A MODAL SYSTEM OF ALGEBRAS FOR DATABASE SPECIFICATION
AND QUERY/UPDATE LANGUAGE SUPPORT

F Golshani, T S E Maibaum, M R Sadler

Department of Computing, Imperial College

Abstract

Rather than formalising general properties of
database systems and defining abstract languages
for databases, in this paper we provide a formal
system for reasoning about specific properties
of each application and the specification of
query/update functions which are particular to
that application. We regard a database as a
dynamic object and use a system of modal logic
similar to Hoare-style program logic for its
specification. The possible worlds in our modal
system are the (correct) database instances.
Each database instance is defined as a many~
sorted algebra where the signature of the
algebra constitutes the basis for the database
schema. Concepts related to database instances
such as queries and (statiec) integrity
constraints are simply well-formed expressions
on the signature. Similarly, at the dynamic
level, we define notions such as transition
constraints and update operations as expressions
of the modal system. The paper includes a
section on the areas where further work has been
done.

1. Introduction

To remain faithful to the real world, databases
are continuously modified. To maintain the
correctness of the database system through
modifications, certain rules and criteria called
consistency constraints must be observed at all
times. Depending upon the

331

"modification/retrieval ratio” of the
particular database system (that is the number
of times that a typical item is queried before
being updated to something else [Sch 71]) and
the "life time"™ of data objects in the database,
the importance of these constraints becomes
more (or less) obvious. In a Dbanking
enviromment, for example, where the database has
a relatively 1long life time, the rate of
modifications to personal accounts is high; the
database is therefore more prone to
inconsistency and rigorous rules are introduced
to (at least partly) avoid errors.

Two different classes of consistency constraints
can be identified: static (integrity)
constraints which restrict each database
instance to (ranges of) correct values, and
dynamic constraints which guard the database
through updates. Within the first group one can
again recognise two slightly different types.
The first type, which we call "simple data
constraints®, are those which restrict the
values of the individual data objects, eg: "age
of no employee can be less than 16", or "all
salaries are more than 15K", The second type
which will be called ‘“aggregate data
constraints™, are those which state certain
restrictions on the values for a collection of
data objects; eg: "the total of all salaries in
a certain department 1is less than a given
number®, or "the number of tickets sold for any
particular flight must not be greater than the
number of seats in the aircraft assigned to it".
A common example for rules governing updates
(called "transition constraints® [CaFu 82]) is
®"salaries must not decrease",

In this paper we intend to provide a setting for
the specification of databases in a formal
system which lends itself easily to the
specification of individual applications as well
as to the design of general purpose query and
update languages suitable for any application
specified. Below is an outline of our approach.

We clearly distinguish between query facilities
and update operations., Update operations change
the state of the database; thus at update level

databases are dynamic. On the other hand, at
query level we deal with only one instance of
the dynamic database; we therefore, in turn,
formally define what we mean by a ‘'database
instance!. The aims of this work will thus be:

to provide a specification language for
specifying the database schema which
determines the properties of individual
instances in a particular application;

1a

to indicate how a general purpose query
language can be based on the formalism
used for the specification of database
instances;

1b

2a to specify the database application, ie

the dynamic object;
2b to design a general purpose update
language for the database based
on the formalism used for specifying
particular applications.

In our approach 1a and 1b are developed hand in
hand as are 2a and 2b. At the static level a
database instance is regarded as a collection of
sets together with a collection of functions on
these sets. The database instance is therefore
seen as a 'many-sorted algebra'. There are
names associlated with every set and every
function. These symbols are contained in a
"signature® (see eg [ADJ=78]). The signature
also gives the typing rules for the database

mappings. Thus, the signature is the
specification for the "type checker®™ and the
"syntax checker® of the language. Ve will see

that 'type errors' in queries can therefore be
detected statically. We extend the ordinary
notion of functions in two ways. Firstly,
functions which return sets of data objects are
permitted. Secondly, we introduce a new object
0 standing for the value "“inapplicable"™ or
"domain error® for those mappings which are not
everywhere defined {eg: the function grade-of
which when given a student and a course as
arguments may return a number as the mark, is
not defined for all combinations of students and
courses; not all students take all courses); see
[Gol 82a)] for details. Full computation power
is provided in the query language by including a
wide range of operations which are fixed across
all applications. Queries are simply expressions
which are built up out of the symbols in the
signature of the algebra together with the
operation symbols and which comply with the
formation rules given by the query/specification

language. The semantics of a query is the value
which is assigned to it by the algebra
representing a database instance. tStatic
constraints! are simply expressions of type

boolean which are constructed in the same way as
queries and must hold in all algebras. These
issues are discussed in section 3.1.

