
Query Processing on Personal Computers: A Pragmatic Approach

(Extended Abstract)

Ravi Krishnamurthy Stephen P. Morgan

IBM T. J. Watson Research Center
Yorktown Heights, New York

Abstract

We present a query processing strategy for personal computers that requires
at most a single sequential scan of the database for nearly all queries. On
personal computers, most queries are ad-hoe, produce little output, and op-
erate on small databases limited by secondary storage. For these queries we
can use the relatively large amount of main memory to offset the slow sec-
ondary storage accesses. This is our intuitive motivation for the two-step
query processing strategy which we present in this paper. In the first step
we use a reduction scheme to find, for a query, a subset of the database which
can fit into main memory. This step requires at most a single sequential scan
of the database. In the second step we compute the answer to the query
without further access to secondary storage. Since traditional query process-
ing strategies are nonlinear in secondary storage access, we contend that our
strategy is superior for nearly all queries; for the remainder, our strategy de-
grades gracefully. Even though we use the example of query processing on
personal computers throughout this paper, the strategy we present is general,
and applicable to any database management system which has a large amount
of available main memory.

1 Introduction
The proliferation of personal computers as an inexpensive tool for individual
computing has given rise to a new class of database applications, character-
ized by the fact that they run on machines that have a comparably large
amount of memory, and operate on data that is limited by available second-
ary storage. Further, most transactions in this environment are ad-hoc que-
ries, as compared to the long-running batched programs of the traditional
environment.

The ratio of memory to database size is an indicator of the number of sec-
ondary storage accesses required to process a given query. For example, if
the ratio is 1: 1, sequentially reading the entire database into memory would
allow for an in-memory query processing algorithm, while a ratio of 1: 100
implies the need to “page-in” a large number of secondary storage blocks.
Because the database can be no larger than secondary storage, the ratio of
memory to database size is limited by the ratio of memory to secondary
storage, which, on personal computers, is typically between 1:3 (i.e.,
256Kbytes memory : 640Kbytes disk) and 1:20 (i.e., 512Kbytes memory :

Pwmiwion to copy without fee all or part of thk material LF granted
provided that the copies arc not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the public&on and its
data appmr, end notice is givat that copybtg is by permission of the Very Large
Da& Base Endowment. To copy otherwise, or to republish, rcquins a fee
and/or special permission from the Endowment.

:,t

Proceedings of the Tenth Intematfonal
Confwancs on Very Larga Data Bssas.

1OMbytes disk). On the other hand, the corresponding ratio for mainframes
is typically worse than I : 100.

Most ad-hoc queries do not create large amounts of output data. The result
of an ad-hoc query is usually presented to a user at a terminal: thus. the
amount of output data is seriously limited by the user’s ability to comprehend
it. For instance, a 50 KByte output is at least 25 screens full of data. Such a
large answer, if not plotted or aggregated in some way, is very hard to com-
prehend.

Finally, the data access times of floppy disk drives (and Winchester-type
hard disk drives) are much longer than for their mainframe-attached
counterparts. Achieving reasonable query-processing times even on
mainframes has been difficult; the slower secondary storage associated with
personal computers magnifies this problem.

In this paper we will present a query processing strategy which offsets the
slow secondary storage devices of personal computers with the relatively
large amount of available memory. Even though we will use the example of
query processing on personal computers throughout this paper, the strategy
we will present is general, and applicable to any database management sys-
tem that has a large amount of available memory.

We will present a two-step query processing strategy that requires at most a
single sequential scan of the database. In the fit step, we use a reduction
scheme to find a subset of the database by eliminating, with respect to a
query, tuples that are not used in constructing the output for that query. At
the end of the first step, we read the reduced database into memory. In the
second step, we compute the answer to the query without further accesses to
secondary storage, by computing the answer to the query on the reduced
database.

