K. H. Tan

Department of Computer Science, National University of Singapore, Lower Kent Kidge Road, Singapore 0511, Singapore.

Abstract

A set of n tuples in a relation of a relational database deslyn is tested upon the constraints of the join dependency. Some constralnt equalities are found to be redundant. To remove this superfluity, the universe of attibutes is partitioned into n disjoint sets and a new notation of join dependency is introduced. The checking tine in each run of n tuples is signiflcantly reduced by a factor of $(n-1) / 2$ when $n>3$. The result of less costly constraints checking is of great lmportance for a large number of tuples in a relation.

Key Words and Phrases: database design, join dependency, constraint equalities

1. Introduction

In relational database theory, a relation is simply a set of tuples or a table with one column for each attribute and one row for each tuple. Normalization rules provide guidelines for relational schema design in order to prevent update anomalies and data inconsistencies. The study of integrity constraints was initiated by Codd In the functional dependency ($F D$) on the second and the third normal forms in 1971
[Col] and [Co2]. Six years later, the fourth normal form was defined in terms of

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment.
multivalued dependency (MVD) in a manyrtom many relat lonship [Fal]. These two classes of dependencles have captured a great amount of semantic information of the real world. As an extension of MVD, mutual dependency (ND) [N1] and hlerarchical dependency (HD) [De] were proposed. In 1978, Kissanen int roduced a very powerful data constraint, known as the join dependency (JD), [Ki]. The characteristics of lts lossless jofn decomposition leads to the formation of the fifth normal forn [Fa2]. Except FD, the other above ment loned dependenctes are just the special cases of JD. Because of the particular importance of $J D$ in the database design, a zreat many of the papers have explored the properties and the complete axiomatization of the $J D,[A B U],[B V]$ and $[S c]$. Checking whether a relation instance is in the fifth nornal form, we need to check it agafnst the JD. In this paper, we will provide a method to reduce the cost of constralnts checking for a particular class of JD which is to be characterized.

2. Join Dependency

The join dependency [Ma] and [Ul] is defined below:

Let $k=X_{1}, X_{2}, \ldots X_{n}$ be a set of relation schemes over the universe U. A relation $r(U)$ satisfies the $n-J D, *\left[X_{1}, X_{2}, \ldots X_{n}\right]$ if r decomposes lossless onto n projections, $X_{1}, X_{2}, \ldots X_{n}$:

$$
\begin{align*}
& r=r_{X_{1}}(r) め \pi_{X_{2}}(r) \infty \quad \ldots \Pi_{X_{P}}(r) \tag{1}\\
& \text { that is, } r \text { is the natural join of its }
\end{align*}
$$

projections onto the X_{i} 's.
In other words, if r contains tuples t_{1}, t_{2}, ... t_{n}
such that

$$
\begin{align*}
& t_{i}\left(X_{i} \cap X_{j}\right)=t_{j}\left(X_{i} \cap X_{j}\right) \tag{2}\\
& \text { for all } 1 \text { and } j
\end{align*}
$$

then

$$
r \text { must contain a tuple } t \text { in } R
$$

such that

$$
\begin{equation*}
t\left(X_{i}\right)=t_{i}\left(X_{1}\right) \quad 1 \leq 1 \leq n \tag{3}
\end{equation*}
$$

3. Redundant Constraints Checking in JD

Assume $R(U)$ is a relation schem over 4 subsets, X_{1}, X_{2}, X_{3}, and X_{4} in the universe L and each X, is made up of some of the attributes in the universe, such as A, B, C, D, E and F. For instance,
$X_{1}=A B C O E$
$X_{2}=\operatorname{CDEF}$
$X_{3}=A B D E F$
$X_{4}=A B C F$

According to the definition of $4-\mathrm{JD}$, all instances of K will obey $J D$ if any set of 4 tuples, say t_{1}, t_{2}, t_{3} and t_{4}, is in an instance such that

there exists a tuple t in the instance such that
$\begin{aligned} & t[\mathrm{DE}]=\mathrm{t}_{1}[\mathrm{DE}] \\ & t[\mathrm{~F}] \\ & t[\mathrm{AB}]=\mathrm{t}_{2}[\mathrm{~F}] \\ & \mathrm{t}[\mathrm{AB}]\end{aligned}=\mathrm{t}_{4}[\mathrm{CB}]$.
(14)

