
INTERVAL QUERIES ON OBJECT HISTORIES: EXTENDED ABSTRACT

Seymour Ginsburg and Katsumi Tanaka

University of Southern California

Los Angeles, U.S.A.

This extended abstract introduces the notion
of ’ interval queries ’ on historical data for
objects (here, called ‘object histories’) and
explores a certain closure property. As for
describing historical data for objects, we use
our mathematical model introduced in our earlier
paper. The major construct in the model is a
‘computation-tuple sequence scheme’ (abbreviated
CSS), which specifies the set of all possible
‘valid’ object histories for the same type of
object. Interval queries are those queries which
return an interval (history) from a given object
history. We provide conditions under which an
interval query applied to object histories
described by one CSS yields, as its answers. the
set of all object histories which can be
described by another CSS.

Recently. much attention has been focussed
on management of ‘historical’ databases or
temporal information, and their associated
research problems [A, B. CW, Kl. In our earlier
paper CGTll, we introduced a simple
tuple-sequence-based data model for describing
historical data for ‘objects’ (here, called
‘object histories’). A notable feature of our
model is that ordering of tuples and computation
functions are explicitly handled. The major

Permission to copy without fee ail or part of this material is gmntcd
provided that the copies WC not made or distributed for direct commewiol
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. Fo copy otherwise, or to republish, requires (I /M
and/or special permission from the Endowment.

Kobe University

Kobe , JAPAN

construct in the model is a ‘computation-tuple
sequence scheme’ (abbreviated CSS). which
specifies the set of all possible ‘valid’ object
histories for the same type of object. The main
purpose of the extended abstract is to introduce
the notion of ‘interval queries’ on object
histories, which return an interval (history)
from a given object history. and to explore a
certain closure property. (For more details. see
CGT21.1

Informally, an object history is a
historical record of an object. (Here, each
object stands for an individual ‘thing’ or
‘entity’. such as a specific person’s checking
account, a specific professor’s seminar. etc.) An
object history is viewed as a sequence of
occurrences, each occurrence consisting of some
input data and. possibly, some calculation. In
our model, each object history is represented
simply a6 a sequence of tuples including some
computation. called a ‘computation-tuple

sequence’. A CSS for a certain type of objects
defines the set of all possible ‘valid’
computation-tuple sequences (object histories of
the type) by specifying computation functions,
semantic constraints and starting conditions.

For example. in a checking-account history,
one occurrence might be, in part, the amount to
be deposited or withdrawn. together with the
computation of the new balance and new daily
minimum balance. A CSS for objects of the type
‘checking account ’ specifies the set of all
possible ‘valid’ individual checking-account
histories.

For our purposes, queries on object
histories are just functions which map one object
history to another. ‘Interval’ queries are those
queries which, when applied to an object history,
return an interval (i.e., a consecutive
subsequence) of that object history. Many

Procssdlngs oi ths Tenth International
Cmbrence on Vety Lsrge Dats Bssss.

singqmlw, August, 1984

20%

real-life queries on object histories turn out to
be interval queries. (Two examples are ‘Retrieve
the initial portion of Smith’s checking-account
history up to the first time the balance exceeds
10,000 dollars’; and *Retrieve that portion of
Smith’s checking-account history dealing with
June. 1983’.)

For a given CSS T, let VSEQ(T) denote the
set of all possible valid object histories
defined by T. Then. the main question addressed
in this paper is the following:

‘Given an interval query q and CSS T. when does
there exist
VSgQ(T’)=q(VSEQ(T);?’

CSS T’ such that

This question is not only of mathematical
interest by itself, but also analogous to
problems of ‘external schema’ (or ‘view’) GUI
management which occur in traditional database
situations. A css may be regarded as a
conceptual schema which describes all the
possible valid instances (here. object
histories). q(VSEQ(T)) can be viewed as the set
of all possible instances of an external schema
defined by q and T. Then VSEQ(T*)=q(VSEQ(T))
means that T’ can define exactly all the possible
instances of the external schema. The existence
of such a T’ provides a step toward the solution
of the following problems:
(1) The ‘implied constraint problem’ CKPI, which
asks whether or not a constraint is true for all
instances of an external schema; and
(2) The ‘view update problem’ CDS]. which is
concerned with when updates on an ‘external
database’ (i.e., an instance in q(VSEQ(T))) can
be simulated on the underlying conceptual
database (i.e.. some instance in VSEQ(T)).

The paper itself is divided into four
sections. Section 1 reviews our model for object
histories and introduces interval queries.
Section 2 provides necessary and sufficient
conditrons on an arbitrary interval query q and
CSS T such that q(VSEQ(T))=VSEQ(T’) for some CSS
T’. Section 3 concerns a special class of

interval queries’ called ‘prefix’ queries .
(These are queries which return an ‘initial’

part, i.e., a prefix, of an object history.) Two
different kinds of prefix queries q are presented
such that for each CSS T there always exists a
CSS T’ satisfying VSEQ(T’)=q(VSEQ(T)). with T and
T’ having the same computation functions. Section
4 is concerned with another important special
class of interval queries, called ‘suffix’
queries. (These are queries which return a
terminal part, i.e., a suffix’ of an object

pblngs ot the Tenth International
conferenoe on Very Lsrge Dots Ssses.

209

history.) Two sets of conditions are presented,
involving both q and T, which quarantee the
existence of another CSS T’ such that
VSEQ(T’)=q(VSEQ(T)).

l.PRELIHINARIES

In this section. we first review our model
for object histories, and then discuss some
preliminary concepts about que.ries.