332

At this point we should mention that although
the above development is somewhat non-standard
it does not disagree with previous developments.
For example, a set-valued function may more
conveniently be thought of as a relation (as may
a boolean valued function). Static constraints
can also be thought of as formulae in the sense
of first order logic. Thus we note that an
equivalent formalism may be developed based on
many-sorted logic rather than universal algebra.

For the specification of 2a and 2b we develop a
system based on a special kind of modal 1logic.
Modal logic, which began as an extension to
predicate logic, is the logic of necessity and
possibility: a proposition is "necessary" if it
holds in all reachable worlds, and "possible" if
it holds in some reachable world. Modal logic
is particularly suited for reasoning about
dynamic systems such as databases. In this
work, our modal system has similarities to
Hoare-style program logic [Gold 82]. The
admissable worlds of our modal system are the
database instances (ie: many-sorted algebras).
Transition constraints then can naturally be
viewed as modal expressions built up from the
modal operators (yet to be defined) and the

symbols in the (common) signature of the
algebra. These issues are disscussed in section
3.2.

2. Comparison with extant work

Attempts to provide formal settings for the
specification and design of databases and
database languages date back several years.
Similarities between concepts in mathematical
semantics and in database modelling were
analysed in [Mai 77]. Based on ideas taken from
abstract data types and the notion of higher
order functions a primitive formalisation of our
present ideas was provided. The concept of
database instance (static) was later formalised
in [Mai 81]., In [CaBe 80] a language based on a
variant of dynamic logic was defined which
incorporated the aggregation operators. Using
this language, various concepts such as database
schema, transactions, database states and
integrity constraints were developed. The use
of an extended form of logic enabled them to
express 'aggregate consistency constraints' in a
natural manner,

In {[CaFu 82)] a family of languages are defined
which are based on an extension of temporal
logic. (Temporal loglic is a special kind of
modal logic, see eg [MaPn 79].) Although this
extension does not seem to increase the
expressive power of the language, it is claimed
that it facilitates the description of
transition constraints. This work is based on
Wolper's extended temporal logic [Wol 82] and
contains proofs about decidability and
solvability problems., The constraint "salaries
never decrease", for example, is expressed as:

131133 (O (EMP(n,s); Jst (EMP(n,s')A 8>3)))

where EMP(x,y) indicates that employee x has the
salary y. A technical defect in this paper is
that it 1s not clear over which range the
variables are quantified. For example, while
being in a particular database instance, how can
we talk about the objects which may exist in a

future database instance? [Nic 83]. s' in the
above expression is an example of

this phenomenon.

In contrast to our work which clearly

distinguishes between queries and updates, in
[MSF 80] a database is defined as a set of
axioms of many-sorted first order predicate
logic which specify all the valid states.,
Queries and updates are considered uniformly as
theorems which must be proved by a theorem-
proving process with respect to the database
state.

On the algebraic specification of databases, the
work presented in [DMW 82] stands out. In this
rigorous study, precise specifications are given
for many aspects of databases. After defining
notions such as conceptual models and external
views, they present abstract definitions of
query and update operations.

Our work differs from above because we design
concrete query/update languages in addition to
talking about general (and abstraet) properties
of such languages. Many other research reports
are related to this topic. See [Web 761, [Tod
771, [NiYa 78], [CaBe 80] and [Nic 82] for the
study of integrity constraints, and [DaBe 82],
[FVU 83] and [SeFu 78] for reasoning about
correct updates.

Database specification and database language
design

3.

3.1 Given an alphabet A , we define the
vocabulary of our language as the collection of
four groups of symbols (a symbol is a sequence

of characters): "sort symbols", "variable
symbols"™, "function symbols™ and "operation
symbols". We assume that the form of each

symbol determines to which group it belongs.
The operation symbols form an invariant part of

the language {as they are the application
independent constituent of the
query/specification language) and stand for

various kinds of standard operations such as
arithmetic, boolean, set-theoretic, aggregation,
and more complicated ones such as quantifiers
and the set-building operator. The difference

between operations and functions is that
functions are particular to the database
application and instances thereof. It is

assumed that the two sorts boolean and integer
together with the associated operations are

333

present in all specifications,

are inductively defined
to be sort symbols or of one of the forms:

o3

LA C I L

n)
and P(%,) where for some n for 1igi¢n , %,

is a simple-type-expression.

