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ABSTRACT 

We investigate the problem of data- 
base equivalence which arises in database 
design process. We introduce a graph 
formalism for the treatment of this 
problem. More precisely, we represent 
Entity-Relationship schemes by a special 
kind of graphs (called JFD-graphs) and we 
give a simple and efficient algorithm for 
testing the equivalence of two schemes. 
In addition, we present a set of 
elementary operators (preserving equiva- 
lence) for modifying an ,Entity-Relation- 
ship scheme and we prove that all equiva- 
lent schemes can be obtained by 
repeatedly applying such operators. 
Finally, we propose a methodology for 
mapping Entity-Relationship schemes 
into both relational and network schemes. 

;. INTHODUCTION 

In database design process four 
phases may be used to derive a DBMS- 
processable database scheme from an 
informal description of the real world 
ty2r an introduction to these topics see 

I 141). First of all, in the user 
requirement analysis phase all 
information about the realm of interest 
is gathered; then, during the conceptual 
design phase, the information collected 
in the previous phase is manipulated and 
described in terms of a formal conceptual 
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data model (conceptual scheme). This 
scheme is "entity-oriented", in the 
sensethatentities of the real world are 
represented in terms of data model tokens 
by means of abstraction and aggregation 
primitives. In this framework, semantic 
properties of data are expressed by means 
of a set of integrity constraints. In the 
implementation phase the conceptual 
scheme is transformed in an equivalent 
DBMS-processable scheme by using a data 
model (network, relational or hierarchy- 
Cal). The DBMS-processable scheme is, in 
general, "record-oriented" in the sense 
that elementary data items are clustered 
in records taking into account some data- 
base performance criteria (e.g., 
minimality of the number of logical 
record accesses, redundancy, reduction 
of updating anomalies). Finally, the. 
physical design phase improves the 
overall performance by defining access 
paths, storage allocation of records, 
device media allocation, etc. 

In this paper we are concerned with 
the database scheme equivalence problem 
which is important during the phases of 
conceptual design and of implementation. 
Our goal is to give an algorithm for 
testing whether two database schemes are 
equivalent (i.e., they represent the 
same information) and to provide a set 
of elementary operators which allow to 
modify a conceptual scheme .in all 
possible ways without changing the 
semantic properties of it (i.e., by 
preserving the equivalence). Such formal 
tools may be used both to improve the 
expressive power of a concept'ual scheme 
and to eventually map it into a DBMS- 
processable scheme by redefining 
entities in terms of records according 
to some performance criteria. 

We use the Entity-Relationship Model 
[51 at the conceptual level and the 

Network Model [2,6] and the relational 
model [71 at the implementation level. 
We introduce a graph formalism (JFD- 
graphs) to represent Entity-Relationship 
schemes, and we define the equivalence 
of two Entity-Relationship schemes 
under the universal relation assumption 
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[81 t by assuming that every database 
scheme can be described by a universal 
relation, a full join dependency and a 
set of functional dependencies. This 
assumption and the graph formalism 
provide a suitable environment in which 
the equivalence of database schemes can 
be formally treated. 

In Section 2 we give the basic 
definitions on the Entity-Relationship 
Model and in Section 3 we introduce the 
graph formalism of JFD-graphs to 
represent Entity-Relationship schemes. In 
Section 4 we study the problem of 
deciding whether two Entity-Relationship 
schemes are equivalent by introducing the 
concept of JFD-graph closure and we 
present an efficient algorithm to test 
the equivalence. In Section 5 we provide 
a set of manipulation operators on JFD- 
graphs and we prove that this set of 
operators is sound (i.e., preserve the 
equivalence), complete (i.e., all 
equivalent representations can be 
obtained by repeatedly using the 
operators) and independent (i.e., no 
proper subset of it is complete). 
Finally, in Section 6, we sketch a 
methodology to map JFD-graphs into 
relational and network schemes. 

