
PROGRAM ANALYSIS FOR CONVERSION FROM A NAVIGATION
TO A SPECIFICATION DATABASE INTERFACE

Barbara Demo

Istituto di Scienze dell'Informazione, Universith di Torino
C.SO tl. d'Azeglio, n. 42 - 10125 Torino (Italy)

ABSTRACT
The conversion of database application programs
is investigated when migration is required from
a system with navigation (CODASYL-like) db
interface to a system with specification db
interface but the database semantics is not
changed. We propose an analysis technique of the
source program which heavily relies on program
control flow. When the program semantics in
analyzed from the point of view of data usage,

the db statements appearing in the program are
associated with one or more semantic record
access patterns. A technique is given for
analyzing these multiple associations and combi-
ning the access patterns into db queries.
Decompilable programs are those which have
reducible flow graphs.

1. INTRODUCTION
The conversion of database application programs
is investigated when migration is required from
a dbms with navigation (CODASYL-like) interface
to a dbms with specification interface /Tsic
821. We will assume here that the referred
database semantics is unchanged. Our conversion
problem is thus different from the one conside-
red in /Su al/ which assumes the data semantics
is changed but the database interface is not
changed.
The environment where our approach to db program

conversion is relevant is the project SCOOP,
(System for Cooperation) which is being carried
out jointly by the University of Paris VI and
the University of Turin. The project investiga-
tes how a cooperating database system can be
built among already existing heterogeneous
databases located at different sites while
saving the investment in application programs.
Figure 1 sketches the SCOOP approach to a
heterogeneous distributed database system. Coo-
peration is achieved through the integration of
local db schemata into one global schema which
describes the resulting distributed database.
First local schemata, expressed in possibly
different data models (dm.), are all converted
into a single data modelicalled conceptual dm
and then integrated into the global conceptual
schema.

site : dm
1 1"'

site : dm
n n

I

local schemata

local conceptual view

global conceptual schema

local internal level

distributed database

figure 1. Skeleton SCOOP architecture

The users at each site continue to use their
previous database programs as well as their
local database interface for new programs. The

387

distributed database management system provides
conversion modules for translating both data
structure and db programs from the local level
to the global level and viceversa. The convers-
ion are only once performed. The data structure
translations are performed on the local schema
descriptions. The programs are converted by
precompile-time systems.
In SCOOP the Entity-Relationship (KR) model
/Chen 76/ has been chosen as conceptual data
model because of its reasonable power to express
the semantics of data while being flexible
enough to make the required translations easier.
As conceptual data manipulation language (dml),
the distributed environment requires a specific-
ation language which is able to express a
complex set level operation in a single statem-
ent /Tsic 82/. This requirement has been argued
in /Spat 80/as follows. A global dml statement
can request data from different nodes in the
network. The minimization of network data
traffic requires that each data request results
in a set of data which is to be transferred from
node to node, rather than many transfers each
consisting of a single datum. Should a record at
a time navigational interface be used at global
level, the dml statements in db programs must be
grouped together to form set-at-a-time operators
before the request in sent to the network.
Control structures of the host language make
such grouping a non-trivial task.
The fundamentals of the SCOOP ER DML are
described in /Pare 83/ while an overall descrip-
tion of the SCOOP project may be found in /Spat
81, Spat 83/.

While the SCOOP project involves a whole set of
conversion problems, one for each dm. to the
conceptual dm, we chose to concentrate'first on
the conversion of CODASYL COBOL programs into
the COBOL embedded SCOOP-ER dml. Pratical
motivation for this choice is because there are
a large number of CODASYL-like DBMS installa-
tions. Theoretically is because the conversion
of db programs is still an open area for
research, we felt that it is best to focus on a
specific host language which is in our case
CODASYL COBOL language.
General introductions to the problem of db
program conversion can be found in /Tayl 79, Su
81/. The first paper reviews existing works and
proposes a framework for research on the subject
and the latter gives several motivations for
programs conversion in different environments
and develops a systematic method for translating
programs when the data semantics is changed

without changing the db interface.

Current approaches to db program conversion
distinguish two main activities (figure 2): the
analysis of the source program and the synthesis
of the target program.
The major point of the analysis activity is to
find the program semantics for its interaction
with the db. In other words, the analysis
process determines the way in which db data are
used by the source program. The program ssman-
tics is often described by means of a reference
model /Su 81, Shne 82, Katz 82/.
As a concrete example, let us refer to the
analysis phase described in /Nati 70. SU 81/.
Here, some classes of semantic accesses, each
corresponding to one typical use of data, are
identified. Some code templates, in the diffe-
rent dmls, are then specified which perform the
data access for each class.
Given a source program, in the COBOL CODASYL
language for example, the way it uses data is
recognized by matching CODASYL dml templates
against the program statements. Program statem-
ents are considered in the sequence in which
they appear in the source code except that,
PERFORM statements are substituted by the
statements of the corresponding procedure body
/Moor 00/ (This approach is valid only for some
situations and does not address the general case
of data usage patterns). Sequences of semantic
accesses identify the db query graphs which are
the program semantics description in the Su's
model.