Given a natural number n, a functiop-type-
expression of arity n has the form

0.1, az,-.-, C(,n ---)B

where for 1<1<n y a is a simple-
type-expression and B is a simple-type-
expression, Operation-type-expressions are
defined in a similar manner. For example, the
operation-type-expression for the operation
symbol ®+" is int,int --=>int.

A gaigpnature is a function which assigns a
function-type-expression to each function symbol
and a sort symbol to each variable symbol.
Thus, the signature is the specification for the
type-checker as well as for the syntax-checker
of the language. Notice that the variables are
typed by the signature and not by the user.
There is an unlimited supply of variables of
each sort.

Example : We can specify part of a university
database as follows: sort symbols 'students',
‘courses', 'lecturers?, tintegers' and
'boolean'; function symbols 'courses-of'!, t'is-
taking*, fenrollers-of', 'prerequisites-of’,
fage-of', ‘'grade-of!', 'lecturer-of', and so on.

The unique function-type-expressions for (some
of) these function symbols are given below:

lecturer-of courses ---> lecturers

grade-of students, courses --~> integers
courses-of students ~--> P(courses)
age=of students U lecturers ---> integers
prerequisites-of courses --=> P(courses)

Given a signature, we define the set of yell-
typed expressions on that signature in the usual

inductive way. For example, if 9 is an
expression of ¢typey , and 2 and @ 3 are
expressions of type P(0), then

Q 1 isin Qz
is an expression of type boolean,

Q 5 is~subset-of Y] 3
is an expression of type boolean,

Q > union Q@ 3

is an expression of type P(Q),

Similarly,
(924 1sin Q,) and (2, is-subset-of 3)
is an expression of type boolean.

("isin", “"is-subset-of", "union" and
all operations of the query language.)

Bound and free of variables in
expressions can be detected syntactically in the

usual way. For instance, given an expreasion of
the form {9418 Z}X , any occurrence of X in
Q or {0 s a bound occurrence. The set

bullding operator {...l...}X is a variable
binding operator (see [KMM 80], [Gol 82]) in the
same sense that %Y and o are in normal logie.
Of course, the type of the expression 2 must
be boolean.

Closed expressions are those in which there are
no free occurrences of any variables.

Given a signature I , a (statie) Antegrity
constraint is any well~formed expression of type
boolean on I . We will use the symbol Iy for a
set of integrity constraints on signaturey . A
database schema is a signature together with a
(possibly empty) set of integrity constraints on
that signature.

Example: Here are some examples of integrity
constraints on our university database.

- No student can be registered for a course
unless she has passed all the prerequisites of
that course,

forall STUDENT forall COURSE
((STUDENT is-taking COURSE) implies
(prerequisites-of (COURSE)
is-subset-of accumulated-courses-of(STUDENT))

= Maximum number of envollers for any course is
50.

forall COURSE
(No-of(enrollers-of(COURSE)) LT 50)

- The fact that the two functions 'courses-of!
and 'enrollers-of' and the relation 'is-taking!
represent exactly the same information can be
expressed by three constraints of the form:

forall STUDENT forall COURSE
({ STUDENT is~taking COURSE) implies
((STUDENT isin enrollers-of(COURSE)) and
(COURSE isin courses-of(STUDENT)))

A guery is a closed expression in which any
variable is bound only once. We continue our
illustration of the wuniversity database by

constructing a sample query:

~ lecturers of all those courses which must be
taken before taking Maths.

"and® are

334

{ lecturer-of(COURSE) |
COURSE isin prerequisites-of(Maths) } COURSE

The type of the object returned by this
expression is P(lecturers) because the function
lecturer-of has the function-type-expression
courses --->lecturers. COURSE 4is a variable
of type courses. (The appearance of COURSE on
the very right indicates the variable which is
being bound by the set-building operator).

