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Abstract. Two of the major problems raised by 
information incompleteness in databases are how 
to evaluate queries and how to take data depen- 
dencies into account. We give a unified solution 
of these two intermingled problems for the rela- 
tional model. Formal criteria for the correct- 
ness of the relational algebra and dependency 
satisfaction are presented. We give a correct 
redefinition of the complete relational algebra 
and present a method, called a chase, for en- 
forcing a set of functional and full join depen- 
dencies on a relation with null-values of type 
"value exists, but is presently unknown". This 
novel chase can also be regarded as a generali- 
zation of previously known chase methods. The 
title of the paper reflects the emphasis of its 
contribution. 

1. INTRODUCTION 

The research in the field of information 

incompleteness has mainly followed three paths. 

The vast majority of the papers on the topic have 

sought a way to adapt the query language to han- 

dle null-values of different kinds (a.o. [Bisl, 

Bis2, ILl, IL2, Vasl]), while only a few papers 

(i.e. [IL3, Lie, Vas2]) have looked at the prob- 

lems pointed at by the handling of data dependen- 

cies under information incompleteness. Even less 
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papers have orientated towards a solution to the 

problem of updating databases with incomplete in- 

formation (i.e. [FUV, Sci]). All these directions 

are however only different aspects of the same 

problem: how to interpret and accordingly handle 

incomplete information. (For an overview of the 

field, see [Gral] or [Lip].) 

This paper offers a unified treatment of in- 

complete information of the type "value exists, 

but is presently unknown". Explicit solutions are 

given for the‘query problem and the data depen- 

dencies in the context of the relational model. 

Updates will be treated elsewhere [Gra2]. 

Following [IL21 and [Bis2] we consider a re- 

lation containing null-values of the aforemen- 

tioned type as representing a set of relations of 

the ordinary kind (i.e. without nulls), one of 

which corresponds to the state of the real world. 

Since our information is incomplete we only know 

the set of possible states, and we store its re- 

presentative. The query language should then be 

designed so. that only information that holds in 

all of the possible states is inferred. In [IL21 

it is shown how to extend a relational algebra 

consisting of projection, positive selection, un- 

ion and join so that it is correct in this sence. 
. 

A selection is positive if its formula only in- 

cludes atomic expressions of the form A=a com- 

bined with conjunction and disjunction (A is an 

attribute name, a some domain value). This alge- 

bra is quite restrictive, since it would for ex- 

ample be impossible to ask for a list of all em- 
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ployees earning more than 20000$ in some enter- 

prise database. The authors of [IL21 show that 

the handling of the complete relational algebra 

requires a more complicated representative than 

just putting null-values in ordinary relations. 

Such a representative, called a c-table, and a 

correct redefinition of the complete relational 

algebra for these tables is given i.n [IL21. 

Some authors have tried to solve the prob- 

lem of data dependencies by incorporating the 

null-values in the definitions of the data de- 

pendencies. The dependencies are however not 

statements about the incomplete database, but 

statements about the real world. Thus their de- 

finitions remain unchanged, and the question of 

satisfaction is determined by the set of possi- 

ble relations, in which each individual relation 

should satisfy the dependencies. But since we on- 

ly store the representative relation with null- 

values, we need some syntactic method for checlc- 

ing dependency satisfaction. This syntactic sat- 

isfaction will, in absence of better names, be 

called “satisfaction’!. 

The argumentation above also shows that the 

data dependencies af feet query evaluation: the in- 

complete relation determines a set of possible 

relations, and this set is further restricted by 

the data dependencies. Since query evaluation is 

based on the set of possible relations, we must, 

if we want to maintain the correctness of the 

query language, restrict the set of possible re- 

lations to those relations that satisfy the data 

dependencies. In [IL31 it is shown how to take 

into account data dependencies in the system 

where only positive selections are allowed. Since 

we feel that this system is too restrictive, we 

present a system that supports the complete re- 

lational algebra and functional and full join 

dependencies. Chapter 2 of this paper contains 

the necessary preliminaries and our model that is 

based on so called tables, and Chapter 3 contains 

a formal criteria for the correctness of a rela- 

tional algebra on tables, along with the correct 
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redefinition of the complete relational algebra. 

In Chapter 4 we give a formal criteria for depen- 

dency satisfaction in tables, and we present a 

method for transforming a table so that the cor- 

responding set of relations will be restricted to 

those satifying a given set of functional and 

full join dependencies. The transformation proce- 

dure is called a chase, and it can also be re- 

garded as a generalization of previously known 

chase methods. 

