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Abstract 

One primary difference between transactions in an engineering 
design environment and those in conventional business applications 
is that an engineering transaction typically lasts a much longer 
time. Existing proposals for supporting the long-lived engineering 
transactions are all based on the public/private database architec- 
ture, in which a transaction checks out design objects from the 
public database, modifies them, and checks them into the public 
database for use by other transactions. However, the design envi- 
ronment which these proposals model is a very rigid one which 
does not allow a team of designers to complete a complex design 
involving numerous design objects by passing incomplete objects 
back and forth among them in a controlled manner. In this paper 
we present a model of engineering transactions which attempts to 
resolve this shortcoming as well as satisfying the constraints im- 
posed by the engineering design environment. The model aug- 
ments existing models by refining the notion of checkout environ- 
ment which a transaction sees and coupling it with the notion of 
nested transactions. The model is then extended to a practical 
mechanism for supporting a complex engineering design environ- 
ment by imposing the view that a long-lived engineering transac- 
tion is really a sequence of conventional short-lived transactions. 

1. Introduction 

Conventional general-purpose database management systems have 
been designed primarily to support transaction-oriented business 
applications in which transactions typically terminate within a few 
seconds. It is not surprising that such systems cannot support the 
engineering design applications where transactions may last weeks 
or months, spanning system crashes and user sessions. When a 
transaction is short lived, it can be used as the unit of both re- 
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covery and consistency [GRAY78]. Locks may be dynamically 
acquired and held until the end of a transaction, and a transaction 
can be backed out in case of a deadlock. In an engineering envi- 
ronment, a transaction can still serve as the unit of consistency; 
however, it should not be used as the unit of recovery [HASK82]. 

It is generally accepted that the engineering design environ- 
ment requires a public database system which manages the public 
database and a number of private database systems running on 
engineering workstations to interact with the public system 
[HASK82, LOR183, KATZ83]. The existing models of engineet- 
ing transactions have been motivated by the need to overcome the 
shortcomings of conventional models of transactions for the engi- 
neering design environment and to support this public/private 
database system architecture. These models force a rather rigid 
design environment in which a designer checks out design objects 
from the public database system as needed, updates the objects 
using his private database system, and checks into the public sys- 
tem the completed objects. 

However, these are inadequate for the complex design envi- 
ronment where a large number of designers, possibly representing 
an organizational hierarchy (division, department, function, pro- 
ject, and so on) must complete a complex design involving numer- 
ous design objects by passing incomplete objects back and forth 
among them in a controlled manner. A primary advantage of 
allowing a designer to check out an object from another designer is 
that a designer may check out a partial design and complete the 
design on behalf of the initial designer or make use of it to design 
his own objects. This situation may arise because the designer has 
modified a checked-out object to a state where parceling out 
further work on the object to a number of other designers is desir- 
able or necessary. Suppose that a designer who is working on a 
family of gates has at some point completed the design of an AND 
gate but not the others in the family. Because the entire set of 
gates has not been designed, the designer cannot check in his 
design of the AND gate to the public database for use by other 
designers. At this point, it will be useful if other designers can 
directly check out the AND gate for use in their own designs, or, 
say, the incomplete OR gate to complete the design and return it 
to the initial designer. 

In this paper we will describe a model of engineering transac- 
tions which augments existing models by first refining the notion 
of checkout environment which a transaction sees and coupling it 
with the notion of nested transactions proposed in [DAVI78, 
REED78, MOSS82]. The model will then be extended to a practi- 
cal mechanism for supporting a complex engineering design envi- 
ronment by imposing the view that a long-lived engineering trans- 
action should really be a sequence of conventional short-lived 
transactions. This model not only overcomes the inadequacies in 
existing proposal for engineering transactions but also supports a 
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design environment involving a large number of designers and 
design objects. We note also that our model provides a rather 
natural framework for the management of versions and alternatives 
of design objects, since the hierarchy of nested transactions closely 
corresponds to the hierarchy of versions and alternatives derived 
from objects at higher levels of abstraction. This aspect, however, 
is outside the scope of the paper and will not be further discussed. 

The remainder of the paper is organized as follows. Section 2 
provides a discussion of our transaction model, starting with an 
intuitive overview and leading up to a complete (though informal) 
description. The semantics of the model are further discussed in 
Section 3. Section 4 describes a number of features which trans- 
form the model into a practical mechanism. A number of major 
implementation issues are considered in Section 5. Section 6 
compares our model with other relevant transaction models found 
in the literature. 