Throughout, Do- is an infinite set of
elements (called &I&R values) and U&s an
infinite set of symbols (called &LX&&M 1.
For each A in U,, Dam(A) (called the &au&~ of
A) is a subset of Dw of at least two elements.
All attributes considered are assumed to be
elements of u,. The symbols A. B. and C
(possibly with subscripts) denote attributes and
U (possibly subscripted) denotes a nonempty
finite set ot attributes. A orefix. interval and
euffix of a sequence pl...pm are subsequences of
the form pl...pi, pi...pjr pj...p, for some
1 s i s j s m. respectively.

Let X be a nonempty finite set of attributes
and Al,....% some fixed listing of the distinct
elements or X. Then cXx> denotes the sequence
Al..+ and Dom(<x>) the Cartesian product
Dom(A1) X. 0.. x Dom(An). Also, ‘XIAi’ denotes the
pretix Al...Ai-1, i 2 2. Let <u> be a sequence of
attributes. A m L&& over <us is an
ordered pair (<v>.u), or u when <u> is
understood, where u is an element in Dom(a>). A
m m over <us is a nonempty
sequence U of computation tuples over cU>. The
set of all computation-tuple sequences over CUB
is denoted by SEQ(<U>). Unless otherwise stated.
u. v and w’ possibly subscripted or primed’
always represent computation tuples. Similarly’
ii , f and c always represent computation-tuple
sequences.

Given a sequence a> of attributes, a
‘computation-tuple sequence scheme ’ over <u>
defines the set of all possible ‘valid’
computation-tuple sequences over a>. It
consists of
(+I a ‘computation scheme’, in which the
attributes in U are partitioned into three types
according to their roles and necessary
computation functions are specified;
(++I a set of semantic constraints. called

‘uniform’ , whose satisfaction is to hold
uniformly throughout a computation-tuple
sequence ; and
(+++I a set of specific computation-tuple

Singapore, Augult, 1984

sequences of some bounded length, called an
‘initialization’, with which to start a valid

computation-tuple sequence.

With respect to (+), we have:
[Definition] An attribUfS scheme over 4J> is a
triple (<S>, <I>, <E>). where S, I and E are
pairwise disjoint subsets of U (of state. inDut
and evaluation attributes, resp.) with S and I
nonempty and <U>=<S><I><E>.
[Here, given sequences, <tJl >=A1 . . .A, and

<U2>=B1...Bm , <UlMJ2> = A
. 2

1.. .A,,,,B1.. .Bm2j.

A B gcheme (abbreviated CS) over <U> is
a 5-tuple ~=(<S>r<I>.<E>,~,~)r where
(1) (<S>r<I>,<E>) is an attribute scheme over
a>;
(2) E=ie,l C in E, each e C is a partial function

(called an evaluatign function) from Dom(<U>) pc x
Dom(<UlC>) into Dam(C) for some non-negative
integer p,) ; and
(3) %{f,l A in S, each f A is a partial function
(called a &a& function) from Dom(<v>) into
Dam(A) 1.
The integer pc is called the m of eC; and
p=max(pC.lI eC in !?I is the & of F. I

Intuitively, the rank of a computation
scheme is the minimum number of previous
computation tuples on which each computation
tuple computationally depends. The purpose of a
computation scheme is to select those
computation-tuple sequences whose values for the
state and evaluation attributes are ultimately
determined by the corresponding state
evaluation functions. More formally, we have:

