Chaice and Perfarmence in Lodking far Databases

Y.C Tay
Herverd University end Nationel University of Singepore

Rajan Suri
Harvard University

1. Introduction

Lodking is the most popular database concurrency control
dgorithm. There is a considerable amount of fexihility in the
implementation of locking, and some of the choices entail
significant differences in performence. This peper addresses
three of the most important choices — the choice of grenulearity
of locks, the choice of conflict-resolution technique, and the
choice of when to set locks — and their performence implica-
tions. W e will descaribe these three choices in tum.

The granularity of alodk refers to how much deta the lock
lodks; it is coarse if each lock covers a large amount of data,
and fine otherwise. If the granulerity is coarse, few transections
cen run concurrently. If it is fine, a trensaction will have to set
ey lodks, thus inourring more locking overheed, and also
increasing the chances of conflic. What is the appropriate
choice of granulerity?

Work supported by US National Science Foundation Grant
ECS-82-03925.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

119

Lodking, like all concurrency control algorithms, resolves
conflicts by a combination of restarts and blocking. It is easy to
see why restarts degrede performance — the computation done
before the restart is wasted. Performance degradation due to
blocking is more subtle : blodking prevents a transaction from
doing anything with the data it locks, even while other trensarc-
tions are trying to access the data. Which of these two
conflict-resolution techniques is preferable?

In practice, a trensaction usually acquires locks only when
it needs them ; this is celled dynamic locking. There is an
dtemative to dynamic locking, where a trensaction acquires all
the locks it needs before it starts exeaution. This way, once a
treansaction begins computation, termination is assured, since
there would be no restarts due to deadlods. Hence, this lodk-
ing policy, colled static locking or predeclaration, is usually
thought of as a stralegy for deadlock avoidance [C, DC, G1].
Dynamic locking has the advantage of not locking data before
they are needed, but it leads to restarts On the other hend,
static locking locks data before they are needed, but it does not
cause restarts. W hich is better?

Choice of granularity has been studied before in [R, MK};
the effect of restarts and blocking on the performance of con-
aurrency control algorithms wes exermined in [BBD] ; and
comparisons of stalic and dynamic locking were made in [C,
DC, R} Al these studies are by sirmlation. W e shall use en
analytic model instead. In [T], we introduced a model for lock-
ing and used it to study several systems This peper reports the
model's condusions about the three choices :

Singapore, August, 1984

(1) The appropriate choice of granularity depends on which

nart f aral grnn ars by e

ALY UL agcllmul m;‘d‘umu] (& v i4 '\t‘n B"S‘

ro Qo
e i AL ITOD.

{2) Conflicts should be resolved by blocking if the workloed is
light, but restarts may be preferable if the workload is
heavy. Furthermore, a pure restart policy, where all
conflicts are resolved by restarts, can perform as well as a

strategy using both blocking and restarts.

(3) If resource contention is not excessive, then dynamic
locking is better than static locking if the workload is

light, but static locking is better if the workloed is heavy.

Section 2 is a review of the model, and Sections 3, 4, and
5 study separately the three problems. We will only present
the results from the model. Details on how these results are
obtained cen be found in [T]. Along the way, we shall men-
tion how our results relale to those in the literahure. Again,
we will be brief, and details can be found in [TGS]. We
should emphesize that, first, ours is an analytic study of these
choice problems, and second, this study of these three very

different problems is based on a single model.

2. The Modd

W e first describe the locking protocol.

The databese is a collection of Jaf gromies A grenule
may be afile, a page or a record. Users access the database with
transactions Before accessing any data, a transaction must first
lock the granule containing that data If the granule is already
locked (there is a conflict), the transaction must wait in a
queue for the lock to be released (it is blocked). If this causes
a deadlock, then the transaction is aborted : it releases its
locks, waits for some time to let the conflicting transaction ter-
minate, then starts again. Transections release their locks when
they terminate (successfully complete). When a lock is
relessed, the first transaction in the queue for that lock acquires

that lock.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

120

W e now describe the model.

