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ABSTRACT

A large class of relational database update transactions is
investigated with respect to equivalence and optimization.
Several basic results are obtained. It is shown that transaction
equivalence can be decided in polynomial time. A number of
optimality criteria for transactions are then proposed, as well as
two normal forms. Polynomial algorithms for transaction optimi-
zation and normalization are exhibited. Also, an intuitively
appealing system of axioms for proving transaction equivalence is
introduced. Finally. a simple, natural subclass of transactions.
called 2-acyclic, is shown to have particularly desirable proper-
ties.

1. Introduction.

Static aspects of databases have been extensively studied
using the formal framework of the relational model iC, M, Ul,.
More recently, some dynamic aspects have been considered in
several investigations |AH, BS. BG, Br, CCF, CW, DeAZ, FUV,
HK, PBR. R, Uh, Ve, Vil, Vi2.. However, there have been very
few theoretical studies of database updates and transactions.
Indeed, most previous investigations of transactions have focused
on concurrency issues {BG. PBR]. In the present paper, we
introduce a formal model of transactions in relational databases
and present several basic results on transaction equivalence and
optimization.

Transactions are viewed here as sequences of elementary
operations forming a semantic unit. In this paper, we focus on a
widely accepted class of transactions. Specifically, these transac-
tions consist of sequences of insertions, deletions and updates,
where the selection of tuples (to be deleted or updated) involves
the inspection of individual attribute values for each tuple. Most
of our results concern transaction equivalence and optimization.
Indeed, our investigation can be regarded as the analogue for
updates of fundamental investigations on query equivalence and
optimization.
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With respert to equivalence, two techniques for proving
transaction equivalence are exhibited. The first one is based on
a graphical, non-procedural representation of a transaction. and
leads to a polynomial time algorithm for deciding transaction
equivalence. The second one is based on a system of axioms, and
highlights the interaction between insertions, updates and dele-
tions.

With regards to transaction optimization, several optimal-
ity criteria are discussed and formalized (for instance, one criteria
is the length of the transaction). It is shown that each given
transaction can be optimized with respect to all the proposed cri-
teria. A polynomial time optimization algorithm is then
presented.

The paper is divided into six sections. The second section
contains preliminary concepts. In Section 3 the formal model for
our transactions is presented. A graphical, non-procedural way
of representing the effect of transactions is introduced in Sec-
tion 4. This is then used as an independent measure for the
power of our transactions, and for showing that transaction
equivalence is decidable. Section 5 is devoted to transaction
optimization. Finally, in Section 6 the system of axioms for
proving transaction equivalence is introduced.

Due to space limitations. some results and definitions are
presented informally and others are omitted. (In particular, no
proofs are included.)

2. Preliminaries.
In this section we briefly present some well-known concepts
used throughout the paper.

We first present some basic concepts of relational data-
bases. We assume the existence of an infinite set of symbols,
called attributes, and for each attribute A, of an infinite set of
values, denoted dom(A), called the domain of A. A relational
schema is a finite set of attributes. Let U be a relational schema.
A tuple t over U is a mapping from U such that for each A in U,
t(A) is in dom(A). The set of tuples over U is denoted Tup(U).
A relation over U is a finite set of tuples over U.

A database schema is a pair (U,S) where U is a finite set of
attributes, and S a set of subsets of U such that
U= u{X i{Xin S}. An instance | of a database schema (U,S) is
a mapping from S such that 1{X) is a relation over X for each X
in S. The set of all the instances of a database schema (U,S) is
denoted Inst(U,S).

We now present some other concepts and notation used in
the paper. A (directed) graph is a pair (V,E} where V is a finite
set of elements, and E is a subset of V x V. An element in V is

called a verter. An element in E is called an edge. Let

{*) This work was partly performed while author was a Visiting Scientist at LN.R.1L.A.
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G = (V.E) be a graph and p a vertex of G. The in-degree of p,
denoted id(p), is the number of edges incident into p. The out-
degree of p. denoted od(p). is the number of edges incident from
p.

Let V be a set of elements. Let E and E’ be subsets of
V x V. The product of E and E’, denoted E o E’, is defined by
E o E'= {<x,2> | for some y, <x,y> in E and <y,z> in E’}.

Finally, IT B means that B can be proven using the

set of axioms A.

3. A model for transactions.

Informally, a transaction is a sequence of instructions
viewed as a semantic unit. Most commercial database manage-
ment systems provide three types of atomic instructions which
are used to build up transactions.

The three types of atomic instructions are:

(1) insertions  (appending to a relation a tuple or a

set of tuples),

(2) deletions (suppressing from a .relation all
tuples satisfying a given condition),
and

(3) updates (modifying in a relation all tuples

satisfving a given condition).

In some dbms’s the conditions used to select from a relation
the set of tuples to be deleted or updated can be quite complex.
Generally, these conditions may use the full power of tuple rela-
tional calculus. As a consequence, many basic questions about
transactions (such as when two transactions have the same
effect) are undecidable in an unrestricted framework. In this
investigation, we focus on a tractable and widely used class of
transactions. Specifically, we consider the important class of
"domain-based" transactions, where the selection of tuples only
involves the inspection of each individual attribute value of a
tuple, independently of other attribute values in the tuple and of
other tuples in the instance.

The following is a simple example of a domain-based tran-
saction in INGRES [INGRES].

Ezample. Suppose the relation emp (employee) has been defined
(its attributes are name, depart, and rank). The following tran-
saction fires the manager of the parts department, transfers the
manager of the sales department to the parts department, and
hires 2 new manager for the sales departnient:

range of e is emp

delete e where e.depart = "parts"
and e.rank = "manager"
replace e(depart = "parts") where
e.depart = "sales"
replace e{(depart = "parts")
and e.rank = "manager"
append to emp (name = "Moe", depart = "sales",
rank = "manager").