&&&,Q,u For each CS &(CS>,<I>,<E>,E*i?)
a>, let VSEQ(e) be the set of
ii=q... u,(mZl) in SEQ(<u>) satisfying
following conditions :
(1) For each 2shSm and A in
~~~A)=f&+ ); and 

- 
(21 For each pC<h 5 m and C in E, u,(C)= 
eC(uh-pC~“*,uh-~~uh~‘~~c’l)* (Here, for 

<l.J>=A 

and 

over 
all 
the 

S. 

1”’ All* <X> a subsequence of <u>, and each 
computation-tuple u over a>, u[<X>] is the 
computation-tuple v over <X> defined by v(A)=u(A) 
for each A in X.) 

Clearly, VSEQ(?) is an interval-closed set. 
That is, whenever ii is in VSEQ(z), every interval 
of ; is also in VSEQ(c). 

To formalize (++). we have: 
[Definition] A constraint o over SEQ( <U>) is a 
mapping over SEQ(<U>) which assigns to each ; in 
SEQ(<U>) a value of ‘true’ or ‘false’. If 

Proceedings of the Tenth International 

Conference on Very Large Data Bases. 

w(t)=true, then c is said to eatisfv o, denoted 
ii I- 0. The set 16 in SEQ(<v>)l 6 I- w, o in A] is 
denoted by VSEQ(A). A constraint o over SEQ(<U>) 
is uniform if, for each E=ul. ..u, over <uu>, ; I- w 
implies Ui”.U’ ä W 

3 
for all i and j. 

lsisj5rn.d 

We shall usually define a constraint w by 
just specifying VSEQb). (Here. VSEQ(w) is 
written instead of the more formal VSEQ(Iw}).) 
Since the concept of a constraint is too general, 
we restricted our constraints to the class of 
uniform constraints. These are characterized by 
the fact that satisfaction holds uniformly 
throughout a computation-tuple sequence, i.e., 
holds in every interval of a computation-tuple 
sequence. [In a checking-account history example, 
‘each DATE-attribute value uniquely determines 
its INTEREST-RATE-attribute value’ is a uniform 
constraint.] Clearly, if A is a set of uniform 
constraints, then VSEQ(A) is an interval-closed 
set. 

As for (+++), we have: 
[Definition] Given a CS F over <lJ> and a finite 
set A of uniform constraints over SEQ(<U>). an 
. . . . . 
lnltlallzatlon [with respect & ?? and A) is any 
prefix-closed subset P of 

{3 in VSEQ(F) n VSEQ(A)l ICI g p, p the rank 
of ?1, 
where 161 denotes the length of ii. Given an 
initialization jY, let VSEQ(P) denote the set 

P U 1; in SEQ(<U>)I G=f for some v in P of 
length ~1. I 

Intuitively, an initialization is an 
appropriate set of computation-tuple sequences 
with which to start a sequence until all state 
ana evaluation functions can be applied. [In a 
checking-account history example, ‘each valid 
checking-account history must start with DEPOSIT 
transaction’ will be represented by an 
initialization.] Clearly, each VSEQ(P) is prefix 
closed but not necessarily interval closed. 

We are now ready to define a 
computation-tuple sequence scheme. 
[Definition] A m sequence scheme 
(abbreviated CSS) over <U> is a triple T=(E,A,y), 
where 

(1) E is a computation scheme over 4J>; 
(2) A is a finite set of uniform constraints 

over SEQ(<U>); and 
(3) y is an initialization with respect to E 

and A. 
For each CSS T=(e,A,T), let 

VSEQ(T)=VSEQ(e) n VSEQ(A) n VSEQ(y). 
A computation-tuple sequence is said to be u 
u fi if it is in VSEQ(T). H 

Singapore, August, 1984 

210 



Thus. a computation-tuple sequence is valid 
if it (i) is ‘consistent’ with E, (ii) satisfies 
each constraint in A, and (iii) is either in the 
initialization or its prefix, of length the rank 
of E. is in the initialization. Since both 
VSEQ(??) and VSEQ(A) are interval closed and 
VSEQ(% is prefix closed, VSEQ(T) is prefix 
closed. However, VSEQ(T) is not necessarily 
interval closed. 

We now turn to ‘queries’ on object 
histories. For our purposes, a query is a mapping 
on the information set which returns either a 
portion or it or some ‘derived’ data from it. 
Our interest is in queries which, when applied to 
an object history, returns an interval of the 
object history. So, formally, we have: 

[Definition] A w q over SEQ(a>) is a 
(partial) mapping from SEQ(an>) into SEQ(cIJ>). An 
* 
interval m over SEQ(<n>) is a query over 
SEQ(a>) such that for each E in SEQ(<u>), q(E) 
is an interval of ; if q(G) exists. m 

Our formalism for interval queries is 
clearly of a mathematical nature. It would be 
interesting to implement a query language which 
includes many important ,interval queries. but 
this is beyond the scope of the present paper. 

We conclude the section with the following 
examples of types of interval queries: 

(Ql.1) The query Prefixk. k 2 1. which returns 
the first k computation tuplee. That is, for 
each i=ul...um in SEQ(<U>), Prefixk(ti)=uL...uk if 
m 2 k, and is undefined otherwise. [One such 
query is ‘Retrieve the initial 10 transactions in 
Smith’s checking-account history.‘] 

(41.2) The query q returning the prefix whose 
last computation tuple is the k-th (k 2 1) 
computation tuple satisfying a given ‘condition’ 
in the original computation-tuple sequence. or 
everything if no such k-th computation tuple 
exists. 
empty) 

That is. q(iiLu,)= $ ($ is possibly 
