
Processing Read-Only Queries Over Views With Generalization 

David Goldhirsch 

Laura Yedwab 

Computer Corporation of America 
4 Cambridge Center 

Cambridge, Mass. 02142 

ABS’I IiACT 
__ ___...- l 

The traditional Query Modification 
appi oa(. h to query processing is inappropriate 
for views involving generalization. We use a 
combination of modification and materialization 
for queries over such isiews. Furthermore, by 
choosing modification or materialization ae part 
of global optimization, we permit more optimiza- 
tion than would be provided by a purely modify- 
ing approach. 

INTRODUCTION 

Generalization is an abstraction that groups 
conceptually related objects into a “generic” 
object [SMITHI. For example, students and in- 
structors can be generalized as people. 

We can devise views that represent generali- 
zation [KATZ], [ DAYALJ 1 . However, as will be 
seen, the standard approach of Query Modifica- 
tion [STONEBRAKER] will not correctly handle all 
.queries ‘over such views. Furthermore, even 
where it works, query modification may not be 
the best way to handle such queries. 

We have developed a query processing archi- 
tecture that correctly and efficiently handles 
these queries. 

Although we developed this approach in terms 
of the Functional Data Model and the language 
DAPLEX [SHIPMAN], our observations and algorithm 
apply to any system supporting virtual generali- 
zation. 

A SIMPLE DATA MODEL AND LANGUAGE 

Consider a database of entities. Each entity 

is of a e that specifies the name and range 
of its attributes. An attribute value can be a 
,string, integer, a reference to another entity 
(perhaps of a different type) or a set of any of 
these. 

Figure 1 is a schema for such a database. 
Using the notation of [SHIPMANl, queries over 

such a database can be expressed, procedurally, 
with statements that create new entities, print 
attribute values and iterate through sets of en- 
tities (perhaps in a specified order). 

For example, the following query prints the 
name of each cat followed by the name (alphabet- 
ically) of each of its “friends”: 

for each A in ANIMAL 
where ANIMAL-SPECIES (A) = “Cat” 

loop 
print (ANIMALJAMR (A)) ; 
for each F in ANIMAL 

where F is in ANIMAL-FRIENDS (A) 
ordered by ANIMAL-NAME (F) 

loop 
print (ANIMAL-NAME (F)); 

end loop ; 
end loop; 

Expressions can contain agnrenations. These 
are built-in operations over a set of values. A 
query to print the median INSTRUCTOR-SALARY tak- 
en over the set of INSTRUCTORS would be: “print 
(median (INSTRUCTOR-SALARY (INSTRUCTOR) 1)“. 

VIEWS WITH GENERALIZED. ENTITIES 

Our system supports two kinds of virtual en- 
tities. Simple types are derived from one 
underlying entity type. For each underlying en- 
tity (subject to selection), the attributes of 
that entity are used to create one of the virtu- 
al entities. 

For example, as shown in Figure 2, CAT enti- 
ties can be derived from ANIMALS. 

We also support generalized types. These 
represent the “generalization” of several under- 
lying types of entities. For example, the type 
“PERSON” can generalize STUDENTS and INSTRUC- 
TORs . 

As described in [DAYAL_ and [GOLDHIRSCH], 
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each element of the bi-directional outer-u 
[CODD], [DAYAL- of th;STUDENTs and INSTRUC- 
TORS can be used to create a PERSON entity (as- 
suming we know when a STUDENT and INSTRUCTOR 
represent the same “person”). 

A view specifying PERSONS and DWELLINGS is 
shown in Figure 3. (The derivation for DWELLING 
is similar to that of PERSON and is omitted.) 
general, an entity X generalizing u underly 1 

In 
ng 

types Xl , . . . ,Xu is defined with 2”-1 derivation 
comnonents (corresponding to the non-empty sub- 
sets of {Xl,...,Xu)). 

MODIFICATION DOES NOT ALWAYS WORK -w-p 

There are two ways to handle a query’s refer- 
ence to virtual entities: materialize the enti- 
ties and then run the query; or, syntactically 
modify the query to refer to the underlying 
(non-virtual) entities. 

Materialization always works. Since deriva- 
tions are syntactically similar to queries, an 
unimaginative system can simply “execute“ the 
derivation before running the query (we do NOT 
recommend this approach). 

