
Ski: A Semantics-Knowledgeable Interface 

Boger King and Stephen Melville 

University of Colorado 
Department of Computer Science 

Boulder, Colorado, 80309 

Abstract 

The Semantics-Knowledgeable Interface (Ski) is 
designed to provide a powerful - but usable - inter- 
face to databases. To do this, it combines the expres- 
siveness of semantic models, the broad communica- 
tions “bandwidth” of graphics, and a novel approach 
to the representation and manipulation of database 
schemas. 

1. lIltroduction 
This paper describes a database interface which is 

under construction. Ski, the Semantics-Knowledgeable 
Interface, is built on top of an existing semantic data- 
base implementation called the Semantic Database Con- 
structor (see [FKM84]). Ski is intended as a naive inter- 
fade, but allows access to a full semantic data deflnition 
and manipulation language called Semdal (see [KS34]). 
The implementation, language, and interface together 
form a semantic DBMS called Sembase. 

Sembase is based on a semantic model. Semantic 
modeling in general is discussed in [KB84b]; briefly, 
semantic database models use a semantic network 
approach in providing data modeling constructs which 
ere more expressive than traditional data models (i.e., 
relational, hierarchical, network). A semantic model 

rovides facilities for detiing non-atomic objects 
P abstraction) through attributes and for constructing 
type/subtype hierarchies (generalization). The model 
under1 ‘ng Sembase is described in more detail in 
[KMBZj?and [KMEMa]. 

The next section provides a brief overview of Ski. 
Section 3 describes the screen layout of Ski. Due to 
space limitations a simple example, rather than a com- 
plete system description, is given in Section 4. 

This work was supported by IBM under a Faculty Development 
Award (1984). 

Permission to copy without fee 011 or pan of this material is granted 
provided that the copies are not made or distributed for direct commercial 
advantage, the VLDB copyright notice and the title of the publicaiion and its 
date appear, and notice tk given that copying is by permission of the Very Large 
Data Base Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the Tenth Intemationel 
Conference on Very Large Data Ssses. 

2. Ovemiew 
A few researchers have examined the issue of using 

a semantic database as the framework for a graphics- 
based user interface (e.g., MPS [Wi33]; and GUIDE 
[WK62]). A (non-graphics) interface based on a semantic 
model is described in [Mo83]. In [SK821 a graphics-based 
relational browser is describe& while it does not use a 
semantic model, it does support powerful window and 
icon manipulations. 

Semantic models are both expressive and complex. 
The challenge in creating a semantic interface lies in 
making semantic modeling a manageable tool. Ski does 
not rely on a statically defined graphical layout of the 
schema. Instead, we attempt to use the semantic rela- 
tionships inherent in the schema definition to dynami- 
cally drive the graphical representation. The portions of 
the database to be displayed and the types of relation- 
ships depicted vary with each user’s area of interest, as 
indicated through their use of the SKI operators. 

Ski uses a formated screen to simplify the represen- 
tation of semantic schemas and supports semantically- 
motivated operators. While interacting with Ski, the user 
uses these operators to create a session view. The user 
selects schema components of interest and peruses the 
schema for related information. The unique feature of 
Ski is that this perusing is not performed navigationally, 
but semantically. The user may also reconfigure or 
access the database using the Ski operators. 

Ski provides three classes of operators for perusing 
the schema while creating a session view. Ski allows the 
user to: (1) explore the direct semantic relationships in 
the schema by examining attributes, subtypes, con- 
straints, end parent types, (2) determine how two 
schema components are related by locating and display- 

the paths through the schema which connect them, 
8 . 3 view the update entimm.ent of a specific schema 
component with respect to a particular update operation 
by displaying the schema components which are likely to 
be affected by performing that operation on the 
speciAed component. 

These last two sorts of perusing are actually quite 
complex, due to the existence of subtypes. The predi- 
cates which deAne the membership of subtypes may 
involve schema components which structurally are from 
very diierent parts of the schema. As an example, a 
smart student may be defined as one who gets an A in a 
course such that the professor who teaches that course 
is known to give tough grades. The information about a 
professor’s grading history may not be “near” the 
student’s information schematically, but the two are 
very closely rel,ated. 

Ski consists of six window subsystems. First, the 
user enters the Hello subsystem, which provides a brief 

Singapore, August, 1994 

30 



summary of the functions of Ski, points out the existence 
of the Help subsystem, and allows any previously saved 
session views to be recalled. The Schema View subsys- 
tem is then entered; it is used to construct and/or 
peruse a session view. The Data View subsystem is used 
to examine the attribute values and subtype member- 
ships of the session view. The Data View also provides 
access to the language Semdal. The Report Generation 
subsystem is used to format data for output. The Help 
subsystem documents the structure of Ski and provides 
tutorials on the use of the various operators. Finally, the 
Exit subsystem is used to store a session view. 