2. Model of Nested Transactions for Engineering Design 
Databases 

2.1. Intuitive Overview of the Model 

Existing models of engineering transactions support the same set of 
commands that conventional transactions support: 
BEGIN-TRANSACTION (BT), END-TRANSACTION (ET), 
ABORT (A), SAVE (S), and UNSAVE (U). An engineering 
transaction is initiated with a BEGIN-TRANSACTION and 
terminated by an ABORT or END TRANSACTION. - 

Once a transaction BEGINS, it CHECKS OUT (receives 
copies of) design objects from the public database system. The 
transaction issues queries and updates against the objects, which 
have been inserted into its private database. It can SAVE changes 
any time, and UNSAVE to an arbitrary SAVE point to back out 
the changes. When the transaction ENDS, the modified design 
objects are CHECKed INto the public database system. 

To allow a transaction to check out objects from other trans- 
actions which are not ready to commit them to the public data- 
base, we introduce the notion of semi-public databases. A 
semi-public database is associated with each engineering transac- 
tion, and is the repository of design objects which the transaction 
considers in some sense correct and as such other transactions may 
check out. In other words, the checkout environment of a 
transaction includes the public database and the semi-public data- 
bases of other transactions. (It will be shown in Section 5 that the 
public database system will actually manage both the public data- 
base and the semi-public databases.) 

We introduce two new commands to support the notion of 
semi-public databases: DOWNWARD COMMIT and UPWARD 
COMMIT (or CHECKIN). A transaction DOWNWARD COM- 
MITS a set of objects to its semi-public database for checkout by 
other transactions. The transactions which check out objects from 
a transaction’s semi-public database become its children transac- 
tions. When a transaction UPWARD COMMITS a set of objects, 
it transfers (checks in) the objects to the semi-public database of 
its parent transaction. 

A transaction may issue DOWNWARD or UPWARD COM- 
MITS at any time; that is, a DOWNWARD or UPWARD COM- 
MIT does not mark the termination of the transaction. When a 
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transaction terminates (ENDS or ABORTS), all objects in its semi- 
public databases are automatically UPWARD COMMITted to the 
parent’s semi-public database. If the transaction has no parent, its 
objects are UPWARD COMMITted to the public database. 

Just as a transaction may not UNSAVE changes which it has 
committed to the public database, objects committed to the semi- 
public databases cannot be UNSAVEd. If changes must be made 
to the objects committed to the semi-public database, the transac- 
tion must check them out again, update them, and put them back 
to the semi-public database. 

Figs. 1 and 2 below illustrate the concepts discussed thus far. 
In Fig. 1, Tl checks out objects 01, 02, and 03 and updates 01 
and 03 to a consistent state. Tl DOWNWARD COMMITS (DC) 
the objects. Transaction T2/1 can check out 01 and/or 03 which 
have been committed by Tl. (T2 is the identifier of the transac- 
tion and /l indicates its parent.) Tl further checks out 04, 05... 
and T2/1 goes on to modify 01 and check out 06 and 07. The 
checkout environment of T2/1 is the public database, the semi- 
public database and of course its own semi-public database. 

Once T2/1 decides that 01 has been updated CorrectlY. it may 
UPWARD COMMIT (UC) 01 to the semi-public database of TI, 
as shown in Fig. 2. Tl can now check out 01 again and see the 
changes made by T2/1. T2/1 can proceed to check out 06. 07 
and update them. If T2/1 terminates, all the objects which have 
not already been UPWARD COMMITted (06, 07) are automa& 
tally UPWARD COMMITted to T I. 

Now supposk TI in Fig. 1 must UNSAVE the changes it has made 
to the beginning of the transaction, after DOWNWARD COM- 
MITting 01, 03. When Tl UNSAVEs, updates to 02 will be 
undone; however, updates to 01 and 03 will remain. This may be 
viewed as if 01 and 03 have been completely removed from the 
private database of the transaction. 

Similarly, suppose in Fig. 2 that Tl must be UNSAVEd, say 
to the beginning of the transaction, after T2/1 UPWARD COM- 
MITS 01. Again, as 01 has been placed in Tl’s semi-public data- 
base, changes to 01 will not be affected by the UNSAVE. 

2.2. Precise Description of the Model 

The transaction model overviewed in the previous subsection may 
be generalized in two directions in a straightforward manner. 
First, a dependent transaction can itself DOWNWARD COMMIT 
objects for checkout by other dependent transactions. This will 
give rise to a hierarchy of nested transactions. Second, a transac- 
tion can not only check out objects from the public database and 
the semi-public database of its parent, but also the semi-public 
databases of any transactions in its chain of ancestors. Each 
non-leaf node of a transaction hierarchy then controls the check- 
out of objects in its semi-public database by its descendant trans- 
actions. 