We now formally define the notions of a "condition" and
satisfaction of a condition by & tuple.
Definition. Let U be a set of attributes. A condition over U is an
expression of the form A=a or Asa, where A€ U and
a € dom(A). A tuple u over U satisfies a condition A=a (A+#a)
iff u(A) = a (u{A) # a). The fact that a tuple u satisfies condi-
tion ¢ is denoted by u  c.
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We will not explicitly use logical connectors to build up
complex conditions (it can be easily seen that this would not add
power to our transactions). However, we will define satisfaction
of a set of conditions, which is analogous to satisfaction of the
conjunction of all conditions in the set.

A set of conditions with no mutually exclusive conditions is
called "meaningful." We next define formally meaningful sets of
conditions. First though, we need the following:

Definition. Let C be a set of conditions over U, and X € U.
The restriction of C to X is the set C|X ={ceClcisa
condition over X}

We now have:

Definition. A set C of conditions over U is meaningful if for each
A'in U, A=a € C implies C| ,={A=a}.

Thus, the sets of conditions {A=5, A#5} and {A=5, A=6}
are not meaningful. The set of conditions {A= 5, B#7} is mean-
ingful.

A tuple u satisfies a meaningful set C of conditions (denot-
edt | C)if t | c for each ¢ in C. Note that a set of conditions
is meaningful if and only if it is satisfied by some tuple. All sets
of conditions considered from here on will be meaningful, unless
otherwise specified.

A set of conditions over U is used to specify a set of tuples
over U (those satisfying the conditions). Due to the form of our
conditions, we use the intuitively suggestive term "hyperplane"
to identify such sets of tuples:

Definition. The hyperplane H{(U,C) defined by a (meaningful) set
C of conditions over U is the set {tc Tup(U) |t C}.

As mentioned earlier, H{U,C) # 0 if C is meaningful.
Also, H(U,C,) = H(U,C,) implies that C; = C,. For simplicity,
we sometimes use the same notation for a set C of conditions
over U and for the hyperplane H(U,C) defined by C. Thus, we
say "hyperplane C" instead of "hyperplane H{U,C}", whenever
U is understood.

We shall next define the atomic instructions used to build
our transactions. These will be called "elementary transactions."
The syntax and semantics of elementary transactions are defined
next. The semantics of an elementary transaction is described by
a mapping associating the old instances and new instances. Such
mappings are called "actions". Formally, we have:

Definition. An action over a schema (U,S) is a mapping from

Inst(U,S) to Inst(U,S).

The syntax and semantics of elementary transactions are
now defined as follows:

Definition. Let (U,S) be a schema.

1) An insertion over the schema (U,S) is an expression of the
form ix(C), where X ﬁ)s and C is a condition which speci-
fies a complete tuple’ ’ H(X,C) over X. The effect of an
insertion ix(C) is the action

effl ix(C)] : Inst(U,S) — Inst(U,S) defined by

1(2) if 2% X
effix (C)] (1) (Z) =
(X) U H(X.C) if Z=X .

In the following we sometimes write ix{<a,,...,8,>) instead
of iX({Al: a‘l:---)Anz a'n})'

(*) IfX = A,.A,thenC= {A, = a,.., A, = a,} for scme
a; € dom(A;), 1<i<n
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2) A deletion over the schema (U,S) is an expression of the
form dy(C) where X € S and C is a set of conditions. The
effect of dx(C) is the action
eff {dy(C): : Inst(U,S) ~ Inst(U,S) defined by
1(Z) if Z#X
eff [dx(C)] (1) (2) =
I(X) - H{X,C) if Z=X.
3] An update over the schema (U,S) is an expression

ux (C;; C;) where X € S and for each A € X either

C,IA = CZIA or A=a € C, for some a € dom(A). For each
tuple t; in H(X,C,), the updated version ux{C,;Cs) (1;) of ¢,
under ux(C;;Cs) is the tuple t; € H(X,C;) where

t(A) if C!lA = CzlA

ta(A) =
a if A=a isinGC,.

The effect of ux(C,;C,) is the action
eff [ux(C;:Cs)] : Inst(U,S) — Inst(U,S) defined by

KZ) if Z2# X
eff [ux(CiiCa)l (1) () = 1 (1(x) - H(X,C1)) U {ux(CriCa) ()
te HX,C)) n(X)}if Z = X.

An elementary transaction over the schema (U,S) is an
insertion, & deletion, or an update over (U,S). 0

Informally, an update uy(C,:C;} is specified using two sets
of conditions. The set C, is used to specify the tuples over X to
be updated. The set C, describes the hyperplane obtained after
applying the update to the hyperplane C,. The equalities
present in C, but not in C, indicate how tuples in H(X,C;) have
to be modified. (All inequalities present in C, are "inherited"
from C,. Thus, if A#a is in C,, it is also in C, and the value of
A remains unchanged in the update.)

Ezample. Consider a database consisting of a single relation
EMPLOYEE with attributes U = {NAME, DEPARTMENT,
RANK, SALARY}. The following are elementary transactions
over U:

1) iy (<MOE, PARTS, MANAGER, 30K>},

2) dy {NAME = MOE, DEPARTMENT =
PARTS. RANK = MANAGER)
(this deletes all managers in the parts department
whose names are not Moe),
3) uy (DEPARTMENT = PARTS,

RANK # MANAGER;

DEPARTMENT = SERVICE, RANK #

MANAGER, SALARY = 20K}
This transfers all employees who are not managers from the parts
department to the service department. The rank remains
unchanged. The new salary is 20K.

In the following we sometimes omit the subscripts in writ-
ing elementary transactions. For instance, we write i(C) instead
of i,(C), if X is understood.

We can now formally define the notion of transaction and
its effect on the database:
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Definition. Let (U,S) be a database schema. A transaction over
{U,S) is a finite sequence of elementary transactions over (U,S}).
(The empty transaction is denoted by ¢.) The effect of a tran-
saction t = e,...e, (n > 0) is the action eff(t) = eff{e,)

o ... o eff(e,). (The effect of ¢ is the identity mapping.)

