX, May 1978, pp. 169-180.

R. Epstein and M. Stonebraker, “Analysis of Dis-
tributed Data Base Processing Strategies”, Procs. of
the Sixth International Conference on Very Large
Data Bases, Montreal, IEEE, October 1980, pp.
92-101.

L. M. Haas, P. Selinger, E. Bertino, D. Daniels, B.
Lindsay, G. Lohman, Y. Masunaga. C.Mohan, P.
Ng. P. Wilms and R. Yost, “R*: A Research Project
on Distributed Relational DBMS”, Database Engi-
neering 5, 4 (Dec. 1982), IEEE Computer Society,
pp. 28-32.

A.R. Hevner and S.B. Yao, “Query Processing in
Distributed Database Systems”, IEEE Trans. Soft-
MWE Engr.. SE-S, (May 1979). pp. 177-187.

W. Kim, “On Optimizing an SQL-like Nested Que-
ry”, ACM Transactions on Database Sytems 7, 3
(September 1982), pp. 443-469. Also available as
IBM Research Laboratory RJ3063, San Jose, Calif.,
February 1981.

L. Kerschberg, P.D. Tmg, S.B. Yao, “Query Gptimi-
zation in Star Computer Networks”, ACM Transac-
tions on Database Systems 7,4 (December 1982).

B. G. Lindsay, “Object Naming and Catalog Man-
agement for a Distributed Database Manager”, Pro-
ceedings 2nd International Conference on Distributed
Computing S&stems, Paris, France, April 1981. Also
available as IBM Research Laboratory RJ2914. San
Jose, Callf., August 1980.

G. Lobman, C. Mohan, L. Haas, D. Danlels, B.
Lindsay, P. Selinger, and P. Wilms, “Query Process-
ing in R*“, Query Processing in Database Systems,
W. Kim, D. Reiner. and D. Batory (Eds.), Springer-
Verlag, to appear in 1984.

G.T. Nguyen, “Decentralized Dynamic Query De-
composition for Distributed Database Systems”,
Proc. ACM Pacific ‘80: Distributed Processing - New
Dimctions for a New Decade, San Francisco, Novem-
ber 1980.

E. Onuegbe, S. Rahimi, and A.R. Hevner, “Local
Query Translation and Optimization in a Distributed
System”, Proceedings NCC 1983, July, 1983, pp.
229-239.

P.G. Selinger, M.M. Astrahan, D.D. Chamberlin,
R.A. Lorie, T.G. Price, “Access Path Selection in
a Relational Database Management System”, Pro-
ceedings of ACM-SIGMOD, May 1979. Also avail-
able as IBM Research Laboratory RJ2429, San Jose,
Calif., August 1979.

P. G. Selinger and M. Adiba, “Access Path Selection
in Distributed Database Management Systems”,
Proceedings International Conference on Data Bases,
ed. Deen and Hammersly, University of Aberdeen,

Singapore, August, 1984

414

July 1980, pp. 204-215. Also available as IBM
Research Laboratory RJ2883, San Jose, Calif., Au-
gust 1980.

ISQU IBM Corporation, SQL/Data System Concepts and
Facilities. IBM Form No. GH24-5013.

[STON 821 M. Stonebraker, J. Woodfii, J. Ranstrom, M. Mur-
phy, J. Kalash, M. Carey, K. Arnold, “Performance
Analysis of Distributed Data Base Systems”, Data-
baee Engineering 5,4 (Dec. 1982). fEEE Computer
Society, pp. 58-65.

[WILL a21 R. Wiiams, D. Daniels, L. Haas, G. Lapis, B.
Lindsay, P. Ng, R. Obermark, P. Selinger, A. Walk-
er, P. Wii, R. Yost, “R? An Overview of the
Architecture”, Improving Database Usabili@ and Re-
sponsiwness, (Procs. International Conference On

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Databases, Jerusalem, Israel, June 1982) P.
Scheuermann. ed., Academic Press, New York,
1982, pp. l-27. Also available as IBM Research
Laboratory RJ3325, San Jose, Calif., December
1981.

[WONG 761 E. Wong and K. Youssefi, ‘Decomposition -- a
Strategy for Query Processing”, ACM Transactions
on Database S~fems 1. 3 (September 1976), pp.
223-241.

IyAO 791 S.B. Yao, “Qpthnization of Query Algorithms”,
ACM Transactions on Datahase @stems 4, 2 (June
1979). pp. 133-15s.

IW 831 C.T. Yu, and C.C. Chang, “On the Design of a
Query Processing Strategy in a Distributed Database
Enviromnent”, ti. SIGMOD 83, May 1983.

Singapore, August, 1984

415