Let D be the number of granules. We assume that all
transactions require the same number of locks, k. A transac-
tion makes a sequence of k+2 requests: the O-th request is a
request to start, the (k+1)-st is for termination, and the i-th,
where 1 = 15 k, is for a lock on a granule. We assume the
inter-request time is uniformly distributed on (0, 27') (so the
average interrequest time is 7). A transaction does not
request a lock it already holds The sequence of requests a
transaction makes is called its scrigt

All requests are handled by the schedulerr Requests to
stert and terminate are immediately granted. Lock requests are
handled according to the locking protocol. Upon termination, a
transection is immediately replaced by another transaction.
Similarly, when a transaction T is aborted (because of a
deadlock), another transaction T" takes its place, while T* waits
to be readmitted. The number of executing and blodked

transactions (exduding those aborted transections that are wait-
ing) is therefore a constant, say N. An aborted tansaction
retains its script. However, since the trensaction is replaced by
another transaction, it looks Uke the transaction releases its
locks and restarts immediately with a new soript.

We assume all locks are exdusive , ie. two transections
may not share the same lock Furthermore, there is wiform
access, i.e. the probability that a transaction requests for a par-
ticuler grenule it has not lodced is the same as that for any
other granule. These assumptions are not restrictive. In [T],
we show that systems with shared locks, or with nonuniform
access like the 80%-20% rule in [MK, LN], ae in fact
equivalent to systems with only exdusive locks and uniform

aCCess.

Some of the above informeation is summarized in the flow
diagram in Fig. 2.1, which charls the progress of transactions.
W e refer to each node in the disgram as a stage.

If the transactions originate from interactive terminals,
one may view the flow diagram as a module in a larger model,
as shown in Fig. 22. Here, the trensactions first wait at a

queue before entering the systern (which, unless otherwise
Singapore, August, 1984

specified, always refers to the flow diagram). The queue exists
if there is a maximumn multiprogramming level, and the
nurnber of terminals exceeds it The multiprogramming level
N refers to the number of transactions in the executing and
waiting stages, and exdudes those in the queue. W hen a tran-
saction terminates, it retums to the user at the terminal, who
sends enother transaction after some time lapse. Solution of
this network consists of two steps : (1) solving our model to
determine the throughput for a given N, and (2) solving the
network by using the usual fAow-equivalent methods from
queueing network modeling [CS, D]. We will only bs

concerned with the first step.

W ith the help of the flow disgram, we cen derive a set of
equations describing the behaviour of the system. In deriving
these equations, only the steady state aversge values of the
variubles are used ; henceforth, we will consistently refer only
to stuady state average values The two prindpal performance

measures we are concemed with are the throughput ¢ and res-

k=1
tart vate a=))a; (@ asin Fig. 21). In the analysis, we
Jj=0

make one major assurmption : the restart rate is small compared
to the throughput, ie. i:<< 1. (This is true in real systems -
see [BO, G2].)

The performance of locking is govemed by two factors :
resource contention and data contention. The former refers to
contention over memory space, computing time and other
resources, and the latter refers to contention over data. Essen-
tially, data contention determines the number of executing

k
transactions N, =) N; (N; as in Fig. 2.1), while resource
=0

contention determines the rate of execution of a transaction
between its lock requests. {Blocked transactions do not comr
pete for resources, so this rate depends on N,; it decreases if
N, increases.) The model separates these two forms of conten-
tion, so that we may study each in turn, then their interaction
(see the next section).

Now, suppose we tum off the concurrency control, so all
that the transactions suffer from is resource contention. For
high enough loads, the systern may thrash, ie. the throughput

Proceedings of the Tenth International
Contference on Very Large Data Bases.

121

first increases, then decreases This is the usual thrashing
behaviour in operating systems [DKLPS]. Since this thrashing
is due to resource contention, we call it RC+ffvashing. Con-
versely, suppose the processor has enough resources {space,
computing power, etc) to make resource contention negligible,
%0 all that the transactions suffer from is data contention. The
model shows that, for high enough loads, the system will
thrash, and we call this phenomenon DC-thrashing. The model
also shows that D C-thrashing can occur even if the restart rate is
ow . This implies that blocking cen cause thrashing -—
excessive time loss in queues for locks will lead to a drop in
throughput. (This phenomenon was observed by Balter, Berard
and Deditre in their simulation studies [BBD].) D C-thrashing
occurs when the parameter -k—;—]Y. which we cell the uprkioad,

is about 1.5 . Since a system should not operate in the thrash-
ing region, we have the following :

2
Ruleof Thumb The workload -"—D—IY should not exceed 1.5

D C-thrashing thus limits the number (N} of transactions in a

systern, and the number (k) of lodks they may request. We
2

call the region in the parameter space where —’C—D-A—,< 1.5 the

operating range . W orkload is said to be light in the operating
range, and heowy outside it. In the operating range, the model
gives the following estimates of the throughput and restart rate:

N K2\
t= Teror T 4s) &0
k*(k—1)*A%(4.5 ~ 2kA) (22)

T 4.5T(% ~ K3\ + 4.5 — 2kA)
N
A==,
where D

This sums up the model and relevant results The next
three sections will discuss the three problems of choice.