2.TBE ENTITY-RELATIONSHIP CONCEPTUAL 
SCHEME 

The past few years have seen a 
proliferation of data models as possible 
candidates for the conceptual description 
of a database [13,151. Among them the 
Entity-Relationship model incorporates 
several suitable features such as an easy 
formalism to describe the semantics of 
the real world, based on a coincise 
diagrammatic technique. 

Two levels of aggregate data exist 
in such a model: entity sets (or simply 
entities) composedbynstances of the --- 
same type, and relationships-sets (or 
simply relationships) which describe 
meaningful associations among entities, 
that perform different roles in the ----- 
relationship. Attributes are also defined 
as functions that associate to every 
entity (relationship)-instances a value 
belonging to a corresponding domain. 
Since attributes are properties-wmh 
only hold within the objects in which 
they are defined, without loss of 
generality, we shall omit attributes in 
the model. 

Furthermore, an additional set of 
integrity constraints may be specified 
on entities and relationships such as the 
minimal and the maximal number of 
instances of a reLationship that 
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may contain the same instance of an 
entity, or more general cardinality 
constraints like functional dependencies 
t161. We point out that functxi 
dependencies are defined in the 
relational model, and their interpreta- 
tion in the Entity-Relationship model 
may be obtained by considering a 
relationship as a relation whose tuples 
correspond to the relationship instances 
and whose attributes correspond to role 
names in the relationship. 

Formally an Entity-Relationship 
scheme is described by a bipartite graph 
and a set of functional dependencies as 
follows. 

Definition 1. An ER-scheme is a pair ---e---s- 
<G,F>, where: 

a- G= <E,R,A,ent,rel> is a bipartite 
multigraph with set of nodes EU R 
and set of arcs A, such that: 

i) E is the set of entities and R is 
the 7---v set of relationships 

ii) A is the set of roles 

iii) rel:A-->R and ent:A-->E are 
two functions' which specify, 
respectively, the relationship of 
every role and the entity playing 
this role in the relationship. We 
denote by e(Ri) the set of all 
entities which have a role in the 
relationship Ri. 

b- F is a set of "intra-relationship" 
functional dependencies over A, i.e., 
X -->Y in F is an ordered pair of non- 
empty subsets of A such that 
there exists a relationship Ri in R 
for which for all k in XVY, we have 
rel(k)=Ri.l 

Example 1. In Fig. 1 we show a simple 
ER-scheme. m 

PROJECT 

DEPARTMENT 

Figure 1. An Entity-Relationship scheme. 
Singapore, August, 1994 



3. GRAPH REPRESENTATION OF ENTITY- 
RELATIONSHIP SCHEMES 

Several authors have used graph or 
hypergraph formalisms to model the set 
of data dependencies contained in a 
relational database scheme. In [ll a 
particular kind of directed graphs 
(called FD-graphs) has been introduced to 
represent and manipulate a set of 
functional dependencies. In this paper, 
we extend this formalism to represent an 
ER-scheme by introducing JFD-graphs. JFD- 
graphs are an extension of the usual 
concept of graph such that properties of 
ER-schemes can be formally characterized 
in terms of graph properties. 

Definition 2. A JFD-graph is a directed 
graph G=<NS,NC,NJ,AF,AD> where: 

i) N = NSUNC is the set of nodes, where 

NS and NC are the disjoint sets 

of simple and compound nodes, respec- 
tively. 

ii) A = AFUAD is the set of arcs, where -- 

AF contained in NxNS is the set of 

full arcs and AD contained in NCxNS is 

the disjoint set of dotted arcs 

iii) there exists a function c:N-->P(N) 
such that 

a) for each i in NC, c(i)=(m) (i,m) is 

in AD} and (c(i) 1 >, 2, and 

b) for each i in NS, c(i) = (i}. 