2. PRELIMINARIES 

For the definitions of the basics of the re- 

lational model we refer to [Mai, Ull]. Relation 

schemes will be denoted by Rl, R2, . . . . and their 

instances or relations by rl, r2, . . . , where ri 

is a relation over R i. The set of all relations 

over R, is Rel(R,). For notational convenience 
l. 

we assti one 

D. A tuple is 

primed, and t( 

attributes X. 

by n and the i 

(iifinite) camson attribute domain 

denoted by t, possibly indexed or 

X) is the restriction of t to the 

The projection operator is denoted 

&r operator by *. By a relational 

expression f we mean a well formed expression 

built up from projection, selection, union, join 

and difference. ,A PJ-expression is a relational 

expression involving only projection and join, 
. 

for instance nAB 1 (R )*rtBC(R2). In general, if f 

is performed on relations r 1, r2, . . . . rn we can 

write f(r1, r2, . . . , rn) . The result of perform- 

ing f is always ‘a single relation of appropriate 

type. 

X->A denotes that X functionally determines 

A, where A is a single attribute. The join depen- 

dency for the set R = {Rl, R2, . . . , Rp] is de- 1 

noted by *[RI or *[Rl, R2, .*., 

pendency *[RI is 

Rpl. The joi; de- 

for the scheme R, if iUlRi= 

R. A set of functional dependencies (FDs) and 

full join dependencies (JDs) is denoted by I. The 

set of JDs in I is denoted by IJD. It is assumed 

that I is defined for some scheme R. Sat(X) is 
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then the set of relations over R that satisfy 

the dependencies in I. 

The device for representing a set of rela- 

tions is called a table. Our tables are essenti- 

ally extensions of so called c-tables of [IL2]. 

A table T consists of two parts, a set of c-tu- 

pies and a set of general conditions, denoted TC 

and TC. For building up a table we need a set G 

of all expressions with atoms of the form (x=a), 

(x=y), true and false combined by A, v, 7 and 

* (conjunction, disjunction, negation and impli- 

cation). In the atoms x and y are variables from 

a countably infinite set V, and a is a value 

from the domain D. The domain values will be 

called constants. The variables are used to ex- 

press the null-values, and we assume that VllD=$. 

A c-tuple t over R is a mapping from RU{Con] to 

VUDUG, such that t(A)EV or t(A)ED for AER, and 

t(Con)EG. A c-table TC over R is a finite set of 

c-tuples over R. TC is a finite set of general 

conditions {glgEG). By definition, true is al- 

ways a member of TC. The set of all tables over 

R is denoted by Tab(R). A multitable T is a se- 

quence (rl, T2, . . . . Tn> of tables TiETab( 

such that all tables have the same set of gener- 

al conditions T C. Tab(R) is the set of all multi- 

tables over R. 

A valuation v is a mapping from VUD to D, 

such that for xEV, v(x) = a for some aED, and 

v(a) = a for all aED. Valuations are extended to 

c-tuples by defining (v(t))(A) = v(t(A)) for AER 

and (v(t))(Con) = true if t(Con) comes to true 

when all variables x in t(Con) are substituted 

by v(x). Else (v(t))(Con) is false. The valua- 

tion v applies to the general conditions in T G 
in the same way, and v(TG) = true if v(g) = true 

for all &TG, 

The set of relations that a table T repre- 

sents is denoted by Rep(T) and it is defined in 

the following way: 

Proceedings of the Tenth International 
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(Definition 1. For TETab(R), Rep(T) = {r ]rfRel(R) 

and there exists a valuation v such that r = 

v(TC) and v(TG) = e], where v(TC) = {v(t(R))] 

tETC and v(t(Con)) - = true]. For a multitable T = 

+=+ l *., T,>, TiETab Rep(T) = {<rl, . . ..rn>]- 

riERel(Ri) and there exists a valuation v such 

that ri = v(T. 
k 

) and v(TG> = z]. 

Choosing r = v(TC) means that we make the closed 

world assumption [Rei]. The open world assumption 

would correspond to r 2 v(TC). 

The next example shows a table and two of 

the relations that it represents. Note that the 

set Rep(T) in this and most other cases is infi- 

nite. 