Singapore, August, 1984

3. Fine vs Coarse Granularity

¥ e have defined a data granule to be the unit of locking :
a transaction can lock, and can only lock, one granule at a time.
However, a granule may contain one or more dafa iferrs, which
are the units of data It is the data itern that a tremsaction
wishes to access If a granule contains 20 itemns, and a transac-
tion locks a granule to update one of the iterns, then the tran-
saction prevents others from accessing the other 19 items as
well.

Let M (a muitiple of D) be the number of items, so

there are %
the choice of D, and this choice affects the value of k, for the
following reason. Suppose a transaction wishes to access [
items. Under uniform access, two iterns may belong to the
same granule, so the trensection length % is, in general, less
than I. The expected value of k¥ dependson M, D and I,
and is given by the following formula [Y] :

iterns per grenule. The grenulerity is dedded by

1
l M(l"_‘

5)-i+1

(a1)

Graph 3.1 shows how k varies with D for agiven [when
M =100. Note that, initially, k increases proportionately with
D, but is eventuelly insensitive to changesin D.

If we substitute (3.1) into (2.1), then we can determine
how changing D (i.e. the granularity) effedts £. A change in
grenularity affects the performance through three factors : (1)
locking overhead — an increase in D increases k, and there-
fore increases the locking overhead ; (2) data contention —-

2
changes in J and k change the workload -EEIY. and thus

affect the data contention ; and (3) resource contention -— a
change in data contention in tum changes the number of

executing trensactions N,, and hence changes the level of con-
tention over computing resources These three factors combine
to shape the gramudarity cure in Graph 3.2s, which shows the
effect of grenularity on throughput in the operating range. The
curve shows that, initially (before point A in Greph 3.2a), the

throughput drops as we refine the granularity. This happens

Proceedings of the Tenth International
Conference on Very Large Data Bases.

122

because when U increases, k increases proportionately, thus
Excessive data contention

caused by the increased workload, and the increasing locking
overhead, lead to the drop in throughput However, with
further refinement of granularity, k& becomes insensitive to
chenges in D, and data contention slackens. The inareased
concurrency overcornes the increasing locking overhead (since
k is still increasing), and throughput increases (between points
A and B). To understand the decrease in throughput towards
the end of the curve, note that data contention alleviates
resource contention by blocking some of the trensactions Sup-
pose now that we load the system with enough transactions to
cause RC-thrashing if the concurrency control is tumed off.
Further, suppose the concurrency control, when tumed on, will
block enough trensactions to avoid RC-threshing. Now if we
refine the grenularity, then the data contention diminishes
beceuse of increessed concurrency. Resource contention then
dominates, and thrashing results.

Depending on the combination of parameters, all or only
pert of the grenulerity curve in Greph 3.2a may be manifest.
For example, if the transactions are too long, the effect of the
locking overhead may persist for so long that soon after the
point A, D reaches the maximum possible value M, i.e. one
itern. per grenule (see Graph 3.2b). On the other hand, for
short trensactions and non-excessive loads, the regions of
excessive deta and resource contention may be imperceptible or
ebsent (see Graph 3.2¢). Judging from the throughput alone,
the transactions should be required to lodk the whole database
(D = 1) in the case of Graph 32b. In the case of Graph 3.2¢,
however, the granularity should be as fine as possible. These
conclusions remain valid if we also consider the effect of granu-
larity on the number of restarts per completion (see [T]).

Curves similar to those in Greph 3.2 were observed by
Ries and by Munz and Krenz in their simulations [R, MK].

Greph 3.2 also explains the effect of granularity in Carey’s
simuletions [C].

Singapore, August, 1984

4. Restarts vs Blocking

We call the locking policy we have been considering the
umiting case , since wensactions may weit for locks By the

epproximation -%<< 1, restarts are rare, so almost all conflicts

are resolved by blocking in the waiting cese. In contrest, in
[T], we consider a locking poiicy where ell conflicts are resolved
by restarts : whenever there is a conflid, the requesting tran-
saction is restarted We call this the mo umiting case . (Note:

The no waiting case does not use the approximation -%<< 1.)