Since all other (known) query processing strategies require a non-linear
number of accesses to secondary storage, and the number of secondary
storage accesses dominates query processing time, we believe we have an
efficient query processing strategy. In order to achieve high performance,
traditional query processing strategies used efficient access methods and in-
dexing techniques. These are equally applicable to our strategy, and can
substantially reduce our upper bound of a single sequential scan of the data-
base.

In sections 2 we describe the relational data model and relevant terminology.
In section 3 we present our motivation and intuition behind database re-
duction. In section 4 we present an order preserving data compression
technique (called “bucketting”) that we use for database reduction. We
present a particular two-step query processing strategy that uses this tech-
nique in section 5. In section 6 we present some implementation techniques
for this strategy.

2 Relational Data Model and Terminology
We define the concepts of a database s&ma. denoted 08U, a reIation
schema, denoted W, an attribute name, denoted (/Pi.,., a database, denoted
DE, a relation, denoted Ri, an ntbihttte of R,, denoted Ri.k, a domain for Ri.r,
denoted &, a tupIe, denoted Rii., and an elementary vahte, denoted qjt, in the
usual way. Our unusual notation for attributes, tuples, and elementary values
is meant to suggest the rows, columns, and entries of a matrix; thus, Ri.k

Singapore, August, 1984

26

should suggest the kLh column (attribute) of Ri. Rii. should suggest itsph row
(tuple), and ri,l should suggest the value of the element in the kih attribute
position of that tuple.

A query on database DB, denoted

Q(DB) = ~TLUQL(RI XR~X x R,,),

extracts information from DB and presents that information as a set of re-
lations. We define the concepts of the select operator, denoted CJ, the project
operator, denoted lo, the qualification list, denoted Qf., and the tuget list,
denoted TL, in the usual way. During query processing, database tuples that
match predicates specified in the qualification list are projected according to
attribute names specified in the target list.

3 Database Reduction
A typical ad-hoc query presents output data from on’ly a small subset of the
tuples in a database. While computing the answer to the query, the tuples
that are used to form the final projection are relevant; the rest of the tuples
are irrelevant, i.e., they might as well have been eliminated from the database.
For example, while computing the answer to the query in Figure 1, only four
tuples in the database are relevant: tuple (2) in R 1, tuples (3) and (4) in
R2. and tuple (2) in R3.

Let us explore why tuples are irrelevant and can be eliminated from the da-
tabase in Figure I Many tuples can be eliminated simply by selections and
restrictions. The selection condition (A I I = 5) will eliminate all of the tuples
in RI except tuples (l), (2). and (3), while the selection condition
(A31 = 18) will eliminate tuples (3) and (6) from R3. Many of the remain-
ing tuples can be eliminated by joins. The join condition (A I3 = ,433) will
eliminate tuples (4) and (5) from R3. Further tuples can be eliminated
transitively, through one or more joins. The join condition

(A12 = A22)A(A23 = A32)h(A33 = ,413)

will transitively eliminate all of the remaining tuples in the database except
tuple (2) in Rl, tuples (3) and (4) in R2, and tuple (2) in R3. (This type of
query, which cycles back on itself, has been termed a cyclic query by
Bernstein and Chiu [BC8 I].) Finally, many tuples can be eliminated because
they are not needed to compute the final projection. Since tuples (3) and (4)
in R2 have the same value in attribute A22, either one can be eliminated.

Let us define the concept of database reduction. A database DB’ is said to
be a subset of another database DB if and only if, for each relation
R’, c DE’. R’, is a subset of R, c DB A reduced database denoted RDB,
with respect to a query Q and a database DB is any database RDB E DB
such that Q(RDB) = Q(DB). Thus, posing a query on RDB results in the
same answer as on DB. An irreducible database, denoted IDB, with respect
to a query Q and a database DB, is a reduced database such that there exists
no proper subset IDB’ of IDB for which Q(IDB’) = Q(DE) -removing any
tuple from IDB will result in an incorrect answer to Q. Any RDB (and
therefore, any IDI?) has the advantage that it is typically smaller than DB,
but provides the same answer to Q.