Thus, the effect of a transaction is the composition of the
effects of the elementary transactions that make it up. Two
transactions are equivalent if they have the same effect:

Definition. Two transactions t; and t, over a given schema are
equivalent, denoted t, = t,, iff eff(t,) = eff(t,).

Our first result (Proposition 3.1} indicates that in the
present context only unirelational schemas need to be considered.
First we need the following:

Notation. Let t be a transaction over a schema (U,S). For each
Xe€S,let tlx be the transaction over (X,{X}) obtained by eras-
ing from t all elementary transactions which are not over

(X,{X}).

3.1. Proposition. Let t,. and t, be transactions over a schema
(U,S). Thent;™t, ift,lx ~ "’IX for each X € S.

In view of the above, we only consider transactions over
unirelational schemas from here on.

4. Transitions and Realizability.

In this section we introduce a non-procedural method for
describing the effect of a transaction on a database. The effect is
described at the tuple level using the notion of a "transition.”
Transitions can be specified in an intuitively appealing manner
and are useful in several respects. First, they will be used to
measure the power of our transactions. Second, transition specif-
ications will be used to study the equivalence and optimization of
transactions. Intuitively, the relation between transactions and
transition specifications is . somewhat similar to that between rela-
tional algebra expressions tuple calculus expressions.
(Indeed, transition specifications offer a non-procedural, graphical
alternative to transactions which may be more appealing to cer-

and

tain users.)

Informally, a transition describes at the tuple level a
change in the database state. For each tuple, a transition indi-
cates whether the tuple is deleted or, if not, how it is updated.
In addition, a transition gives a finite set of inserted tuples.
Since there are an infinite number of tuples to be considered,
only certain transitions can be effectively specified. Here, we
only need to consider transitions which can be specified using our
conditions. Thus, a transition will be specified by first partition-
ing the space of tuples into sufficiently many hyperplanes. The
choice of hyperplanes will ensure that all tuples in each hyper-
plane of the partition are either deleted or updated to yield
another hyperplane in the partition. This is specified using a
"transition graph" whose vertices are the hyperplanes in the par-
tition. If H, is updated to H,, there is an edge from H, to H,. If
H, is deleted there is no edge leaving H,.

The set of inserted tuples cannot be conveniently specified
using the graph, and is given separately.

We now formally define a transition specification.

Definition. Let U be a finite set of attributes.
specification over U is a couple (G,Insert) where Insert is a finite

A transition

set of tuples over Ul and G is a graph (V.Eg). where:
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(i) Vg is a finite set of disjoint hyperplanes over U
such that | J C = Tup(U),
Ce Vg,
(i) if (C,C;) € Eg then for each A in-U either
Cily = C"A or A=a€C, for some a € dom(A),
(11i) for each C in Vg, 0od(C) < 1.
(iv}) Insert C Vg.

The graph G is called the transition graph of the transition
specification. Insert is called the insert set.

Note that condition (i1) implies that C; can be updated to
C, (or, in other words, that u(C,;C,) is a legal update). Condi-
tion (ii1) follows from the assumption that the result of updating
a hyperplane is a single hyperplane in Vg. If 0d(C) = 0 then all
tuples in C are deleted.

We now give a simple example of a transition specification,
followed by a more complex one.

4.1. Ezamples. a) Let U = AB and G be the transition graph
represented below (Figure 4.1)

Figure 4.1

Let Insert = {{A=1,B=1}}. Then {G,Insert) is a transition
specification over AB. The transition specified by (G,Insert)
consists of replacing all tuples t where t{A} = 0 by the tuple
<1,1>>. All other tuples remain unchanged. The tuple <1,1> is
inserted. '

b) Let U = AB, Insert = @, and G be the transition graph
represented *) in Figure 4.2. Then (G,Insert) is a transition
specification.

(*) We abbreviate the conditions A # a;, A # 2, ..., A # &,
by A # a,a,,...,8,.
Proceedings of the Tenth International
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A=0 B#0,1 C#0 A=1 B=0 C#0

A=0 B=0 C#0 A=0 B=1 C#:g]

i;

A=1 B=1 C#0 HA:l B#0,1 C#0

I

A=0 B=0 C=0i{¢

.

A=0 B=1 C=0

A=1 B=0 C=0

A#0,1 B=1 C#£0

4

A#0,1 B=0 C#0|

1

A#0,1 B=0 C=0 A#0,1 B=1 C=0

A=0 B#0,1 C=0

l A=1 B=1 C=0]

A=1 B#0,1 C=0
ﬂA¢0J B#0,1 c=oE)

A%0,1 B#0,1 C#0-

Figure 4.2

We now look at the connection between transition specifi-
cations and actions. Given a transition specification and a data-
base state, one can obtain a new state by applying the transition
to each tuple in the database. Therefore, each transition specifi-
cation generales an action in a natural manner. However, transi-
tion specifications -are more "refined" than actions, since they are
tuple oriented rather than global. Indeed, two different transi-
tion specifications can generate the same action. This is illus-
trated by the following:

Ezample. Let U = AB and G be the transition graph

represented below (Figure 4.3).

o

Figure 4.3

Let Insert = {{A=1, B=1}}. It is easily seen that the transition
specification {G,Insert) and that of Example 4.1(a) generate the
same action. (Since <1,1> is inserted, the resulting action is the
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same whether the hyperplane {A=0} is deleted or updated to
<1,1>.)

Following is a characterization of when two transition
specifications generate the same action.