Since one case uses only restarts, and the other uses blocking
almost exdusively, a comparison of the two cases should bring
out the difference in effect of restarts and blocking on locking

performence.

Theorem [T] Let ¢, be the throughput for the waiting cese
and ¢, the throughput for the no waiting cese. For the same
D, k, N end T,end2% k £ 20, if £, isless then £,
then the difference is less than 5%; furthermore, §, exceeds
&, if the workload is sufficiently heavy.

Graph 4.1 compares the throughputs and restart retes of
the two cases for k=2, D=40, end T=1, end Graph 4.1a
illustretes the above result. We find this result surprising.
Intuitively, a pure restart strategy is so severe that we would
expect its performance to be very bad Yet, the above result
says that, in terms of throughput, the no waiting cese is as good
as, if not better then, the waiting case. However, note from
Greph 4.1b tha, as expected, the no waiting case has a much
higher restart rate.

One may be temnpted to conclude thet the no waiting cese
is inferior because its restart rate is high, even if the
throughput is good (compared to that of the waiting case). But
a high restart rate is not bed per se. For transactions that do

not commumicete with the user, we cen make resterts tren-
sparent to the user. so that all he cen observe are the
throughput and response time. Nonetheless, resteris waste
resources. If the restart rete is high, the user must become
aware of this wastage through observing the throughput and
response time alone. Is something missing from our model?

Proceedings ot the Tenth International
Conference on Very Large Data Bases.

123

In our trensaction model, restarts are instantaneous.
However, since restarting a transaction involves releasing its
locks, and possibly restoring the values it has changed, restarts
may take a significant amount of time. To model this we add a
time delay for each request that a restarting transaction has
made (see Fig. 4.1). Let the time spent by a transaction in
stege Ay be 4T foreny i. Hence, inFig. 21, b = 0.

Graph 4.2 compares ¢ and a for =0 end b=05.
(This greph also indicetes simulation results. D etils about the
sirmlation can be found in [T].) Indeed, the time delays do
siow down the throughput, and the restart rete as well. How-
ever, the decrease in throughput is only about 10% at the wait-
ing case thrashing point, although each time delay is 50% of the
inter-request time.

Another factor that can increase the difference in
throughput of the waiting and no waiting ceses is resource con-
tention. In the result above, we used the same 7' for the two
cases. However, for the weiting cese, as rmuch as a third of the
N transactions are blocked. The number of executing transac-
tions N, in the waiting case is therefore less than that in the no
weiting case. Since T is in general en increasing function of
N,, T is larger for the no weiting cese. Hence if we introduce
resource contention in Graph 4.1, the {, curve will be
depressed more than the 4, curve, thus increasing the gep
between the two before they cross,

A third differentiating factor depends on the transaction
environment. Recell from Section 2 that, after a restarted

trensaction has released its locks, it is held back for some time
while another transaction takes its place. This delay (the
conflick auidance delay) is to avoid conflicting with the transac-
tion thet ceused it to restart. In a betch environment, it does
not miatter how many transactions are held back this way. For
on-line systerns, however, this delay must be taken into
account. Fig. 4.2 shows how Fig. 2.2 is changed if conflict~
avoidance and restart delays are incorporated.

Let S be the (average) conflict-avoidance delay. To avoid
repeating the conflic, S must be long enough to let the
conflicting trensaction terminate. The time it takes for a tran-
section to terminete, without restarting, is (k+1)7T for the no

Singapore, August, 19“

waiting case, and !:_r for the waiting cese (since restarts are

rare). Hence S must be of the order 15:2"_1 T for the no waiting
N "

case, and 5 for the waiting case.

Graph 4.3 uses these values of S to compare the
response times of the two cases for two sets of parameters.
Note that the response time for the no waiting case is higher
than that for the waiting case before the latter's D C-thrashing
point, although the throughputs are similar by the theorem.
This is the effect of the conflict-avoidance delays. On the other
hand, without these delays, the restarting transactions will have
a higher probability of conflict, so that the throughput will be
less. Thus, the no waiting case must suffer a tradeoff in
throughput and response time, and is in this sense inferior to
the waiting case in the operating range.