The nodes c(i) are called component 
nodes of i. -- 

iv) the subset NJ of N is the set of 

join nodes such that: 

a) for each (i,j) in AFP there 

exists a node k in NJ for which 

c(i)U {j} is contained in c(k) 
(independency property) and 

b) for each i in NS, there exists a 

node j in NJ such that i is in 

c(j). I 
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Example 2. The ER-scheme of Fig.2a is 
represented by the JFD-graph G=<NS,NCVNJ, 

AFtAD> in Fig.2b, where: 

NS={A,B,C,D}, NC=tABrBCrBCD)r 

NJ={AB,BCD}, 

AF={(A,B),(BC,D)}, AD"{ (AB,A),(AB,B), 

(BCD,B),(BCD,C),(BCD,D),(BC,B),(BC,C)}; 
and circles denotes join nodes. 

Figure 2. a) An ER-scheme and 
b) its JFD-graph. 

It is easy to see that JFD-graphs 
can be used to represent ER-schemes. 
In fact, each simple node corresponds to 
a distinct entity, each compound join 
node i corresponds to a distinct 
relationships and the component nodes in 
c(i) correspond to entities involved in 
the relationship. Since a JFD-graph is 
not a multigraph, entities may have at 
most one role in a relationship. 
Finally, given a full arc (i,j) and any 
join node k such that both c(i) and c(j) 
is contained in c(k), the arc (i,j) 
corresponds to a functional dependency 
X->Y in the relationship corresponding to 
k where X are the roles of the entities 
corresponding to the nodes in c(i) and 
Y is the role of the entity corresponding 
to the node j. It follows that a full 
arc generates a functional dependency 
which may hold in several distinct 
relationships. 

From the above interpretation, it 
follows that an ER-scheme S can be 
represented by a JFD-graph if and only if 
the following conditions are satisfied: 

a- 

b- 

there is no recursive relationship in 
S, that is a relationship involving 
an entity with more than one role 
(e.g., the relationship COMPOSED BY 
over the entity PART in the scheme 
of Fig.1 is recursive) 

there is no local functional 
dependency, 

---?- 
that 1s a functional 

dependency X->Y such that X->Y holds 
in a relationship Ri and there exist6 

Slngapore, August, 1994 

189 



another relationship Rj for which 
ent(XUY) is contained in e(Rj) and no 

functional dependency xl->Y' holds 
where ent(X)=ent(Xl) and 

iZt(Yylint(Y'). 

In addition, we give a particular 
interpretation of JFD-graphs in which 
simple nodes correspond to the attributes 
of a universal relation U, join nodes 
correspond to the relations of a full 
join dependency on U and full arcs 
correspond to functional dependencies on 
u (for an introduction to data dependency 
theory, see [161). 

Definition 3. Given a JFD-graph 
G'<NS,NC,NJIAF,AD>, we associate toG a 

relational database scheme D=<u,J,F>, 
where U is a universal relation scheme 
whose attributes are the nodes inNS, J 

is a join dependency *[Xl,...,XIN 
J 

I] 

(under this assumption , we shall not 
consider JFD-graphs having two or more 
distinct compound nodes with exactly the 
same set of component nodes) such that 
for each i in NJ, Xi=C(i), and F is a set 

of functional dependencies such that 
F={X->YI there exists (i,j) in AF such 
that X-c(i) and Y=c(j)). A legal instance 
of D is a relation u over U which 
satisfies the join dependency J and the 
set of functional dependencies F. m 

This interpretation of JFD-graphs is 
based on the conjecture that every 
plausible real world can be described by 
a universal relation,a set of functional 
dependencies and a full join dependency 
[81. Even though this assumption has been 
sometime criticized as unrealistic, our 
belief is that the assumption is indeed 
reasonable in most cases; besides, it 
provides a formal environment where 
the database equivalence and mapping 
problems can be approached. 

From now on, we shall consider ER- 
schemes which can be represented by 
JFD-graphs having the above simplifying 
interpretation. This means that we 
shall not deal with ER-schemes which, 
for example, have local functional 
dependencies, recursive relationships or, 
more in general, relationships sharing 
the same set of entities with different 
meaning (e.g., the relationships 
ASSIGNED TO and MANAGES between the 
entities-EMPLOYEE and DEPARTMENT). 