3. TheFbrmatedScreen 
While constructing a session view using the Schema 

View subsystem of Ski, the user is presented with a for- 
mated screen (see figure 1). The screen provides a 
medium for representing the complicated structure of 
semantic schemas. The screen is broken into a variable 
number of horizontal stripes. The top stripe represents 
one or more parent types, which may be any of the types 
or subtypes in the schema. The next stripe represents 
attributes of the parent types. 

Attribute ranges are shown in the third stripe. 
Predicates based on any of the parent types are shown in 
the next stripe and subtypes of the parent types are 
shown in the fifth stripe. Then, the sixth stripe (not 
shown in the fisure) represents attributes of the range 
types from the third stripe. The seventh through ninth 
stripes show the ranges, predicates, and subtypes of the 
range types from stripe three. The stripes continue in 
this fashion. Any predicate stripe may reference a type 
or subtype from the parent stripe or any range stripe. 

The usor perform3 a Show and C~OOSSS Excluded 
Types from the submenu, 

Figure 1. 

A three button mouse is used to control Ski opera- 
tions. The Drag button is used to scroll, expand, c6l- 
lapse, or move icons on the screen. The Select button is 
used to bind a schema component on the screen as a 
parameter to an operation. The Menu button is used to 
choose Ski operations. When a menu item (on the left 
border of figure 1) is picked with the Menu button, a gen- 
eral category of operations is chosen. Another menu 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

31 

(see the box at the top left of figure 1) then appears. 
One more pick with the Menu button chooses a specifk 
operation. 

Any component placed on the main screen become? 
part of the session view. Certain operations (as 
described below) use a separate *screen. In order for 
objects appearing on a separate screen to be placed in 
the session view, the Include operator must be used. 

The user may scroll up or down to view all stripes; 
for added screen space, any stripe may be removed from 
the screen (but not from the session view) by selecting 
the Collapse operator from the top menu stripe (in the 
black border on figure 1) with the Menu button. Expand 
is used to make a stripe reappear. Also, square icons 
may appear at either end of each stripe (see figure 4). If 
there is a token which has “fallen off’ a stripe, a square 
will appear; more than one square means that a number 
of tokens have fallen off. The user may scroll to see the 
end of the stripe to flnd these tokens. Scrolling is per- 
formed by picking the appropriate arrow (above the 
squares) with the Drag button of the mouse. 

4. Asample Besaion 

The ABC Widget Company is a distributor of widgets. 
Customers submit sales orders for desired parts. If 
there are not enough parts in inventory to flll a sales 
order, a purchase order is placed with a supplier. Unfor- 
tunately, ABC is suffering from a cash flow problem. 
They have no money to pay suppliers. Mr. Fred Jones, 
the president of ABC, is about to use the Ski user inter- 
face to assess the consequences of this problem. 

Mr. Jones begins his quest by entering the Schema 
View subsystem and using the menu button to choose the 
o erator Show under the Parent Types stripe (see F’iiure 
1 . He selects Show Excluded from the submenu. This P 
chooses all root types (not subtypes) which are not 
currently in the session view and adds them to the view. 

Mr. Jones is trying to flnd out what will happen to his 
customers if he does not pay his suppliers. First, he 
selects Suppliers and Customers (with the Select But- 
ton). The selected components are displayed in reverse 
video to provide visual confirmation that the desired 
types have been selected. He then uses the Menu button 
to invoke the How Related operator with respect to the 
selected types. 

The How Related operator gives Mr. Jones a separate 
screen showing the shortest path throu h the schema 
connecting Suppliers and Customers 6 see figure 2). 

The user reqwsb the next shortest How Related path. 
The raul~ are to be Included In the session vtew. 

Figure2. 
Singapore, Augur& 1994 



.Invoking the Next operation on the How Related submenu 
would cause the next shortest schema path to be 
displayed. Mr. Jones “picks” the Include operation (using 
the Menu button on the mouse) to add the displayed 
oomponents to his session view, and exit the How Related 
screen. 

Note that on t.he How Related screen, only those 
schema components lying on the connect 

Y 
path are 

displayed. If Ski relied upon a pre-defined i.e. static) 
graphical representation of the schema, any attempt to 
show how two schema components were related would be 
likely to include considerable “noise”; that is, additional 
schema components not relevant to the current query. 
Using a dynamic representation allows rapid isolation of 
pertinent schema components. 

Mr. Jones would like some more information about 
Parts. He is searching for some reference to money. He 
uses the Select button to choose Parts and then chooses 
the Show Attributes operation on the Parent Types 
stripe. The result is shown in figure 3. The four atomic 
types (Real, String, Boolean, and Integer) are 
represented by circles. So, in figure 3, we see that Parts 
have an attribute “Cost” whose range is Reals and an 
attribute “Part No.” whose range is Strings. (Note that 
Mr. Jones has also collapsed the Predicate end Subtype 
stripe in order to simplify his screen image. This was 
performed by picking the stripes to collapse with the 
Select button and then choosing the Collapse operator 
from the top of the screen with the Menu botton.) 