In /Katz 82/ a similar approach is applied to
the analysis of a db program for converting it
from a navigation'to a specification dml.

access classes and source
language code templates

source program

db queries

access classes and target
language code templates \

SYNTMESTS
source db schema, target / El
db schema and mapping
specification 1

target program

figure 2- Activities in db program conversion

388

In the synthesis activity (called embedding in
/Katz 82/), the program semantics description
resulting from the analysis phase is adapted to
take into account either the data semantics
changes causing the conversion /Lam 79/ or the
db interface changes /Katz 82/. That is, in the
synthesis phase, db data manipulations are first
mapped into the target operators. Finally, the
target operators are interfaced with the origi-
nal program to produce the target program.

The present paper focuses on the analysis
activity and particularly for converting a COBOL
CODASYL db application program. Our primary
contribution is to emphasize the role of the
program flow structure in analysing the source
program. The three major characteristics of our
approach are as follows:
Semantic access to data are defined using a
classification of CODASYL FIND statements and
dependencies between FIND statements rather than
over CODASYL FIND statements themselves. In
/Nati 78, Katz 82/, the analysis is based on the
assumption that different types of data accesses
are expressed through some "standard" code
sequences. Code sequences which do not match any
of the standard ones, cannot be analyzed /Katz
82, Su 81/ in such a method. Our approach is
more general because first we introduce a
classification of both CODASYL FIND statements
and dependencies between them caused by curren-
CY, db status indicators and db variables. The
data access types, are then defined based on
this classification. Our approach requires some
extra processing but it does provide more
generality and allows conversion of a larger
class of programs.

Each db statement can participate in more than
one semantic access. A program, describes all
possible ways in which data might be used within
a program run. Their actual use depends on the
evaluation of control structure conditions at
the execution time since the statements of a
program can participate in different execution
order. Given a FIND statement in the source
program, our analysis process for finding out
the semantic accesses takes into account each
code sequence in which the FIND participates. A
FIND statement may thus be associated to more
than one semantic data access type depending on
the use of data in which the FIND partecipates.
Sequences of consecutive semantic accesses,
called db queries, are defined by techniques
which analyze these multiple associations in the
program semantics characterization.

The third contribution of the paper is a formal
characterization of the class of decompilable
programs defining the set of programs which can
be handled. Since this definition can be
difficult when the program control structure is
concerned, sometime authors describe it through
examples /Moor 80/. In our case the characteriz-
ation directly comes from the techniques used
for analysing the program control flow. They are
well known in compiler optimization area and
apply to programs having reducible flow graphs
/Aho 79/.

The outline of this paper is as follow:
In section 2 the CODASYL Data Manipulation
Language is analyzed. Its FIND operators are
distinguished as enumerative selection and
single selection operators.
Section 3 and 4 concern the analysis process of
the application programs. The former describes
the dependencies between two statements created
by the use of currencies and db status indica-
tors. The semantic access types are defined as a
qualification of statement dependencies. Db
queries generation is shown in section 4.
Conclusive remarks and considerations on further
research are given in section 5.

2. ANALYSIS OF CODASYL DML
In this section, we analyse the CODASYL Data
Manipulation Language for the purpose of classi-
fying CODASYL FIND operators.

2.1 The CODASYL DML
The CODASYL DML is record at-a-time navigation
language /TSIC 82/. Its basic operations are
specified as follows /CCJD 76/ (an underlined
word in small letters denotes a non terminal
symbol whose syntax diagram is given, a non
underlined word in small letters denotes a non
terminal symbol whose syntax diagram is not
given, a word in capitals denotes a terminal
symbol):

operation-specification
set-run currency operator

set-run-currency

_j FIND -j record-selection-expression

operator _

389

record-selection-expression
recordnsme+DBKEYjIS-)identifier

ecordname+ITHIN+setname&URRENT

USINGjidentifia

A FIND operator in which any record selection
expression is specified, transforms the selected
record into the current record of its record
type, of all sets in which it is participating
and of the present run. The CODASYL operations
of erasing, modifying, reading and even finding,
except some FIND types, are based on these
currency indicators. Should a record be deleted,
modified or read, it must be first selected
within the database through one or more FIND
statements. After that, the operation is perfor-
med on it. Hereafter FIND statements are called
record selection statements. From these remarks,
it can be concluded that the way in which a
program operates on or accesses a database is to
be deduced from FIND operators.