Example 1. TETab(SWPLIER PART PROJECT) 

TC(SWPLIER PART PROJECT Con) 

Jones x steel x=boltvx=nut 
Smith y z true 

TG= {z, x=y, z=concrete] 

{r 1, r2} 5 Rep(T) 

rl(SWPLIER PART PROJECT) 

Jones bolt steel 
Smith bolt concrete 

r2(SlJPp~IER PART PROJECT) 

Smith nail concrete 

Given two tables Tl and T2 over the same 

scheme, we say that T2 contains Tl, den. Tl c T2, 

if Rep(T1) 5 Rep(T2), and that Tl is equivalent 

to T 2, denT1 = T2, if Tl r T2 and T2 E Tl. The 

equivalence of two tables means that they define 

the same set of relations, since we clearly have 

Tl = T2 if Rep(T1) = Rep(T2). Also, v(T1 ) = 
C 

v(T 
2C 

) and v(T 
lG 

) = u(T 
2G 

) for all valuations v 

necessitates Tl = T2. 

A condition g (or a set of conditions TG) 

implies a condition g', den. g * g', if v(g) = 
Singapore, Augwt, 1994 
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true implies v(g’) = E (or v(TG) = true im- 

plies v(g’) = true) for all valuations v. Mutual 

implication is denoted by e (equivalence). The 

following normalization rules can now be applied 

to tables. 

(1) If for some tETC, ‘r(TG At(Con)), then TC 

is replaced by TC -It}. 

(2) If there exists c-tuples tl, . . . , tkcTC, 

TETab(R), such that tl(R) = . . . = tk(R), 

then TC is replaced by TC-{tl, . . . , t,)U{t), 

where t(R)=tl(R) and t(Con)=iil, ti(Con). 

A table T is said to be normalized, den. To, if 

none of these normalization rules can be applied 

to T. (There are also other normalization rules, 

but these two are sufficient for our purposes.) 

Normalization of T does not affect Rep(T). We 

have T E To. Replacing conditions in c-tuples or 

in TG by equivalent ones also preserves equiva- 

lence. 

For some purposes we need a form of set in- 

clusion for tables. This modified inclusion is 

defined followingly: 

Definition 2. Let Tl and T2 be two tables .from 

Tab(R). Tl 5 T2, T2 m-includes Tl if 

(1) for each &Tl there exists a g’ET2 such 
G G 

that g=g’, and 

(2) for each tlETlC there exists a t2ET2C such 

that tl(R) = t2(R) and tl(Con) st2(Con). 

If both Tl $ T2 and T2 2 Tl, we say that Tl is 

nrequal to T2 and denote it T 1 rT 2. Clearly m- 

equality implies equivalence, i.e. Tl c T2 im- 

plies Tl sT2, but note that Tl $ T2 does not im- 

ply Tl c T2. 

3. EXTENSION OF THE RELATIONAL ALGEBRA 

As mentioned in the introduction the cor- 

rectness criteria for an extension of the alge- 

bra to a table T is that we only conclude infor- 

mation that holds in every possible state of the 
real world, i.e. in every relation in Rep(T). If 

we denote the extension of a relational expres- 

sion f by ? we can formalize the correctness cri- 

teria as 

f(Rw(T)) - Rep(*(T) 1 

for all relational expressions f and multitables 

T. The lefthand side of the equality stands for 

{f(rl, . . . , rr,)l<rl, ..,, m>ERep(T)), and the 

multitable T is taken as <Tl, . . . , Tn> of the 

tables Ti that 1 is applied on. The result '1(T) 

is a table of appropriate type. Our notation re- 

veals that we perform non-unary operations only 

between tables with the same set of general con- 

ditions, i.e. between individual tables of a 

multitable. 

Imielinski and Lipski [IL21 have given a 

correct extension of the relational algebra for 

c-tables. The same extension can with a slight 

modification be used for tables also. Since we in 

the sequel only will need PJ-expressions we will 

be contended with giving only the definitions for 

the extension of the project and join operators. 

Definition 3. For a table Taab(R) the projection 
A 
nX(T) on a set X c R is a table T”ETab(X) such 

that Th * { t(XUCon) 1 tETC} and Th = TG. 

Definition 4. For tables TlETab(R1) and T2 E 

Tab(R2) with the same set of general conditions 

the join T 1 *T2 of Tl and T2 is a table T” E 

Tab(RlUR2) such that Tk = Tl and Tb = {tlQ t2 I 

tlETlc 
G4 and t2ET2C , where tl t2 is the c-tuple 

over RlUR2 with 

(5 * t2HA) = tlW, if AERl 

t2 (A) , if AER2-Rl 

Procsedings of the Tenth International 
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(5 o t2) (Con) = tl(Con) A t,(Con) A 

A 
AERlnR2 

(tl(A)=t2W. 

