
Processing Read-Only Queries Over Views With Generalization

David Goldhirsch

Laura Yedwab

Computer Corporation of America
4 Cambridge Center

Cambridge, Mass. 02142

ABS’I IiACT
__ ___...- l

The traditional Query Modification
appi oa(. h to query processing is inappropriate
for views involving generalization. We use a
combination of modification and materialization
for queries over such isiews. Furthermore, by
choosing modification or materialization ae part
of global optimization, we permit more optimiza-
tion than would be provided by a purely modify-
ing approach.

INTRODUCTION

Generalization is an abstraction that groups
conceptually related objects into a “generic”
object [SMITHI. For example, students and in-
structors can be generalized as people.

We can devise views that represent generali-
zation [KATZ], [DAYALJ 1 . However, as will be
seen, the standard approach of Query Modifica-
tion [STONEBRAKER] will not correctly handle all
.queries ‘over such views. Furthermore, even
where it works, query modification may not be
the best way to handle such queries.

We have developed a query processing archi-
tecture that correctly and efficiently handles
these queries.

Although we developed this approach in terms
of the Functional Data Model and the language
DAPLEX [SHIPMAN], our observations and algorithm
apply to any system supporting virtual generali-
zation.

A SIMPLE DATA MODEL AND LANGUAGE

Consider a database of entities. Each entity

is of a e that specifies the name and range
of its attributes. An attribute value can be a
,string, integer, a reference to another entity
(perhaps of a different type) or a set of any of
these.

Figure 1 is a schema for such a database.
Using the notation of [SHIPMANl, queries over

such a database can be expressed, procedurally,
with statements that create new entities, print
attribute values and iterate through sets of en-
tities (perhaps in a specified order).

For example, the following query prints the
name of each cat followed by the name (alphabet-
ically) of each of its “friends”:

for each A in ANIMAL
where ANIMAL-SPECIES (A) = “Cat”

loop
print (ANIMALJAMR (A)) ;
for each F in ANIMAL

where F is in ANIMAL-FRIENDS (A)
ordered by ANIMAL-NAME (F)

loop
print (ANIMAL-NAME (F));

end loop ;
end loop;

Expressions can contain agnrenations. These
are built-in operations over a set of values. A
query to print the median INSTRUCTOR-SALARY tak-
en over the set of INSTRUCTORS would be: “print
(median (INSTRUCTOR-SALARY (INSTRUCTOR) 1)“.

VIEWS WITH GENERALIZED. ENTITIES

Our system supports two kinds of virtual en-
tities. Simple types are derived from one
underlying entity type. For each underlying en-
tity (subject to selection), the attributes of
that entity are used to create one of the virtu-
al entities.

For example, as shown in Figure 2, CAT enti-
ties can be derived from ANIMALS.

We also support generalized types. These
represent the “generalization” of several under-
lying types of entities. For example, the type
“PERSON” can generalize STUDENTS and INSTRUC-
TORs .

As described in [DAYAL_ and [GOLDHIRSCH],

Singapore, August, 1984 ProLeedlngs of the Tenth International
Conterence on Very Large Data Bases.

344

each element of the bi-directional outer-u
[CODD], [DAYAL- of th;STUDENTs and INSTRUC-
TORS can be used to create a PERSON entity (as-
suming we know when a STUDENT and INSTRUCTOR
represent the same “person”).

A view specifying PERSONS and DWELLINGS is
shown in Figure 3. (The derivation for DWELLING
is similar to that of PERSON and is omitted.)
general, an entity X generalizing u underly 1

In
ng

types Xl , . . . ,Xu is defined with 2”-1 derivation
comnonents (corresponding to the non-empty sub-
sets of {Xl,...,Xu)).

MODIFICATION DOES NOT ALWAYS WORK -w-p

There are two ways to handle a query’s refer-
ence to virtual entities: materialize the enti-
ties and then run the query; or, syntactically
modify the query to refer to the underlying
(non-virtual) entities.

Materialization always works. Since deriva-
tions are syntactically similar to queries, an
unimaginative system can simply “execute“ the
derivation before running the query (we do NOT
recommend this approach).

The modification approach was introduced, in
a relational cant ext , without generalizations,
in 1 ST~NEBRAKERI . Figure 4b shows the result of
using modification to eliminate the CAT loop of
Figure 4a.

Observe that the effect of the “ordered by”
clause was preserved ‘through the modification.

[KATZI and [DAYALA] propose a modification
approach to handle queries over generalizations.
The idea is that, for each iteration over a gen-
eralization (of g underlying types!, the query

is broken up into 2”-1 separate queries -- one
for each comnonent of the derivation. If the-
resulting queries refer to other generaliza-
t ions, the algorithm is applied recursively.

Figure 5a contains a query that prints
(without ordering) the EARNINGS of each PERSON.
After modification, using the derivation of Fig-
ure 3, we get the three queries of Figure 5b.