We can now completely describe our transaction model. 

1. A transaction may check out objects from its checkout environ- 
ment, which includes its own semi-public database, the semi-public 
databases of all transactions in its chain of ancestors, and the 
public database. 
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01 02 03 04 05 
Tl > time 

BT DC (01;03) 

Tl’s semi-public 
database 

T2 rl 
01 06 07 

> time 
BT 

Fig. 1 

01 02 03 04 05 01 
Tl > time 

BT DC (01,03) 

Tl’s semi-public 
database 01 03 01 06 07 

T2rl 
01 06 07 

> time 
BT UC (01) ET 

Fig. 2 

Any transaction may check out any objects from the public data- 
base, A transaction may check out from the semi-public databases 
of transactions on its chain of ancestors on the same transaction 
hierarchy. A transaction which is the root of a transaction hier- 
archy may check out from any transaction on another transaction 
hierarchy, giving rise to a new parent-child relationship between 
the two transactions. A transaction may not check out from any- 
where else. 

We take the view that a direct checkout of an object from a trans- 
action at a higher level of the transaction hierarchy than the parent 
is equivalent to a succession of checkouts from the transaction 
down the transaction hierarchy. This means, in particular, that the 
public database is the virtual root of all transaction hierarchies, 
and as such a direct checkout from the public database is regarded 
as a succession of checkouts down a transaction hierarchy. 

2. When a transaction checks out an object, it receives a copy of 
the object from its checkout environment. The object becomes 
part of the private database of the transaction. This means that if 
the transaction UNSAVEs to a save point preceding the checkout, 
the object is implicitly dropped from the private database of the 
transaction and the lock on the object returns to the transaction 
from which the object was checked out. 

3. Objects are committed to the semi-public database of a transac- 
tion when the transaction DOWNWARD COMMITS them or its 
children transactions UPWARD COMMITS them. Objects stored 
in the semi-public database of a transaction are not affected by 
UNSAVEs. The transaction may change them only by checking 
them out, updating and committing them to the semi-public data- 
base again. 

We note here that although the semantics of SAVE and UNSAVE 
are correct in the present context, the discussion of Section 4.3 
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will lead us to drop these commands from our transaction mecha- 
nism. 

3.1. When a transaction DOWNWARD COMMITS objects to its 
semi-public database, they become available for checkout by other 
transactions. Once the transaction DOWNWARD COMMITS an 
object, it must in theory compete with other transactions to check 
out the object again. 

3.2. When a transaction UPWARD COMMITS objects, they enter 
the semi-public database of the parent transaction and become part 
of the parent’s checkout environment. The objects become invisi- 
ble to the transaction whichon UPWARD COMMITted them. If 
the parent already has an older version of the same objects, they 
are replaced by the new version being UPWARD COMMITted. 

A transaction UPWARD COMMITS objects to its immediate 
parent, regardless of where in the chain of ancestors it had initially 
checked them out. In particular, a transaction UPWARD COM- 
MITS an object to its immediate parent an object, even if it had 
directly checked it out of the public database. The parent is then 
responsible for UPWARD COMMITting the object to its parent, 
and so on, up to the semi-public or public database from which the 
object was initially checked out. 

We note that an UPWARD COMMIT may cause the transaction 
hierarchy to be altered. Once a transaction Ti UPWARD COM- 
MITS all the objects it checked out of its chain of ancestors, and 
no transactions have checked out any objects from Ti, Ti becomes 
an independent transaction and drops out of the current transac- 
tion hierarchy. However, as long as the transaction retains any 
object it checked out of any transaction on its chain of ancestors, 
the transaction hierarchy is not altered. This means, for example, 
that even if a transaction UPWARD COMMITS all the objects it 
checked out of its parent, it remains dependent on the parent if it 
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had checked out objects from an ancestor of the parent. 

4. When a transaction terminates, all the objects in its semi-public 
database become part of the checkout environment of its parent 
transaction. If the transaction ENDS, all the objects which have 
not been committed to its semi-public database are UPWARD 
COMMITted to the parent. If the transaction ABORTS. all un- 
committed objects are simply dropped. (In Section 4.3, we will 
further discuss the semantics of ABORT and in fact drop it from 
the list of meaningful commands in a long-lived transaction.) 

5. If a transaction terminates before all of its dependent transac- 
tions have terminated, the dependent transactions become depend- 
ent on the parent of the terminating transaction. In particular, if 
the root transaction terminates, the public database becomes the 
virtual root transaction, and all UPWARD COMMITS are directed 
to it. 