Despite the above restrictions, we 
conjecture that any ER-scheme can be 
"approximated" by JFD-graphs by 
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performing simple modifications (e.g., by 
duplicating entities). We note that a 
similar approximation is used in [ll]. 

Example 2. the relational database scheme 
associated with the JFD-graph 

D=<U,J,F>, 
if* [{A,B) 

where U= 
{B,c,D}] and F= 

{B,Cb-> ti}}- n 

4. EQUIVALENCE OF JFD-GRAPHS 

We now give a definition of 
equivalence between two JFD-graphs, based 
on the equivalence of the corresponding 
sets of data dependencies (join 
dependency and functional dependencies). 

Definition 4. 
graphs with 

Let Gl and G2 be two JFD- 
the same set of simple nodes 

and let Dl= cU,Jl,Fl> and D2=<UIJ2,F2> be 

the relational database schemes 
corresponding to Gl and G2, respectively. 
We say that Gl 
(Gl f G2) if the 

is contained in G2 
se-ff-agc<2<pendencies 

Jl and Fl implies J2 and F2, i.e., every 

legal instance of Dl is a legal instance 

of D2. Furthermore Gl is equivalent to G2 

(Gl ? G2) if both Gl c G2 and G2 f Gl. a 

In order to check whether two JFD- 
graphs Gl and G2 are equivalent, we can 

use the following algorithm. By 
Definition 4 we only need to check 
whether <JlrFl’ implies <J2rF2’ ,and 

conversely. By definition of JFD-graph, 
all functional dependencies Fl and F2 

are embedded in the components of Jl 

and J2, respectively. This means that 

all functional dependencies implied by 
cJl,Fl> (<J2,F2>) are those implied only 

by Fl (F2). Hence, testing the 

implication of functional dependencies 
can be done by the membership algorithm 
given in [21. In addition, since Jl 

preserves functional dependencies in the 
sense of [4], testing whether <Jl,Fl> 

implies J2 can be done in polynomial time 

by computing the chase C of the tableau 
associated to J2, denoted T(J2), under Fl 
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and by checking whether there is a 
containment mapping from T(J1) to the 

chase c (see [4] for more details about 
this algorithm). We note that this 
approach has been used in [lo] for 
testing the equivalence of ER-schemes. 

In this section we shall present a 
simpler and more efficient algorithm for 
testing JFD-graph equivalence based on 
the concept of JFD-graph closure that is 
an extension of the FD-graph closure 
introduced in [l]. An other definition 
of closure of a hypergraph representing a 
relational scheme, that also includes 
inter-relational functional dependencies, 
is given in [131. 

Let us first of all give some 
intermediate definitions and results. 

Definition 5. Let G'<NS,NC,NJ,AF,AD> and 

G'=<NS,NC',N~',AF', AD'> be two JFD-graphs 

with the same set of simple nodes. 
G*'=G+G' is the JFD-graph G"= 
<NS,NCUNC',NJWNJ', AFuAF',ADUAD'>*A 

Definition 6. Let G and G' be two JFD- 
graphs. We say that G(G' if G f G' and G 

is a subgraph of G' (i.e., there exists a 
JFD-graph G" such that G'=G+G").P 

Theorem 1. Let G and G' be two JFD- 
graphs. If G E G', then G" 5 G', where 
G' '=G+G' . 

Proof.(Sketch) By definition of JFD-graph 
equivalence, we have to prove that 
G f G" and G" E G, i.e., cJ,F> implies 

<JI',FI'> and <J",F"> implies CJ,F>, 
where <J,F> and <J",F"> are the data 
dependencies corresponding to G and G", 
respectively. We have that F" implies F 
since F is contained in F", and F 
implies F" since F"=F F' and F implies 
F' by hypothesis. In addition, J implies 
J" since, by costruction of G", for 
each component Ri in J, there exists a 
component Rj" in J" such that Ri=Rj". 