The modification approach of [KATZ] and [DAY-
AL-l] does NOT correctly handle queries contain-
ing ordered iterations and/or aggregations over
generalizations.

To see why ordering isn’t correctly modified,
imagine adding an “ordered by PERSON--NAME (P)”
clause to the loop in Figure 5a. The clause
would appears referring to STUDENT and/or IN-
STRUCTOR, in EACH of the queries of Figure 5b.
This produces three independently ordered lists,
rather than the single, ordered list printed by
the query in Figure 5a.

To see why aggregation fails, observe that
there is no way to “decompose” a median over the
three components of PERSONS. That is, no combi-
nation of medians over STUDENTS and INSTRUCTORS
can be used to modify the query “print (median
(PERSON-EARNINGS (PERSON) 1) ‘1.

(Some aggregations CAN be handled by modif i-
cation. For example, the count of the PERSONS
is the -of: the count of PERSONS derived

Proceedings of the Tenth International

Conference on Very Large Data Bases.

from STUDENTS, the count of PERSON8 derived from
INSTRUCTORS and the count of PERSONS derived
from both a STUDENT and an INSTRUCTOR.)

MODIFICATION IS NOT ALWAYS DESIRABLE

The “obvious” solution might be to material-
ize generalizations that are being aggregated
and/or ordered, and to use modification for all
other virtual loops.

An assumption implicit in [STONEBRARER] ,
[RATZI and [DAYALA] is that, given a choice,
modif ication is the preferred method. This is
true for SIMPLE types.

However, because it drastically alters a
query’s architecture, modification for generali-
zations can produce inefficient queries.

As an example, consider the query in Figure
6a. Observe that the loops over PERSON and
DWELLING can each be handled either by modifica-
tion or materialization.

An optimization goal might be to minimize the
number of joins [RIESI needed to process the
nested loops in this query. In this example, we
can show that it takes more joins to run the
modified queries than it would to materialize
PERSON and DWELLING (running the query as is>.

Modifying the loop over PERSON results in 3
queries each over DWELLING, the components of
PERSON (STUDENT and INSTRUCTOR) and CAT. Each
query has 4 loops and represents 3 joins.

For each query, applying modification to el-
iminate the DWELLING loop produces 3 queries
each over STUDENT, INSTRUCTOR, CAT and the com-
ponents of DWELLING. This is a total of 3*3=9
queries. Each query contains 5 loops and
represents 4 joins. The total number of joins
is 9*4=36.

Assume we use only modification for a query
of G loops. Assume that g of these loops range
over generalizations of u underlying types. The

result is (2”-1)g queries each with (I. + g(u-1))
loops. This represents a total of

(2” - 11g (L + g(u-1) -. 1, :

0 (2gu) joins .

On the other hand, using a “worst c.:lse” stra-
tegy (see [GOLDHIRSCH~), we can matcrialisc tht?
PERSONS and DWELLINGS each using 6 ,)oins. The
query itself contains 3 loops and represents 2
joins. So, to materialize PERSON, m~trrialize
DWELLING and then run the original. qu~“ry over
the materialized enti.ties, we nc::‘-d (6+t 11.:) ,’ IF+
joins.

In general, assuming a worst i:ase st raCt:g:.
we can handle a query of 4 looI.+” (of ~t:j,cb G ilx
generalizations of u underlying 1.)pes‘j lrc~~g.

g(2” - l)(u-1) + L ” i :=

0 (g2”) joins.

AS the number of generalizatiuus in A q~;‘,.j

Singapore, August. “. ? 1

345

growe, the number of joina after modification
grows exoonentiallv. The number of joiaa for
paterialization grows only linearly.

The point is not that materialization is
therefore “better” than modification, or viaa-
versa, but that there are cases where each might
be better than the other. Arbitrarily prefer-
ring one method can significantly detract from
the optimization of the query.

A OUERY PROCESSING ARCHITECTURE

We need a processing scheme that sensibly
chooses modification or materialization for each
loop (over a generalization) in a query.

The traditional plan works in three steps:
(1) view-maE the query into one or more queries
that refer only to existing entities, (2) op-
t imize , or produce a “strategy” for running the
resulting query (queries) and (3) execute the
query (queries) according to the strategy.

This architecture is inappropriate since (a)
the view-mapper cannot understand the impact of
changing the architecture of the query -- nor
can it calculate the coat of any particular ma-
terialization, and (b) an ordinary optimizer
would not know the view-mapping algorithm.

We choose to make step (2) a “hybrid” of op-
timization and deferred modification. As an
illustration, consider the processing of the
query in Figure 6a.

The view-mapper proceeds, iteration by itera-
tion, to resolve references to virtual entities.
Say, for example, it first recognizes CAT as a
SIMPLE virtual type. It modifies the CAT loop,
creating an appropriately restricted loop over
ANIMAL.

