
DATABASE PORTALS: A NEW APPLICATION

PROGRAM INTERFACEt

Mich4Lel Stonebraker
Lawrence A. Rowe

Department of Electrical Engineering and Computer Science
University of California

Berkeley, CA 94720

Abstract

This paper describes the design and proposes an
implementation for a new application program
interface to a database management system. Pro-
grams which browse through a database making
ad-hoc updates are not well served by conven-
tional embeddings of DBMS commands in pro-
gramming languages. A new embedding is sug-
gested which overcomes all deficiencies. This con-
struct, called a portd, allows a program to
request a collection of tuples at once and sup-
ports novel concurrency control schemes.

1. Introduction
There have been several recent proposals for

user interfaces that allow a user to “browse”
through a database [CATEBO, HEROBO, MARYBO,
ROWE82, STON82, ZLOO82]. Such interfaces allow
one to select data of interest (e.g., “all employees
over 40”) and then navigate through this data

Permicsion to copy without fee all or part of thir motericrl ic gmnted
provided (hot the copies ore not mode or distributed for direct commercial
odvantoge. the VLDB copyright notice and the title of the publication and its
date oppeor. and notice is given that copying is by pemticsion of the Very Large
Dota Bose Endowment. To copy otherwire, or to republish. requires o fee
and/or special permission from the Endowment.

making ad-hoc changes.

A simple illustration of a browsing program is
described with the aid of figure 1. This program
allows a user to “edit” a relation. It is similar to a
full screen, visual text editor (e.g., vi [JOY791 or
Emacs [STALB i]) except that a relation rather
than a text file is edited. This example browser
will be used to motivate the need for a new pro-
gramming language interface to a database
management system.

In figure 1 data from an employee relation is
displayed. Since only a few rows of the relation
can fit on the screen at one time, cursor com-
mands are provided to scroll forward and back-
ward. In other words, the screen provides a “por-
tal” onto the employee relation which the user
can reposition. Commands are also provided SO a
user can edit the data on the screen. For

t This research was supported by the Navy Elec-
tronics Systems Command under Contract N00039-78-
G-0013.

employee relation

d c
Sue Keller I L
Dave Smith I 4o 52
Kathy Able

1
28

George Toms 26
Mike Baker I 34

dept s
22000 accounting
18000 shipping
27000 sales

find insert delete update quit

Figure 1. Relation editor int.crface

Proceedings of the Tenth International
Conference on Very Large bata Bases.

Singapore, August, 1994

example, Dave Smith’s salary can be changed by
repositioning the cursor to the field containing
30,000 and entering a new value.

Other operations are listed at the bottom of
figure 1. The find operation scans forward or
backward through the data from the current row
until the first row satisfying a user specified
predicate is found. The insert and delete opera-
tions allow the user to enter or remove rows from
the table. The update operation commits changes
to the database so they become visible to other
users. Lastly, the quit operation exits the editor.

The data manipulation facilities supported by
conventional programming language interfaces
[ALLM76, ASTR76, SCHM77, ROWE;79, WASS79] allow
a program to bind a query to a database cursor,l
open it, and fetch the qualifying tuples sequen-
tially. Moreover, one can snecifv that a query or
collection of queries is to be a transaction
[ESWA76, GRAY78]. The DBMS provides serializa-
bility and an atomic commit for such transac-
tions.

There are several drawbacks when such an
interface is used to implement a browser such as
the one discussed above, First, the relation editor
can scroll backwards, thereby requiring that the
cursor be repositioned to a previously fetched
tuple. This feature is not supported by a conven-
tional programming language interface (PLI).
Secondly, current PLI’s return one record at a
time. When the user scrolls forward or backward,
a browsing program would prefer that the DBMS
return as many records as will fit on the screen.
This protocol would simplify the browsing program
code.

Next, to implement the find operation the
browser must scan forward or backward to the
first tuple that satisfies a given predicate. Of
course, the predicate could be tested in the appli-
cation program. However, this would duplicate
function already present in the DBMS. A cleaner
and more efficient solution would be to use the
DBMS search logic through a new programming
language interface.

Lastly, to implement the update operation the
relation editor must be able to commit updates
incrementally during the execution of a single
query. Conventional transaction management
facilities do not support this kind of update.

This paper describes programming language
constructs that provide the data manipulation
and transaction management facilities required to
implement database browsers. The basic idea is
to have the database management system support
an object, called a portal,2 that corresponds to
the data returned by a single query and ?>llow a
program to retrieve data from it. Figure 2 shows
a general model for the proposed system. The
DBMS allows a program to selectively retrieve or
update data from the portal with a new collection
of DBMS commands.