Let us now prove that <J",F"> implies 
J. To this end, since the functional 
dependencies F” are embedded in J", 
and, then, J" preserves F", we have to 
show that there exists a containement 
mapping from T(J") to the chase C" of 
T(J) under F" (see Theorem 4 in 141). 
Since obviously there is a containement 
mapping from T(J) to C" (by definition 
of Cl“) and from T(J') .to Cm* (because 
<J',F'> implies J and C" is also the 
chase of T(J) under F'), it follows that 
there is a containement mapping from 
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T(J") to C", because T(J") is the 
union of T(J) and T(J'). Hence, <J",F"> 
implies J and this concludes the proof. 
I 

Let us now give the definition of 
JFD-closure. 

Definition 7. Given a JFD-graph G, a JFD- 

graph G+ is the closure of G if GfG+ and 

for each G' such that GcG', we have 

G*<G+. a 

Remark. By Definition 6, G+ is equivalent 
to G. 99 

Proposition 1. The closure of a JFD-graph 
G always exists and is unique. 

Proof. Let us consider the JFD-graph G+ 
obtained by repeatedly adding to G all 
JFD-graphs G' such that GIG'. We have 

thatG+ is equivalent to G by Theorem 
and for each G' such that GLG',G'<G+ by 

1, 

construction. Hence G+ is the closure of 
G. The uniqueness of G+ derives directly 
from the existence. II 

We now prove that all equivalent 
JFD-graphs have the same closure. 

Theorem 2. Let G and G' be to JFD-graphs. 
G is equivalent to G' if and only if 
G+=G'+. 

Proof. If part; If G+=G'+ then G+ z G'+. 
Hence, ante G z G and G'+ 5 G', also G 
is equivalent to G'. 
LzLlg part- Since G is equivalent to 

=G+G' is equivalent to G and G' by 
Theorem 1. Hence, since GIG" and G'LG", 

we have GI'+=G+ and GVr+=G'+ by 
definition of closure and, then, G+=G'+. 
I 

Since the size of the closure of a 
JFD-graph G is in general exponential in 
the size of G, we show that the 
equivalence of two JFD-graphs G and G' 
can be checked by considering two 

suitable subgraphs of G+ and G'+. 

Definition 8. Let G be a JFD-graph. A 
JFD-graph G' is a covering of G if G'<G -- - 

and for each join node i in G there 
exists a join node k in G' such that c(i) 
is contained in c(k).I 
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We shall show that, given a JFD- 
graph G, we can find a covering of G+ 
whose size is polynomially bounded in the 
size of G.To this end, we shall give the 
definition of JFD-path and node closure 
in a JFD-graph. 

Definition 9. Given a JFD-graph G= 
<Ns~Nc,NJ,AF,AD> and two nodes i,j in 

N, a (directed) JFD-Eath ci,j> from i to -e - 
j is a minimal subgraph G'=<NG',NG',NJ', 

AF',AD'> such that i,j are in N' and 

either (i,j) is in AF'U AD' or one of the 

following possibilities holds: 

i) j is a simple node and there exists a 
node k such (k,j) iS in AF'u AD' 

and there is a JFD-path <i,k> in G' 
(graph transitivity); 

ii) j is a compound node with component 
nodes ml,..,mr and there are r 

JFD-paths <i,ml>, ..,<i,m,> included 

in G' (graph union).m 

Fact l.[l] There exists a JFD-path 
<i,j> in a JFD-graph G if and only 
if I --> J is implied by the set of 
functional dependencies represented by G, 
where I andJ are the sets of attributes 
represented respectively by i and j. I 

Definition 10. Let G = cN SPNC~NJ~AFVAD> 

be a JFD-graph and i be a node of G. We 
call (node)-closure of i the set of ---- ------- 

simple nodes i+ = (j ( th ere is a JFD- 
path <i,j> in G}. IO 

Fact 2.[1] The closure of a node i of a 
JFD-graph G can be computed in O(m) 
time, where m is the number of arcs in G 
(both dotted and full). I 

There is a strong relationship 
between the closure of a JFD-graph and 
the closure of its join nodes. 

Proposition 3. Let G be a JFD-graph and 

G+ be its closure. Then for each join 
node i in G there is a join node j in G+ 

such that i+ is contained in c+(j), and 
for each join node i in G+, there exists 

a joinnode j in 
contained in j+. 