Our analysis on CODASYL DML is mostly an
analysis of FIND statements and an analysis of
which record selection basic type can be
distinguished. The analysis of COBOL CODASYL
application programs in section 3 focuses on the
types of FIND statement used, how FIND state-
ments depend on one another because of curren-
cies and db status indicators and which sequen-
ces of FIND statements are possible in any
execution of the analyzed program.

2.2. Record selection
Our approach is based on the following observa-
tion. Within the CODASYL model a record selec-
tion can be either (1) a selection by enumera-
tion or (2) a single selection.
Selection by enumeration and single selection
are called basic record selection types.

Selection by enumeration
We call enumeration the selection of all records
within a set, one by one. A data model provides

enumeration capability if it allow (1) sets of
records to be identified and (2) the selection
of each single element of this set to be

expressed.
In the CGDASYL model, the enumeration capability
is provided by FIND statements combined with one
of the record selection expressions shown in
figure 3. These statements are called selection
by enumeration statements.

a. DUPLICATE record1
b. DUPLICATE WITHIN COD-set2 USIN vdentifier5-j

NEXT
C. 1,

f
record3+WITHIN~COD-set3 -j

PRIOR

figure 3. Selection by enumeration expressions.

We explain in the following how the expressions
in figure 3 provide the CODASYL model with the
enumeration capability.

First, the specification of any of the expres-
sions in figure 3 identifies one set of records.
The following informal descriptions of the
identified record set types are derived from the
General Rules of Record Selection Expressions in
/CCJD 76/. We have called the record set type
identified by the selection expression in figure
3.a (respectively 3.b or 3.c) Record-Set
(respectively Record-Seth or Record-Setc).

a

a. Record-Set
a C

= occurrences of record1 having
calculation key values equal
to the calculation key in the
current record of the run unit
and greater database key 1

b. Record-Set
b 1

= occurrences of record type'
being the current of COD-set2
and member of it, having in
field referenced by identi-
fier2 contents equal to those
in .the current record of
COD-set2 except the current
record itself 3

c. Record-Set = if record3 is specified

c c occurrences of record3 being
members of COD-set3 and folio
wing or preceding the current
record of COD-set3 according
to the set ordering criteria
for that set type

390

if record3 is not specified

i occurrence8 of all record

types within COD-set3 and fol-
lowing or preceding the cur-
rent record of COD-set3 accor-

ding to the set ordering
criteria for that Set type

i

In our interpretation, the current record
parametrizes a Record-Set but does non belong to
the Record-Set itself.
In the following we will distinguish a set of
records from the CODASYL concept of SET refer-
ring to them respectively as Record-Set and
CODASYL-set.

At the same time as they identify sets,
expressions in figure 3 perform the selection of
records within the sets. Given the specification
of an expression in figure 3, the selection of
records within the corresponding set is done by
iterating the execution of the same specifica-
tion. The identified record sets are actually
sequences of records that is ordered sets, whose
ordering is either user (DBA) defined or system
defined. At each iteration the next record in
the set is picked up.
Within database application programs, the enume-
ration is generally expressed through a cycle on
the DML enumeration statement. Very often the
exit from such a cycle is subject to a test on
the db status indicators of END OF SET or RECORD
NOT FOUND, provided in CODASYL systems and
meaning that all records within the Record-Set
must be selected.
As an example, we refer to the sample case used
throughout the paper. It is a skeleton code
described in /Nati 7S/ which produces a list of
SNAME, SNO and STATUS of Suppliers and the PNO
and PNAME of Parts they supply for all Suppliers
based in Chicago. The database structure and
sequence of code considered are shown in figure
4. The enumeration of all SUPPLIER records
present in the db for printing out those having
'CHICAGO' value in the field CITY is done with a
cycle on the statement 1. The exit from the
cycle is controlled by statement 2 which is a
test of RECORD NOT FOUND condition.

The code sequence which follows accesses only
two occurrences of the set occurrences of record
type EMPLOYEE associated by the CODASYL-set
named WORK to record DEPT with DEPT-NAME='TOY' .
The two records are in this case selected
through the physical iteration of the two
enumeration statements 3 and 5 within the

program.

1. MOVE
2. FIND
3. FIND
4.
5. FIND
6.
7. EXIT.

'TOY' TO DEPT-NAME
DEPT DBKEY IS DEPT-NAME
NEXT EMPLOYEE WITHIN WORK
(print NAME of EMPLOYEE)
NEXT EMPLOYEE WITHIN WORK
(print NAME of EMPLOYEE)

Although such cases are possible, they are quite
rare and will not be considered in this paper.
In the following sections we concentrate on
Record-Set enumerations through cycles on the
enumeration statements.