4.2. Proposition. Two transition specifications (G,,Insert,) and
(Ga.Insert,) over a given set of hyperplanes * generate the same
action iff the following conditions hold:

(i) Inserty = Insert,

(ii) Foreach B,C € Vg, and C ¢ Inser; (i = 1,2),
(B,C) € Eq, iff (B,C) € Eq,

Intuitively, Proposition 4.2 shows that two distinct transi-
tion specifications can generate the same action only when their
differences are "masked" by the insert set. In particular, we
have:

4.3. Corollary. Two transition specifications (G,,0) and (G,,0)
over the same set of hyperplanes generate the same action iff
Gl = Gz.

We next investigate the relation between transactions and
transitions. We will show that for each transaction there exists a
corresponding transition which represents the final effect of the
transaction. Then we show that one can specify transitions
which cannot be realized by any transaction. Finally, we charac-
terize those transitions which are realizable. Intuitively, the set
of realizable transitions is a measure of the power of our transac-

tions.
An algorithm is next presented for constructing the transi-

tion specification corresponding to a given transaction. First,
however, it is necessary to perform some "preprocessing" of the
transaction. Specifically, the transaction is modified so that all
hyperplanes corresponding to distinct sets of conditions occurring
in the transaction are disjoint. A transaction having this pro-
perty is said to be in First Normal Form (INF). The INF pro-
perty simplifies considerably our algorithm as well as other
results. We next define INF and show how to construct, for
each transaction, an equivalent INF transaction. First though,
we need the following:
Notation. Let t be a transaction over U. For each A in U, let
the active domain of A with respect to t be the set adom(A,t) of
all constants in dom(A) occurring in t. We now associate with t
a partition H{t) of Tup(l’} into hyperplanes as follows.” * Let
H(t) = { U Cp foreachAe U,

A€t

Cs = {A=a}. a € adom(A,t), or

Ch = {Aza acadom(A.t)}}.

Clearly, H(t) covers Tup(lU) and every two distinct hyperplanes
in H(t) are disjoint.
With the above notation, we have

Definstsion. A transaction ¢t over U is in First Normal Form
(1NF) iff every set of conditions occurring in ¢ is in H(t).

(G,Insert), where G = (Vg.Eg), is over the set of hyper-
planes Vg.

¢ Here again we blur the distinction between a set of condi-
tions and the hyperplane corresponding to it.

(»)
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If a transaction t is in INF, then every two hyperplanes
corresponding to distinct sets of conditions occurring in t are dis-
joint. We require the first normal form property, rather than
simply the disjointness condition, since this will simplify the
statements of some results.

The following illustrates the definition of INF:

Ezample. Consider the transaction
t, = d{A=0) u(A#7; A=5).

Then H(t,) = {{A=0} {A=T} {A=5} {A#0,5,7}}. Since
{A#T} is not in H(t;), ¢4 is not in INF. Consider next the tran-

saction

ty = d(A=0) u{A=0: A=5) u(A#0,5,7; A=5).

Then H(t;) = H(t;), ty is equivalent to t,, and t; is in INF.
Each transaction can be transformed into an equivalent
INF transaction by "splitting" each hyperplane occurring in it
into sufficiently small hyperplanes. For instance, consider tran-
saction t; and t, from the previous example. One can obtain t,
from t, by splitting the hyperplane {A#7} into {A=0}, {A=5},
{A#0,5,7). The update u(A#7; A=5) is split accordingly and
becomes u(A=0; A=5) u(A=5; A=5) u(A#£0,5,7; A=5) (the
second update leaves the hyperplane {A=5} unchanged and can
be ignored). Thus, t, is obtained. We next show how each tran-
saction can be transformed into an equivalent INF transaction
using two simple transformation rules, called "SPLIT" axioms.

Definition. Let U be a set of attributes. The following two rules
are the SPLIT azioms for transactions over U, where A € U,

a € dom(A), and C is a condition over U such that A2 ¢ C
and A=b ¢ C for all b:

SPLIT1.

d(C) ~ d(C U {A # a}) d(Cl,_, U {A=a}).

SPLIT®.

u(C;C’) ~u(CuU {A # a}; C))

u(Clyy_ ,U{A=2}C;), where C, = C, = C”if
A=b € CTorsome b,and C, = C'U {A#a},
C,= C'lU—A U {A=a} otherwise.

Intuitively, hyperplane H(U,C) is split into the hyperplanes
H(U,C) n H{U,{A=a}) and H{U,C) N H(U,{A#a}). The update
and deletion operations are then applied to the resulting hyper-
planes. (Note that all resulting sets of conditions are meaning-
ful.)

It can be easily seen that the SPLIT axioms are sound.
Furthermore, they can be used to bring any transaction to First
Normal Form. Formally, we have:

4.4. Theorem. For any transaction t there exists an equivalent

INF transaction t’, such that SPLIT t=t .

We are now ready to outline the algorithm to construct
from a given transaction t a corresponding transition specifica-
tion TS(t) = (G,Insert). Let t = e,...e,, n 2 1, be a INF tran-
saction over U, where each ¢; (1 < i < n) is an elementary tran-
saction. Let Insert = t(@). We next define the transition graph
G = (Vg,Eg). Let Vg = H(t). It is left to construct Eg. For
each elementary transaction e occurring in t, let E{e) be the set
of edges defined as follows: If e = dy (C), let
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E(e) = {<H,H> |H € H{t), H # C}. He = uy (C;Cy), let
E(e) = {<HH> |H € H(t), H # C;} U {<C,,C;>}. Finally, if

Ife = iy (C), let E(e) = {<H,H> | H ¢ H(t)}. Now let

Eg = E(e;) © ... o E(e;). The transaction specgﬁcation

TS(t) = (G,Insert) is now completely defined. *) The transaction
t and the transition specification TS(t) define the same transition
and therefore the same action.

Ezample. Consider the following transaction over A :

t = i(A=5) u(A=0; A=35)
u(A=5; A=7) u(A#0,5,7; A=5) d(A=5).