Our intuition behind this paper is that, if we can find an RDB small enough
to bring into memory, we can compute the answer to a query as follows: (I)
compute an RDB from Df? and bring it into memory, then (2) compute the
answer to Q without further access to disk. Thus, we have a “good” strategy
if there is an efficient way to compute an RDB that can fit into memory.

For a given Q and DB there exist many IDBs. Computing the smallest IDB
may be intractable, i.e., we can show that finding the smallest IDB is
NP-hard by reducing the Minimum Cover problem [GJ79] to it. The fol-
lowing lemma, however. provides an interesting upper bound on the size of
any IDB.

Lemma: If there are I, tuples in the answer to a query Q over k relations. then
the total number of tuples from all of the relations in any IDB cannot exceed
k x n.
Sketch of the Proof: This lemma can be proven with a simple argument based
on the pigeon-hole principle.

n

Unfortunately, computing an IDB may be too expensive; in effect, an algo-
rithm that computes an IDB for a query Q and a database DB may need to
compute the answer to the query before eliminating some types of duplicate

Proceedings of the Tenth lnternatlonal
-Conference on Very Large Data Bases.

tuples. In our example, we were able to eliminate either tuple (3) or (4) from
R2, since we knew they both produced the same output tuple (2) in RI.

We define a variant of IDE, a minimal database, denoted MDB, with respect
to a database DB and a query Q, as a reduced database such that every tuple
in every relation in an MDB is used to construct some tuple in the answer to
Q. An MDB may be larger than an equivalent IDB, in the sense that more
than one tuple in a relation in an MDB (but not in an IDB) may be used to
construct a single tuple in the answer to Q. Since this type of duplicity arises
mainly from joins, an MDB is typically not much larger than an equivalent
IDB.

Our definition of an MDB corresponds to the minimality condition proposed
by Bernstein and Chiu [BC81]; thus, their results are applicable here. In
particular, they constructed an example which required a number of “semi-
join” operations proportional to the cardinality of DB to compute an MDB.
Bernstein and Goodman [BG79], under the same minimality condition, made
a similar, but more general statement about the difficulty of computing an
MDB for cyclic queries. Thus, it is not even clear that an algorithm that
computes an MDB, and then computes Q(MDB) will be more efficient than
an algorithm that computes Q(DB) directly.

In summary, we have shown the existence of a reduced database IDB that
can fit into memory, but that pre-supposes knowledge of the answer. On the
other hand, an MDB is typically not much larger than a corresponding IDB,
but is still hard to compute. A pragmatic, or engineering, approach to the
problem is to try to obtain, for a query, some RDB that is much smaller than
DB. without computing an MDB. Many traditional query processing algo-
rithms have been based on this idea. For example, preprocessing selections
and restrictions is well-known. The designers of SDD-1 [Ber81] reduced the
cost of joins by preprocessing with semijoins. In the following sections we
present an efficient, new technique for reducing a database that handles re-
duction due to selection, restriction, join, and even cyclic join conditions.

4 Bucket Data Model and Terminology
For each domain D, we define a bucket@ fuoctioa. denoted

B, :D-,{O,1,2, . . . ,b,),

where, for xyc D, (x <y)+&,(x) I B&y). Intuitively, BI, partitions D into
a set of buckets such that @ values in the rXh bucket are less than a value
in the (i + 1)‘I bucket.

B, is an order-preserving hashing function on D, where the number of
buckets (6,, + I) is typically smaller than the (possibly infinite) cardinality
of D. B,, has the important property of compression, i.e., the number of bits
necessary to represent a value x in D can be as high as r log,(1 D 1)l, which
is typically much higher than the number of bits sufficient to represent
B,,(x). or I log& + I)l.