As an illustration, consider 

Example 2. Tl (A B C Con) 
C 

T2 (C D E Con) 
C 

a x c -(x-b) c d e true 
a'b y true z d' e' 1(z=c") 

c'd'e true 

={true, -1(y=c)1 TlC=T2C - 

(T~~T~)~(A B C D E Con) 

a x c d e l(x=b)AtrueAc=c 
a x c d'e'~(x=b)A~(z=C)')Ac?z 
a' b y d' e' trueA~(z=c")Ay=z 
a'b y d' e trueAtrueAy=c' -- 

(Tl - ST2)G={true, l(y=c>) 

The conditions of the first and last c-tuples of 

CT1 “T21C can be replaced by ~(x=b) and y=c. 

Also, the un-normalized join of Tl and T2 con- 

tains the c-tuple <a’ ,b,y,d,e, trUeAtrUeAy=C>, 
-- 

but since (-~(y=c)Ay=c) =false the tuple is re- 

moved. For a similar reason the c-tuple 

<a,x,c,d' ,e, l(x=b)AtrueAc=c'>does not belong to 

the normalized result. 

The rest of the relational operators:can":be 

extended to operate on tables along the same 

lines as the project and join operators, and the 

following theorem follows easily from Theorem 

9.2 of IIL21. 

Theorem 1. For any well formed expression f built 

up from projection, selection, union, join and 

difference, and multitables T, we have 

f(RepU)) = Rep(~U) 

In the ordinary relational algebra a rela- 

tion r is always included in the result of cer- 

tain PJ-expressions on r. A similar property 

will be needed for the extended algebra. 

ProceedInga of the Tenth International 
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P 
Lemma 1. Let R = RI, . . . . R 

P' 
&Ri=R and T E 

Tab(R), Then T 5 A, 
1 

(T)*... 'A, (T). 
P 

Proof. Property (1) of Definition 2 is immediate 

since TC is not changed. For property (2), take 

an arbitrary tETC. By Definition 3 t(R;UCon) E 

A, (T), for ill,..., p. By inductive use of Defi- 

niiion 4 ^n 
R1 

(T) a . . . QfiR (T) will include a c- 
P 

tuple t' with t' (R) = t(R) and t' (Con) = 

(t(Con)At(Con) A (t(A)%(A)) A . . . 
AERlllR2 

A t(Con) A t(A)=t(A))). Now t' (Con) is clearly 
AER p-lnRp 

equivalent to t(Con), so the result fol1ows.m 

4. EXTENSION OF DEPENDENCY SATISFACTION 

A set X of dependencies restricts the rela- 

tions that model the real world to those in 

Sat(X). For a table T we make the natural inter- 

pretation that T "satisfies" X if 

Rep(T) 5 Sat(X). 

Thus we need a method for transforming T in or- 

der to cut down Rep(T) to Rep(T)flSat(X) for any 

table T and set X of FDs and JDs. This cutting 

down is necessary, since the extended algebra 

operates on the basis of Rep(T), and the set 1 

implies that not necessarily all members of 

Rep(T) are possible states of the real world. 

The method is called a chase, and its idea 

will.be clarifyed by concidering the algebraic 

counterparts of FDs and JDs. These counterparts 

are special cases of so called algebraic depen- 

dencies of [YP] (see also [Abi]). Stated with a 

momentary simplification, an algebraic dependen- 

cy is a statement of the form f(R) c R, where f 

is a PJ-expression. A relation r over R satis- 

fies such a dependency if f(r) 5 r. Since we de- 

mand the inclusion to hold for all members of 

Rep(T), where TETab(R), we can using the defini- 

tion of containment and Theorem 1 write the fol- 

lowing deduction chain: 
Singapore, August, 1984 
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T “satisfies” f(R) 5 R if and only if 

f&p(T)) 5 Rep(T) if and only if 

Rep&T)) $ Rep(T) if and only if 

Our chase is essentially a method for en- 

forcing the containment (*) by applying the ex- 

pression 1 on T. The enforcement will always be 

possible, even if Rep (T) f&at (E) ~0. There are two 

reasons for the intersection to be empty. First, 

it might be that every relation in Rep(T) vio- 

lates a FD in E. Then we must make Rep(T) equal 

to the empty set. Second, the relations in 

Rep(T) might violate some JDs of E. In this case 

we will add the necessary c-tuples to T, and thus 

we have in fact done more than just cutting down 

Rep(T) to Rep(T)nSat (I). We shall be more precise 

after introducing some necessary definitions. 