if the last tuple of ul is the k-th 

computation tuple in ii1ii2 satisfying a given 
‘condition’, and q(ii,)=3L otherwise. [One such 
query is ‘Retrieve the part of Smith’s 
checking-account history which starts from the 
first transaction and ends at the second deposit 
transaction whose amount is greater than 2000 
dollars.‘1 

(41.3) The query Chopkr k 2 1. which removes the 
first k computation tuples. That is, Chopk is 
defined for each i$...u, in SEQ(a>) by 

Proceedings ol the Tenth International 

Conference on Very Large Dats gases. 211 

Chopk(;)=u otherwfee.k+~“‘um if m’kg andlR;:ri;;“,ef:;;; 
One such query is 

part of Smith’s checking-account history after 
the f iret 100 transactions.] 

(41.4) The query returning the suffix which 
starts from the k-th computation tuple (k 2 1) 
satisfying a given ‘condition’. That is. 
q+i2)=ii2 (CL possibly empty) if the first 
computation tuple of ii, is the k-th computation 
tuple in iilii2 satisfying a given ‘condition’, and 
is undefined if no such k-th computation tuple 
exists. [One such query is ‘Retrieve that part of 
Smith’s checking account history which starts 
from the second entry for Dec. 1. 1987.*1 

(41.5) The query q returning the interval’whoee 
first computation tuple is the kl-th (kl 2 1) 
computation tuple satisfying a given ‘condition’ 
and whose last computation tuple is the k2-th 
(k2 2 1) computation tuple satisfying another 
(possibly the same) given ‘condition’. 

2.ARulaAumOUEBIES 

In this section we present necessary and 
sufficient conditions on an arbitrary interval 
query 9 and css T=(&A,r) such that 
q(VSEQ(T))=VSEQ(T’) for some CSS T’=(E*,A*,P*) 
having the same attribute scheme as T. We 
establish two theorems. The first is for the 
case when El must be i?. and the second when ?? 
need not be E. Both results are frequently used 

in the later sections. 

For each subset S of SEQ(<U>1. let 
Interval(S) denote the set (ii I ; an interval of 
some element in S). We now show our first 
theorem: 

[Theorem 2.11 Let q be an interval query over 
SEQ(<u>) and T=(E.A,y) be a CSS over <u> with 
rank p of ?!. and let S=q(VSEQ(T)). Then there 
exists a CSS T’=(~,A’,~‘) such that VSEQ(T’)=S 
iff S is prefix closed and 
(+) Prefixp(S) n Prefixp(Interval(S) - S) = 9. 
If such a T’ exists, then VSEQ((E,(o’),?‘))= S, 
where (i) o’ is the (uniform) constraint over 
SEQ(<u>) defined by VSEQ(o’)=Interval(S), and 
(ii) y’=(Z in Sl IUI 5 p). I 

[Example 2.11 Let T=(E,(o),T) be the following 
CSS over <u>=ABC: 
(a) E is the CS (A.B,C.&F) over aU>, where (1) 
Dam(A)= Dam(B)= Dam(C)= N, where N is the set of 
nonnegative integers; (2) E=(e,). where eC is the 

slngaporo, August, 1984 



function from Dam(A) x Dam(B) into Dam(C) defined 
by eC(a.b)=a+b for all a in Dam(A) and b in 
Dam(B); and (3) %{f,}, where fA is the (partial) 
function from Dom(<u>) into Dam(A) defined for 
all c in Dam(C) by fA(OIO.c)=O. fA(O.l.c)=l, 
f*(lrO*c)=lr fA(l.l.c)=O. fA(2.3&)=3, 
fA(3.2.c)=1. and undefined otherwise. [Thus, the 
rank p of ‘d is 1.1 
(b) o is the (uniform) constraint over SEQ( <VP) 
defined for each %u ,...u, (m i! 1) by o(;)=true 
iff ui(A)=u.(A) implies Ui(B)=Uj(B) for all i and 
j. 1 s i<J ’ ii m. 
(c) f={(OOO), (011). (101)s (112). (235)). 

CIn the above (c). for example, the 
computation-tuple (OIO.O) is written as (000) for 
simplicity.1 
Let q be the interval query Chop’. Then 
q(VSEQ(T)) is prefix closed. Since (011)(112) is 
in VSEQ(T), (112) is in Prefixl(q(VSEQ(T))). 
Since (235)(325)(112)(000) is in VSEQ(T), 
(112)(000) iS in Interval(q(VSEQ(T))). And since 
(ll2)(OOO) is not in q(VSEQ(T)) (because of w), 
(112) is in 

Pretixl[Interval(q(VSEQ(T))) - q(VSEQ(T))]. 
Thus, (112) is in 

Prefixl(q(VSEQ(T))) n 
Prefixl[Interval(q(VSEQ(T))) - q(VSEQ(T))]. 

By Theorem 2.1, there is no CSS T’=(E,A’,y’) such 
that VSEQ(T’)=q(VSEQ(T)). I 

The statement ‘q(VSEQ(T)) is prefix closed’ 
appears in Theorem 2.1. It is readily seen that 
the following property, which is on q a , 
guarantees that q(VSEQ(T)) is prefix closed for 
w CSS T. 

[Definition] An interval query q over SEQ(CUU>) is 
said to be strictly downward &,&~g if for each 
ii in SEQ(<U>) and each computation tuple u over 
a>, Iq(Gu)l 2 2 implies that (q(u) exists and) 

s(;)=Prefixlq(~u)l-l(q(Gu)). 
i.e., q(UU)=q(U)v for some v. I 

Examples of types of 
strictly-downward-existing interval queries are 
(41.2) - (41.4) of Section 1. Two other types 
are the following: 

(42.1) The query q returning the suffix which 
starts from the last computation tuple satisfying 
a given ‘condition’. That is. q(U,ii,)=U, (ii1 
possibly empty) if the first computation tuple of 
ii 2 is the last computation tuple in cli;, 
satisfying a given ‘condition’, and undefined 
otherwise. 

(42.2) The query Chopk. k 2 1’ which returns all 
but the last b computation tuples. That is. for 
each 3=ul...um in SEQ(<U& chOpk(i+Ul.eeUm-k+l 