3. Further Discussions of the Semantics of the Model 

3.1 Transaction Consistency 

For expository simplicity, we have so far assumed that all objects 
are checked out in write (W) mode. We can easily refine the 
checkout modes to W, R and RW, discussed in [LORI83]. 

An R-mode checkout is equivalent to the read lock in the 
conventional share/exclusive lock scheme. It does not conflict 
with R-mode checkouts by other transactions; however, it conflicts 
with a W-mode checkout. 

An RW-mode checkout conflicts with neither R nor W. That 
is, a transaction may check out an object in RW mode, even if 
other transactions may have checked it out in R or W mode; and 
that some transactions may have checked out an object in RW 
mode has no bearing on whether other transactions may check out 
the object in R or W mode. An RW-mode checkout is merely a 
request to receive a copy of an object from the public database or 
semi-public database of any transaction. The system is not con- 
cerned with the possibility that a transaction may use some of the 
information in that object to produce modifications to other ob- 
jects. Therefore, a transaction may check out any object in RW 
mode, without being constrained to its checkout environment. Put 
in a different way, no parent-child relationship is introduced as a 
result of an RW-mode checkout. 

As discussed in (GRAY78], a transaction may upgrade a lock 
to a more exclusive lock; however, it may not downgrade a lock to 
a less exclusive lock. For example, an R lock may be converted to 
a W lock, while a W lock may not be downgraded to an R lock. 
This is known as lock-mode conwrsion. On our a hierarchy of 
nested transactions, a transaction may convert an R-mode check- 
out of an object into a W-mode checkout, if no other transaction 
has already checked out the object in R or W mode. 

Transaction T is said to observe the consisrency fock profocol if it 
observes the following rules jGRAY781: 

1. T sets a W lock on any data it updates, 
2. T sets an R lock on any data it reads, and 
3. T holds all locks until the end of transaction. 
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(GRAY781 defines three ievels of consistency. Level-one consist- 
ency only avoids lost-update and deadlock during transaction 
backout. Level-two consistency avoids dirty read as well. And 
level-three consistency further guarantees repeatable reads. Level- 
three consistency is obtained when the consistency lock protocol is 
observed. 

Ignoring RW-mode checkouts, our model guarantees only 
level-two consistency between transactions within a transaction 
hierarchy. The reason is that read is not repeatable within a trans- 
action hierarchy. Suppose a transaction Tj checks out an object Oi 
from its parent Ti, updates it, and UPWARD COMMITS it. Then 
another transaction Tk checks out object Oi from Ti and UP- 
WARD COMMITS it to Ti after updating it. If Tj checks out the 
object from Ti again, it will see a different object. 

However, it is easy to see that our model guarantees level- 
three consistency between different transaction hierarchies. Fur- 
ther, if we require that a transaction UPWARD COMMIT all 
objects when it terminates, the model guarantees level-three con- 
sistency even between transactions within the same transaction 
hierarchy. Rules 1 and 2 are enforced when objects are checked 
out. Rule 3 is enforced by propagating locks from dependent 
transactions through their chains of ancestors. The root of the 
transaction hierarchy ends up with locks on all the objects and 
holds them until it terminates. When the root of the transaction 
hierarchy terminates, all the objects are UPWARD COMMITted to 
the public database and all the locks are released. 

3.2 Permanence of the Semi-Public Databases 

A critical question of far-reaching consequence is whether we 
allow the UNSAVE to back out the objects which have been 
committed to a semi-public database. If the UNSAVE causes a 
backout of the objects in the semi-public database, it may cause 
backouts of entire subtrees of transactions, since other transactions 
may have checked out the objects. This approach may be too 
drastic and that it will significantly complicate our transaction 
model and its implementation. Instead, we have adopted the 
alternate view that when a transaction allows other transactions to 
check out its objects, it is because the transaction (i.e., the design- 
er who is running the transaction) has decided that the objects are 
stable and correct. This view led us to introduce the notion of 
DOWNWARD and UPWARD COMMIT which will move out of 
the path of the UNSAVE those objects that a transaction has 
deemed stable enough to allow checkouts by other transactions. 

If an object which has been UPWARD- or DOWNWARD- 
COMMITted must be undone, the transaction which has the W 
access to the object in its checkout environment must explicitly 
check out the object and modify it. Although this approach makes 
wholesale backout of committed objects rather cumbersome, it also 
offers some clear advantages. Once a dependent transaction 
checks out a committed object, it need not be concerned about the 
possibility that the object may be UNSAVEd by the parent trans- 
action. Remember that UNSAVE may be forced upon an uncom- 
mitted object when the private database system recovers from 
crashes, particularly hard crashes that destroy its disk contents. 