’ A database cursor is an embedded query
language concept and not the curso,t- displayed on a
CRT.

‘We chose this term rather than window to avoid
confusion with window managers through which a
browser might display its output.

i

PRO+ RAM DBMS

porta .)

Figure 2. General Model for Portals.

Proceedings of the Tenth International
Conference on Very Large Data Sases.

4

Singapore, August, 1994

A portal can be thought of as a relational view
that is ordered. The query that defines the portal
retrieves the data in some particular sequence
which establishes the ordering of tuples in the
portal. Each tuple will have an extra field that
contains a unique sequence number, called a line
identifier (LID) [STONE31 which represents the
current position of the tuple in the portal. Line
identifiers are automatically updated when tuples
are inserted into or deleted from the portal so the
position of each tuple is always represented by
the line identifier.

Commands are provided which return collec-
tions of portal tuples to the application program.
For example, a program can request tuples which:

l match a predicate (e.g., “all employees over
40”))

l match a given range of LID values (e.g., have
an LID between 509 and 522)

l are within a given distance from an indicated
tuple (e.g., the tuples less than 12 away from
the tuple corresponding to Jones)

Changes made to the data in a portal are pro-
pagated to the relations that define it when the
update is committed. Six commit modes are sup-
ported so that different forms of concurrency
control can be implemented by an application
program. In addition to modes that allow one or
more queries to be treated as an atomic transac-
tion, a mode is provided that allows a transaction
to be committed incrementally.

This paper describes the design and a pro-
posed implementation of this new application pro-
gram interface. Section 2 presents the design of
the portal abstraction. Section 3 describes a pro-
posed implementation of portals and two perfor-
mance oriented variations. Then, Section 4 indi-
cates the suggested concurrency control alterna-
tives. Lastly, Section 5 discusses some issues in
designing versions of the language constructs for
different programming languages and compares
portals to other application program interfaces.

2. Application Program Interface
The application program interface includes

language constructs to define a portal, to open
and close a portal, to fetch tuples from a portal,
to update tuples in a portal, and to further res-
trict a portal. A portal is defined by specifying a
query that selects the tuples that are in it. The
general format of a’ portal definition is similar to
the definition of a cursor [ASTR?6] and is3
Proceedings ot the Tenth International
Conference on Very Large Data Bases.

let portal be (target-list) [where qualification]

where portal is the name of the portal, target-list
is a’ comma separated list of expressions that
define the columns or attributes in the portal, and
qua&?cation is a predicate that determines which
tuples are in the portal. For example, given an
employee relation with the following attributes

EMP (name, address, age, salary,
years-service, dept)

the command

let p be (EMP.name, EMP.salary,
birthyear = 1982 - EMP.age)

where EMP.salary > 25000

defines a portal, p that contains the name, salary,
and birthyear of employees whose salary is
greater than $25,000.

The portal definition can be a multiple vari-
able query. For example, given a department
relation

DEPT (dname, mgr. floor, budget)
a portal that contains employee and department
information can be defined by

let pl be (EMP.name, EMP.dept, DEPT.floor)
where EMP.dept = DEPT.dname

This portal contains the name, department, and
department floor for all employees. The portal
definition can also include programming language
variables. For example, the following declaration

let p2 be (EMP.name)
where EMP.salary > x and q

includes two program variables, z and q, that
allow the employee’s salary and some other predi-
cate (e.g., “EMP.age < 20”) to be substituted at
run-time.

The definition of a portal causes the query to
be parsed and stored by the DBMS. Then, opening
a portal causes the values of run-time variables in
the portal query to be passed to the DBMS. The
open command also specifies the program buffer
into which data will be fetched and an optional
lock mode for the portal. The general format of
the open command is

open portal into variable [with lock-mode = n]

where portd is the name of the portal, variable is
a program buffer, and n is an integer that
identifies a lock-mode. The program buffer is an
array of records declared in the application pro-
gram which determines the maximum number of
tuples that can be retrieved from the portal by
one command. Lock modes and transaction
management are discussed in Section 4.

’ [x] indicates that x is optional.

Singapore, August, 1994

f declare buffer 1
var buf: array[l..lO] of

record
LID: integer;
name: array [1..20] of char;
salary: real;
age: integer

end

begin
. . .

let p be (EMP.name, EMPsalary, EMPage)
where EMP.salary > 25QOO

open p into buf
. . .

end

Figure 3. PASCAL program fragment that declares a portal.