The modification approach was introduced, in 
a relational cant ext , without generalizations, 
in 1 ST~NEBRAKERI . Figure 4b shows the result of 
using modification to eliminate the CAT loop of 
Figure 4a. 

Observe that the effect of the “ordered by” 
clause was preserved ‘through the modification. 

[KATZI and [DAYALA] propose a modification 
approach to handle queries over generalizations. 
The idea is that, for each iteration over a gen- 
eralization (of g underlying types!, the query 

is broken up into 2”-1 separate queries -- one 
for each comnonent of the derivation. If the- 
resulting queries refer to other generaliza- 
t ions, the algorithm is applied recursively. 

Figure 5a contains a query that prints 
(without ordering) the EARNINGS of each PERSON. 
After modification, using the derivation of Fig- 
ure 3, we get the three queries of Figure 5b. 

The modification approach of [KATZ] and [DAY- 
AL-l] does NOT correctly handle queries contain- 
ing ordered iterations and/or aggregations over 
generalizations. 

To see why ordering isn’t correctly modified, 
imagine adding an “ordered by PERSON--NAME (P)” 
clause to the loop in Figure 5a. The clause 
would appears referring to STUDENT and/or IN- 
STRUCTOR, in EACH of the queries of Figure 5b. 
This produces three independently ordered lists, 
rather than the single, ordered list printed by 
the query in Figure 5a. 

To see why aggregation fails, observe that 
there is no way to “decompose” a median over the 
three components of PERSONS. That is, no combi- 
nation of medians over STUDENTS and INSTRUCTORS 
can be used to modify the query “print (median 
(PERSON-EARNINGS (PERSON) 1) ‘1. 

(Some aggregations CAN be handled by modif i- 
cation. For example, the count of the PERSONS 
is the -of: the count of PERSONS derived 
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from STUDENTS, the count of PERSON8 derived from 
INSTRUCTORS and the count of PERSONS derived 
from both a STUDENT and an INSTRUCTOR.) 

MODIFICATION IS NOT ALWAYS DESIRABLE 

The “obvious” solution might be to material- 
ize generalizations that are being aggregated 
and/or ordered, and to use modification for all 
other virtual loops. 

An assumption implicit in [ STONEBRARER] , 
[RATZI and [DAYALA] is that, given a choice, 
modif ication is the preferred method. This is 
true for SIMPLE types. 

However, because it drastically alters a 
query’s architecture, modification for generali- 
zations can produce inefficient queries. 

As an example, consider the query in Figure 
6a. Observe that the loops over PERSON and 
DWELLING can each be handled either by modifica- 
tion or materialization. 

An optimization goal might be to minimize the 
number of joins [RIESI needed to process the 
nested loops in this query. In this example, we 
can show that it takes more joins to run the 
modified queries than it would to materialize 
PERSON and DWELLING (running the query as is>. 

Modifying the loop over PERSON results in 3 
queries each over DWELLING, the components of 
PERSON (STUDENT and INSTRUCTOR) and CAT. Each 
query has 4 loops and represents 3 joins. 

For each query, applying modification to el- 
iminate the DWELLING loop produces 3 queries 
each over STUDENT, INSTRUCTOR, CAT and the com- 
ponents of DWELLING. This is a total of 3*3=9 
queries. Each query contains 5 loops and 
represents 4 joins. The total number of joins 
is 9*4=36. 

Assume we use only modification for a query 
of G loops. Assume that g of these loops range 
over generalizations of u underlying types. The 

result is (2”-1)g queries each with (I. + g(u-1)) 
loops. This represents a total of 

(2” - 11g (L + g(u-1) -. 1, : 

0 (2gu) joins . 

On the other hand, using a “worst c.:lse” stra- 
tegy (see [GOLDHIRSCH~), we can matcrialisc tht? 
PERSONS and DWELLINGS each using 6 ,)oins. The 
query itself contains 3 loops and represents 2 
joins. So, to materialize PERSON, m~trrialize 
DWELLING and then run the original. qu~“ry over 
the materialized enti.ties, we nc::‘-d (6+t 11.:) ,’ IF+ 
joins. 

In general, assuming a worst i:ase st raCt:g:. 
we can handle a query of 4 looI.+” (of ~t:j,cb G ilx 
generalizations of u underlying 1. )pes‘j lrc~~g. 

g(2” - l)(u-1) + L ” i := 

0 (g2”) joins. 