3.3 Constraints on the Checkout Environment 

We will now justify our decision to limit a transaction’s checkout 
environment to the semi-public databases of transactions on its 
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chain of ancestors. Consider for example a transaction hierarchy 
in which Tl is the root, T2/1 and T3/1 are immediate children of 
Tl, and T4/2 is a child of T2/1. T4/2 cannot check out objects 
from T3/1; T3/1 must UPWARD COMMIT them to Tl, before 
T4/2 can check them out (from Tl). 

Suppose this environment constraint is not imposed. Then 
T4/2 may check out an object 03 from T3/1 and 02 from T2/1, 
update them, and check them back into T3/1 and T2/1, respec- 
tively. The trouble is that T4/2 may have updated the objects 
such that they are now semantically dependent on each other. As 
such, after they have been checked in, any changes to one may 
require corresponding changes in the other. However, since 02 
has been checked into T2/1 and 03 into T3/1, neither transaction 
has direct control over this semantically interdependent set of 
objects. 

In fact, this is also the reason we have taken the view that an 
object checked out by a transaction Tk from the public database or 
the semi-public database of an ancestor transaction Ti should be 
checked in through a succession of UPWARD COMMITS up the 
chain of ancestors of Tk, rather than directly back to the public 
database or the semi-public database of Ti. 

We have maintained that a transaction may check out objects only 
from its chain of ancestors. If a transaction Ti must check out an 
object from transaction Tj which is not on its chain of ancestors, 
the object would have to be first UPWARD COMMITted to trans- 
action Tk, the first ancestor common to Ti and Tj, and Ti must 
check out the object from Tk. 

If the transaction hierarchy becomes deeply nested, this proc- 
ess can become cumbersome. One way to improve this situation 
would be to allow the transaction hierarchy to be restructured. In 
the current example, Ti will become a child of Tj. 

The algorithm for restructuring a hierarchy is quite simple. 
Suppose Ti is to check out an object from Tj, a transaction which 
is on the same transaction hierarchy with Ti but which is not an 
ancestor of Ti. Let Tk be the first common ancestor to both Ti 
and Tj. If Ti checks out the object from Tj, the subtree of trans- 
actions rooted at Ts, a transaction which is the highest ancestor of 
Ti and an immediate child of Tk, becomes a subtree of Tj. This is 
illustrated in Fig. 3. We are currently investigating a feasible 
mechanism to support this feature. 

before Ti checks out from Tj after 

Tk 

.m A 

/‘” \ ‘\ y;: .v 
. . . 

I \ 
i’ \ . . . 

Ti 
\ 

Ti 

Fig. 3 Restructuring a transaction hierarchy 
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4. Extending the Model to a Transaction Mechanism 

4.1 Undoing and Selective Authorization of 
CHECKOUTS 

We have shown that DOWNWARD COMMIT makes available 
some objects to dependent transactions on the transaction hier- 
archy. We need finer control over which dependent transactions 
get to check out DOWNWARD-COMMITted objects and UP- 
WARD COMMIT them. We now introduce three additional com- 
mands for this purpose; CANCEL, ALLOW, and DISALLOW. 
(As these features are somewhat orthogonal to a discussion of our 
transaction model, we will not attempt to provide a full account of 
these commands in this paper.) 

A dependent transaction may CANCEL an object it checked out. 
The command is used in effect to undo a checkout. However, this 
does not cause the parent transaction to implicitly take away the 
checkout privilege from the dependent transaction. When a de- 
pendent transaction CANCELS an object, any record of the check- 
out is erased from the system’s control structures, and the parent- 
child relationship between the transactions is broken if the check- 
out being CANCELed is the only reason for the parent-child 
relationship. A CANCELed object of course cannot be UPWARD 
COMMITted, since it was in effect never checked out. 

Further, the object being CANCELed is dropped from the 
transaction’s private database, or semi-public database (if it is in 
the semi-public database, but not in the private database). 

When a transaction DOWNWARD COMMITS an object, it implic- 
itly grants the RW checkout privilege to all transactions. Howev- 
er, it must use the ALLOW and DISALLOW commands to grant 
and revoke R and W privileges to specific transactions. (Of 
course, dependent transactions must first have been started, so that 
their identifiers are known.) ALLOW and DISALLOW are essen- 
tially equivalent to the GRANT and REVOKE commands support- 
ed in System R to grant and revoke read and write privileges on 
tables to selected users [BLA%l]. 