1. A. FIND NEXT SUPPLIER WITHIN SYST-S

2,3 IF RECORD NOT FOUND GO TO C

4. GET SUPPLIER

596 IF c1TY#tc~IcAG0* GO To A

7. (print NAME,...IN SUPPLIER)

a. FIND FIRST SP WITHIN S-P

9,lO B. IF END OF SET GOT0 A

11. FIND OWNER WITHIN P-SP

12. GET PART

13. (print PART-NAME,...)

14. FIND NEXT SP WITHIN S-P

15. GO TO B

16. C. EXIT

figure 4 - Sample Data Schema and Code sequence

391

Single Selection

Single selection is defined as an access to a
record which always selects the same record
regardless of the number of times it is
iterated.
All CODASYL record selection expressions except
those in figure 3 provide single selection. They
are then called single selection expressions and
FIND statements combined with them are called
single selection statements.

A CODASYL COBOL application program expresses
manipulations of records selected either through
a single FIND statement or through combinations
of FIND statements and of the basic record
selection types they express.

3. ANALYSIS OF APPLICATION PROGRAM FLOW GRAPHS
A database application program specifies a
computation where operations on a database are
present. COBOL programs using a CODASYL DML
interface to the db are assumed.

Within a db application program, CODASYL FIND
statements (and the basic record selection types
they express) are combined together to form
several possible statement paths. Correctly
identifying these statements paths requires that
the program be analyzed in its proper order of
execution. To make that easier we work on the
flow graph transcription of the program.

A program flow graph is a directed graph having
one entry node and whose nodes represent
statements of the program and arcs represent the
relation between a statement and the statement
that can follow it within an execution /Aho 79/.
The flow graph for the sample code in figure 4
is shown in figure 5.

16

figure 5 Sample Code Flow Graph

Node 1 in figure 5 is the flow graph entry node.
In what follows we will not distinguish between
a node of the flow graph and the statement it
represents.

The analysis of the program flow graph is
divided into the three steps:

l.Analysis of CODASYL currency and db status
indicators use. It identifies the dependencies
induced by currency and db status indicators
among DML statements. The analysis gives what
is called the "currency flow graph" in /Katz
82/. We prefer to present the results of the
analysis in a tabular form.

2.Qualification of the dependencies between FIND
statements. Two basic dependencies are defined
between FIND statements: the navigation and
the First In Record Set (FIRST) dependency.
These basic dependencies are fundamental in
determining the program interactions with the
db.

3.Identification of db queries. A db query is a
sequence of qualified dependencies. Forming db
queries we have to consider both 1) the
requirement of program conversion by which as
much as possible of a procedural program
should be replaced by a non procedural
operator and 2) the capacity of the target
interface to express various record selections
of the source program which depend on the
execution dynamics.

This section is concerned with the first two
steps, where each interstatement dependency is
considered by itself. The next section deals
with the third step where these interstatement
dependencies are considered for grouping toge-
ther.

3.1 Analysis of CODASYL currency and db status
indicator use.

The first step in the analysis of the program
flow graph is the detection of dependencies
between statements which are engendered by the
use of either the CODASYL currency indicators or
of the db status indicator.
The program flow graph shows the statements
ordered as they are executed. The currency and
db status information orders db statements
detecting how they might depend one on the
other. Record selection templates are matched
against this second order and for each depende-
ncy we recognize which semantic access type
corresponds to it.

392

The technique for detecting db indicator depen-
dencies is the Global Data Flow Analysis /Aho
79/. Roughly speaking, it consists in examining
the entire program to detect for every informa-
tion used at every point, at which other points
that information could have been defined.
In our specific case we are interested in
pointing out statements which assign a value to

=lY currency or db status indicator X and
statements which have that indicator X as an
operand.

The analyzed statements are then all the CODASYL
DML statements which set or use currency, db
status indicators and db identifiers as descri-
bed in /C&ID 78/ plus the following COBOL
statements
. IF on a db status value
. assignment or use (MOVE, READ, COMPUTE,

WRITE,...: of db identifiers.

The analysis of the nth statement identifies

a) the set of statements which assign valuesto
currency or db status indicators or db
identifiers used by this statement. This set
is indicated as P , (preceding of n).
By definition, Z set P

n
can contain any

CODASYL statement and assignment to db
identifiers through COBOL statements (like
MOVE, READ, COMPUTE,...). No IF statement can
belong to P .

n

b) the set of statements which use currency or
db status indicators or db identifiers
assigned by this statement. This set is
indicated as D (depending on n).
A set D can ncontain any CODASYL statement
plus COEOL IF on a db status value and
statements (like WRITE, MOVE, IF, COMPU-
TE,...) using a db identifier.