G such that c+(i) is 
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Proof. The proof can be done by using the 
same arguments used in the proof of 
Theorem 1. &I 

The concept of node closure can be 
used to contruct a covering of G+ which 
is polynomially bounded in the size of G. 

Theorem 3. Let G be a JFD-graph an G+ be 

th,e closure of G. A covering of G+ can be 
computed in O(nJ x m), where nJ and m are 

the number of join nodes and the number 
of arcs in G, respectivelly. 

Proof. Let G'<Ns,NG,NJ,AF,AD> and let us 

consider the JFD-graph G'=<NS,NCU,NJ', 

AF',AD'> obtained from G by adding for 

each join node i in NJ a join node k (and 

the corresponding dotted arcs) such that 

c(k)=i+ (if it does not already existsl. 
By Proposition 3, G' is a covering of G . 
As far as the complexity of finding G' is 
concerned, we note that we only need to 
compute the closure of all join nodes in 
G. Hence, by Fact 2, G' can be found in 
O(nJ x m) time. I 

Theorem 4. Let G and G' be two 
JFD-graphs. The equivalence of G 
and G' can be checked in time 
O((n+n')x(m+m')), where n and m (n' and 
m') are respectively the number of 
nodes and of arcs in G (G'), and n* (njl) 
is the number of join nodes in G (&I). 

Proof. Let us consider the following 

algorithm. Let 6 (El) be the covering of 
G+ (G'+) obtained as in the proof of 

Theorem 3. A necessary condition for G 
and G' to be equivalent is that for each 

. 
join node i in 6, there exists a join 

node j in G' such that c(i) is contained 
in c(j) and conversely (see Theorem 2 and 
the definition of covering). If this 

condition is satisfied, we can add to e 

(G') all compound nodes in G' (G) which 

are not already in 6 (6'). Let 2 (G') be 

the JFD-graphs so obtained. Also 6 and G' 
are coverings of G+ and G'+, 
respectively, and they have the same set 
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of nodes. It follows that G+=GI+ if and 
only if for each node i, the node closure 

of i in 2 is equal to the node closure of 

i in G1. Finding G and GI can be done in 
O(nj X m + nj' x m') time (see Theo- 

rem 3), and the closure of all nodes 

in ii and it can be computed in 
O((n + n') x (m + ml)). This concludes 
the proof. I 

5. MANIPULATION OF JFD-GRAPHS 

In database design process, it is 
very important not only to check 
whether two schemes are equivalent but 
also to have simple rules which allow 
to modify a scheme in order to improve 
its expressive power (during the 
conceptual design phase) or its 
efficiency (during the implementation 
phase). 

To this end, we now introduce a 
set of elementary operators for the 
manipulation of a JFD-graph G=<NS,NC,NJ, 

AprA~b which preserve the equivalence. 

OPERATORS FOR JFD-GRAPH MODIFICATION 

01. add a full arc (i,j) if ---- 

a) j is a simple 

b) there exists 
that c(i) ti 
c(k) , and 

c) the closure of 

02. cancel a full ------ - a--- 

node, and 

a join node k such 
{j) is contained in 

i does not change 

arc (i,j) if the 

closure of i does not change 

03. add a non-join compound node i and -- -- 

all its outgoing dotted arcs to 
component nodes if there exists a join 
node j in G for which c(i) is 
contained in c(j) 

04.. cancel 3 non-join compound node i 

and all its outgoing dotted arcs if 
i has no outgoing full arcs inG. 