¥ e now review the theorem in the light of the preceding
analysis The three factors we just considered identify the con-
ditions under which the no waiting cese is either better, or not
much worse, than the waiting case. These conditions are : (1)
low restart cost (Grey observed that restarts in centralized sys-
tems are no big deal since the necessary mechanisms are simple

end elready there for other purposes [G1]), (2) little resource
contention --- the inter-request time 7T should not be too sen-
sitive to the number of executing transactions, and (3) batch
processing, where response times are immaterial. Put in
another way, one's intuition that restarts are bad is invariably

based on a violation of one of these conditions.

The fact that the no waiting case may be better eventually
shows that locking uith no woiting is a wry o overcorre the bnito-
tion that blodcing wrposes on the umiting case The choice
between restarts and blocking as a conflict-resolution technique
thus comes down to this : if the three conditions above are
satisfied, then blodking is preferable when the workioad is light,
but restarts are prefereble when the workloed is heavy.

If condition (1) or () is violated, then the throughput
axve for the no waiting case will be depressed more than that
for the waiting case, so that the former may always be less than
the latter. This explains why Carey concduded from his sirmu-
lations that blocking is always preferable to restarting [C].

Prqceedings of the Tenth International
Conference on Very Large Data Bases.

124

5. Static vs Dynamic Lodking

In comparing static and dynarmic locking, we shall assume
that the lock requirements of a transaction are the same. In
prectice, however, prededaration often requires locking more
than a trensaction will eventually use because of uncertainty
over what it might need [G 1].

In [T], we studied two forms of static locking -- incre-
mental and atomic. Here, we will restrict ourselves to alormic
static locking. In {atomic) static lodking, when a transaction
starts, it submits to the scheduler the list of locks it needs.
The scheduler checks the list to see if all the requested locks
are available. If so, it grents those locks, and the transaction
begins execution ; otherwise, the transaction has to wait until
al the locks it needs are available.

Our model for static locking is as follows : Consider the
no waiting cese, and let the inter-request time be O for stages
Ny, Ng oo, Ny, and (k+1)T for stage N It follows that
when a trensaction submits its script, the scheduler will grant
locks to the transaction as it scans the script, restarting the tran-
saction as soon as there is a conflict. Since the inter-request
time is 0 except for the last stage, if the scheduler can grent all
the requested locks, then the effect is to grant them in one
atomic step. (This means that any cost in time in the prede-
daration will have to be charged to the last stage Nj.) Furth-
ermore, in cur model, a restarted transaction suffers a conflict-
avoidance delay (see the previous section); hence, the effect is
to make a transaction wait some time before trying again when-
ever its predederation encounters a conflid. (Thus the
nurmber of 'restarts’ a transaction suffers in this model is really
the number of tries it makes before getting its locks.)

Comperisons of dynamic and static locking have been
done before by Carey, Devor and Carlson, and Ries [C, DC,

R]. Their comparisons are based on the number of

transactions N * in the expanded systern in Fig. 4.2. Greph
5.1 is such a comparison using our analytic model. It is similar
to the comparison of the waiting and no waiting cases in that
dynamic locking is better for light workloads, whereas static
locking is better for heavy workloads. There are similar con-
dusions in [DC, R]. Note that =1 in the graph, so resource
Singapore, August, 1984

contention has been factored out. As in the previous section,

when we include resource contention, the throughput curves

will be depressed by different amounts, so that one may always
be betier than the other. For example, when the workload is
light, dynamic locking will have more exeauting transactions
than static locking, so that the effect of resource contention on
dynamic locking is greater than that on static lodking. Thus,
resource contention may depress the throughput curve for
dynamic loddng in Graph 5.1 to below that for static locking.
This is the cese in [C], where Carey concluded from his simula-
tons that static lodking is better even for light workloads.

The condusion that stefic locking is better for heavy
workloads is not surprising, since it agrees with one’s intuition.
What is surprising is that it holds under the assumption that

-% << 1 for dynamic locking. Now recall that the motivation

for static locking is to avoid deadlocdks, Here, we find that,
even if deadlocks are rare, it still pays to do static locking if
using dynamic locking will lead to excessive bloddng {see Sec-
tion 1). Like dynamic focking with no waiting, (atomic) static
locking is a way to overcome the limitation on workload that
blocking imposes on dynamic locking.