In /Katz 82/, the Global Data Flow Analysis
technique has been first used to identify how
currency definitions propagate through a CODASYL
application program. That approach still refers
to code sequences for identifying the semantic
access patterns.
The reader can refer to /Aho 79/ for a
description of the general analysis and to /Katz
82/ for its particular use in identifying the
currency flow. Though we extend this analysis to
include db status indicator and db variables the
process is unchanged and so is not described
here.

The Analysis of currency and db status indica-

tors flow on our sample code concerns the
statements whose identification number appears
in the left column of the Flow Dependency Table
in figure 6.

statement/node P
I

D
node node

7

1
2
4
5
7
8
9

11
12
13
14

1
1
1
4
4
1

8,14
8,14

11

12
3,14

1,2,4,8
empty
527
empty
empty
9,11,14
empty
12
13

empty
9,11,14

figure 6 - FLOW DEPENDENCY table

for the Sample Program

Once sets P have been
statement ton be analyzed,

computed for every
sets D are also

completely defined. Although the D
n

are redun-
dant, they are provided here for eany reference
in the subsequent discussion.

3.2 Qualification of statement dependencies.
Given two distinct statements n and m, a
statement dependency exists from n to m if nEP

m
(and, viceversa, m h D). Two 'types of

n
dependencies between two FIND statements are
distinguished: the navigation dependency and the
FIRST (First In Record SeT) dependency.

Navigation Dependency
This is a dependency from the statement n to m,
where na P and

m
n is a FIND statement, either single selection

or enumeration selection which selects an
occurence of recordl,

m is a FIND statement which selects a record2
member (respectively, owner) of any CODASYL
set in which record1 selected by n parteci-
pates as owner (respectively, member).

Record1 and record2 are usually different record
types. Only the 1978 CODASYL DDL version allows
the same record type to partecipate in a CODASYL
set both as owner and as member record which is

393

called recursive set /DDLJ 70/.
A Navigation dependency from n to m is indicated
as N (n,m).

In our sample case (figure 4) the dependencies
from statement 1 to 8, 8 to 11, 14 to 11 are
navigation dependencies. Then we have the
following: N(1,8), N(8.11) and N(14,ll).

FIRST Dependency
The Record set identified by an enumeration
statement n is parametrized by the current
record selected through a preceding FIND state-
ment m. In other words, the set P of an

n
enumeration statement n contains at least one
other FIND. Only the record selection expression
in figure 3.c has a default current record if no
FIND belongs to Pn.

The dependency from the statement n to m, where
n&P is called FIRST (First In Record SeT)
dependency if:
n is a single selection FIND statement which

selects an occurence of record1
m is an enumerative selection FIND statement

which refers to a Record-Set containing
occurences of recordl.

We indicate such a dependency as F (n,m) and n
is called FIRST statement.
For the code in figure 5, there is one FIRST
dependency, which is F(8,14). The code sequence
in figure 7 appeard in /Katz 82/ as an example
that could not be decompiled. Statement 2 of the
sequence, is a FIND statement which selects an
occurence of record EMP. Statement 6 &D .
enumerative

2' 1s
and refers to a Record-Set where

occurrences of record EMP will be concerned.
Hence the dependency between statement 2 and 6
is a FIRST dependency F(2.6).

1. FIND ANY DEPT
. . .

2. FIND EMP WITHIN CURRENT WORKS-IN USING
BIRTHYR

3. GET EMP
4. (print NAME,...in EMP)
5. ACCEPT SALARY
6. A.FIND DUPLICATE WITHIN WORKS-IN USING

SALARY
7. IF RECORD NOT FOUND GO TO B

. . .
8. GO TO A
9. B.EXIT

figure 7.Code example

Enumeration Identification
An enumeration statement is associated with its
enumeration & which identifies the scope of
the enumeration within the program flow graph.
Its definition is given in the following.
We consider application progranawhere enumera-
tions are performed by looping on the enumera-
tion statement. There is a special class of

program flow graphs called reducible flow
graphs, in which the detection and analysis of
loops is particularly facilitated. Several
definitions of "reducible flow graph" have been
proposed: one of them and references to the
existing literature can be.found in /Aho 79/.
Here we only mention the properties of reducible
flow graphs which are most important with regard
to our analysis.

Property 1. A cycle is a set of strongly
connected nodes, that is, there is a path in the
flow graph from each node to every other node of
the cycle which is wholly within the cycle. In a
reducible flow graph every cycle has a unique
entry node, such that all paths from outside the
cycle to any node inside it go through that
entry node. Cycles with this property are called
loops.

Property 2. In a reducible flow graph two loops
are either disjoint (except possibly for their
entry nodes) or one is a subset of the other.
This means that a nested structure can be placed
on reducible flow graph loops.