The user porf- 0 Show Attributes operaikm on the 
selected Parent Types. 

Figure 3. 

On the Parent Types Move submenu (not shown) is a 
Idove Bundle operation. This allows selected Parent 
Types {together with th eir attributes, and Subtypes) to 
be horizontally dragged en mass& to a less cluttered por- 
tion of the session view. Mr. Jones selects Suppliers and 
Customers, invokes the Move Bundle operation, and, 
using the Drag button. moves the bundle to the right of 
the screen. The result is shown in figure 4. The con- 
tinuation icons have appeared, informing Mr. Jones that 
there is information off screen. It should be noted that a 

Procaedlngs of the Tenth Intematlonal 
Conference on Very Large Data Bases. 

32 

Using the moue, the Bundle Is dragged lo lhe rlghl of the scrwn. 

Ffgure 4. 

Dreg operation may result in a number of crossed lines; 
the user may use the Re-Draw operation from the top 
border to simplify line positions. 

It is time for Mr. Jones to isolate the data he needs. 
He expands the Predicate stripe, and chooses its Change 
operation. This will allow him to alter the schema. After 
choosing the Create operation, Mr. Jones uses a skeleton 
(figure 5) to create his predicate. What he wants is all 
parts that are on both sales and purchase orders. He 
may bid the attributes in the predicate with either the 
Select button or by using text. 

The praliule of lhs Subtype Is specllled. 

Fiure 5. 

In the example, Mr. Jones writes in Parts of Sales 
Orders and Parts of Purchase Orders (using dot nota- 
tion), two set inclusion operators (chosen from a menu), 
the free variable X, and the logical AND operator (which 
may also be chosen from a menu). He names the new 
subtype Committed Parts (see figure 6). 

Singapore, August, 1984 



References 

‘me PrbdlWb of the Sublype IS apacIfIed. 

Figure 6. 

Mr. Jones’ last step is to enter the Data View subsys- 
tem to view the Cost attribute of each part in Committed 
Parts (see figure 7). This lets him know how much capi- 
tal he must find to satisfy his customers. He may want 
to print this out using the Report subsystem. 

COST OF COMMITTED PARTS 

Part Number: cost 

AJ7698 400.00 
D7-113 25.00 
M 16-x______1605.00 
QAJ- 11L 700.00 
ZZ-IMT 67.98 
2398- 15 560.00 

The Corresponding data is viewed. 

Figure 7. 

5. SystemStatus 
Ski is currently being constructed to run under 

UNIX on high-resolution graphics workstations (SUNS). 
The underlying semantic database implementation 
(Sedaco) and th e 1 anguage Semdal have been fully imple- 
mented and are operational on the SUNS. 

Acknowledgements 

The authors would like to give their sincere thanks to 
Vickie Clark and Scott Hudson who produced the figures 
for this paper. 

Proceedings of the Tenth International 
Conference on Very Large Data Baser. 

Farmer, D., R King, and D. Myers, “A Tool for the 
Implementation of Databases”, in &ocee&tgs of 
COMDJX ‘84, Computer eata &gineerimg Canfe? 
enoe, Los Angeles, CA, April 1954. 

King, R. and D. McLeod, “The Event Database 
Specification Model”, Proceedings of the Second 
Inte7natGn.d Conference on Dafabases: Irnpr* 
Usability and Respon&.Gmess, Jerusalem, Israel, 
June 1982. 

C~fW 
King, R and,D. McLeod, “An Approach to Database 
Design and Evolution”, in Concepti Modeling, edi- 
tors M. Brodie, J. Mylopoulos, and J. Schmidt, 1934. 

[mwbl 

King, R, and D. M&sod, “Semantic Database 
Models”, in Database Design, editor S. B. Yao, 1954 
(to appear). 

[KS841 

King, R and S. Sanke, “A Semantic Data Language”, 
F+ocaadings of the 1984 Trends and &Axtkms 
Conference, May 23-24, 1954. 

[Mo83] 

Morgenstern, Matthew, “Active Databases as a Para- 
digm for Enhanced Computing Environments”, 
Roceedings of the Ninth InternatimLal Confemnce 
on Vby tige Databases, October 31 - November 2, 
1933 pages 34-42. 

[SK821 

Stonebraker, M. and J. Kalash. “TIMBER A Sophisti- 
cated Relational Browser”, Proceeqs of the 
Eighth Internals Conference on %y Large 
Datahses, 1962 pages l-10. 

[Wif33] 

Wilson, G., E. Domeshek, E. Drascher, and J. Dean, 
“The Multipurpose Presentation System”, Aoceed- 
ings of the Ninth International Conference on Very 
Large Databases, October 31 - November 2, 1983 
pages 55-69. 

[WK82] 

Wong, W.K.T., and I. Kuo, “Guide: Graphical User 
Interface for Database Exploration” Proceews of 
the Eighth International Cbnference on Very Large 
Databases, Mexico City, 1982, pages 22-32. 

Singapore, August, 1984 

33 