When the first two constraint equalities are satisfied, then it follows that $t_{2}[D E]=$ t_{3} [DE] and therefore testing equality (8). Obviously, given four tuples and checking whether they obey constraint equalities (5) to (10) in the above example will lead to some redundant checkings (1.e., equalities (6) and (9)). However, testing the following set of four equations:
$t_{1}[\mathrm{DE}]=t_{2}[\mathrm{DE}]=t_{3}[\mathrm{DE}]$
$\mathrm{t}_{2}[\mathrm{~F}]=\mathrm{t}_{3}[\mathrm{~F}]=\mathrm{t}_{4}[\mathrm{~F}]$
$\mathrm{t}_{3}[\mathrm{AB}]=\mathrm{t}_{4}[\mathrm{AB}]=\mathrm{t}_{1}[\mathrm{AB}]$
$\mathrm{t}_{4}[\mathrm{C}]=\mathrm{t}_{1}[\mathrm{C}]=\mathrm{t}_{2}[\mathrm{C}]$
is sufficient to ensure that equalities (5) to (10) are satisfied. Suppose we refer to the comparison of an attribute value for two tuples (e.g. $t,[B]=t,[B]$) as an elementary checking. Testing the first set of equalitles requires 18 elementary checkings whereas only 12 elementary checkings are needed for the second set. Although the saving of 6 elementary checkings for a set

Proceedings of the Tenth International
Conference on Very Large Data Bases.
of 4 tuples is not much, sinilar equality checkings have to be done for every set of 4 tuples taken from the relation and the number of tuples in a relation may be very large. Therefore, the cost of checking whether a relation obeying the JD can be diminished significantly by using the second set of equalities. In the following section, we will introduced a new notation which is a particular class of JD and will yield directly the reduced set of constraint equalities.

4. Notation of New $n-J D$

The new n-JD is defined below:
Let $K(U)$ be a relation over subsets X_{1}, X_{2}, $\ldots X_{n}$ in the universe U,
where $U=\underset{i=1}{n} x_{i}$
and it is possible to partition U into n dis joint sets, $X_{1}, Y_{2} \ldots Y_{k}$
where $U=\sum_{k=1}^{n} Y_{k}$
such that

1) each $X_{\text {i }}$ is a union of $(n-1) Y_{k}$'s in the cyclic form,
2) each Y_{k} is a union of some attributes in the universe

The $n-J D, *\left[X_{1}, X_{2}, \ldots X_{n}\right]$ holds in $R(U)$ Iff whenever Ehere are n Euples t_{1}, t_{2}, \ldots $t_{n} \varepsilon R$
such that

$=t_{k}^{+} p\left[\begin{array}{l}\overbrace{n}^{+} \\ D_{0} \\ n\end{array} \quad X_{1}\right]$
where $p=n-2$, the number of intersections among X_{i} 's.
\exists a tuplet εK
such that
$\psi_{i=1}, \ldots n^{t\left[X_{i}\right]=} t_{i}\left[X_{i}\right]$

Remarks:

1) the notation $\binom{+}{\mathbf{n}}$, (plus modulo n), is defined as follows: given integers q and $q^{\prime} \leq n$ Singapore, August, 1984

2) Y_{k} 's in the cylic form in X_{f} means that

Besides the modification on the constraint equations, the result (i.e. the new tuple generated) of the new $n-J D$ is the same as that of the old $n-J D$.

Consider the example in Section 3. The new 4-JD is satisfled whenever there are tuples t_{1}, t_{2}, t_{3} and t_{4} in R
such that ${ }^{3}$

$$
\begin{align*}
& r_{1}\left[\begin{array}{lllll}
x_{1} & \cap & x_{2} \cap & x_{3}
\end{array}\right]=t_{2}\left[\begin{array}{llll}
x_{1} \cap & x_{2} & \cap & x_{3}
\end{array}\right] \\
& =t_{3}\left[\begin{array}{llll}
X_{1} & \cap & X_{2} & \cap \\
x_{3}
\end{array}\right] \\
& t_{2}\left[\begin{array}{llll}
x_{2} \cap & x_{3} \cap & x_{4}
\end{array}\right]=t_{3}\left[\begin{array}{lll}
x_{2} \cap & x_{3} \cap & x_{4}
\end{array}\right] \\
& =\mathrm{t}_{4}\left[\begin{array}{llll}
\mathrm{x}_{2} & \mathrm{n} & \mathrm{x}_{3} \cap & \mathrm{x}_{4}
\end{array}\right] \\
& t_{3}\left[\begin{array}{lll}
x_{3} \cap & x_{4} \cap & x_{1}
\end{array}\right]=t_{4}\left[\begin{array}{lll}
x_{3} \cap & x_{4} \cap & x_{1}
\end{array}\right] \\
& =t_{1}\left[\begin{array}{lll}
X_{3} \cap & X_{4} \cap & X_{1}
\end{array}\right] \\
& t_{4}\left[\begin{array}{llll}
X_{4} \cap & x_{1} \cap & X_{2}
\end{array}\right]=t_{1}\left[\begin{array}{lll}
x_{4} \cap & x_{1} \cap & x_{2}
\end{array}\right] \\
& =t_{2}\left[x_{4} \cap \quad X_{1} \cap \quad X_{2}\right] \tag{27}
\end{align*}
$$