A transaction T may ALLOW specific dependent transactions. 
Or it may allow all but some transactions by simultaneously AL 
LOWing PUBLIC and DISALLOWing the particular transactions. 

Analogous to GRANT and REVOKE, the system in a sense 
regards PUBLIC as a special single transaction. If a transaction T 
ALLOWS PUBLIC, a dependent transaction Ti is implicitly AL- 
LOWed (unless T explicitly DISALLOWed Ti). If T now expiicit- 
ly ALLOWS Ti and then DISALLOWS PUBLIC, Ti still retains its 
ALLOW. 

A DISALLOW in R mode disallows both R and W-mode 
checkouts. A W-mode DISALLOW disallows W-mode checkouts 
while implicitly allowing R-mode checkouts. If T had previously 
ALLOWed Ti, the DISALLOW negates the ALLOW and CAN- 
CELS all checkouts on object 0. If the newly DISALLOWed 
mode is R, both R and W checkouts are CANCELed. If the 
DISALLOW is in W mode, W checkout is CANCELed. The 
objects implicitly CANCELed by a DISALLOW then cannot be 
UPWARD COMMITted. T’s DISALLOW of object 0, however. 
does not CANCEL any checkouts from the semi-public databases 
of T’s descendants which have DOWNWARD COMMITted ver- 
sions of 0. 
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4.2 Supporting Multiple Transactions on a Workstation 

We now introduce two final commands: SUSPEND and RESUME. 
The SUSPEND command allows a designer to suspend a transac- 
tion to use his workstation and private database system for some 
other purposes; for example, to initiate another transaction. After 
a while, he may RESUME the transaction at a point where it was 
SUSPENDed. 

4.3 Superimposing Short Transactions on a Long 
Transaction 

The model of long-lived transactions developed in the previous 
sections is sufficiently powerful for supporting an environment 
where the long transactions only check out objects from their 
checkout environments. and manipulate them in their private 
databases, and check them back in the public and semi-public 
databases. However, we believe that long transactions must also be 
able to interact with the public system in conventional ways. That 
is, they must be able to issue queries, data manipulation statements 
(update. insert, delete), data definition statements (create and drop 
tables, indexes, views) and data control statements (authorization) 
against the database the public system manages. 

An engineering design system must provide support for man- 
aging two distinct types of database: the design database of design 
objects, and the conventional database for design administration. 
The design objects are usually collections of related records, for 
example. complex objects [LORI83], and are given system- 
generated unique identifiers. The direct query/manipulation capa- 
bility will be essential to query and update not only the design 
administration database, but also such system control data as 
system catalogs and even the checkout/checkin control structures. 
The feature will also be used to define design objects, besides 
defining and creating access paths to the non-design database. 

To provide this capability, we have taken the view that each 
long-transaction within a transaction hierarchy is actually a se- 
quence of conventional. short-lived transactions. Within these 
short transactions, queries, data manipulation statements, data 
definition statements, and data control statements may be issued 
against the transaction’s private database and the public database. 
Engineering transaction commands we have discussed will also be 
issued as part of these short transactions against the transaction’s 
checkout environment. This is illustrated in Fig. 4, where T is a 
long transaction, and end t means end of a short transaction. - 

All changes to the public, private, and semi-public databases 
which result from a short transaction will be committed together, 
when the short transaction commits. If the short transaction 
aborts, the effect of all the long-transaction commands and queries 
and updates issued within the short transaction will be backed out 
to the end of the preceding short transaction. As a short transac- 
tion involves two systems, the public system and a private system, 
its commit and abort require use of a coordinated two-phase com- 
mit protocol [GRAY78]. And a long transaction can be backed up 
only as far as to the beginning of the current short transaction, in 
case of intentional ABORT of the short transaction or crashes of 
the private/public database systems. 

Since all long-transaction commands, even the DOWNWARD ahd 
UPWARD COMMIT, are now ‘recoverable’ (can be backed out). 
when a long transaction DOWNWARD or UPWARD COMMITS 
an object, logically the object does not enter its semi-public data- 
base until the short transaction commits. In particular, even when 
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an object is DOWNWARD COMMITted and ALLOWed, a de- 
pendent transaction cannot check it out until the short transaction 
commits the DOWNWARD COMMIT and ALLOW commands. 