AS the number of generalizatiuus in A q~;‘,.j 
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growe, the number of joina after modification 
grows exoonentiallv. The number of joiaa for 
paterialization grows only linearly. 

The point is not that materialization is 
therefore “better” than modification, or viaa- 
versa, but that there are cases where each might 
be better than the other. Arbitrarily prefer- 
ring one method can significantly detract from 
the optimization of the query. 

A OUERY PROCESSING ARCHITECTURE 

We need a processing scheme that sensibly 
chooses modification or materialization for each 
loop (over a generalization) in a query. 

The traditional plan works in three steps: 
(1) view-maE the query into one or more queries 
that refer only to existing entities, (2) op- 
t imize , or produce a “strategy” for running the 
resulting query (queries) and (3) execute the 
query (queries) according to the strategy. 

This architecture is inappropriate since (a) 
the view-mapper cannot understand the impact of 
changing the architecture of the query -- nor 
can it calculate the coat of any particular ma- 
terialization, and (b) an ordinary optimizer 
would not know the view-mapping algorithm. 

We choose to make step (2) a “hybrid” of op- 
timization and deferred modification. As an 
illustration, consider the processing of the 
query in Figure 6a. 

The view-mapper proceeds, iteration by itera- 
tion, to resolve references to virtual entities. 
Say, for example, it first recognizes CAT as a 
SIMPLE virtual type. It modifies the CAT loop, 
creating an appropriately restricted loop over 
ANIMAL. 

Figure 6b shows the query after the modifica- 
&g of the CAT loop. 

Notice that “A is in PERSON-CATS (P)” is, at 
this stage of the view-mapping, type- 
inconsistent: the range of PERSON-CATS is the 
set of CATS, not the set of ANIMALS. 

The view-mapper now sees the loops over gen- 
eralizations DWELLING and PERSON. With each of 
these, it aseociatee a copy of the corresponding 
BOJ+ derivation. 

To avoid the type inconsistencies, we *r 
map these copies. *In particular, the definition 
of PERSON-CAT (in PERSON’s BOJ+) refers to vir- 
tual type CAT. Since CAT is a SIMPLE type, the 
definition is handled by modification. For ex- 
-pie, where a PERSON is both a STUDENT and a 
INSTRUCTOR, the definition becomes : 

PERSON-CATS : = 
{A in ANIMAL where ANIMAL-SPECIES(A) = “Cat” 

and 
(ANIMAL-NAME(A) is in 

STUDENT~ANIMAL~NAMES ( S > 
or 
ANIMAL-NAME(A) is in 

INSTRUCTOR~ANIMAL~NAMES( I) ) 1 

After the view-mapping of PERSON’s deriva- 
tion, Fhe range of PERSON-CATS has effectively 
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been changed from CATa to ANIMALS. The view- 
mapped query ia now type-conaiatent. 

The auery ootimizer now considers all (or 
many) of the different proceaaing strategies for 
the query. Thin includes choosing ma- 
tion or modif ication for each loop over a gen- 
eralization. 

To make this choice, the optimizer first de- 
cides which loops m be handled by materiali- 
zation (none, in this example). For each 
remaining loop, it uses the Deferred Modifier to 
compare the (global) effects of using modifica- 
tion with the cost of materializing the general- 
ization. 

In this example, if nested loops are pro- 
cessed by joins, the optimizer might decide to 
materialize both PERSON8 and DWELLINGS. 

CONCLUSIONS 

The ability to define and query virtual gen- 
eralizations ie desirable. Our approach for 
handling queries over virtual entities is aigni- 
f icantly different from previous proposals : 

1. To handle generalized entities correctly, 
we use both materialization and modification. 

2. To do so efficiently, our optimizer col- 
laborates with the view-mapper to decide 
whether an entity is to be materialized or 
modif ied. 
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STUDENT 
a tudent-name : 
student-expenses : 
student-animal-names i 

INSTRUCTOR 
instructor-name: 
instructor-salary: 
instructor-animal-names : 

ANIMAL 
an ima l-name : 
animal-species : 
animalfr ienda : 

string; 
integer; 
eet of strings; 

string; 
integer; 
set of strings; 

string; 
string; 
eet of ANIMALS; 

1. Fi&ure A Database Schema. 

CAT 
cat-name : string; 

derive CAT from 
for each A in ANIMAL 

where ANIMAL-SPECIES = “Cat” 
loop 

create CAT 
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(CAT-NAME := 
end loop; 

end derive; 

ANIMAI~NAME (A)); 

Fipure2. ----- A View with a SIMPLE derivation. 