6. Condusions

Choice of granularity necessarily depends on the parame-
ters of the systern. Particular values of these parameters define
a window on the general granularity curve, and the choice
depends on the view. The curve first decreases, then increases,
and finally decreases again. Hence, refinement of grenularity
does not necessarily improve performance. The initial decrease
in throughput occurs because refinement increases the transac-
tion length, which has a greater effect on the worldoad than
granularity. (Indeed, one's notion of the coarseness of granu-
larity may be formalized in terms of whether refinement
increases concurrency -— see [T]) The eventual decrease in
throughput is a result of the interaction between the data and

resource contention.

Proceedings of the Tenth international
Conference on Very Large Data Bases.

125

Letting a trensaction wait for a lod preserves its results ;
however, this also allows the transaction to selfishly hold on to
locks while not using them. If, on the other hand, a ransac-
tion restarts whenever it encounters a conflict, it will waste
what it hes already done, but will hold locks only for as long as
it needs them. This is an altruistic strategy that pays off when
the worlload is sufficdiently heavy: the comparison of the wait-
ing and no waiting cases shows that, under the right conditions,
the lefter eventually outperforms the former. A pure restert
strategy thus offers a way of overcoming the limit on workioad
that blodking imposes.

W hen compering static to dynamic locking, it is often said
that dynamic locking has the advantage of holding locks for a
shorter period, whereas static locking has the advantage of
avoiding deadlocks. This is true when the workload is light,
but when it is heavy, the blocking in dynamic locking in fact
causes the transactions to hold locks for longer than in stetic
locking. That is why dynamic locking works better for light

workloads (if resource contention is not intense), but is inferior
for heavy workloads As for deadlocks, they are irrelevant
because the comparison is valid even if deadlocks ere rere.

Acknowledgement W e thank Nat Goodman, whose intuition
and advice guided the research. W e also thank Mike Carey for
pointing out the importance of resource contention, and the
referces for their comments and suggestions. This work was
done with extensive use of MACSYMA, which is a large sym-
bolic manipulation program developed at the MIT Laboratory
of Computer Sdence and supported by the National A eronau-
tics and Space A dministration under grant NSG 1323, by the
Office of Naval Research under grant NO0O014-77-C-0841, by
the U.S. D epartment of Energy under grant ET-78-C-4687, and

by the U.S. Air Force under grant F49620-79-C-020.
Singapore, August, 1984

'y arcensive
0UrCe
contention

82CRSIVE

davo
contention
N; is the number of transactions with i locks that are execuling
W; is the number of transactions with i locks that are waiting
o; is the restart rate of transactions holding i locks

b; is the blocking rate of transactions holding i locks
t is the throughput of the system.

—> D
Fig 2.1 Flow diagrom for the model o
(Q) The granularity curve
mmoh
- '

8! W

the system
» 0D - 0
(o] (o]
Fig. 2.2 How the fiow diogram fits into a larger model for (b) Long transactions (c) Short transactions
interactive systems.
Geaph 3.2

L=33 Grapa 3.1
 ——————

Yao's formula (3.1)
de28% for transaction length
a3 o function of granularity

M=100
{=15

A is the number of restarting transactions that are still holding i locks.

{=5 Fig- 4.1 Adding time deiays for restarts to the model.

Proceedings of the Tenth International

Singapore, August, 1984
Conference on Very Large Data Bases.

126

tn
. [3 b
Terminals On
= v l
3+ 0.6
05
r'— - - - - - - === M i
conflict -avoidance 1 2l 0.4}
| delay L
| _ restart delays I 0.3}
J) |
i cen 1= 02
| |
... | ol \
queue | l | S U T S B v
| I 0O 6 12 18 24 30 0 6 12 18 24 30
I N N
__________ — e e
the system (0) throughput {b) restart rate
ty for no woiting cose o for no waiting cose
Fig. 4.2 How Fig.2.2 is chonged if conflict - avoidonce and ty for woiting cose oy for woiting case
restort deloys are odded.
Graph 4.1 Comporison of the two coses for k*2, D=40,Te1
1 t k=2,0s240,T=1 1;0 k=2,0240,T= p
121 b=0
r b:0 101~ b=05
4} °b=0.5 sl
/ ~
3r / 6
/4
2 - 4 = 10+
1 2 | I W N S B | N U B W
0 6 12 18 24 X 0 12 24 3% 48 &
) I VY N T B I N TN N
0O 6 12 18 29 20 O 6 12 18 24 30 (o) k22, 0+40, Tl () 1020, 0 #10000, Tel
N N Groph 4.3 Comparison of respones limes
¥a for ne weiting cose
b'o rw for weiting case
st 40
3.0
4 ' ob 05 ' -
) =0.
b=05 at t
1.2+~ static
1.0 20K ° dynamic 14 static
3 1.2
0]:] o k=20 A k=20 ‘
06 D=1000 010000 1.0 dynamic
' T 10+ =1 2t o8}
Q4
0.6}
02 | o 0.4}
J IS N W N) S S T
0O 12 24 36 48 60 O 12 24 36 48 60 0.2H
N N [R S T Ty’ IR T S R S
[¢] 6 12 18 24 30 [¢] 12 24 36 48 60
Graph 4.2 The etfect of time delays for restarts () k=2, D=40, T=1 (b) k=20, D=10000, T+1