05. add a join node i and its outgoing -- -- 

dotted arcs if there exists a join 
nyde j for which c(i) is contained in 
3 l 

06. cancel a join node i and its outgoing -- - 

dotted arcs if 

- there exists a join nodej for 

which c(i) is contained in j+, and 

- for all non-join node k, there 
exists a join node j#i for which 
c(k) is contained in c(j), and 

- for all full arcs (k,m), there 
exists a join node j#i for which 
c(k)w(m) is contained in c(j) 

We prove that the operators for JFD- 
graph modification enjoy the following 
properties: 

a- 

b- 

c- 

soundness, i.e., all JFD-graphs 
obtained by repeatedly applying the 
operators are equivalent to the 
initial JFD-graph G: 

completness, i.e, for each JFD-graphs 
G' equivalent to G, there exists a 
sequence of application of the 
operators which modifies G in G'; 

independency, i.e., no proper subset 
of t e set of operators is complete. 

Theorem 5. The set of operators 01-06 
is a sound, complete and independent 
set of modification rules for JFD- 
graphs. 

Proof. Soundness and independence. ----we-- --- ---- -,_-_-__ 

Straightforward. 

Completeness. (Sketch) Let G and G' be 
two equivalent JFD-graphs. We have to 
show that there exists a sequence of 
applications of the operators which 
modifies G in G'. Let us consider the 

JFD-graph s= G+G'. By Theorem 1, G<G and 

G'<& Hence 6 is equivalent to both G and 

G' and both G and G' are subgraphs of E. 
It is easy to see that by repeately using 
the add operators (01, 03 and 05) G can 

be trasformed in 6, and G" can be 
trasformed to G' by repeatedlyapplying 
the cancel operators (02, 04 and 06). I 
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6. MAPPING JFD-GRAPHS TO DBMS-PROCESSABLE 
SCHEMATA 

- we introduce a set between two records 

Given a JFD-graph G, there are 
simple rules which allow to obtain a 
DBMS-processable (either relational or 
network) database scheme which is 
equivalent to the scheme represented by 
G. The approach we propose here is 
straithforward in the sense that there is 
a direct correspondence between the 
objects in the JFD-graph and the aggrega- 
tion structures (relations or records 
and sets) in the target model. 

In the case that the target model is 
relational, the mapping rules are 
trivial, since we only need to associate 
a relation to every join node and to 
enforce the same data dependencies 
represented in G on the target relations. 
Notice that, in this case, simple 
join nodes in the JFD-graph are relevant 
since they specify relations correspon- 
ding to entities of the conceptual 
scheme. 

Let us now consider the case of 
the network model. The problem of 
obtaining a network scheme starting from 
a join dependency (without functional 
dependencies) has been approached in 
[11,17]. We use the same approach 
starting from a JFD-graph G=<NS,NC,NJ, 

AF 'AD'- Let US denote by Ri a record of 

the target network scheme and by Attr(Ri) 

the set of attributes of Ri. We construct 

the network scheme as follows: 

- for each node i in NSU NJ, we 

introduce a record Ri such that 

Attr(Ri)=C(i) 

- for each subset X of NJ such that Ifg, 

n where.I=k in Xc(k), we introduce a 

record Ri such that Attr(Ri)=I (if 

there is no other record with the 

same set of attributes). 

Rl (owner) and R2 (member) if 

both Attr(R1) is contained in 

Attr(R2) and there exists no record R3 

such that Attr(Rl) is properly 

contained in Attr(R3) that is properly 

contained in Attr(R2). 

In addition, we enforce functional 
dependencies within the records 
corresponding to join nodes. 

Let us now give a methodology for 
mapping an Entity-Relationship conceptual 
scheme into a relational or network 
scheme: 

- represent the real world of interest 
by means of an ER-scheme 

- represent the ER-scheme by a JFD-graph 
(possibly by restructuring the scheme 
in order to meet the basic assumptions 
of JFD-graphs) 

-repeat 

- map the JFD-graph into the target 
relational or network scheme 
(according to the above mapping 
rules) 

- evaluate the performance of the 
so-obtained scheme (on the basis 
of required criteria by considering 
quantitative data on transactions 
running against the scheme) 

- if the performances are not 
sgtisfactory then 

- modify the JFD-graph using the 
modification operators intro- 
duced in the previous section 
on the basis of a suitable 
heuristic strategy for searching 
in the space of possible 
alternate solutions 

- until the performance requirementsare 
satisfied. 
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