Further, in view of the fact that the effect of each short- 
transaction must become ‘permanent’ when it commits, the 
SAVE/UNSAVE commands as well as ABORT we discussed in 
the context of long transactions can only be effective within a 
short transaction. That is, an UNSAVE or ABORT can back up 
the changes that have taken place only up to the beginning of the 
current short transaction. Thus our approach to superposing short 
transactions on a long transaction effectively eliminates the SAVE, 
UNSAVE, and ABORT as long-transaction commands. 

4.4 User Interface 

Below, we summarize the user interface for all the long-transaction 
commands we have discussed thus far. 

1. DOWNWARD COMMIT has one parameter, the list of objects 
being committed. 

2. UPWARD COMMIT has one parameter, the list of objects 
being committed. 

3. CHECKOUT has three parameters: identifier of the object to 
be checked out, checkout mode, and identifier of the transaction 
from which the object is to be checked out. If the identifier of the 
target transaction is not specified, the target defaults to the (semi- 
)public database which has the most recent version of the object. 

4. BEGIN TRANSACTION has one optional parameter, the 
transactionidentifier. If the user does not supply the transaction 
id, the system generates an identifier which will be unique across 
the entire network of private database systems. 

5. SUSPEND has no parameter. The system automatically ends 
the current short transaction. 

6. RESUME requires the transaction identifier of the transaction 
to be resumed. 

7. The ALLOW command has three parameters: identifier of the 
object being allowed for checkouts. the access privilege being 
given to other transaction, and optionally, the identifier of the 
transaction which may check out the object. If transaction id is 
not specified, it defaults to PUBLIC. 

8. The DISALLOW command has three parameters: identifier of 
the object whose checkout is being disallowed, the checkout mode 
being disallowed, and identifier of the transaction being disal- 
lowed. 

9. The CANCEL command has only one parameter, the list of the 
identifiers of the objects being dropped. 

5. Implementation Considerations 

At IBM Research, San Jose, we are currently prototyping an 
Engineering Design Database System by extending the functions of 
System R [BLAS81, CHAM811. The nested long-lived transaction 
mechanism described in this paper is being incorporated into this 
prototype system. 
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Fig. 4 Short transactions superimposed on a long transaction 

The system will have a public database system which manages 
the public database and a number of private database systems 
connected to the public system in a star configuration. The host 
itself may be a network of computers on which a distributed data- 
base system runs. The private database systems may run in one of 
a few different environments. It may run as a single-user system 
on an engineering workstation with a private disk drive. Or it may 
be one of a number of database managers that run on a medium- 
scale computer with multiple I/O channels and disk drives under a 
virtual memory operating system. 

The workstations will communicate with one another through 
the central, public system. This means that the public system will 
control the checkout and checkin of all objects, in both the global- 
ly consistent public database and the semi-consistent, semi-public 
databases of the nested transactions. The public system will main- 
tain the control structures to keep track of the checkout environ- 
ment which any transaction can see at any time. 

All the long-transaction commands, as well as direct queries 
and updates against the public and semi-public databases, must be 
sent to the public system for processing. A CHECKOUT request 
will cause the public system to make a copy of the requested 
object, send it to the requesting private system, and update the 
checkout control structures. A DOWNWARD and UPWARD 
COMMIT command will cause the public system to insert the 
object being committed into the semi-public database, and update 
the checkout control structures. The CANCEL, ALLOW, DISAL- 
LOW, BEGIN TRANSACTION, END TRANSACTION all - - 
cause the public system to update the control structures. 

These control structures must persist across system crashes 
and user sessions. This means that we will organize the control 
structures as relations and manage them using the concurrency 
control and recovery mechanisms of System R, which will serve as 
the public database system. 

It should perhaps be mentioned that when an object is 
checked out by a transaction, the object is not visible to another 
transaction executing within the same private system. This separa- 
tion of private database space between transactions is particularly 

important when different transactions running on the same Private 
system check out the same object in different modes; for example, 
one transaction in W mode and another in RW mode. 

Before concluding this section, we must point out that our transac- 
tion mechanism incurs only a minor additional cost, in terms of 
both system performance and system implementation, over exisit- 
ing proposals. Implementation of the checkout and checkin com- 
mands and manipulation of the persistent control structure which 
support them represent the major implementation and Performance 
overhead in all models of long-lived engineering transactions. Our 
mechanism requires only a slight complication in the algorithms for 
manipulating the checkout/checkin control structures, Primarily to 
support the ALLOW, DISALLOW, and CANCEL commands. 
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6. Comparisons with Other Proposals 

The models for engineering transactions found in the literature 
[HASK82, LOR183, KATZ831 do not support the notion of nested 
transactions. By introducing the notion of semi-public databases 
and coupling it with the notion of nested transactions, we are 
providing a mechanism for supporting a complex design environ- 
ment, by allowing designers (transactions) to check out and work 
on partial designs in a controlled manner from other transactions. 