no waiting case predictions

o simulation results for bs 0.5 Graoh 5.1 c ison of throughputs for d . 4 (atomic)
e car - el rap . omparison rou uts for dynamic and (atomic
waiting case prediction ——— static locking

Proceedings of the Tenth International ‘ Singapore, August, 1984
Conference on Very Large Data Bases.

127

References

[BED]

(BO]

[c]

[CS]

)

[pC]

Balter, R., Bererd, P., end Decitre, P. Why control
of conturrency level in distributed systems is more
fundamental than deadlock menagerment. Proc 7st
ACM SCGACT-SGOFS Syrposamn on Prircies of
Distriuted Cormputing , Ottewa, Cenada {(Aug. 1982),
183-193.

Beeri, C., and Obermarck, R. A resource dass
independent deadlock deteclion algorithm. Proc
Interrational Conference on Very Lamge Dotobases |
Cennes, France (Sept. 1981), 166-178.

Carey, M. Modeling and evaluation of database con-
aurency control algorithms UCB/ERL 83/58, PhD
dissertation, University of California, Berkeley {Sept.
1983).

Chandy, K.M., end Semer, C.H. Approximate
methods for analyzing queueing network models of
computer systems. ACM Compufing Surveys 10, 3
(Sept 1978), 281-318.

Deantss, J.E.R. Performance analysis of distributed
database systermns. Ph.D). dissertation, Computer Sd-
ence Department, University of California, Los
Angeles (1980).

Devor, C., and Cardson, C.R. Struchmal locking
mechanisms and their effect on database management

systern performance. Jrformation Systerns 7, 4 (1982),
345-358.

(DKLPS] Denning, P.J., Kahn, K.C., Leroudier, J., Potier, D.,

and Suri, R. Optimal multiprogramming. Acia Jrfor
matica 7, 2 (1978), 197-2186.

Proceedings of the Tenth International
Conterence on Very Large Data Bases.

128

[G1]

[G2]

[LN]

MK]

(R]

fr]

{TGS]

Y]

Gray, J. Notes on dala bese opereting systems.
Operating Systerrs - An Adwonced Cowse , R.
Bayer, R.M. Graham, G. Seegruller (eds.), Springer
Verlag (1978), 393-481.

Gray, J. A transaction model. Lechoe Notes in Come
puter Science 85, G. Goos and J. Hertmenis (eds.),
Springer V erlag (1980), 282-298.

Lin, W K., and Nolte, J. Performance of two phase
locking. FProc. 6th Berkeley W orkshop on Distriuted
Data M anagemrent and. Corrputer Netuoris (Feb. 1982)
131-160.

Munz, R. and Krenz, G. Concurrency in database
systerns -— a simulation study. Proc ACM SIGMOD
Intermational Comference on M anagerrent of Data
Toronto, Canada (Aug. 1977), 111-120.

Ries, D.R. The eflects of concurrency control on
database menagement system performance.
UCB/ERL M79/20, Ph.D. dissertation, Univ. of Cali-
fornia, Berkeley (Apr. 1979).

Tay, Y.C. A mean value performence model for
lodking in databases PhD dissertation, Harvard
University (Feb. 1984).

Tay, Y.C., Goodman, N. and Suri, R. Performance
evelugtion of locking in databases:
M anuscript in preparstion.

a survey.

Yao, SB. Approximating block accesses in databese
organization. Comm ACM 20, 4 (Apr. 1977), 260-
281,

Singapore, August, 1984