A portal remains open until it is explicitly
closed by a close command. The format of a close
command is

close portal

Figure 3 shows a PASCAL program fragment
that declares a buffer, defines a portal named p
and opens it. The buffer, named b~f, has a field
for each user-defined attribute in the portal. A
portal also has an implicitly defined LID Aeld
which must be included in the buffer record.

Data can be retrieved from the portal and
stored in the program buffer by the fetch com-
mand. For example, the command

fetch buf

fetches data from p and stores it into buf. When
the program run-time environment passes this
command to the DBMS, it also passes the number
of records that can be stored in the buffer. The
DBMS returns to the program the number of
requested tuples. The data values returned from
the portal are automatically converted to the
appropriate data types and stored in the buffer.

A built-in function is provided that indicates
how many records were actually stored in the
buffer by the last fetch command. For example, if
the portal in figure 3 contained only 5 records, the
fetch command above would not fill the buffer. On
the other hand, if the portal contained 50 tuples,
the command would fetch only the first 10 tuples
because only that number can fit in the buffer.
The program can retrieve the next 10 tuples by
executing a fetch command with a where-clause
as follows:

Proceedln~s o? tha Tenth Intomrtionrl
Conformce on Vary Large Data Baaas.

6

fetch buf where p.LID > 10

This command fetches 10 tuples beginning with
tuple number 11. Notice that the portal name, in
this case p, is used to reference tuples in the por-
tal.

A fetch command can have an arbitrary
qualification that will restrict the tuples retrieved
to those that satisfy a predicate. For example,
the program might want to retrieve employees
under 20 who make more than $40,000. The com-
mand to retrieve these records is

fetch buf where p.age < 20
and p.salary > 40000

The fetch command can also be used to
retrieve data by position and to search forwards
or backwards. The general format of the fetch
command is:4

fetch [previous] buffer
[iwhere 1 after j before 1 around{ qualification]

Aposition fetch uses the keyword after, before, or
around rather than where. A fetch with an after-
clause indicates that the first tuple that satisfies
the qualification and the tuples immediately after
it in the portal ordering are to be retrieved. For
example, if the following command was executed
on the portal defined in figure 3 it would retrieve
10 tuples beginning with tuple number 40:

fetch buf after p.LID = 40
Tuples 40 to 49, if they exist, would be stored in
hf. The tuple that satisfies the qualification (i.e.,

4 lxlyj indicates that x or y must appear.
Singapore, August, 1964

tuple number 40) is stored in b?lfl:1]. Subsequent
returned tuples follow the selected one in LID
order and do not necessarily satisfy the
qualification in the fetch command (e.g.,
“p.LID = 40”). In contrast, all tuples returned by
a restriction fetch (i.e., one that includes a
where-clause) must satisfy the qualification.

The keyword before indicates that the Arst
tuple that satisfles the qualification should be
stored at the end of the buffer. Consequently, the
buffer will contain the qualifying tuple and the
tuples that immediately precede it. The keyword
around indicates that the qualifying tuple should
be stored in the middle of the buffer. The
qualification in a position fetch can be an arbi-
trary predicate such as

. . . after p.LID > 10 and p.age < 25

which retrieves tuples beginning with the first one
found after tuple number 10 that satisfies the
qualification on age.

Most browsers also allow users to search
backwards. The fetch previous command can be
used to implement this function. IL scans UWK-
ward through the portal rather than forward. For
example, the command

fetch previous buf before p.LID < n and q

searches for the first record before the current
one that satisfies a search predicate.

The qualification in a fetch command can be
any boolean combination of terms involving portal
variables (e.g., “p.age = 40”) and application pro-
gram variables (e.g., “q” from the example
above). It is also possible to support qualifications
involving join terms to other data base relations.

A command is provided which allows a pro-
grammer to restrict the portal to a smaller subset
of the data that it currently contains. The format
of the restrict command is:

restrict portal where qualification

This command removes from the portal all tuples
which do not satisfy the qualification. For exam-
ple,

restrict p where p.age > 25

removes all employees 25 and under from the por-
tal. A restrict command is equivalent to defining a
new portal with a qualification obtained by
AND’mg the new qualification to the one that
defined the portal. The restrict command func-
tions in much the same way as a marking [RIETBl]
of a relation, although our other commands and
suggested implementation are quite different.