Note first that t is in INF, and H(t) =

{{A=0} {A=5} {A=7} {A%0,5,7}}. We now construct
TS(t) = (G,Insert), where G = (Vg,Eg). Now

Insert = t(@) = {<7>}. The set Vg is H(t), and

Eg = E; © E; ¢ Ey o E, o E;, where:

(1) E; = E(i(A=5) ) is represented by:
O L A
A=0| 1a=5| fA=7| [A+057|

(i) E, = E(u(A=0; A=5)) is represented by:

A=5I |A:\;\ |A¢0,5,7

(iii) Ey = E(u(A=5; A=T7}) is represented by:

A= SH A=T l |A¢057I

= E(u(A#0,5,7; A=5)) is represented by:

(v) Es = E(d(A=5)) is represented by:

A=5
£ .
IA=5I A=1 |A#05,7

Finally, Eg = E, o

A=0

A=0

(iv)

E, o Eg o E, o E; is represented by:

|A¢0,5,7

With the above algorithm and, in view of Proposition 4.2,

we now have:

4.5. Theorem. 1t is decidable whether two transactions are

equivalent. O

It can be shown that transaction equivalence can be
decided in polynomial time (in the size of the transactions).

We have shown earlier how to obtain from each transaction
t a transition specification TS(t) which defines the same transi-
tion as t. Consider now the converse. If the action defined by
the transition specification (G,Insert) can be implemented by
some transaction, then (G,Insert) is called "realizable." Thus,

we have:

(x) Note that TS(t} is undefined for t = ¢ .
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- constitutes a measure for the power of our transactions.

Definstion. A transition specification (G,insertj is reafizable if
there exists a transaction defining the same action as (G,Insert).

As shown by the next example, not all transition specifica-
tions are realizable.

Ezample. Let (G.Insert) be the transition specification over A,
where Insert = @ and G is represented by:

a=9G=D Gl

It can be shown that {G,Insert} is not realizable.

It is useful to distinguish between realizable transition
specifications and those that can be obtained directly from some
transaction via the algorithm TS. This motivates the following.
Definstion. A transition specification (G,Insert) is directly
realizable if (G,Insert) = TS(t) for some INF transaction t.

Some transaction specifications are realizable without being
directly realizable. For instance, it can be shown that the transi-
tion specification (Gy,0), where G, is represented in Figure 4.4 is
realizable but not directly realizable.

Intuitively, the set of realizable transition specifications
The
main results of the section characterize realizable and directly
realizable transition specifications. Before presenting them, we
need two definitions, a lemma, and some notation.

¥

Figure 4.4

Definition. Let C be a set of conditions over U. The support of
C is the set Supp(C) = {A € U| A = a € C for some
a € dom(A)}.

It is easy to verify the following:

4.6. Lemma. Let (G,Insert) be a transition specification over
U. If C, and C, are nodes of G which belong to the same cycle
of G, then Supp(C,) = Supp(Cs).

In view of Lemma 4.6, we can extend the definition of sup-
port to a cycle:
Definition. Let (G,lnsert) be a transition specification and ¢ a
cycle of G. Then the support of ¢ is Supp(c) = Supp(C) for
some mode C belonging to c. (Supp(c) is well-defined, by the
above lemma.)
Notation. For each transition specification (G,Insert),
2-Cycles(G) = {c | c is a cycle of G of length at least 2}.

With the above, we now have the following characteriza-
tion of directly realizable transition specifications.

4.7. Theorem. A transition specification (G,Insert) is directly
realizable iff for each cycle ¢ € 2-Cycles(G) there exists a vertex
v(c) of G which does not belong to any cycle of G, such that
Supp(c) = Supp(v(c)).

As we have seen earlier, a transition specification (G,Insert)
can be realizable without being directly realizable. In such a
case, however, (G,Insert) can be easily transformed into an
equivalent, directly realizable transition specification. There are
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two types of transformations invoived. The hirst consists ot
"splitting" G, i.e. splitting some of the vertices of G into smaller
hyperplanes (the néw edges are those induced by the old edges,
by rules analogous to the SPLIT rules). For instance, consider
again the transition specification (G,,0) (Figure 4.4) which is
realizable but not directly realizable. The transition specification
(G3,0) (Figure 4.5) is directly realizable and G, is obtained from
G, by splitting the vertex {A#0,1} into {A=2} and {A#0,1,2}.

Figure 4.5

The second type of transformation involves the elimination
from G of all edges made unnecessary by the insertions.  For
example, consider the transition specification {G,,Insert), where
Insert = {A=1} and G, is represented in Figure 4.6(a). Now
(G Insert) is realizable but not directly realizable. Since the
tuple <1> is inserted, the tuple <0> can be deleted rather than
updated to <1>, without changing the final effect. Thus, the’
edge ({A=0}, {A=1}) can be deleted from G, yielding G,,
represented in Figure 4.6(b). Clearly (Gs,Insert) is directly real-
izable.

Figure 4.6(a) Figure 4.6(b)

The previous discussion is summarized by the following
result characterizing realizable transition specifications.

4.8, Thcoum.(‘) A transition specification (Gy,Insert) is realiz-
able iff there exists a directly realizable transition specification

(Ga,Insert) obtained by splitting G and by removing all edges of
- the form (C,,C;) where C, € Insert.

Consider again the characterization of directly realizable -
transition specifications. Intuitively, the role of the node v{c)
associated with cycle ¢ is that of a temporary storage variable.
This is needed in order to permute the content of two or more
hyperplanes. The need for temporary storage would disappear if
one could perform two updates u(C;;C;) and u(C,;C,) simultane-
ously. Thus, suppose we added to the set of elementary transac-
tions the instruction "switch (C,;C,)", whose effect would be the
same as performing u(C;;C,) and u{C;;C,) simultaneously. Then
it can be shown ggat every transition specification would be
directly realizable.