if m>k and is undefined otherwise. 

Note that the composition of 
strictly-downward-existing interval queries is 
also strictly downward existing. 

Theorem 2.1 addressed the question as to 
when. given a CSS T and interval query q, there 
exists a CSS T’ with the same computation scheme 
as T such that VSEQ(T’)=q(VSEQ(T)). The next 
theorem considers the problem as to when there 
exists a CSS T’, whose computation scheme is not 
necessarily the same as T but whose attribute 
scheme ’ the same T, such 
VSEQ(T’)=q;:SEQ(T)). First a:hough. we 

that 
need a 

lenana which provides a basic characterization for 
changing computation schemes. 

[Lennna 2.11 Let T=(c,A,?) be a CSS with at least 
one evaluation attribute and let p be the rank of 
5. Then for each integer p’>p. there exists a 
CSS T’=(c’.A,~‘) with the same attribute scheme 
as T such that p1 is the rank of Et and 
VSEQ(T’)=VSEQ(T). m 

Using Theorem 2.1 and Lemma 2.1, we now 
obtain: 

[Theorem 2.21 Let q be an interval query over 
SEQ(<U>) and T a CSS with at least one evaluation 
attribute, and let S=q(VSEQ(T)). Then for each 
positive integer P’, there exists a CS cc of rank 
p’ and a CSS T’=(E’.A’.P’) such that VSEQ(T’)=S 
iff S is prefix closed and 
(+) Pretixp’(S) n Prefixp’CInterval(S) - Sl = 9. 
If such a T’ exists. then S=VSEQ((~*,{o’),~*)) 
for some E’. with (i) o’ the (uniform) constraint 
over SEQ(<U>) defined by VSEQ(o’)=Interval(S), 
and (ii) P*={; in Sl I;1 < p*). 1 

[Example 2.21 Let T=(z,A,P) be the CSS given in 
Example 2.1. It was shown there that no CSS 
T’=(E,A’,?) exists such that 
VSEQ(T’)=Chop’(VSEQ(T)). Clearly, t in SEQ(<U>) 
is in VSEQ(T) iff ; is a prefix of one of the 
computation-tuple sequences (for some nonnegative 
integer m and some positive integer n) in the 
following list: 

(OOOP; ((011)(112))“; (011)(101)“; (101)“; 
(112)(ooo)n; ((112)(011))“; (235)(325)(101)“; 
(235)(325)(112)(000,“; (235)(325)((112)(011))“; 
(Oll)(I.m.m+l); (112)(0.m.m); (235)(3,m.m+3) 

Proceedings of the Tenth lnternetlonal Singapore, August, 1984 

Conference on Very Large Data Bases. 
212 



Thus, 2 in SEQ(<v>) i8 in Chop’(VSEQ(T)) iff G is 
a prefix of one of the computation-tuple 
sequences (for some nonnegative integer m and 
positive integer n) in the following list: 
(OOOP; ((l12)(oll))nr (101)U; 
(325)(101)% 

((011)(112))*; 
(325)(112)(000)*; 

(325)((112)(oll))*; (l.m.m+l); (0,m.m); (3,m,m+3) 
We now see if Theorem 2.2 hold8 for the case 

p’=2. Obviously, 

(1) Prefix2(Chop’(VSEQ(T))) = ((OOO)(OOO). 
(112)(011). (101)(101). (011)(112), (325)(101), 
(325)(112)) and 
(2) Prefix2E Interval( Chopl( VSEQ(T))) - Chopl( 
VSEQ(T))l = c(112)(000)). 

The intersection of (1) and (2) is empty. By 
Theorem 2.2 * there exists a CSS T’=(E’,A’,y’) 
with the same attribute scheme as T such that the 
rank of F’ is 2 and VSEQ(T’)=Chopl(VSEQ(T)). 
Furthermore. it is readily seen that one such CS 
E* is (A.B’C’~.F’), where z’={e’C) and P’=F. 
tlere, elC is the function from 
D~(ABC)~ x Dom(AB) into Dam(C) defined by 

e*C(al.bl.cl.a21~,~~~;b3) = eC(a3*b3) 
for each al, a2, a3 . bl. b2. b3 in 
Dam(B) and cl* c2 in Dam(C). By Theorem 2.2. 
one such A’ is {o*), where w’ is the (uniform) 
constraint over SEQ(ABC) defined by 
VSEQ(o’)=Interval(Chopl(VSEQ(T))); and one such 
‘f ’ is the set 

G in Chop’(VSEQ(T))/ I;1 s 21 = {(O,m.m), 
(l,m,m+l), (3,m,m+3) I la 2 0) u ~(ooo)tooo), 
(112)(011). (lOl)(lOl), (011)(112). (325)(101). 
(325)(112)). I 

We next exhibit a CSS T for which there is 
no T’ such that VSEQ(T’)= Chop’(VSEQ(T)). 

[Example 2.31 Let T=(?,A.‘i), with t=(A.B.C.E,F)’ 
be the CSS over <U>=ABC defined as follows: 
(a) Dom(A)=Dom(B)=Dom(C)=N; 
(b) E=Ie,), where e C is the function from Dam(A) 
x Dam(B) into Dam(C) defined by eC(a.b)=a+b for 
all a in Dam(A) and b in Dam(B); 

(c) F={f,). where fA is the function from 
Dom(<U>) into Dam(A) defined by fA(a.b.c)=a for 
all a in Don’(A), b in Dam(B) and c in Do’s(C); 
(d) A={w), where o is the (uniform) constraint 
over <u> defined for each ii=ul.. .um in SEQ( <up) 
by o(;)=true iff there exists some positive 
integer n such that ul(B)u (B)...u (B) is an 
interval of either (0)?1)(2)(3?$4) or 
(5)(2)(3)“(6); and 
(e) P=t (000). (055)). 

Let S=Chopl(VSEQ(T)). Clearly. a 
computation-tuple sequence is in S iff it is a 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

213 

prefix of either (Oll)(022)(033)n(044) or 
(022)(033)n(066) for some positive integer II. 
Since (022)(033)(044) is in Interval(S) - S, 
(022) is in Prefixl(Interval(S) - S). Since (022) 
i8 ah0 in Pref ixl(S), it follow8 that 

(1) Prefixl(S) 17 Prefixl(Interval(S) - S) f 9. 

Now let b be any integer greater than 1. 
(022)(033)k-l(044) 

Then 

(022)(033)k-l 
is in Interval(S)- S. Thus, 

Since (022)(03:;k-f~~6P;eff~~~~~reg:IS~0;3)fli 
is also in Prefixk(S). Therefore. 

(2) Pretixk(S) n Prefixk(Interval(S) - S)*. 

By (1). (2) and Theorem 2.2. there ie no CSS T’ 