First we concider completions of relations: 

Let rERel(R). The completion of r with respect to 

t is CornpI = s, such that s 3 r and &Sat (EJD), 

and there is no relation s’E Sat(EJD) with 

“? 
s’ z 1:. CompE(Rep(T)) = {CompE(r> I &Rep(T)). 

The completion means that the tuples that are 

necessary for making r satisfy TJD are added in 

s. The completion always exists and it is unique 

(see [Mai, exercise 8.411). We are alsofree to 

choose any cover for I, i.e. if Sat(E) = Sat(E”) 

then Compz(Rep CT) 1 = Compyt (Rep 0) > l 

For the definition of algebraic dependen- 

cies we need the notions of extended schemes and 

relations. An extended relation scheme P of R 

has two copies of every attribute. For instance, 

if R = ABCD then z = ABCDABCD. An extended rela- 

tion 7 of r over R is accordingly I<t,t>ltEr). 

The two different copies of an attribute will be 

distinguished by the subscripts 1 and 2. We make 

the same kind of extensions to tables also, 

except that the conditions are not repeated. 

Thus an extended table for TETab(R) is a table 

%Tab a) with T, = {<t(R),t(R),t(Con)>ltcTc} and 

% = TC. An example will clarify the point. 

Example 3. TC(A B C Con) TG = {true, ~(y=c>) 

a x c l(x=b) 

TC(AlBlClA2B2C2Con) TC - {true, 
1(y-cl I 

a x c a x c 1(x-b) 
a b y a b y true 

An algebraic dependency [YP] is a statement 

f<Q 5 f 61, where f and f are PJ-expressions. 

We will however only need the counterparts of 

FDs and JDs. The FD E->A for relations over R 

corresponds to the algebraic dependency 

‘AlA $A1 tx) *nXlA2 c?i>> 5 ‘Al% (‘1 l 

The JD *[R~,...,R~], &Ri = R, corresponds to 

to the algebraic dependency 

mR 
1 

(R)*...*nR (R) c, R. 
P 

Rere correspondence means that the sets 1 of FDs 

and JDs and E’ of the corresponding algebraic 

dependencies express the same constraints, i.e. 

that Sat (1) = Sat (I’). The algebraic counterpart 

of a JD should not raise anyones eyebrows. For 

the counterpart of a FD we give the following 

example of a relation that does not satisfy the 

dependency A->B. 

Example 4. r(A B) r(A1B1A2B2) 

ab abab 
a b’ a b’ a b’ 

RB B fis> (BlB2) 
12 - 

bb 
b’ b’ 

bb 
b b’ 
b’ b’ 
b’ b 
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The chase procedure can now be described with 

the following algorithm. 

Algorithm Chase 

Input: A Table TETab(R) and a set 1 of FDs and 

JDs for R 

Output: A table T' such that 

Rep(T') = Compz(Rep(T)) flSat(1) 

Method: T' <- T 

repeat foreach *[R~,...,R~~ ET do 

T' <- ?I 
R1 

(?)?..4fiR (e 
P 

until the number of c-tuples in T' 
C 

no longer increases 

foreach X->A Et do begin 

T"<- 9 
A1A2 

(A 
XIAl 

<-+fi 
X1A2 

CT)> 

foreach t E Ti do 

if t(A1) 4t (A2) then 

if t(A1) and t(A2) both 

are constants 

end 

then TL <- ThU{~t(Con)) 

ehe Th <- ThU {t(Con) * 

t(A1) =t(A2)) 

end of algorithm chase. 

Some examples of the chase can be found in 

the end of this chapter. We now proceed to prove 

the correctness and some properties of the chase 

Theorem 2. For a given set of FDs and JDs and a 

table T, the chase algorithm only requires a 

finite number of steps and the resulting table 

T' is finite. 

Proof. The algorithm does not introduce new var- 

iables or constants, so the resulting table T' 

is finite. Furthermore, each time we perform 

the repeat-until loop the number of c-tuples in 

Tb increases with at least one (except of course 

during the last loop). The loop is thus per- I' 

formed only a finite number of times. Since 

each FD is applied only once, the whole algo? 

rithm terminates after a finite number of 

steps.u 
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Different choices of the order for applying the 

JDs will result in different tables. In the full 

version of this paper we prove that these tables 

are m-equal, so the order is of no significance. 