5. Transaction optimization.

In this section we focus on the problem of transaction
optimization. We propose three intuitively appealing optimiza-
tion criteria for transactions over a given set of hyperplanes, and
show that they can be satisfied simultaneously. Then we show

A more formal statement of this theorem is given in the full
paper.
¢ This observation is due to W. Lipski
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how an equivalent optimal transaction can be obtained from each
given transaction. Furthermore, we show that optimal transac-
tions can be obtained which have a certain desirable form that
we call Second Normal Form.

We now discuss the three factors we will cons(der when
optimizing a transaction. The first factor is the length * ) of the
transaction (e.g., d(A=0) is preferred over d(A=0)d(A=0)).
The second factor is the maximum number of times a tuple is
modified by the transaction {e.g., d(A=0) d{A=1) is preferred
over u(A=0; A=1) d(A=1) since in the second transaction <0>
is unnecessarily updated to <1> before being deleted). Finally,
the third factor is the complexity of the elementary transactions
composing the transaction. We propose the following increasing
order of complexity among elementary transactions:

(0) u(C,C) (C remains unchanged)
(1) i(C)

(2) d(C)

(3) u(Cy,C;), whereC, # C,.

While the proposed ordering is intuitively appealing, it may
clearly be invalid for certain specific implementations of the ele-
mentary transactions. However, it is likély that the ordering will
be compatible with most reasonable implementations.

Notation. For every elementary transactions e and f, e < f
denotes that e is of lesser or equal complexity than f according to
the above ordering.

We now formally define optimal transactions with respect
to the criteria discussed above.
Definition. A transaction t = e;...e,, n 2 0, over the set of
hyperplanes H(t) is optimal (with respect to H(t)) if for every
transaction t’ over H(t) which is equivalent to t, the following
hold:

(i)

(ii)

t’ is at least as long as t,

the maximum number of times t’ modifies a
tuple is at least the maximum number of times
t modifies a tuple, and

{iii) if t” and t have the same length then there
exists a permutation e}...e; of " such that!*”
e <e,1<ig<n.

We next outline an algorithm that constructs, for each
given transaction, an equivalent, optimal transaction over the
same set of hyperplanes. First though, we need two definitions,
one technical lemma, and some notation.

Definition. Let G be a transition graph. A storage assignment
for G is a mapping v : 2-Cycles(G) —» Vg such that for each
¢ € 2-Cycles(G), Supp(c) = Supp(v(c)) and v{c) does not belong
to any cycle of G.

By Theorem 4.7, (G,Insert) is directly realizable if and only

if there exists a storage assignment for G. A storage assignment
is "safe" if it does not give rise to deadlock. Formally, we have:

Definition. A storage assignment v for a transition graph G is
safe if there exists an enumeration C,,...,C, of all connected

(* )} A transaction t = e;...e;, n > 0, has length n (e 1 i<,
are elementary transactions).
(*+) The transaction ej...e; is not necessarily equivalent

tot”
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components of G with at least two nodes, such that for each i
(1 €i < n) and ¢ in 2-Cycles (C}),

(i) v(c) ¢ Cjforanyj,i<j<n,and

(ii)

if v(c) is in C;, then it is adjacent to ¢

dlace c

(i.e., (v{c),C) € Eg for some vertex C of c).

The following shows that a safe storage assignment can be
found for each directly realizable transition specification.

5.1. Lemma. If (G,Insert) is a directly realizable transition
specification then there exists a safe storage assignment for G.

Finally, we need the following:

Notation. If T is a finite set of transactions, let t?T t and

® T denote -a transaction t;..t;,, where t;...,t, is some

enumeration of the elements of T. (If T =8,let ® T = ¢ .)

We now outline the optimization algorithm for transac-

tions.

Algorithm OPT.

Input: a transaction t in INF.
Output: a transaction OPT(t).

1. Construct TS(t} = (G,Insert) (G = (Vg,Eg)).
2 E¢ == Eg - {(C,C,) | Cy € Vg, C; € Insert}.
3. D:= {Ce Vg|od(C)=0} N Insert.
4

If there is ¢ in 2-Cycles(G) with Supp(c) = U

then

5. If there is no C€ Vg — D such that
Supp(C) = U and C does not belong to
any cycle of G then

6.  Remove one vertex from D.
7. Eg:= Egu {(C,C) Ce D}.
8. Compute a safe storage assignment v for G.
9. Construct(*) an enumeration C,...C, of all con-

nected components of G with at least two ver-
tices, such that for each C; and cycle ¢ in 2-
Cycles(C;), v(c) € C; (31 <i<j<n).
10. Let tg= ® {d(C)|C & Vg, 0d(C)=0},
t; = ® {i(C) | C € Insert}.
11. For each cycle
c= {(Clxcz)""’(cn-h Cn)’(CmCl)} ofG(n (2 2)
let
t. = u(Cyv(c)) u(Cy_y;Cy)
... u{Cy;Cy) u(v(c);C,} , where
(v{c),Cy) € Eg  if v{c) is adjacent to c.

12. Let tg = ty ® {t. | od(v(c)) = 0, id(v(c}) = 0}.

13. Remove all cycles from C,,...,C,, (only edges are
removed).

14. Fori:= 1tondo
15. MAX := {C € C; | 0d(C)=0,id(C) > 0}.
16.  While there are edges left in C; do

(+) Step (9) is possible by Lemma 5.1.
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17. tg = t,® {t. | v(c) € MAX
® {u{C";C) | C e MAX, (C',C) € C,
C’ is not v(c") for
¢’ € 2-Cycles(C;}
® {t.- | (v(c’),C) € C; for
some C € MAX, and id{v(¢"))
= 0}
18. Remove from C; all edges
(C’,C) where C € MAX.
19. MAX:={CeC,| od(C) =
0, id(C) > 0}.
20. to = to"i.
21. Output tg.

The following can now be shown:

5.2. Theorem. For each transaction t in INF, the tran-
saction OPT(t) constructed by Algorithm OPT is

equivalent to t, and optimal (with respect to H(t}). Furth-
ermore, the algorithm is polynomial in the length of t.