Every loop L ={ nl,...,nK 1 in a program flow
graph F identifies a subgraph which contains all
nodes in L and the edges from F that connect two
nodes both in L.
A node of a loop subgraph is called exit node
from the subgraph if in the flow graph F n is
connected to one or more nodes not in the
subgraph. Several exit nodes can appear in a
loop subgraph.
Techniques for identifying loops are presented
in /Aho 79/. By using them the enumeration
statements of the source program flow graph are
associated each with possibly several loops and
consequently with several subgraphs of F.
Given an enumeration statement m we call
enumeration graph of m the subgraph EGm of F
which is associated to a loop containing m and
not containing any other statement on which m
depends and such that every different subgraph
of F associated to a loop containg m and not
containing other statement on which m depends is
subgraph of EGm too.

394

Intuitively an enumeration graph EGm contains
all the statements which equally operate on each
element of the set enumerated by the statement m
whose execution is iterated through the enumera-
tion loop.

The enumeration statements of our sample program
in figure 4 are statements 1 and 14. Both are
used for an enumeration by loop. The correspon-
ding enumeration graphs are shown in figure 7.a
where enumeration nodes appear encircled.

Y
6 10

1‘ t
597-8

entry exit

EG14)
6
9 Yll*l* +13*

entry,
exit

figure 7.a The Program Enumeration Graphs
for the Sample program in fig.4.

4. IDENTIFICATION OF DB QUERIES
A db query is a sequence of qualified statement
(navigation or first) dependencies. It will be
mapped into a query in the target program.
For a given source program, several db queries
are generated by a two steps analysis procedure
which first analyses the program code within
each enumeration subgraph and then considers db
statements not belonging to any enumeration. The
general strategy of the db queries generation
process is informally described in the following
with motivations and examples.

The goal of decompilation is to replace as much
as possible of a procedural program by specific-
ation operators /Spat 81, Katz 82/. In our
framework, this goal means that the identified
record selections must be combined together into
the longest possible sequences (i.e. db que-
ries).

Many reasons make attaining the goal least than
a complete success. The major restrictions come
from the specification interface itself whether
it fits, more or less satisfactorily the record
selection capabilities expressed in the source
program through the navigation interface and the

host language control structures.

4.1 Db queries from enumeration graphs
The process of db queries identification first
considers the enumeration subgraphs and analyses
the nested enumerations for defining sets of
statement dependencies to be all solved in a
single db query.
Two enumerations having graphs EGn and EGm
respectively are said to be nested if EGm is a
subgraph of EGn. The enumeration having EGm is
said to be inside the one having graph EGn.

As a general strategy, two nested enumerations
are solved within the same db query. Exceptions
to this general strategy are the following:
(i) if an enumeration inside another enumeration

does not select every element of its
corresponding Record-Set then the two enume-
rations are associated with two different db
queries. To identify these cases the cardi-
nality of the inside enumeration must be
determined.

(ii) if any program instruction can be executed
between two enumerations the general stra-
tegy is applied or two different queries
are associated to each enumeration depen-
ding on the target specification interface.

Last, if an enumeration statement appears in two
(or more) FIRST dependencies, the corresponding
enumeration is called a multiple activation
enumeration. In such a case at least three
different db queries are generated, one for each
FIRST statement and one corresponding to the
enumeration itself.

Enumeration cardinality
Consider the data schema and sequence code shown
in figure 8 (a). For any occurence of RECl, at
most N occurrences of REC2 connected by SETl-2
to current RECl are selected.
In this example we have two enumerations. The
first one concerns the occurrences of RECl,
statements 12 and 1 are respectively the
enumeration statement and the FIRST statement.
The second enumeration concerns the occurrences
of REC2, statement 5 is the enumeration state-
ment. The corresponding enumeration subgraphs
EG12 and EG5 are shown in figures 8(b) and 8(c).
In EG12, the node 2 is the only exit node. Since
2 contains a condition on END OF SET we say that
EG12 enumerates all the occurrences of RECl.
While in EG5 one athe two exit nodes 6 and 9
corresponds to a statement which is different
from a condition on END OF SET. Hence we say
that the enumeration is a non complete one.

395

In the case of figure 8 two different db queries
are associated to each enumeration keeping them
independent one from the other.

EG5 : ql= N(1,5) F (0,5)

EG12 : q2= F(1.12)

In figure 8 (a) the enumeration statement 5 has
no corresponding FIRST statement. In the query q
this'results with the F(6,5)' dependency qualii
fication.
The notation F(O,n) is used in db queries for
mY statement n either being an enumeration
statement with no corresponding FIRST statement
or being any statement depending on no other
statement, i.e. with Pn=p.