The portal abstraction also includes com-
mands to insert, delete, and replace tuples in the

buffer. The general format of the replace corn-
mand is

replace buffer-reference (target-list)
where bufferreference is a program referenCe to

a record in the bufTer (e.g., buf[i]). For example,
the following command changes the age of the
tuple stored at bufi4]:

replace buf[4] (age = 25)

The insert command appends a tuple to the
portal. The general format of this command is:

insert (target-list) before buffer-reference

This command inserts the tuple before the buffer
array element referenced. The elements in the
buffer are moved down to make room for the new
data.. Since the buffer is tied size, the last record
must be removed from the buffer. The new
record is assigned the LID of the element it is
being inserted before, and the LID’s of all records
following the new element are incremented. The
new tuple and its LID are passed to the DBMS
which updates the portal.

The last update command allows tuples to be
deleted. The format of this command is:

delete buffer-reference

The LID of the buffer element referenced is set to
zero to indicate that it has been deleted. The
LID’s of all records that follow it in the bufler are
decremented. Then, the deleted record and its
original LID are passed to the DBMS which
updates the portal. Update commands are passed
to the DBMS which records the changes so that
subsequent fetches will return the new data. The
lock mode selected when the portal is opened will
determine when the update is committed to the
database. Lock modes will be discussed in Section
4.

3. Implementation Strategy
This section describes a basic strategy for

implementing the portal abstraction and two
improvements on this theme for augmented per-
formance. The basic strategy is to create an
ordered temporary relation that contains the por-
tal data. Portal commands would then be
translated into conventional queries on this tem-
porary relation. A tuple in the temporary relation
must contain a column for each attribute in the
portal and a 7’1p to each tuple used to construct
it. For example, given the portal defined in Sec-
tion 2,

’ In a relational DBMS, a pointer to a tuple in a re-
lation is called a tuple identifier (TID).

Procoedlngr of the Tenth International

Confwencr on Very Large Data Sasss.

Slngapore, August, 1984

7

let p be (EMP.name, EMP.age, EMP.dept,
DEPT.floor)

where EMP.dept = DEPT.dname
a temporary relation is created by executing the
following query:

retrieve into TEMP(EMP.name, EMP.age,
EMP.dept, DEPT.mgr, EMP_TID=EMP.TID,
DEPTJ’ID=DEPT.TID)

where EMP.dept = DEPT.dpame

TEMP is organized as an ordered relation
[STONB3], and the DBMS will automatically create
and maintain the LID attribute using an auxiliary
storage structure called an ordered B-tree
(O&tree). An OB-tree is similar to a B+-tree
(i.e., data is stored in the leaves of the tree and a
multi-level index is provided to access the data as
indicated in figure 4). The leaf pages in the tree
contain TZDs. for tuples in the relation. The LID
ordering of the tuples is represented by the order
of the TIDs in the leaf pages. Hence, traversing
the leaf pages from left to right scans the tuples
in LID order (i.e., the first TZD in the leftmost
page is the tuple with LID 1). Non-leaf pages con-
tain pointers to the next level of the index or a
leaf page and counts of the number of tuples in

that subtree.
The tree structure and the tuple counts can

be used by the DBMS to retrieve or update tuples
based on their LID. For example, to ‘find the l-th
tuple, the DBMS begins at the root page and
selects the subtree that contains the tuple by per-
forming a simple calculation. Assuming that si is
the number of tuples in the first i subtrees, which
is defmed by the following formula

Si = 2 COUTltj
j=l

the subtree that contains the 6th tuple is pointed
to by the entry at

min [St-1 < 1 s Si j
i

This process is performed iteratively until the
algorithm reaches a leaf page which is guaranteed
to contain the tuple. The calculation at inter-
mediate levels of the tree to select a subtree
must take into account the number of tuples that
precede the first tuple in the subtree. Assuming
that this number is z, the calculation to select the
correct subtree for intermediate levels is

min { x+siV1 < 1 4 x-t-si j
i

1

LEGEND

Figure 4. An OB-tree.

Procaadlngs of the Tenth Intematlonal
Conference on Very Large Data Bases.

8

Singapore, August, 1994

The value for z is sp, at the next outer level. The
TZD for the I-th tuple is stored in the leaf page at
entry 1- 2.

For example, in figure 4 to find the tuple with
LID 17, the algorithm will examine page 1 and
select the second subtree because 17 is between
11 (s,) and 18 (se). Examining page 3 with z equal
to 11, the algorithm selects page 10 because 17 is
between 16 (z + se) and 18 (z + s3). Page 10 is a
leaf and the TID for tuple 17 is stored in the first
entry (I!- 2).