with the same attribute scheme as T such that 
VSEQ(T’)=Chop’(VSEQ(T)). [Without going into 
details. it can readily be shown that even if the 
attribute scheme is changed there ie no CSS T” 
such that VSEQ(T”)=Chop’(VSEQ(T)) .I I 

3.PREFIX QUWIES 

In thie section, we consider the closure 
property of a special kind of interval query 
called ‘prefix’ query. In particular, we present 
two conditions on an arbitrary prefix query q 
such that for each css T=(E.A,?), 
q(VSEQ(T))=VSEQ(T’) for some T’ of the form 
(F. A’%.T’ 1. 

A prefix query is just an interval query 
which returns a prefix of a given 
computation-tuple sequence. CSome examples of 
type8 of prefix queries are (Ql.1). (41.2) and 
(Q2.2).] Formally, we have: 

[Def initionl A oref w over SEQ(<U>) is an 
interval query q over SEQ(<U>) such that for each 
ii in SEQ(<U>)* q(G) is a prefix of ; if q(G) 
exists. I 

We now establish our first result on prefix 
queries. 
[Theorem 3.11 Let q be a prefix query over 
SEQ(<u>) such that 

(*) for each ; of length at least 2 and each 
interval i; of length IEI-1 of ii, if lq(G)l 2 2 
then (q(c) exists and) 0 S Iq(ii)l-lq(;)l si 1. 
Then for each CSS T=(c,A’r) over cU>, VSEQ(T*)= 
q(VSEQ(T)). where T’=(&{w).P’). VSEQ(o)= 
Interval(q(VSEQ(T))) and f’= (5 in q(VSEQ(T))I 
ICI < p). p the rank of E. I 

Singapore, August, 1994 



Some type of prefix query which satisfies 
(*) is (42.2). Another is: 
(43-l) the query q which returns the first k 
(k 5: 1) computation tuples if the length of the 
original computation-tuple sequence is at least 
k, and returns everything otherwise. That is, 
for each ii=ul...u in SEQ(<U>)I q(u)= ul”.uk if 
m 2 k and q(u)=; ttherwise. 

A prefix query which satisfies (*) is: 
(43.2) The query q which returns the prefix whose 
length is the smallest integer at least as large 
as half the length of the original 
computation-tuple sequence. That is, for each 
ii=u 1 . ..u. in SEQ(<U>), q(;i)=ul...um,2 if m is 
even and q(;)=ul...u(m+l),2 if m is odd. 

While Theorem 3.1 is applicable to many 
queries, there are many for which it is not. In 
particular, most prefix queries of type (41.2) of 
Section 1 do not satisfy (*) of Theorem 3.1. 
[For example, let k=2, let vl, v2, w2 be 
computation tuples satisfying a given condition, 
say depositing at least 2,000, and w1 and w3 
computation tuples not satisfying the given 
condition. Then qhlv2w1w2w3)=v~v2 and 
q(v2w1w2w3)=v2w1w2. Hence, 0 < 1q(vlv2w1w2w3)I - 
Iq(v2wlw2w3)i s 1 is false.1 Nevertheless, as is 
shown by the next theorem, for that type of query 
and each CSS T=(?.A.y), q(VSEQ(T))=VSEQ(T’) for 
some T’ of the form (c.A’,y’). 

In order to establish our next theorem. we 
need two lemmas. The first provides a condition 
on a prefix query q which guarantees that q can 
be ‘equivalently replaced’ by an ‘all or nothing’ 
prefix query q’ having special properties. 

[Lemma 3 .l] Let q be a prefix query over SEQ(<U>) 
such that (a) q(SEQ(<U>)) is interval closed, and 
(b) for each ii in SEQ(<U>). q(q(;))=q(u) if q(ii) 
exists. Let q’ be the query over SEQ(<U>) 
defined by q’(c)=; if u is in q(SEQ(<U>)), and 
q’(ii) is undefined otherwise. Then q* is a 
prefix query such that 
(i) q’(VSEQ(T))=q(VSEQ(T)) for each CSS T over 
<U>, and 
(ii) if q’(ii) exists , then (1) q’(ii)=E and (2) 
q’(;*) exists for each interval ;’ of ;. 1 

The second lemma asserts that if q satisfies 
(ii) of Lemma 3.1. then q(VSEQ(T))=VSEQ(T’) for 
an appropriate T’. More precisely. we have: 

[Lemma 3.21 Let q be an interval query over 
SEQ(<U>) such that for each ii in SEQ(<v>). if 
q(G) exists then (a) q(G)=; and (b) q(j*) exists 
for each interval u’ of ii. Then for each CSS 
T=(c,h,I) over <u>, VSEQ(T’)=q(VSEQ(T)), where 

Proceedings of the Tenth International 
Conference on Very Large Data Sases. 

T’=(is,{o~,~‘). VSEQ(w)=Interval(q(VSEQ(T)) and 
y’=rii in q(VSEQ(T))I Iii1 5 p). p the rank of E. 1 

We are now ready for our second major result 
on prefix queries. 

[Theorem 3.21 Let q be a prefix query over 
SEQ(<u>) such that (a) q(SEQ(<U>)) is interval 
closed, and (b) for each 9 in SEQ(<u>). 
q(q(E))=q(i) if q(t) exists. Then for each CSS 
T=(c,A,y) over <u>, VSEQ(T’)=q(VSEQ(T)), where 
T’=(F,{o~,?), VSEQ(o)=Interval(q(VSEQ(T))) and 
y*={E in q(VSEQ(T)) I Iii1 s p), p the rank of 2. 

m 

Two types of prefix queries which satisfy 
both (a) and (b) of Theorem 3.2 are (41.2) and 
(43.1). 

Note that conditions (a) and (b) in Theorem 
3.2 are independent of any specific CSS T. It 
should be also noted that: 
(1) Theorem 3.2 is I&& true if the phrase ‘prefix 
query’ is replaced by l interval query’. 
(2) Condition (a) in Theorem 3.2 cannot be 
replaced by ‘q(SEQ(<U>)) is prefix closed’. 
[Illustrative examples for (1) and (2) are 
omitted here, but they are shown in CGT21.1 

4. SUFFIX QIIEUES 

In this section, we consider the closure 
property of another special kind of interval 