Note that, technically, the optimality of a transaction
was defined with respect to a given partition of the tuple
space into hyperplanes. However, if an optimal transaction
with respect to a given partition is split according to a dif-
ferent partition, the resulting transaction remains optimal
with respect to the new partition. Formally, we have:

5.3. Proposition Let t be an optimal transaction with

respect to H(t). If — t 5 t°, where t” is a INF tran-
P (t) |——spm ,
saction, then t’ is optimal with respect to H(t").

The following illustrates the effect of Algorithm OPT
on a simple transaction.

5.4. Ezample. Consider the transaction over AB:

i(<0,1>) i(<3,2>)
u(A#0,B=0; A#0,B=1)
u(A#0,B=2; A#0,B=0)
d(A#0,B=0)

¢ = u(A%0,B=1; A#0,B=2)
u(A=0,B=1; A=0,B=2)
u(A=0,B=0; A=0,B=1)
u{A=0,B=2; A=0,B=0)
The transition specification of t is TS(t) = (G,Insert), where
Insert = {<0,0>} and G is represented in Figure 5.1.
The transaction output by Algorithm OPT is
OPT(t) ~ d(A#0,B=1) d(A#0,B=2) u{A=0B=1; A=0,B=2)
u(A=0,B=0; A=0,B=1) u(A=0,B=2; A=0,B=0)
u(A#0,B=0; A#0,B=1} i(<0,0>)

o oer] froe=r]

[az0B=2] [a#0 B=1

[A=0 B#O,lEP[A:ﬁO B¢o,1,2k'P

Figure 5.1
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Remark. In general, a tuple in a database can be modified any
number of times in the course of a transaction. However. it can
be seen that an optimal transaction does not modify any tuple in
the database more than twice. Thus, the total number(& of
tuple updates and deletions performed b( af optimal transaction
is at most twice the size of the database \**

Consider once more the transactions t and OPT(t} from
Example 5.4 and let 1 be the instance over AB represented in
Figure 5.2.

Figure 5.2

Applying transaction t to I results in the performance of('“) 6
tuple updates, 3 deletions, and 2 insertions. On the other hand.
applying the optimal transaction OPT(t) to the same instance
results in only O tuple updates. 2 deletions, and 1 insertion.

The fact that OPT(t) is optimal accounts for part of the
difference, but not all. For instance, consider

t; = d(A#0,B=1) d(A#0,B=2}u(A=0.B=1; A=0,B=2)
u({A=0,B=0; A=0,B=1)i(<0,2>) u(A=0,B=2; A=0,B=0)
u(A#0,B=0; A#0,B=1). Then t, =t and , is also optimal.
However, t, performs one more update than t when applied on 1.
This is so because t, inserts the tuple <0,2> first and then
updates it to <0,0>, whereas t directly inserts the tuple <0,0>.
Thus, the relative order of updates, deletions and insertions in a
transaction affects the total number of operations performed.
Specifically, the example suggests that all insertions should be
performed last. Similarly, all deletions should be performed first
{if not, some tuples may be updated first, and then deleted).
Thus, it is preferable that a transaction consist of deletions, fol-
lowed by updates, followed by insertions. A transaction having
this property is said to be in "Second Normal Form." Formally,
we have:

Definition. A transaction t is in Second Normal Form if it is in
First Normal Form and t = d,...dy uy...upy, ij...Il, where the d; are
deletions (1 < j < k), the u; are updates {1 < j < m), and the j;
are insertions (1 < j < n).

Note that the transaction OPT(t) output by Algorithm
OPT is in Second Normal Form. Thus. we have:

5.5. Theorem. For each transaction t there exists an

equivalent, optimal transaction in Second Normal Form.

Remarks. (a) Let us briefly look at an alternative notion of
optimality based on the number of tuple operations performed by
a transaction. For each transaction t over U and relation r over
U, let NOPS(t,r) be the total number of tuple operations (i.e.,
tuple deletions. updates and insertions) performed when t is

Updates and deletions of newly inserted tuples were not
counted.

(*)

(*+) Actually, a smaller, more accurate bound can be given.

(*#+) We include here updates and deletions of tuples inserted by
the transaction.
Proceedings of the Tenth international
Conference on Very Large Data Bases.

54

applied to r. It would be appealing to define a notion of "strong"
optimality as follows. A transaction t is strongly optimal if for
each t°, 1" = t, and relation r over U, NOPS({t,r} < NOPS(t",r)
(1.e., t does at least as well as any other equivalent transaction
on all databases). Unfortunately, it can be seen that, in general,
there are no strongly optimal transactions equivalent to a given
transaction. (In fact, a strongly optimal transaction equivalent
to t exists iff the transition graph corresponding to t is 2-acy-
clic.(*) And, in this case, OPT(t) is strongly optimal.} A weaker
but more promising notion is that of "weak" optimality. A tran-
saction t is weakly optimal if for every equivalent t’,
NOPS(t,r) > NOPS(t"r) for. some r implies that
NOPS(L,r') < NOPS(t"r") for some r’. In other words, if there
is a transaction t” which does better than t on some database, it
does worse than i on another database. It can be seen that if t is
optimal and 2NF then t is weakly optimal. In particular,
OPT(t) is weakly optimal for every t.

(b) The optimization criteria considered so far do not take into
account the number of hyperplanes occurring in a transaction.
{Indeed, the way the space is split into hyperplanes does not
affect the number or type of tuple operations performed by a
transaction.) However, the cost of a transaction may also
depend on the number of hyperplanes involved in the transac-
tion. Given a transaction t, one can use the SPLIT rules to find
an equivalent transaction t’ with a minimum number of hyper-
planes. Unfortunately, it can be seen that it is not always possi-
bie to find a transaction with a minimum number of hyperplanes
which also satisfies the other optimality criteria. The choice
between minimizing the number of hyperplanes and satisfying
the other optimality criteria has to be made depending on the
particular implementation.