Insertions into an OB-tree are implemented
by inserting a TID for a new tuple into the
appropriate leaf page and updating the counts. A
standard B-tree split algorithm is used if the leaf
page is full [KNUT73]. Deletions and replaces are
implemented in a similar way. A complete
description of these operations and a prototype
implementation of OB-trees are described in
[LYNN82].

The DBMS executes portal commands by
transforming them into queries on the temporary
relation. For example, the fetch command

fetch buf where p.age < 25

is implemented by executing the query

retrieve (TEMPLID, TEMP.all)
where TEMP. age < 25

Recall that the number of records that can fit in
the program buffer is passed to the DBMS along
with the command so that only the requested
number of tuples are returned.

A position fetch is implemented by executing
two retrievals. Suppose the position fetch was

fetch buf after p.LID > 10 andp.age < 25

and that the buffer named buf in the program can
hold n records. First, the LID of the first qualify-
ing tuple is found

retrieve tl= min(TEMP.LID))
where TEMP.LID > 10 and TEMP.age < 25

Then the query

retrieve (TEMP.LID, TEMP.all)
where 15 TEMP.LID and TEMP.LlD 5 l+n-1

returns n tuples beginning with the l-th tuple.
After and around position fetches can be imple-
mented using a similar technique.

Fetch previous commands can be imple-
mented by scanning the OB-tree backwards.
Moreover, the execution of fetch commands that
include joins with other relations is easy because
the portal is stored as a relation. Update com-
mands on the portal are implemented by execut-
ing queries to update the temporary relation and

Proceedings of the Tenth International

Conference on Very Large Data Bases.

writing an intentions list that will be used by the
transaction manager to update the affected
relation(s). Finally, restriction commands are
implemented by creating a new temporary rela-
tion.

The first improvement on this strategy is to
create the temporary relation incrementally. At
any time the temporary relation contains all
tuples with LID’s less than the maximum LID that
has been fetched thus far. If the data required by
a fetch command is in the temporary relation, a
retrieval is executed to fetch it. Otherwise, the
portal query is resumed to retrieve more data
into the temporary relation before the retrieval
can be executed. An update command can only
modify data that has already been fetched so the
data to be changed must be in the temporary.

A second improvement is to materialize the
portal dynamically and to buffer only a fixed
amount of data, say B tuples. For example, one
might buffer the tuple with the highest LID
requested by the last fetch command and the pre-
vious B-l tuples. However, it is not unreasonable
for the DBMS to fetch tuples ahead of the current
fetch cqmmand. Whenever a fetch command
cannot be satisfied by data in the buffer, the por-
tal query is resumed to retrieve tuples with higher
LIDS. On the other hand, if the fetch requires data
with lower LIDS than any tuples in the buffer, then
the portal query must be restarted at the begin-
ning. An OB tree can still be used to support this
implementation of a portal. The LID of the first
tuple in the buffer must be maintained by the
DBMS as tuples are scrolled’out of the buffer. This
number must be subtracted from the LID used in
all portal commands to yield correct responses
from the OB tree.

It is expected that B can be optimized to pro-
vide good response time for most portal users. A
user who browses many records without locality of
reference could obtain good response time with a
large B. On the other hand, a user performing
sequential processing would be satisfied with a
small value. Lastly, note that a sufficiently large
value of B approximates the first improvement
described above.

The techniques noted above involve creating a
temporary relation corresponding to a portal. An
alternate implementation would store pointers to
the tuples in the primary relations in the tem-
porary relation, using the temporary relation as a
kind of secondary index. For example, given the
portal definition

let p be (EMP.all) where EMP.salary > 20000

the DBMS does not have to make a copy of the

Singapore, August, 1994

9

data in the EMPrelation. The ordered temporary
relation could be defined by

retrieve into TEMP(EMP.TID)
where EMP.salary > 20000

Fetch commands that involve only the LID attri-
bute can be implemented by restricting TEMP to
the qualifying entries and using the TID's to
access the EMP tuples. This is the suggested
implementation of markings [RIET81]; however it
requires an extra disk read to fetch the data so
portal commands would perform more slowly.

In the next sections we assume that portals
are implemented by a dynamic buffering scheme
with B tuples in the buffer supported by an OB
tree.