Corresponding to each relation Ri, we define a bucket r&don, denoted RR,,
as a mapping of each value ciL to Bi.,(ri.), where B,., is the bucketing function

>r the &ibute R,.,, that has domain.'&. Unlike relations, bucke; relatio

Lll

r

I

:
1
:
:
1

-

\12 \1:

1

:

I
2
:
:
:
:

-

\14

T

i

2
:
:
:
:

QUALIFICATION:
(All= 5)&(A12=A22)&
(A13=A33)&(A23=A32)&
(A31=18 1

TARGET LIST:
(All,A12,Alj,A14)

Figure 1. A Database and a Query

A24

Singapore, August, 1994

P

27

may contain duplicate tuples; in fact, there is a one-to-one relationship be-
tween the tuples in a relation and the bucket tuples in its corresponding
bucket relation. Corresponding tuples and bucket tuples share a unique,
identifying tuple-id.

Corresponding to our definition of BRi, we define a bucket database schema,
denoted ZB4%B, a bucket relation schema, denoted 87Mi, a bucket attribute
name, denoted SIG?%‘,.,, a bucket database, denoted BDB, a bucket attribute,
denoted BRi.t, a bucket tuple, denoted B&,., and a bucket value, denoted
br+ to parallel %%?I?, I,, &.,, DB, Ri.k, Rir, and rijt, respectively, with the
obvious meanings.

Using the above concepts, we can transform any query Q to a bucket query,
denoted

BQ(BDB) = uBOL(BR,xBRZx t.. xBR,).

BQ has no target list, but has a qualification list BQL, constructed as follows.
For every clause in QL of Q, construct a clause in BQL of BQ by replacing:

I. every attribute name with the corresponding bucket attribute name,
2. every constant c with the corresponding BISk(c),
3. the operators > and < with 2 and 5 , respectively, and
4. a clause containing the operator # with true.

A tuple satisfies a query if that tuple is used in forming any part of the answer
to the query. A tuple BRi,. in BR, satisfies BQ if the corresponding tuple
R,j. in R, satisfies Q. and a tuple BR,,. that does not satisfy BQ must corre-
spond to a tuple R,r that does not satisfy Q.

The query processing strategy we present in this paper relies on the obser-
vation that any tuple not satisfying BQ can be deleted from BDB without
altering BQ(BDB). Intuitively, we can compute Q(DB) by (1) eliminating
tuples from DB whose corresponding bucket tuples do not satisfy
BQ(BDB) , and then (2) computing Q(DB) from this reduced database. For
the remainder of this paper, we shall use RDB to denote the reduced data-
base corresponding to the tuples in BQ(BDB).

5 Query Processing Strategy
In this section we outline a two-step query processing strategy suitable for
use on personal computers. The first step of this strategy reduces the data-
base (with respect to the query) using pre-computed bucket relations. We
call it the “reduction step”. The second step uses the reduced database to
compute the query’s answer. We will show that these steps require reading
the database into main memory at most once, sequentially.

5.1 Computing the Reduced Database
As mentioned in the previous section, to compute the reduced database
RDB, we compose a bucket query BQ, corresponding to the query Q, and
evaluate it with respect to the pre-computed bucket database BDB. In this
sub-section we describe the information in BDB and BQ, and our scheme for
computing RDB from them.

First, let us establish the existence of bucketing functions which enable
RDBs computed from them to fit into main memory. Recall our observation
that main memory is typically between 1/3rd and 1/20th the size of sec-
ondary storage on personal computers. In order to fit RDB into main mem-
ory, we require a class of bucketing functions that maintains a similar ratio
between BDB and DB. In order to achieve this, for each domain D, we create
a simple bucketing function BD such that

B, : D -. {O, 1, 2, . . . , 655351.

B,, partitions the values in D into 65536 distinct buckets, and the index of
each bucket can be represented in two bytes. If the average number of bytes
necessary to represent the data in a single database field is n, this bucketing
function maintains a 2:n ratio between the sizes of BDB and DB. For a
typical value of n, say IO, this ratio is 1:5. BDB is pre-computed, is query-
independent, and resides, along with DB, on secondary storage.