Usually we will let T' denote the result of 

chasing T with some arbitrary order. 

The next lemma gives the relationship be- 

tween T and T'. 

Lemma 2. Let T' be the result of chasing a table 

T with a set of FDs and JDs. Then T c T'. 7 
Proof. The repeat-until loop is a repetitive ap- 

plication of PJ-expressions fullfilling the condi- 

tions for Lemma 1. Thus the result holds at this 

stage. The FDs only cause adding of conditions 

to T G' 
and hence T G c Th and consequently TcT'.n 

T 

The main theorem states that the resulting table 

T' has the desired property. The proof of the 

theorem is given in the full version of this 

paper. 

Theorem 3. Let T' be the result of performing 

the chase on a table TETab(R) with a set E of 

FDs and JDs. Then Rep(T')=Compz(Rep(T))flSat(E).n 

In the chase of [MMS] any cover for the set of 

dependencies can be used. The results will be 

identical. In our chase we will get equivalent 

tables, which is sufficient for our purposes. 

Corollary. If T' is the result of performing the 

chase with a set E of FDs and JDs on a table T, 

and T"is the result when using a set E', where 

Sat(Z) = Sat@'), then T' = T" . 

Proof. By Theorem 3 and the definition of com- 

pletions Rep(T') =Comp,(Rep(T))flSat(E) = 

Comp~,(Rep(T))flSat(~') = Rep(T").n 

Before closing this section we will give 

two small examples of the chase. These examples 

show the kind of information that has not been 

deducable by previously known chase methods (i.e. 

[IL3, MMS, Vas2]). T' will as usual denote the 

result of chasing T with Z. 
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Example 5. I = ~A->B) 

TC(A B Con) 

a b true 
x b’true 

Th(A B Con) 

a b true 
x b’true 

Example 6. t = (*[AB,AC]) 

TC(A B C Con) 

a b c true 
x b’ c’ ttlle 

Th(A B C Con) 

a b c true 
x b’ c’ true 
xbc’= 
x b’ c x-a 

TG - 
= {true) 

Tk - {true, 1(x-a)) 

TG = (true) 

T;; = {true) 

In Example 5 we are able to express the fact 

that x cannot equal a. Example 6 is perhaps 

more interesting. Any relation in CompI(Rep(T)) 

n Sat(I) should include two or four tuples, de- 

pending on the value of x. The table T’ ex- 

presses exactly this and the content and condi- 

tions of the extra tuples. The conclusion is 

that the expressive power of our tables is re- 

quired for properly handling data dependencies. 

These two examples can in fact be used to show 

that the usual device fur representing null- 

values, in [IL2, IL31 called v-tables (ordinary 

relations with variables), is not capable of 

fully supporting data dependencies. That is, 

there are v-tables T and dependencies I such 

that there exists no v-table T’ for which 

Rep(T’) = CompI(Rep(T)) IlSat (I). The problem is 

also noted by [IL3]. 

5. CONCLUSIONS 

We have presented a relational system for 

handling null-values of type “value exists, but 

is unknown”. The key idea is that a relation with 

null-values, here modelled by a so called table, 

represents a set of relations, one of which cor- 

responds to the incompletely known state of the 

real world. The formal criteria for the correct- 

ness of an algebra that operates on tables is 

that only information that holds in every rela- 

tion in the represented set is inferred. We have 

correctly extended the complete relational alge- 

bra to operate on tables. 

The main contribution of this paper however 

lies in the capability of the system to support 

functional and full join dependencies. The formal 

criteria for a table to “satisfy” a set of depen- 

dencies is that the dependencies are satisfied in 

every relation in the set that the table repre- 

sents. This strong form of satisfaction is re- 

quired for maintaining the correctness of the 

algebra in the precence of dependencies. We have 

then presented a transformation algorithm, called 

a chase, that enforces a given set of dependen- 

cies on a table in such a way that the dependen- 

cies are satisfied in every relation in the set 

represented by the transformed table. This chase 

algorithm can also be regarded as a generaliza- 

tion of previously known chase methods, and we 

have given some examples of the kind of infor- 

mation that only our novel chase is able to de- 

duce. Our results also show that the expressive 

power of our tables is required for fully sup- 

porting data dependencies in databases with in- 

complete information. 
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