4. Concurrency Control
This section proposes concurrency control

facilities for portals. Several lock modes are
presented so that a portal user can select an
option with appropriate consistency and perfor-
mance characteristics. These alternatives are
now enumerated.
1. The tuples which currently reside in the

buffer have a write lock. When a tuple scrolls
out of the buffer, its lock is released.
Updates are committed as they are received.
This is expected to be the normal lock mode
for portals.

2. This option is the same as number 1 except
that an update is not committed until it
scrolls out of the buffer. This mode is
appropriate when a user makes several
changes that will be scrolled out of the buffer
at the same time. Consequently, they would
be made visible to other users together.

3. This option is a variant on optimistic con-
currency control [BHAR80, KUNG81]. The
browsing program does not lock a tuple until
it is deleted or replaced. When a tuple in a
portal is modified, the tuple(s) from the
relation(s) that define the portal are locked
and the portal tuple is recreated from the
real relations. If the portal tuple to be
modified is the same as the recreated tuple,
the update is allowed. Otherwise, the
modification must be rejected. Updates are
committed immediately; hence a browsing
application holds locks only for the time
required to read, validate and then write
desired data. Like other optimistic con-
currency control algorithms, a user must res-
tart when an update is rejected. Unfor-
tunately, this requires restarting the portal
query and repositioning to desired data. The

Proceedings of the Tenth InternetiOnel

Conference on Very Large Data Bsses.

expense of this restart will make option 3
unattractive except in situations where the
probability of conflict is very low.

4. This option is the same as number 3 except
that all tuples returned by the last fetch com-
mand are locked, refetched, and compared
with the recreated values when an update is
attempted. This update is committed only if
they all are the same. This mode is appropri-
ate if an update is determined by data else-
where in the scope of the current fetch com-
mand.

5. Transactions are defined explicitly by the pro-
gram. A begin and end transaction command
are executed to delimit the beginning and end
of the transaction. Consequently, a transac-
tion can be an arbitrary collection of fetch,
insert, delete, and replace commands.

6. All commands between opening and closing a
portal are considered one transaction.

The motivation for these lock modes is as fol-
lows. Modes 1 and 2 lock data that is being
browsed only while the user can see it (i.e., when
it has been fetched). Otherwise, the data can be
changed by others. Modes 3 and 4 are similar to
modes 1 and 2 except for the use of optimistic
concurrency control which may be more efficient.
Mode 5 gives control to the application program-
mer and mode 6 makes the entire browsing ses-
sion a transaction. Modes 5 and 6 provide the
most and least flexibility, respectively.

The conventional definition of a transaction is
that it is a collection of reads and writes which

atomically committed serializable
bY78, ESWA76]. Lock mode::-6 obey this
model. For example, lock mode 4 can be imple-
mented as follows:

begin transaction
recreate the most recently fetched tuples
if tuples changed

then abort the replace or delete
else update relation(s)

end transaction

Lock modes 1 and 2, on the other hand, do not
correspond to any atomically committed and seri-
alizable collection of reads and writes. They both
require that locks be held after the end of an
atomically committed action. The properties of
such locking schemes are an interesting topic for
investigation.

The implementation of the lock modes 3
through 6 for portals can use a conventional tran-
saction manager that locks physical entities and
supports operations to begin, commit, and abort

Singapore, August, 1994

10

transactions. The general strategy is to update
the temporary relation when the update com-
mand is executed. In addition, updates for the
primary relation(s) are generated and written to a
log. These updates are committed at the
appropriate time and all locks are released.

Lock modes 1 and 2 require slight changes to
a transaction manager in that locks can not be
released at the time that a transaction is commit-
ted. Rather locks are candidates for release when
the tuple scrolls out of the buffer. If a portal is
defined on a single primary relation, they can be
released at this time. However, if a portal is
defined by a join, a lock can be released only if the
tuple is not used to construct another portal tuple
which is currently locked. For example, suppose
the portal definition was

let. p be (EMP.name, EMP.dept,
DEPT.floor, DEPT.mgr)

where EMP.dept = DEPT.dname

and two employees, say Smith and Jones from the
toy department, are in the DBMS buffer. Conse-
quently, the two Eh4P relation tuples and the
DEPT relation tuple would be locked. If Smith’s
tuple was removed from the portal, the lock on
his tuple in the EhfP relation can be released.
However, the lock on the toy department tuple
could not be released because it is used to con-
struct Jones’ tuple in the portal. In other words,
the buffer must be searched to see if the depart-
ment tuple is used elsewhere before that lock can
be released. Hence, deciding if a lock is releas-
able may be an expensive operation.