there exists a cuple τ in R
such that

$$
\begin{align*}
& t\left[X_{1}\right]=t_{1}\left[X_{1}\right] \tag{28}\\
& t\left[X_{2}\right]=t_{2}\left[X_{2}\right] \tag{29}\\
& t\left[X_{3}\right]=t_{3}\left[X_{3}\right] \tag{30}\\
& t\left[X_{4}\right]=t_{4}\left[X_{4}\right] \tag{31}
\end{align*}
$$

As a result, equations (15) to (18) are derived from the new constraint equations from (24) to (27) and are equivalent to those useful constraints, such as (5), (7), (8) and (10) in the old JD. Also, equations (28) to (31) lead to the results in equations (11) to (14).

5. Comparison of 01d JD with New JD

In order to compare the old JD with the new
Proceedings of the Tenth International Conference on Very Large Data Bases.

JL precisely, let $n=4$. The effect of the cyclic characteristics of the disjolnt sets, Y_{k} 's, in the subsets X_{i} 's, is shown in the Appendix. The comparison of the constraint equalities and eleinentary checkines of the oll n $-J 0$ with the new $n-J D$ is shown in Table 1.

In the case of old $n-J D$, there are $n(n-1) / 2$ constralet equations with one constralnt equality in each equation and one intersection between 2 X 's in each equality. Each disjoint set occurs $(n-1)(n-2) / 2$ times in all the equations. It leads to $n(n-1)(n-2) / 2$ disjoint set checkings or ($\mathrm{n}-1(\mathrm{n}-2$) xk/2 elementary checkings. On the other hand, the new $n \rightarrow J D$ has $n(n-2)$ constraint equalitles in n constraint equations. There are ($n-2$) intersections among ($n-1$) X,'s in each equality. However, each disjoint set occurs only ($n-2$) times. Consequently, there are $n(n-2)$ disjoint set checkings or ($n-2$) xk
elementary checkings. Therefore, in terns of elementary checkings,

$$
\begin{equation*}
\text { old } n \sim J D: \text { new } n \sim J v=(n-1) / 2: 1 \tag{32}
\end{equation*}
$$

That is, for any set of n tuples in a relation, the constraint checking upon the new n-Jv is $(n-1) / 2$ times faster than that upon the old $n-J D$. In other words, we need only $2 /(n-1)$ of the total time required originally. Therefore, the new n-JD is less time consuming and is more efficient.

6. Conclusion

In the new $n-J D$, the universe U is partitioned into n disjoint sets, Y_{k} 's. Lach subset X_{i} contalns ($n-1$) disjoint sets in the cyclic combination and ($n \rightarrow 2$) intersections of X_{i} 's are implied in each constraint equality. ${ }^{1}$ As a result, the checking time is reduced by a factor of ($n-1$)/2 in each run of n tuples in the relation. For a large value of n and a large number of tuples in a relation in the database design, the checking using the new notation of JD is always less costly than the checking using the old notation.

Acknowledgement

The author is grateful to J.M. Nicolas for many helpful discussions while the author visited him at CERT at Tonlouse, France in June 1933. The manuscript was prepared while the author was on his sabbatical leave at the Department of Computer Science, University of Maryland at College Park in early 1984.

Table 1. Comparison of Constraint Equalities and Elementary Checkings of 0ld n-JD with New n-JD
Where n is the number of subsets and k, the total number of attributes in the universe U. X_{i} and Y_{k} denote a subset and a disjoint set of attributes respectively.