6. Axiomatization of tran saction equivalence.

In the previous two sections, we provided algorithms for
deciding whether two transactions are equivalent, and for optim-
izing a given transaction. However, the algorithms do not pro-
vide much insight into why two given transactions are
equivalent, or why a given transaction is {(or not) optimal. In
this section, we introduce some intuitively suggestive axioms for
proving transaction equivalence. The axioms are based on sim-
ple transformation rules which highlight the interaction between
deletions, updates and insertions. Due to space limitations, we
only present here a brief, informal overview of our results.

We first introduce a system Ax of axioms for proving the
equivalence &t;’two transactions over the same set H of disjoint
hyperplanes. Ax consists of nineteen axioms grouped as fol-
lows (C3,C9C3C4 are hyperpianes in H):

Update-update axioms:
1) u(CyC2 u(C5Cq) =~ u{C3Cq u(Cy;Cy)
{Cx#C3C1#Cyq and C#Cy),

2} u(CpC3 u(C3Cy) = u(C1CY u(C2Cy).

8) uw(CrCg u(CrCy ~u{C:CyY  (C1#Cy.

4) u(CpCq u(Cy;Co = u(CyC9y.

A graph is 2-acyclic if it has no cycles of length at least 2.

(*)
(% Note that, if two transactions arc over different sets of hy-
perplanes, they can be transformed into equivalent transac-
tions over the same set of disjoint hyperplanes using the
SPLIT axioms of Section 4.
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Delete-delete axioms:
5) d(Cy) d(C2 ~ d(Cy) d(Cy),
6) d(Cy) d(Cy =~ d(Cy).
Insert-insert axioms:
7) i(Cy) i(Ca) =~ i(C9 i(Cy.
8) i(Cy) i(Cy = i(CP.
Update-delete axioms:

9) u(CEC d(Cy) ~ d(Cg) u(C;Cy  (C3Cy, C£Cy),

10) u(Cy;Cy) 4(Cy) = d(C,y) d(Cy),
11) d(Cy} u(Cy;Cy) = d(Cy),
12) u(C;;Cs) d(C,) = u(C;;Cs)

Update-insert axjoms:

(C1#Cy).

13} u(Cy;Cy) i(Cs) = i(Cs) u(Cy;C;) (G2 Cy),
14) i(Cy) u(C,:Cy) = i{C;) u(Cy;Cy),
15) u(CiiCy) i(Cy) = d(Cy) i(Cy).
Delete-Insert axioms:
16} d(Cy) i(C;) ~i(Cy) d(Cy) (Cy#Cy),
17) d(Cy) i(C,) *i(Cy),
18) i(C,y) 4(C,) = d(C;), and
Identity axiom:
19) u(C,,C)) = ¢ .
Unfortunately, it turns out that the set of axioms

Ax U SPLIT is not complete. (In fact, we conjecture that there
is no proper finite axiomatization for transaction equivalence.)
Following is an example of two equivalent transactions whose

equivalence cannot be proven using Ax .. SPLIT.

Ezample. Consider the trasactions over A:

t; = d(A=3) u(A=4;A=3) u(A=1:A=4)
u(A=2;A=1) u(A=4;A=2), and

t; = d(A=3) u(A=1;A=3) u(A=2;A=1)
u({A=3;A=2) u(A=4;A=3)

It can be seen that TS(t;) = TS(t;) = {G,0), where G is the
transition graph represented in Figure 6.1. Thus, t, % t,.
(Intuitively, the only difference between t, and t, is that t, uses
{A=4} to realize the cycle in the transition graph, while t, uses
{A=3}.) However, it can be shown that the equivalence cannot
be proven using Ax LU SPLIT.

@D GG DG 1209

-

Figure 6.1

As shown above. the set of axioms Ax U SPLIT is not com-
plete. However. it is easy to see that Ax U SPLIT is complete
within the large subclass of 2-acyclic transactions. Furthermore,
Ax is sufficiently powerful to essentially allow the optimization of
all given INF transactions and to bring them to Second Normal
Form. Thus, Ax i SPLIT is sufficient for most practical pur-
poses.

Although we do not exhibit a complete set of axioms for
proving transaction equivalence, we present in [AV] a mechanism
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axiomatization. Informally, some "imaginary" hyperplanes are
introduced as temporary storage, and Ax is extended to these
imaginary hyperplanes.'*) Then we show that two transactions t,
and t, are equivalent iff tt; and tt; can be proved equivalent
using Ax, where t consists of a sequence of deletions of imaginary
hyperplanes. '

In addition, a second method is presented in [AV/| for prov-
ing transaction equivalence using Ax. Specifically, it is shown
that proving the equivalence of two arbitrary transactions can be
reduced to proving the equivalence of several pairs of 2-acyclic
transactions.

Remark. The results in this and the previous sections have
shown that the large class of 2-acyclic transactions has particu-
larly desirable properties. First, strong optimality can always be
attained for 2-acyclic transactions. (Furthermore, the OPT algo-
rithm always yields a strongly optimal transaction when applied
to a 2-acyclic transaction.) Second, the system of axioms
Ax U SPLIT is complete for proving 2-acyclic transaction
equivalence. Therefore the introduction of imaginary hyper-
planes is not required in the 2-acyclic case. (Also, proving the
equivalence of arbitrary transactions can be reduced to proving
the equivalence of 2-acyclic transactions.) Finally, note that all
2-acyclic transition specifications are realizable.

Acknowledgement. The authors would like to thank
Francois Bancilhon, Richard Hull, and Witold Lipski for their
comments and helpful suggestions.

) Intuitively, the imaginary hyperplane corresponding to hy-
perplane C can be thought of as consisting of "marked" tu-
ples of C, with values outside the domains of the attributes.
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