Figure 6b shows the query after the modifica-
&g of the CAT loop.

Notice that “A is in PERSON-CATS (P)” is, at
this stage of the view-mapping, type-
inconsistent: the range of PERSON-CATS is the
set of CATS, not the set of ANIMALS.

The view-mapper now sees the loops over gen-
eralizations DWELLING and PERSON. With each of
these, it aseociatee a copy of the corresponding
BOJ+ derivation.

To avoid the type inconsistencies, we *r
map these copies. *In particular, the definition
of PERSON-CAT (in PERSON’s BOJ+) refers to vir-
tual type CAT. Since CAT is a SIMPLE type, the
definition is handled by modification. For ex-
-pie, where a PERSON is both a STUDENT and a
INSTRUCTOR, the definition becomes :

PERSON-CATS : =
{A in ANIMAL where ANIMAL-SPECIES(A) = “Cat”

and
(ANIMAL-NAME(A) is in

STUDENT~ANIMAL~NAMES (S >
or
ANIMAL-NAME(A) is in

INSTRUCTOR~ANIMAL~NAMES(I)) 1

After the view-mapping of PERSON’s deriva-
tion, Fhe range of PERSON-CATS has effectively

Proceedings of the Tenth lnternetlonal
Conference on Very Large Data Bases.

been changed from CATa to ANIMALS. The view-
mapped query ia now type-conaiatent.

The auery ootimizer now considers all (or
many) of the different proceaaing strategies for
the query. Thin includes choosing ma-
tion or modif ication for each loop over a gen-
eralization.

To make this choice, the optimizer first de-
cides which loops m be handled by materiali-
zation (none, in this example). For each
remaining loop, it uses the Deferred Modifier to
compare the (global) effects of using modifica-
tion with the cost of materializing the general-
ization.

In this example, if nested loops are pro-
cessed by joins, the optimizer might decide to
materialize both PERSON8 and DWELLINGS.

CONCLUSIONS

The ability to define and query virtual gen-
eralizations ie desirable. Our approach for
handling queries over virtual entities is aigni-
f icantly different from previous proposals :

1. To handle generalized entities correctly,
we use both materialization and modification.

2. To do so efficiently, our optimizer col-
laborates with the view-mapper to decide
whether an entity is to be materialized or
modif ied.

ACKNOWLEDGEMENT

We are grateful to Arvola Ghan, Umeahwar Dayal,
Steven Fox, Nat Goodman, Steven Rubennan, Terry
Landers, Dan Riea, Diane and John Smith for
their comments and suggestions during the writ-
ing of this paper.

STUDENT
a tudent-name :
student-expenses :
student-animal-names i

INSTRUCTOR
instructor-name:
instructor-salary:
instructor-animal-names :

ANIMAL
an ima l-name :
animal-species :
animalfr ienda :

string;
integer;
eet of strings;

string;
integer;
set of strings;

string;
string;
eet of ANIMALS;

1. Fi&ure A Database Schema.

CAT
cat-name : string;

derive CAT from
for each A in ANIMAL

where ANIMAL-SPECIES = “Cat”
loop

create CAT
Slngafmre, August, 1984

346

(CAT-NAME :=
end loop;

end derive;

ANIMAI~NAME (A));

Fipure2. ----- A View with a SIMPLE derivation.

PERSON
person_name: string;
person-earnings: integer;
person-cats: set of CATS;

DWELLING
dwelling-occupants: set of strings;
dwellinnaddr: string;

derive PERSON from
for P ,in BOJ+ (S in STUDENT,1 in INSTRUCTOR)

using join predicate:
"STUDENT-NAME (S) = INSTRUCTOR_NAME (I)"

case P is a STUDENT but not an INSTRUCTOR:
PERSON-NAME:= STUDENT-NAME (S),
PERSON-F.ARNINGS:= - STUDENT-EXPENSES (S),
PERSON-CATS:= {C in CAT where

CAT-W CC> is in
STUDENT-ANIMAL-NAMES (S))

case P is an INSTRUCTOR but not a STUDENT:
PERSON-NAME:- INSTRUCTOR-NAME (I),
PERSON-EARNINGS:= INSTRUCTOR-SALARY (I),
PERSON-CATS:= {C in CAT where

CAT-NAME (C> is in
INSTRUCTOR-ANIMAL-NAMES (1))

case P is both a STUDENT and an INSTRUCTOR:
PERSON-NAME:= STUDENT-NAME tS),

PERSON-EARNINGg:= INSTRUCTOR-SALARY (I)
- STUDENT_EEPENSES (S),

PERSON-CATS:= {C in CAT where
CAT-NAMF, CC> is in
INSTRUCTOR-ANIMAL-NAMFS (I)

or
CAT-NAME CC> is in
STUDENT-ANIMAL-NAMES (S))

end loop;
end derive;