queryv called ‘suffix’ query. In Section 3. we 
presented conditions on an arbitrary prefix query 
9 so that for each css T(F.A.P) s 
q(VSEQ(T))=VSEQ(T*) for some T’ of the form 
(c,A’,y’). The situation for suffix queries is 
more complicated. We do not have any general 
theorems of the nature that if q has certain 
properties, then for each T=(E,A,P), 
q(VSEQ(T))=VSEQ(T’) for some T’ of the form 
(E.A*,P’) (or even for some T’ which has the same 
attribute scheme as T). Instead our theorems here 
consist of conditions on q & T which guarantee 
that q(VSEQ(T))=VSEQ(T’) for some appropriate T’. 
(As will be seen, the conditions employed are on 
q alone, T alone and q and T in combination.) We 

establish two results. The first is for the case 
when T and T’ have the same computation scheme, 
and the second for when T and T’ only have the 
same attribute scheme. 

A suffix query is just an interval query 
which returns a suffix of a given 
computation-tuple sequence. [Some types of 

Singapore, August, 1994 

214 



suffix queries are (Q1.3). (41.4) and (Q2.1)-1 
Formally, we have: 

[Definition] A euffix g~g~y over SEQ( <u>) is an 
interval query q over SEQ((u>) such that for each 
6 in SEQ(<U>). q(z) is a suffix of t if q(G) 
exists. I 

As mentioned above, the conditions needed 
for our major results are on q alone. T alone, 
and q and T in combination. For q and T in 
combination, we only need to assume that 
q(VSEQ(T)) is prefix closed as in Section 2. For 
T alone, we need the notions of a ‘local 
constraint ’ and a *local CSS’ , concept 8 
introduced in [GT~]. 

[Definition] A constraint o over SEQ(aU>) is said 
to be k-104 (k 2 1) if it has the following 
property : For all ;=ul...um (m 2 k), 6 ‘- &I iff 
Ui”‘Ui+k-l ~ 0 for all i s m-k+l. A constraint 
is said to be u if it is k-local for some k. 
A CSS T=(8,A,y) is said to be 1pral. if A is a set 
of local (uniform) constraints. I 

The k-local constraints are of importance 
for a practical reason, namely, for ease of 
validity-maintenance in adding computation tuples 
CGTll. Indeed. suppose o is a k-local constraint 
over SEQ( <u>) . Then to maintain the satisfaction 
of w for adding a computation tuple u to a 
computation-tuple sequence ii in VSEQ(o), one need 
only check whether the suffix of length k of ;u 
is in VSEQ(o)’ a relatively easy task to do. 

The following properties for k-local 
constraints were noted in CGTll: 

(1) The class of k-local constraints over 
SEQ( <U>) . thus k-local uniform constraints over 
SEQ(<U>), is closed under the logical connective 
A. 
(2) If 0 is a k-local constraint, then o is 
k’-local for all k’>k. 
(3) If o is a k-local constraint and 5 e o for 
all ,, l;l<k. then w is a uniform constraint. 
By (2)s Obviously. a CSS T=(E.A.‘I) is local iff 
for some positive integer k. A is a set of 
k-local (uniform) constraints. 

The condition on q alone is the following: 
[Definition] A suffix query q over SEQ(<U>) is 
said to be strictly d &,&j,~g if for each 6 
in SEQ(<U>) and each computation tuple U, the 
existence of q(ii) implies that (q(cu) exists and) 
q(&l)=q(U)u. I 

If q is strictly upward existing, then 
knowledge of q(z) gives information on q applied 
to computation-tuple sequences in which ii is a 
prefix. [Two types of strictly-upward-existing 
suffix queries are (41.3) and (Q1.4).] The class 
of strictly-upward-existing suffix queries is of 
special interest when considering the ‘view 
update problem’ mentioned in the Introduction. 
Suppose that q is a strictly-upward-existing 
suffix query and VSEQ(T’)=q(VSEQ(T)) for the 
‘conceptual schema’ T. (Thus, T’ describes 
exactly the *external schema’ defined by q and 
T.) Assume that c is the current ‘external 

. - . database’. i.e., u is in VSEQ(T) and q(u)=;. 
Then the addition of u to c (that is. the 
‘addition through the view ;*) can be simulated 
by the addition of u to ii since q(cu)=Gu and 
VSEQ(T’)=q(VSEQ(T)). 

We are now ready for our first major result 
on suffix queries. 

[Theorem 4.11 Let q be a strictly-upward-existing 
suffix query over SEQ(<U>) and T=(c,A.y) a CSS 
over <u> such that q(VSEQ(T)) is prefix closed. 
Suppose that A is a set of (p+l)-local 
constraints, where p is the rank of E. Then 
VSEQ(T’)=q(VSEQ(T)). where T’=(~,(o’).~‘), 0’ is 
the (uniform) constraint over SEQ(<U>) defined by 
VSEQ(w’)=Interval(q(VSEQ(T))) and y’={; in 
q(VSEQ(T)) 1 ICI 5, P). I 

To illustrate the theorem. consider: 
[Example 4.11 Let T=(~r(ol,02),~) be the CSS over 
<u>=ABC defined as follows: 
(a) F is as given in Example 2.1. [Thus, the 
rank p of 5 is 1.3 
(b) o1 is the (uniform) constraint over SEQ(a>) 
defined for each ti=ul...um (m 2 1) by ol(u)=true 
iff Ui(A)=Ui+l (A) implies Ui(B)=Ui+l(B) for all 
. 
1. 1 5 i S m-l; and o2 is the (uniform) 

constraint over sEQ(a>) defined for each 
ii=ul...~ (m 2 1) by 02(;)=true iff Ui(B)=O or 
ui(B)=l for all i. 1 5 i 5 m. [Clearly. {01&2) 