1. FIND FIRST RECl WITHIN SYST-RECl
2,3 A. IF END OF SET GO TO D
4. MOVE @ TO COUNT
5. B. FIND NEXT REC2 WITHIN SETl-2
687 IF END OF SET GO TO C.
8. ADD 1 TO COUNT
9.10 IF COUNT> N THEN GO TO C.

. . .
11.
12. c.
13.
14. D.

GO TO B.
FIND NEXT RECl WITHIN SYST-RECl
GO TO A.
. . .

EG12)

RECl

Ez SETl-2

REC2

(a 1

\
5 j6+8-9 j ..ll

exit exit

Procedural Break
Program instructions which may be executed
between two enumerations one inside the other
are called procedural break /Katz 82/. In figure
4, EG14 appears inside EGl. Statement 7, which
is a node of subgraph EGl only, is a procedural
break between EGl and EG14.
The two enumerations can be combined if the
specification interface provides a feature to
(1) group, for each element of the outer
enumeration, the corresponding set of elements
of the inner enumeration and (2) a primitive to
deliver the grouped elements, one by one.
Otherwise the two enumerations must be solved in
two different db queries.

Multiple enumeration activation statements
Consider the following code sequence which is a
modification of the code skeleton shown in
figure 7.

1.
2.
3.
4.

FIND ANY DEPT
IF SEARCH-BY-BIRTH = 'Y'

ACCEPT BIRTHYR
FIND EMP WITHIN \rlORKS-IN USING

BIRTHYR
5,6 IF RECORD NOT FOUND GO TO B
7. ELSE ACCEPT ENAME
8. FIND EMP WITHIN WORKS-IN USING ENAME
9,lO IF RECORD NOT FOUND GO TO B.
11. A.GET EMP
12. (print EMPCODE,...)
13. FIND DUPLICATE WITHIN-IN USING SALARY
14,15 IF END OF SET GO TO B.
16. GO TO A.
17. B....

figure S.Multiple Enumeration activation example

In the above code the following dependencies are
identified:
N(l.4). N(l,8), F(4,13), F(8,13).
The enumeration statement 13 appears in two
different FIRST dependencies. The db queries
generated are shown in figure 10.

ql= F(4,13), F(8,13)

q2= N(1,4)

q3= N(1,8)

figure 10. Db queries after Enumeration Analysis

figure 8. Enumeration analysis example

396

4.2 IF Branches Analysis
The analysis of IF branches, is the analysis of
the db statements partecipating in many depen-
dencies.
In general, two record selection statements both
depending on a third statement and appearing in
different branches of an IF statement are not
solved in the same db query except the above
enumeration solving rules.
Different branches here means that in some run
one of the two statements may be executed while
the other may not. A db query, i.e. a sequence
of statement dependencies, is then finished when
finding such a case. Two different queries are
associated with the IF branches themselves. They
hold different till the first common point
unless other IF branches or enumerations are
found. A fourth query begins for record selec-
tion statements which follow the common point.
As an example, in figure 9 code sequence the
statements 4 and 8 appear in different branches
of the IF statement 2. Being 4 and 8 FIRST
statements, they have already been analyzed and
solved in queries q

2 and q
is generated for

3
in figure 10. Then a

query q4 the sequence of code
preceding the IF and is kept independent from q

2 and q
3

which solve the IF branches.

q4= F(O,l)

If branches appearing in an enumeration graph
are analyzed in the same way and generate db
queries beside the one which solves the enumera-
tion itself.

The set of the identified db queries is an
output of the program flow graph analysis.
Through the synthesis activity each db query is
mapped into a specification and embedded within
the application program to produce the target
version. This activity is not covered in the
present paper.

5. CONCLUSION AND FUTURE WORK
In this paper we presented an approach to the
analysis of a database application program for
the purpose of converting its db interface from
a navigation to a specification one.

The analysis algorithm is based on the dependen-
cies between statements induced by the currency
and db status indicators. Statements dependen-
cies are distinguished whether they express
navigation on the db schema from one record type
to another or enumeration of occurrences within
the same record type.

The global semantics of the program is found out
basically through the qualified inter-statement
dependencies rather than by matching standard
code sequences against the application code.
This approach proves more flexible to different
possible code sequences than previous techniques
/Katz 82/.
The approach uses techniques for program flow
graph analysis developed for compiler code
optimization /Aho 79/. We have seen how these
techniques apply to programs with a reducible
flow graph which occur very frequently in
practice.
Besides reducibility we require, for a program
can be analyzed, that any assumed ordering of
records is explicitly declared in the db schema
description. In other words, programs assuming a
system dependent physical order in their record
management are not properly handled. Their
conversion into the target interface produces a
target program which is not equivalent to the
source program.