However, lock reclamation does not have to
be performed each time a tuple is removed from
the buffer, and it may be advantageous to perform
lock releases periodically. Such a mechanism is
analogous to garbage collection of free space by a
programming language run-time system.

5. Discussion
This section discusses several issues concern-

ing the design and implementation of the portal
abstraction. Then, it discusses the advantages of
portals compared to conventional programming
language interfaces.

5.1. Design Issues
First, the language constructs presented in

section 2 map a portal into a buffer which is a
static l-dimensional array. The constructs can be
generalized to dynamic and n-dimensional arrays.
If the programming language into which the con-
structs are embedded has dynamic arrays, the
size of the program buffer can be redefined at

Proceedings of the Tenth International

Conference on Very Large Data Bases.

run-time. The DBMS can pass a count of the
number of records that will be returned by a
fetch command before the records are returned.
Using this information the run-time support rou-
tines in the user program can dynamically allo-
cate an array to hold the returned records. This
would relieve the program of executing multiple
fetch commands when the number of returned
tuples exceeds a static buffer size.

Ordered relations can also be generalized to n
dimensions [STON83]. In this case a relation can
have several LIDS, one for each dimension. The
language constructs discussed in section 2 can be
easily generalized to support a portal with multi-
ple LIDS which is mapped to an n-dimensional
buffer. This feature would be especially valuable
to browsers such as SDMS [HERO801 which imple-
ment 2 dimensional scrolling.

Lastly, a database system that implements
portals must be able to save and restore the
currently executing query. This is necessary
because programs can open multiple portals and
because the implementation strategy discussed in
Section 3 sometimes requires restarting the por-
tal query.

5.2. Advantages of Portals
There are several advantages of portals com-

pared to normal programming language inter-
faces. We enumerate several.
1.

2.

3.

4.

II

All buffering is performed in the portal.
The application program is freed from the
responsibility of this task.

More flexible concurrency control is possible.
It is certainly possible to support traditional
transaction processing with a portal. How-
ever, novel locking policies are also possible
which can lead to more parallelism in some
situations.
Code duplication is not required.
A portal can easily implement the “restrict”
command and the “fetch where qualification”
command by translating them into appropri-
ate DBMS commands. A conventional applica-
tion program interface does not support this
function, and providing it in application level
code is redundant.

Traditional transaction management can be
efficiently supported.
A small value for the size of the buffer, B may
be chosen for such applications. It is even
possible to choose B=l and effectively obtain
a programming language interface similar to
that of a conventional cursor-oriented one. In
this case portals should be optimizable to

Singapore, August, 1984

provide efficiency nearly equal to a traditional
application program interface. As such, por-
tals can be considered to be a generalization
of a traditional application program interface.

5. Greater efficiency may be provided in some
situations.
The application program must pass control to
the DBMS once per fetch command for a por-
tal implementation. On the other hand, con-
trol may change hands as often as once per
tuple in a cursor oriented application pro-
gram interface. A browsing application which
sequentially scans a relation calls the DBMS
once per screen (say each 24 tuples) using a
portal whereas it might make a call once per
tuple otherwise. Consequently, a portal might
outperform a conventional interface for this
situation.

6. View management is easily accomplished.
Because portals are defined by queries which
may span multiple relations, updating a por-
tal is semantically identical to updating rela-
tional views [DAYA?8, STON75]. The general
problem of updating views is impossible; how-
ever, portal updates affect only a single tuple
at one time. In this case, the affected tuple
has a TID for every tuple in every relation
which was used to compose it. One can sim-
ply make the obvious update to the specified
underlying tuple(s). Although this algorithm
is not free from semantic difficulties, it is the
only practical candidate in this environment.

6. Conclusions
A new application program interface to a rela-

tional database system has been described which
makes it easier to implement database browsers.
The interface is based on the concept of a portal
that supports querying and updating an ordered
view. Several lock modes were suggested that can
be used to implement browsing transactions with
varying consistency and parallelism requirements.

At the current time OB-trees are operational
[LYNN~~]. Moreover, performance experiments
[STON83] suggest that they perform comparably
to normal secondary indexes. Space require-
ments are also comparable to a normal secondary
index. Work is proceeding on implementing the
support code for portals using OB trees so that
their performance can be compared to traditional
interfaces.

Acknowledgements

Several people have contributed ideas that have
been incorporated into this proposal. We want to

bceedinge of the Tenth Intema~ional
Conference on Very Large Data beer.

thank Paul Butterworth, Joe Kalash, Richard
Probst, Beth Rabb, and Kurt Shoens for their con-
tributions.