is a set ot P-local constraints.1 
(c) bC(Oll)l. 
Then ; is in VSEQ(T) iff ; is a prefix of one of 
the following: 

(oll)(lol)m. (oll)(l12)(ooo)m. 
(oll)((l12)(oll))m(lol)n, 
(011)((112)(011))*(112)(000)” 

for some positive integers m and n. Consider the 
strictly-upward-existing suffix query Chop1 . 
Then ; is in Chop’(VSEQ(T)) iff c is a prefix of 
either 

(101 )m, (112)(ooo)m, ((112)(Oll))m(101)n, or 
((l12)(oll))m(l12)(ooo)n 

Singapore, August, 1984 Proceedings of the Tenth International 
Conference on Very Large Data Saeer. 

215 



for some positive integers m and n. Since 
Chop’(VSEQ(T)) is prefix closed, it follows from 
Theorem 4.1 that VSEQ(T’)=Chopl(VSEQ(T)), where 
T’=(~,{w’),f’), VSEQ(o’)= Interval ( 
Chopl(VSEQ(T))). and p’={(lOl), (112)}. w 

It should be noted that the assumption in 
Theorem 4.1 that A is a set of (p+l)-local 
constraints, p the rank of E, cannot be 
arbitrarily eliminated. [The CSS T=(c,A.P) given 
in Example 2.1 is not local. However, in this 
case. it is possible to find a local CSS 
Tl=(e,{wl},y) such that VSEQ(Tl)=VSEQ(T) and o1 
is 3-local (VSEQ(wl)=Interval(VSEQ(T))). It is 
readily seen that w1 is npf. 2-local. Since the 
rank of c is 1. Theorem 4.1 cannot be applied to 
Tl. Also, as shown in Example 2.1, there exists 
no css T’=(E,A’,?‘) such that VSEQ(T’)= 
Chop’(VSEQ(Tl))= Chop’(VSEQ(T)). The details can 

be found in [GTZ].] 

In the spirit of Theorem 2.2, we now 
consider changing the computation scheme of a 
given local CSS but keeping the same attribute 
scheme. By employing Lemma 2.1 and Theorem 4.1, 
we get: 

[Theorem 4.21 Let q be a strictly-upward-existing 
suffix query over SEQ(<U>) and T=(c,Ary) a local 
CSS over <Uz such that T has at least one 
evaluation attribute and q(VSEQ(T)) is prefix 
closed. Suppose that A is a set of k-local 
constraints and p the rank of 2. Let w’ be the 
(uniform) constraint over SEQ(<U>) defined by 

VSEQ(o’)=Interval(q(VSEQ(T))) and 
?=I; in q(VSEQ(T)) I I;1 I maxip.k-11). 

Then q(VSEQ(T))=VSEQ(T’) for some T’=(E’,jo’),y’) 
having the same attribute scheme as T. a 

Theorem 4.2 implies the following: For each 
h&&l css T with at least one evaluation 
attribute and each strictly-upward-existing 
suffix query q such that q(VSEQ(T)) is prefix 
closed, there exists a CSS T’ with the same 
attribute scheme as T such that 
VSEQ(T’)=q(VSEQ(T)). The following should be 
noted: 

(1) The assumption that T is local cannot be 
arbitrarily removed. 
(2) The condition in Theorem 4.2 that q be 
strictly upward existing cannot be eliminated. 
[Illustrative examples are omitted, but can be 
found in [GT2].] 

In connection with Theorems 4.1 and 4.2, the 

following natural quest ion arises : What 
additional hypothesis will guarantee that the 
resulting CSS T’ is local? [Strictly speaking, 
this question does not fall within the theme of 
the paper.] One suprising simple answer is to 
require q to be strictly downward existing, as 
defined in Section 2. (Since this condition 
implies that q(VSEQ(T)) is prefix closed, the 
hypothesis on q(VSEQ(T)) can be omitted.) The 
details are omitted, but can be found in [GT2]. 

The first author was supported in part by 
the National Science Foundation under grant 
MCS-792-5004. The second author was supported in 
part by the Sakko-kai Foundation. 

CA3 

CBI 

CCWI 

CDBI 

CGTll 

CGT21 

CK] 

J.F.Allen, ‘Maintaining Knowledge about 
Temporal Intervals*, CACM, Vo1.26, No.11, 
Nov.1983r.pp.832-843. 
J.A.Bubenko, Jr., ‘The Temporal Dimension 
in Information Modelling’. in Architecture 
and Models in Data Base Management Systems 
(G.M. Nijssen ed.), North Holland, 
Amsterdam, 1977. 
J.Clifford and D.S.Warren. ‘Formal 
Semantics for Time in Databases’, ACM TODS, 
Vo1.8, No.2, June 1983. pp.214-254. 
U.Dayal and P.A.Bernstein, ‘On the Correct 
Translation of Update Operations on 
Relational Views’, ACM TODS, Vo1.7. No.3. 
Sept .1982, pp.381-416. 
S.Ginsburg and K.Tanaka, ‘Computation-tuple 
Sequences and Object Histories’. Univ. of 
Southern California, Computer Science 
Department , Technical Report, TR-83-217, 
Nov. 1983. 
S.Ginsburg and K.Tanaka, ‘Interval Queries 
on Object Histories’. Univ. of Southern 
Calif ornla, Computer Science Department, 
Technical Report, TR-84-302. Feb. 1984. 
M.R.Klopprogge, ‘TERM: An Approach to 
Include the Time Dimension in the 
Entity-Relationship Model’. in Proc. 2nd 
International Conference on 
Entity-Relationship Approach, 
Washingt0n.D.C. 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

Singapore, August, 1984 

216 



IKP] A.Klug and R.Price, ‘Determining View 
Dependencies Using Tableaux’, ACM TODS, 
Vol.7, lo.3, Sept.1982, pp.361-380. 

CO] J.D.Ullman, ‘Principles of Database 
Systems’, Second Ed., Computer Science 
Press. Potomac, Maryland, 1982. 

Pracoodlnga ol tha Tenth International 

Cmfwmce on Vwy Laqje Data Eases. 

Singapore, August, 1994 

217 