	O1d n -JD				New n-JD			
No. of X_{1}^{\prime} s	3	4	5	n	3	4	5	n
No. of Y_{k} 's in each X :	2	3	4	$n-1$	2	3	4	n-1
No. of constraint equations	3	6	10	$\frac{n(n-1)}{2}$	3	4	5	n
No. of equalities in each equation	1	1	1	1	1	2	3	$\mathrm{n}-2$
No. of intersections in each equality	1	1	1	1	1	2	3	$\mathrm{n}-2$
No. of resultant Y_{k} 's in each equality	1	2	3	$\mathrm{n}-2$	1	1	1	1
No. of occurrences of each Y_{k}	1	3	6	$\frac{(n-1)(n-2)}{2}$	1	2	3	$n-2$
No. of Y_{k} checks	3 x 1	6×2	10×3	$\frac{n(n-1)(n-2)}{2}$	3×1	8 xl	15x1	$n(n-2)$
No. of elementary checks	1 xk	3 xk	6xk	$\frac{(n-1)(n-2) \times k}{2}$	1xk	2xk	3 xk	$(\mathrm{n}-2) \mathrm{xk}$
Appendix: Comparision of the Constraints Between O1d 4-JD and New 4-JD				$\begin{aligned} \text { MAXST } & =\text { Maximum stock } \\ \text { QOH } & =\text { Quantity on hand } \\ \text { QOO } & =\text { Quantity on order } \end{aligned}$				
In the new $4-\mathrm{JD}$, we have 1) 4 subsets of attributes, X_{1}, X_{2}, X_{3}, and X_{4} in the universe,				QSTD $=$ Quantity ofCPR $=$ Cost prlcePKGU $=$ Package unft		$\text { al } \mathrm{s}$	$- \text { to }$	

2) each subset contains 3 out of 4 disjoint sets, Y_{1}, Y_{2}, Y_{3} and Y_{4} In the cyclic union.
3) each Y_{k} may contain any number of
attributes, A_{i}, say, $j=1$ to 10 ,
e.g., $\begin{aligned} Y_{1} & =A_{1} A_{2} A_{3}, Y_{2}=A_{4} A_{5},, Y_{3}=A_{6} A_{7} A_{8}, \text { and } \\ Y_{4} & =A_{9} A_{10}\end{aligned}$

Thus, we have

$$
\begin{aligned}
& X_{1}=Y_{1} Y_{2} Y_{3} \\
& X_{2}=Y_{2} Y_{3} Y_{4} \\
& X_{3}=Y_{3} Y_{4} Y_{1} \\
& X_{4}=Y_{4} Y_{1} Y_{2}
\end{aligned}
$$

Take the supermarket inventory as an example, we may have 10 attributes in the universe U, such as

```
INO = Item number
INAME = Item name
ISP = Item specification
MINST = Minimum stock
```

Proceedings of the Tenth International
Conference on Very Large Data Bases.

[Col] Codd, E.F., "Normalized Data Base
Structure: A Brief Tutorial," ACM SIG-FIDET Workshop on Data
Description, Access, and Control, San D:ego, Ca., Nov. 11-12, 1971, E.F. Codd and A.L. Lean (Eds.).
[Co2〕 Codd, E.F., "Further Normalization of of the Data Base Relational Mode1," Database Systems, K. Kustin (Ed.), Courant Computer Sclence, Symposium, Vol. 6, Prentice-Hall, Linglewood Cliffs, N.J., 1972, pp. 33-64.
[De] Delobel, C., "Normalization and Hilerarchichical Dependencies in the Kelational Data Model," ACM TUDS 3 3, Sept. 1978, pp. 201-222.
[Fal] Eagin, R., "Multivalued Dependencies and A New Normal Form for Relational Databases," ACM TOUS 2 3, Sept. 1977, pp. 262-278. Also IBM Research Report RJ1812
[Fa2] Fagin, R., "Normal Forms Relational Data base Operators," ACM SIG-TOD Int. Conf. on Management of Data, Boston, Mass., May 1979. IBM Research Report RJ2471, February, 19 1979.
[Ma] Maire, D., The Theory of Relational Databases, Computer Sclence Press, 1983.
[N1] Nicolas, J.M., "Mutual Dependencies and Some Results on Indecomposable Kelations," Proc. 4th Int. Conf. on Very Large Data Bases, West Berlin, Germany, Sept. 1978, pp. 360-367.
[Ri] Rlssanen, J., "Theory of Joins for Relational Databases - A Tutorial Survey," Proc. 7th Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 64, Winkowski (ed.), SpringVerlag, New York, 1978, pp. 537-551.
[Sc] Sciore, E., "A complete Axiomization of Full Join Dependencies," J. ACM 29 2, Apr11, 1982, pp. 373-393.
[U1] U11man, J.D., Principles of Database Systems, 2nd ed., Computer Sclence Press, Potomac, Maryland, 1982.