Some topics which have not been analyzed are
worth studying. Among them, we are currently
analyzing the COBOL selection restrictions.
Within a CODASYL COBOL db application program
records in which the user is interested are
selected and transferred to a User Working Area
(WA) through CODASYL statements. After that,
records can possibly be distinguished if further
manipulated or discarded depending on whether
they match some conditions or they do not. The
distinction is made through COBOL IF statements
evaluating predicates on UIA record fields. We
refer to these cases as COBOL selection restric-
tions.

As an example, the sample code sequence in
figure 4 selects (statement 1) and transfers to
WA (statement 4) the occurrences of record type
SUPPLIER. The IF statement number 5 distingui-
shed which occurrences are to be manipulated or
discarded depending on whether the field CITY in
record SUPPLIER is equal to CHICAGO or not. In
case the condition is not satisfied, the record
is not further considered and a different occur-
rence of SUPPLIER replaces it.
When a specification interface is used the COBOL
selection restrictions ought to be expressed
directly in the qualification term of the
specification rather than as COBOL statements
again. Hence the transfer load of data to WA
results optimized.
Current research also aims to complete the
definition of the SCOOP-ER DML. The choice of

397

first working on program analysis has been found
to provide fruitful suggestions for the DML
definition also. An example has been given in
section 4.1 of the present paper.

Acknowledgements
The author is grateful to S.Spaccapietra and the
SCOOP group: this research has been mostly
developed while she was visiting the University
of Paris VI.
The comments of S. Navathe and of S. Kundu on
earlier versions of this paper and the discus-
sions with S. Su and H. Lam were particularly
helpful.

REFERENCES

/Aho 79/

/CCJD 76/

/DDLJ 70/

/Katz 821

/Lam 79/

/Moor ao/

/Moor a2/

/Nati 78/

Aho, A.V. and Ullman, J.D., Principles
of Compiler Design, Addison Wesley,
Reading, Mass., 1979.

CODASYL COBOL Journal of Development,
1976

CODASYL Data Description Language
Committee, DDL Journal of Development,
1978

Katz, R.H. and Wong, E., Decompiling
CODASYL DML into relational queries,
ACM Trans. on Database Systems, Vo1.7,
No.1, March 82.

Lam, H., A Generalized System for
application program conversion to
account for database semantic changes.
Design and prototype implementation,
PHD Thesis of the University of
Florida, 1979.

Moore, L.K., The Decompilation of
COBOL-DML programs for the purpose of
program conversion, M.S. Thesis, Uni-
versity of Florida, 1980.

Moore Dorsey, L. and Su, S.Y.W., The
Decompilation of COBOL-DML programs
for the purpose of program conversion,
Proc. COMPSAC Conf., Chicago, Oct.,
1982.

Nations, J., Su, S.Y.W.) Some DML
instruction sequences for applications
program analysis and conversion, Proc.
SIGMOD Conf., 1978.

/Pare t33/

/Spat ao/

/Spat 81/

/Spat 03/

/Shne 82/

/su 81/

/Tayl 79/

/Tsic 82/

Parent, C., Spaccapietra, S., An
entity-relationship algebra, Report
MASI n017, Institut de Programmation,
Univ. Paris VI, March 83.

Spaccapietra, S., Heterogeneous Data
Base distribution, in Distributed Data
Bases, Draffan and Poole eds, Cambri-
dge Univ. Press., 1980.

Spaccapietra S., et all., An approach
to effective heterogeneous databases
cooperation, in Distributed Data Shar-
ing System, North-Holland, 1982.

Spaccapietra, S., Demo, B., Parent,
C .(SCOOP: A System for integrating
existing heterogeneous distributed
data bases and application programs,
Proc. of the INFOCOM Conf., San Diego,
April 1983.

Shneiderman, B., Thomas, G., An Archi-
tecture for Automatic Relational Data-
base System Conversion, ACM Trans. on
Database Systems, Vo1.7, No. 2, June
82.

SUP S.Y.W., Lam, H., Lo, D.H., Tran-
sformation of Data Traversals and
Operations in Application Program to
Account for Semantic Changes of Data-
bases, ACM Trans. on Database Systems,
Vol. 6, No. 2, June 1981.

Taylor, R.W. et all., Database Program
Conversion: a Framework for Research,
Proc. VLDB Conf., Rio de Janeiro,
1979.

Tsichritzis, D.C., Lochovsky, F.H.,
Data Models, Prentice-Hall, Englewood
Cliffs, New Jersey, 1982.

CR Categories and Subject Descriptors: H.2.3:
Database Management, Languages, Data manipula-
tion languages, H.2.5: Database Management, He-
terogeneous Databases, Program Translation

Additional Key Words and Sentences: Global da-
taflow analysis, specification and navigation
data manipulation languages, CODASYL

This research was partly supported by the Pro-
getto Finalizzato Informatica (PFI) of the Ita-
lian C.N.R. and by the French Government.

398