When actually processing query Q, we form a corresponding bucket query
BQ which identifies selections, restrictions, and joins to be performed on
BDB. Then, in a single pass over BDB, we compute a pruned bucket data-
base BDB’ by performing bucket selections and bucket restrictions on BDB

as we read BDB’ into main memory. Additionally, non-participating bucket
relations and non-participating columns of participating bucket relations are
also pruned away. Since bucket selections and bucket restrictions have been
performed on BDB’, the only bucket relations left which participate in BQ
are those which have a column participating in a bucket join. Only those
columns of participating relations which actually participate in a bucket join
are read into main memory. Typically, pruning the bucket database will al-
low BDB’ to fit into main memory. For example, if the query we are proc-
essing consists of six relations of more than 5000 tuples each, participating
in a five-way join, we need less than 256KBytes ’ of main memory to hold
BDB’ in the worst case.

,

Once we have computed BDB’, we process the bucket join clauses of BQ on
BDB’, which results in a still further reduced database BDB”. Finally, we use
the fact that there is a one-to-one correspondence between the tuples in
BDB (hence BDB’ and BDB”) and DB to retrieve the tuples in DB corre-
sponding to the remaining tuples in BDB”. The set of tuples which we re-
trieve comprises RDB.

5.2 Computing the Anww from RDB
The answer to Q(DB) is simply the answer to Q(RDB); therefore, we will
compute Q(RDB) to find the answer to Q(DB). Let us make the qsumption
that RDB is small enough to be entirely memory resident. (We shall show a
way relax this assumption later in this sub-section.) Under this assumption,
RDB can obviously be brought into main memory by scanning DB sequen-
tially at most once. Once RDB is in memory, Q(RDB) can be computed
without further access to secondary storage. Thus, the total cost of com-
puting the query’s answer is the sum of the following costs:

1. The cost of sequentially reading from the disk. BDB
2. The cost of computing BDB’ in main memory.
3. The cost of computing BDB” = BQ(BDB’) in main memory.
4. The cost of sequentially scanning DB (at most) once to read RDB into

main memory.
5. The cost of computing Q(RDB) in main memory.

Since data access times for typical secondary storage devices are high, espe-
cially for the types of devices currently in use for personal computers, the
secondary storage access costs will dominate the computational costs.
Clearly, then, the total query processing cost for this scheme is very close to
the cost of a single sequential scan of the database. Virtually any algorithm
that requires multiple (or, more likely, a nonlinear number of) accesses to
secondary storage will entail a higher cost.

Let us justify our assumption that RDB can be entirely memory resident. To
show this, let us make the following observations:

1. We need a reduction of about 1:20 to fit RDB into main memory.
2. Typical queries involve only some of the relations and columns - elim-

ination of non-participating relations and columns is usually significant.
3. Reduction of the bucket database from bucket selections and bucket

restrictions is high.
4. Further reduction of the bucket database from bucket join predicates

is typically high when computing RDB.

Typically, the reduced database RDB will be small enough to fit into main
memory. In [KM841 we showed that the ratio of the tuples eliminated from
DB to obtain RDB over the tuples eliminated to obtain MDB is more than
0.9; i.e.

IIDB-RDBII >09
IIDB - MDBII ’

for an appropriate choice of bucket functions. If RDB does not fit in memory
then a modified strategy that is described in detail in the full version of this
paper [KM84a] can be used. This modified strategy attempts to guarantee
a graceful degradation of perform&tce.

6 Efficient Implementation
In order to achieve high performance, any query processing strategy must be
efficiently implemented. Below, we have listed some simple techniques that
can be used with our strategy.

For a bucket query with) bucket joins. over at most J + I buckel relations. each containing n bucket tuples. we need at most n Y [(j + I) x p + 2 x j Y q] bytes of memory, whew p is the number
of byles needed LO store a tuple-Id. and q IS the number of bytes necessary to store a bucket value. This formula arises out of the fact that. in the worst case. we need to store the bucket values in
exaclly two bucket attributes per bucket relation.