PERSON 
person_name: string; 
person-earnings: integer; 
person-cats: set of CATS; 

DWELLING 
dwelling-occupants: set of strings; 
dwellinnaddr: string; 

derive PERSON from 
for P ,in BOJ+ (S in STUDENT,1 in INSTRUCTOR) 

using join predicate: 
"STUDENT-NAME (S) = INSTRUCTOR_NAME (I)" 

case P is a STUDENT but not an INSTRUCTOR: 
PERSON-NAME:= STUDENT-NAME (S), 
PERSON-F.ARNINGS:= - STUDENT-EXPENSES (S), 
PERSON-CATS:= {C in CAT where 

CAT-W CC> is in 
STUDENT-ANIMAL-NAMES (S)) 

case P is an INSTRUCTOR but not a STUDENT: 
PERSON-NAME:- INSTRUCTOR-NAME (I), 
PERSON-EARNINGS:= INSTRUCTOR-SALARY (I), 
PERSON-CATS:= {C in CAT where 

CAT-NAME (C> is in 
INSTRUCTOR-ANIMAL-NAMES (1)) 

case P is both a STUDENT and an INSTRUCTOR: 
PERSON-NAME:= STUDENT-NAME tS), 

PERSON-EARNINGg:= INSTRUCTOR-SALARY (I) 
- STUDENT_EEPENSES (S), 

PERSON-CATS:= {C in CAT where 
CAT-NAMF, CC> is in 
INSTRUCTOR-ANIMAL-NAMFS (I) 

or 
CAT-NAME CC> is in 
STUDENT-ANIMAL-NAMES (S)) 

end loop; 
end derive; 

3. Figure A View with GENERALIZED derivations. 

for each C in CAT 
ordered by CAT-NM (C) 

loop 
print (CAT-NAME (C)1; 

end loop; 

Figure +a. & guerv over SIMPLE tvve CAT. -- 

for each A in ANIMAL 
where ANIMAL-SPECIES (A) - "Cat" 
ordered by ANIMAL-NAME (A) 

loop 
print (ANIMAL-NAME (A)); 

end loop; 

Figure 4b. After the auerv has been MODIFIED. 
Proceedlngr of the Tenth International 
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for each P in PERSON loop 
print (PERSON-EARNINGS (P)); 

end loop; 

Figure 5a. A Ouerv over GENERAL m PERSON. 

for each S in STUDENT where 
for every I in INSTRUCTOR: 

INSTRUCTOR-NAME (I) # STUDENT-NAME (S) 
loop 

print (- STUDENT-EXPENSES (S)); 
end loop; 

for each I in INSTRUCTOR where 
for every S in STUDENT: 

STlJDENT_NAME (S) # INSTRUCTOR_NAME (I) 
loop 

print (INSTRUCTOR-SALARY (I)); 
end loop; 

for each S in STUDENT loop 
for each I in INSTRUCTOR 

where INSTRUCTOR-NAME (I) = STUDENT-NAME (S) 
loop 

print (INSTRUCTOR-SALARY (I) 
- STUDENT_ERPENSES (S)); 

end loop; 
end loop; 

5b. Figure The same auerv. after MODIFICATION 

for each D in DWELLING loop 
for each P in PERSON 

where PERSON-NAME (P) is in 
DWELLING-OCCUPANTS (D) 

loop 
print (PERSON-NAME (P)); 
for each C in CAT 

where C is in PERSON-CATS (P) 
ordered by CAT-NAME (C) 

loop 
print (CAT-NAME (C)1; 

end loop; 
end loop; 

end loop; 

6a. Figure A Ouerv over several entity tvnee 

for each D in DWELLING loop 
for each P in PERSON 
where 

PERSON-NAME (P) is in DWELLING_OCCUPANTS (D) 
loop 

print (PERSON-NAm (P>); 
for each A in ANIMAL 

where ANIMAL-SPECIES (A) = "CAT" 
and A is in PERSON-CATS (P) 

ordered by ANIMAL-NAME (A) 
loop 

print (ANIMAL-NAME (A).)); 
end loop; 

end loop; 
end loop; 

6b. Figure The auerv after MODIFYING for CATS. 
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