3. Figure A View with GENERALIZED derivations.

for each C in CAT
ordered by CAT-NM (C)

loop
print (CAT-NAME (C)1;

end loop;

Figure +a. & guerv over SIMPLE tvve CAT. --

for each A in ANIMAL
where ANIMAL-SPECIES (A) - "Cat"
ordered by ANIMAL-NAME (A)

loop
print (ANIMAL-NAME (A));

end loop;

Figure 4b. After the auerv has been MODIFIED.
Proceedlngr of the Tenth International
Conference on Very Large Data Bases.

for each P in PERSON loop
print (PERSON-EARNINGS (P));

end loop;

Figure 5a. A Ouerv over GENERAL m PERSON.

for each S in STUDENT where
for every I in INSTRUCTOR:

INSTRUCTOR-NAME (I) # STUDENT-NAME (S)
loop

print (- STUDENT-EXPENSES (S));
end loop;

for each I in INSTRUCTOR where
for every S in STUDENT:

STlJDENT_NAME (S) # INSTRUCTOR_NAME (I)
loop

print (INSTRUCTOR-SALARY (I));
end loop;

for each S in STUDENT loop
for each I in INSTRUCTOR

where INSTRUCTOR-NAME (I) = STUDENT-NAME (S)
loop

print (INSTRUCTOR-SALARY (I)
- STUDENT_ERPENSES (S));

end loop;
end loop;

5b. Figure The same auerv. after MODIFICATION

for each D in DWELLING loop
for each P in PERSON

where PERSON-NAME (P) is in
DWELLING-OCCUPANTS (D)

loop
print (PERSON-NAME (P));
for each C in CAT

where C is in PERSON-CATS (P)
ordered by CAT-NAME (C)

loop
print (CAT-NAME (C)1;

end loop;
end loop;

end loop;

6a. Figure A Ouerv over several entity tvnee

for each D in DWELLING loop
for each P in PERSON
where

PERSON-NAME (P) is in DWELLING_OCCUPANTS (D)
loop

print (PERSON-NAm (P>);
for each A in ANIMAL

where ANIMAL-SPECIES (A) = "CAT"
and A is in PERSON-CATS (P)

ordered by ANIMAL-NAME (A)
loop

print (ANIMAL-NAME (A).));
end loop;

end loop;
end loop;

6b. Figure The auerv after MODIFYING for CATS.

Slngapore, August, 1994

341

BIBLIOGRAPHY

[CODDI B. Codd, “Extending the Database Rela-
tional Model to Capture More Meaning,’ ACM TODS
4:4 (Dec. 19791, pp 397-434;

[DAYAL_ U. Dayal, 8. Rwang, “View Definition
and Generalieation for Database Integration in a
Multidatabaae System,” Proceedinns, Sixth Berke-
& Workehoo z Distributed Database Manartement
and Comouter Networks, 1982.

[DAYAL 21 U. Dayal, “Processing Queries over
Genera’iitation Hierarchies in a Multidatabaae
Syetem,' Proceedinne Ninth International Confer-
ence on Very Lame Databases, 1983.

[GOLDHIRScH D. Goldhirsch, L. Yedwab, ‘Procera-
ing Read-Only Queries Over Views With Generali-
zationn, Technical Report CCA-84-02, Computer
Corp. of ILllerica, 1984.

[KATZ] B. Ii. Katz, N. Goodman, “View Processing
in MULTIBASE, A Reterogeneoue Database System,’
in The Entity-RelationihiD ADDroach to I*
tion Modeling and Analysis, P. P. Chen (ed), Bl-
xer Science Publishers B. V. (North-Rolland),
1983.

[RIPS1 D. B. Rice, A. Ghan, U. Dayal, S. Pox, W.
K. Lin, L. Yedwab, “Decompilation and Optimiza-
tion for ADAPLEX: A Procedural Database
Language, ” Technical Report CCA-82-04, Computer
prp l

or America, 1982.

[SHIPMAN] D. W. Shipman, “The Functional Data
Model and the Data Language DAPLEX,’ ACM TODS
6:l (March 19811, pp 140-173.

[SMITH] J. M. Smith, D. C. P. Smith, “Database
Abstract ions : Aggregation and Generalization,”
ACM TODS 2:2 (June 19771, pp 105-133.

[STONEBRAKERI N. Stonebralcer, “Implementation of
Integrity C0nstraint.e and Views by Query Modifi-
cation,” Memorandum No. EFUAi514, Electronics
Research Lab. , College of Engineering, Universi-
ty of California, Berkeley, 1975.

Proceedings of ttle Tcnt~: inttr~rmtiurtal
Conference on Very Large DatG Etsses.

Nlw, Augurt, 1984