Proceedings of the Tenth International Singapore, August, 1984

Conference on Very Large Data Bases.

28

Indexing on BDB: Although BDB is small compared to DB, BDB is still typ-
ically too large to reside in memory. Indexing on BDB to find bucket tuples
with a given bucket value is typically worth the cost, especially on the subset
of attributes that frequently participate in query selections, restrictions, or
joins.
Using BDB” Block Information: Once BDB” has been computed, RDB is
brought into memory by tuple-id. A tuple-id can be the physical location in
secondary storage where a given tuple resides. By sorting the tuple-ids, only
those secondary storage blocks that actually contribute tuples to RDB need
to be accessed when computing RDB from DE.
Using An Efficient Join Algorithm: Since we can bring RDB into memory in
(at most) a single sequential scan of DE, the in-memory query processing
cost will typically dominate the cost of computing Q(DB). Of this cost,
processing joins is most expensive. Several authors have independently
tackled the question of efficient join algorithms. Krishnamurthy and Navathe
[KN84] have shown, for example, an in-memory join algorithm whose
worst-case time complexity is the lower bound for the problem.
Choosing Optimal Bucketing Functions: A key to our strategy is the
compressiveness of the bucketing functions used in creating BDB. There are
many ways to generate bucket functions, from sorting the data in each do-
main and computing values that partition the domain into equal-sized buck-
ets, to using some well-understood property of the data to generate a
simply-computable mathematical function (e.g. exploiting a probability dis-
tribution). Order preserving hashing functions [Lit811 provide another way
to generate bucketing functions. This question is discussed more fully in
[KM84], although the choice of optimal bucketing functions, given complex
situations, remains a research question.

7 Conclusion
We have presented a pragmatic approach to query processing on personal
computers. Unlike in the traditional approach, we have concentrated our
efforts on optimizing for the most likely queries at the expense of others.
Toward this goal. we have presented a two-step query processing strategy
which requires at most a single sequential scan of the database for nearly all
queries. In the first step we use a reduction scheme to find, for a query, a

subset of the database which can fit into main memory. This step requires at
most a single sequential scan of the database. In the second step we compute
the answer to the query without further access to secondary storage. Since
traditional query processing strategies are nonlinear in secondary storage
access, we contend that our strategy is superior for nearly all queries; for the
remainder, our strategy degrades gracefully.

Finally, the strategy outlined in this paper can be applied to any database
management system that satisfies the memory to database size ratio. In this
context, an interesting question is the performance of this strategy in a virtual
memory environment. We believe that it will be good.

Acknodedgments
We would like to thank Kyu-Young Whang for providing important feedback
and a forum for discussing earlier versions of this paper.

References:
BC81:

BerX 1:

BG79:

GJ79:

KM84:

KM84a:

KN84:

LitX 1:

Bernstein, P.A. and Chiu, D.W., “Using semijoins to solve rela-
tional queries,” JACM 28, No. 1, 25-40 (1981).
Bernstein, P.A., et. al., “Query processing in a system for dis-
tributed databases (SDD-I),” ACM TODS 6, No. 4, 602-625
(December 1981).
Bernstein, P.A. and Goodman,N., “The power of inequality
semijoins,” TR-12-80, Aiken Computation Lab. Harvard Uni-
versity (August 1980).
Carey, M.R. and Johnson, D.S., Computers and Inrractabiliry,
W.H. Freeman and Co., San Francisco, CA (1979).
Krishnamurthy. R. and Morgan, S.P., “Distributed query opti-
mization: An engineering approach,” Proc. Computer Dara Engi-
neering Conf., 220-227, (April 1984).
Krishnamurthy, R. and Morgan, S.P., “A pragmatic approach to
query processing,” (In Preparation).
Krishnamurthy, R., and Navathe, S., “An optimal strategy for
processing tree queries” (in preparation).
Litwin, W., “Trie hashing,” Proceedings SIGMOD. 19-29 (1981).

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Singapore, August, 1984

29