[ALLM~~]

[ASTRAY]

[BHAR80]

[CATEBO]

[DAYA78]

[ESWA76]

[GF~Aw~]

[HERO801

[JOY791

[KNUT73]

[KUNGB 11

[LYNN~~]

Ftef erences

Allman, E. at. al., “Embedding a Rela-
tional Data Sublanguage in a General
Purpose Programming Language,”
Proc. ACM-SIGPLAN-SIGMOD Confer-
ence on Data Abstraction, Definition
mtd Structure, Salt Lake City, UT,
March 1976.
Astrahan, M. M., et. al., “System R: A
Relational Approach to Data,” ACM
TODS, June 1976.

Bhargava, B., “An Optimistic Con-
currency Control Algorithm and Its
Performance Evaluation Against Lock-
ing,” R-012. Interna.tionai Computer
Symposium, Taipai, Taiwan, Dec.
1980.

Cattell, R., “An Entity-based Database
User Interface,” Froc. 1980 ACM-
SIGMOD Conference on Management
of Data, Santa Monica, CA, May 1980.
Dayal, U., and Bernstein, P., “On the
Updatability of Relational Views,”
F’roc. 4th Very Large Data Base
Conference, Montreal, Canada, Oct.
1978.

Eswaren, K., et. al., “On the Notion of
Consistency and Predicate Locks in a
Relational Database System,” CACM,
Nov. 1976.

Gray, J., “Notes on Data Base Operat-
ing Systems,” Report W-2188, IBM
Research, San Jose, CA, Feb. 1978.
Herot, C., “SDMS: A Spatial Data Base
System,” ACM TODS, Dec. 1980.

Joy, W., “The vi Text Editor,” unpub-
lished working paper, 1979.
Knuth, D., The Art of Computer Pro-
gramming, Vol 3: Sorting and
Searching, Addison Wesley, Reading,
MA, 1973.

Kung, H. and Robinson, J., “On
Optimistic Methods for Concurrency
Control,” ACM TODS, June 1981.
Lynn, N., “Implementation of Ordered
Relations in a Data Base System,”
Masters Report, EECS Dept., U. C.
Berkeley, CA, Sept. 1982.

Singapore, Auguett, 1994

12

[MARYBO]

[RIETB 11

[ROWE791

[ROWE821

[SCHM77]

[STALBl]

[STON75]

[STON82]

[STON83]

[WASS79]

[ZLOOSZ]

Maryanski, F., “Query By Forms,”
unpublished presentation 1980.

van de Riet, R. et. al., “High Level
Programming Features for Improving
the Efficiency of Relational Database
System,” ACM TODS, Mar. 1981.
Rowe, L. and Shoens, K., “Data
Abstraction, Views and Updates in
RIGEL,” Proc. 1979 ACM-SIGMOD
Conference on Management of Data,
Boston, MA, May 1979.

Rowe, L. and Shoens, K., “FADS - A
Forms Application Development Sys-
tem,” Proc. 1982 ACM-SIGMOD

Conference on Munogement of Data,
Orlando, FL, June 1982.
Schmidt, J., “Some High level
Language Constructs for Data of Type
Relation,” ACM TODS, Sept. 1977.

Stallman, R.M., “EMACS The Extensi-
ble, Customizable Self-Documenting
Display Editor,” Proc. 1981 ACM-
SIGPLANBIGOA Symp. on Text Mani-
pulation, SIGPLAN Notices, 16, 6,
June 1981.

Stonebraker, M., “Integrity Con-
straints and Views by Query
Modification,” PrOC. 1975 ACM-
SIGMOD Workshop on Management of
Data, San Jose, CA, May 1975.

Stonebraker, M. and Kalash, J.,
“TIMBER: A Sophisticated Relation
Browser,” Proc. 8th International
Conference on Very Large Data
Bases, Mexico City, Mexico, Sept.
1982.

Stonebraker, M., et. al., “Support for
Document Processing in a Relational
Database System,” ACM-TOOIS, Apr.
1983.

Wasserman, A., “The Data Manage-
ment Facilities of PLAIN,” Proc. 1979
ACM-SIGMOD Conference on Manage-
ment of Data, Boston, MA, May 1979.

Zloof, M., “Office-by-Example: A Busi-
ness Language That Unifies Data and
Word Processing and Electronic Mail,”
IBM Systems Journal, Fall 1982.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

Singapore, August, 1994

13