Our model of nested transactions shares some characteristics 
with conventional models of nested transactions [DAVI78, 
REED78, MOSS82]. In these proposals, a transaction can spawn 
subtransactions, which can execute in parallel. The subtransac- 
tions can in turn spawn their own subtransactions. Each subtran- 
saction inherits locks from its chain of ancestors, and is logically 
serialized with respect to other concurrent subtransactions in the 
hierarchy of transactions. When a subtransaction commits, its 
locks and recovery mechanisms are passed onto its immediate 
parent transaction, and its updates are made visible to the parent. 
Commitment of a subtransaction is conditional; that is, updates 
committed by a subtransaction may be backed out by any transac- 
tion in its chain of ancestors. 

However, our model differs from these others in some impor- 
tant ways. These differences result from the long-lived nature of 
engineering transactions. 

First, the DOWNWARD COMMIT in our model allows a 
transaction to commit its updates and to dynamically build up the 
checkout environment for dependent transactions. This notion is 
completely absent in other models of nested transactions. 

Second, the updates committed by an UPWARD or DOWN- 
WARD COMMIT are not conditional, in that the transaction 
which has the updated objects in its checkout environment must 
explicitly check out the updated object and undo the updates. 

Third, our model grants specific access privileges to specific 
transactions, rather than relying solely on the lock mechanism to 
resolve the problem of who gets which type of access to an object. 

Fourth, our model incorporates the view that a long transac- 
tion is a sequence of individually committable, conventional short 
transactions. 

Fifth, the UPWARD COMMIT in our model allows a depend- 
ent transaction to commit its updates to its parent transaction at 
any time. Other models, as the conventional model of non-nested 
transactions require all updates to be committed only at the end of 
a transaction. 

For completeness, we note that Gray proposed an entirely differ- 
ent model of nested transactions [GRAY81]. Gray gives an exam- 
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plc in which a transaction consists of a number of subtransactions. 
These subtransactions are executed in sequence. Each subtransac- 
tion issues an unconditional commit. This is exactly the way in 
which we view any one transaction within a hierarchy of transac- 
tions as being a sequence of short transactions. 

However. in Gray’s model, when a subtransaction commits, all 
it\ updates become immediately visible to other transactions and 
suhtransactions. In the context of an engineering design environ- 
mcnt. tnis means that when a subtransaction commits, its updates 
are committed to the public database, rather than to the parent 
transaction. But this is exactly the existing model of engineering 
transactions without the nesting of transactions. 

Summary 

In this paper we described a model of engineering transactions 
which combines and generalizes key concepts found in both the 
existing models of engineering transactions and nested transac- 
tions. 

Our model of engineering transactions is based on three key 
concepts; the notion of nested transactions, the notion of semi- 
public databases associated with the nested transactions, and the 
view that a long-lived engineering transaction is a sequence of 
individually committed, conventional short-lived transactions. 

The database logically consists of the public database and a 
collection of semi-public databases. The public database is the 
repository of objects from which all transactions check out and 
into which they check in completed objects. A semi-public data- 
hase is the halfway house into which a transaction commits objects 
which are not ready to be checked into the public database but 
which are consistent enough for checkouts by other transactions. 

When a transaction Tj checks out objects from another trans- 
action Ti, it becomes a child of Ti. Further, a transaction Tk may 
check out objects from Tj and become a child of Tj and a grand- 
child of Ti. In this way a hierarchy of transactions, called nested 
transactions, is established. A separate semi-public database is 
associated with each transaction on the transaction hierarchy. A 
transaction may check objects out of the public database and the 
semi-public databases associated with the transactions which are its 
ancestors on the transaction hierarchy. 

Each long transaction on a transaction hierarchy is a sequence 
of conventional short transactions. Within each short transaction, 
checkout and checkin requests are issued, as well as normal query, 
data manipulation, data definition, and data control statements 
against those objects which are not units of checkout and checkin. 

Our model provides considerable flexibility in allowing a team 
of designers to complete a complex design involving numerous 
design objects by passing incomplete objects back and forth among 
them in a controlled manner. Further, since the hierarchy of 
nested transactions closely corresponds to the hierarchy of versions 
and alternatives derived from objects at higher levels of abstrac- 
tion, we expect that this model can also serve as the framework for 
the management of versions and alternatives of design objects. 
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