So far we have only discussed syntactic issues,
we shall use the notion of algebra to reason

about the semantics. A pany-sorted algebra is a

function which assigns a set (called carrier
to each sort symbol and a function to each
function symbol. For a simple-type-expression®

the set of all objects of type in an algebra A
denoted by |A|, is defined as follows:
if @ 4is a sort symbol then (Al = A(%)

ir “is @, U%, then [Al, = |Al, U lAl,,

- if gis (o 4®q o%eeee®y) then
il =ia) 4. A R
¢} e 5]
- 1if o is P(y) then l‘!a= P(llla)

The evaluation in A of queries is carried out
in the usual way.

Defining a database scheme S=(5 ,r_) tobea
signature and some constraints on it,” an algebra
A is an S-algebra iff:

1. for each function symbol ¢ in the domain
of A, if v (¢) is

100030 p ===>8
then A(¢) returns an element of |A} when
given an element of !Aly, , 8
an element of lAly,,.. and an element of Al .
2. A evaluates all the expressions of T as
true, 2

We are now ready to define database instances,

A database instance over a schema S =(y ,;)
is the ordered pair (S,A) where A is al S-

algebra,
Notation: Given an expression P of type
boolean, for a database instance i, we write

ij= P iff 1 evaluates P as %true.

Readers interested in details of the above are
referred to [Gol 82] and [Gol 83].

3.2 Databases as dynamic objects

We begin this section by giving our main

definitions (1a and 1b below were presented in
3.1). A specification of a database is:

ia = A schema S= (7 Ty) s+ where y 1is a
many-sorted signature and Ty is a
collection of well formed boolean

expressions over 7.

1b - A collection of domains {D0} of values,
one for each sort 2 of I,
The collection DB of S~algebras
(database instances) over {Dc}.

2a - An extension L' ofI' to include update
symbols ug,, Uqgenes and the modal
construct P], and to include functions
tin-0r, one for each sort O , of
type O -=«> bhool.
And an extensionT'.:of to inelude
transition constraints.

2b ~ A collection U of update funotions g
Ugpesee where each u is a
mapping from DB to DB, and such that
these functions satisfy Plzx .
(We shall define what is meant by
satisfaction below. Ve underline

the names of update functions, as in L4,
to avoid confusion with the corresponding
symbol uy in)

The rest of this section 18 concerned with
explaining and illustrating 2a and 2b above.
Note that 1a and 2a are syntactic components of
the definition, and that 1b and 2b are related
to semantic concepts. Essentially it is the
syntactic components that are used in connection
with proving correctness of implementations and
reasoning about database properties whereas the
semantic components are used in connection with
evaluation of expressions denoting queries. We
shall indicate how bhoth these functions are
supported by our definition. We assume the
presence of a deductive system for the language,
although here we omit any such detail.

At the dynamic level we want to be able to talk
about objects which are not necessarily present
in a given database instance - that is, we want
to reason about potential objects as well as
about the "concrete™ ones of any given instance.
To facilitate this we define each S-algebra over
the same collections of objects (the Da's), and
pick out those objects which are "real®,
Tactual®™ or "concrete" in each algebra by use of
the in=- o functions.

Quantifiers now range over all potential
objects; but we could also introduce 1local
quantification by use of the construct:

forall x (in-o(x) implies...
See [HuCr 68] for a detailed treatment of the
problems associated with the range of
quantifiers in a modal logic setting. And see

also [Man 81] where a distinction is made
between local and global symbols (in particular
variables) for an alternative way of handling
the potential/actual distinction,

335

We turn now to the more interesting parts of the
definition, those dealing with updates. We
explain our syntactic treatment first. Although
there are strong similarities with program logic
{Gold 82] the material is probably unfamiliar to
most readers. So we proceed more carefully
(and when necessary, formally).

The definition of well-formed expressions over
Zl is extended to well-formed expressions over
I by including the construct:

(u,1P

as an expression of type boolean, where P is an
expression of type boolean and is an update
symbol. The constructs [u] have no effect on
whether or not variables are bound and we use
the square brackets to exploit the analogy with

[Gold 82]. Intuitively the expression [u 1P isg
read as 'after the update is performed, P

will be true'; that 1is, the [u,] act as
operators in a similar way to the, peghaps, more
familiar modal operators (J, {) and Next.

The 1logic used for deriving consequences from
the schema can now be extended by adding the
following axiom schemata:

Distribution:
[ul(P implies Q) iff ([ulP implies [ulQ)
Negation:
not [u] P iff [u] not P
Quantification:
(forall x [u] P(x)) 1iff [ul(forall x P(x))
and the rule: P
fulP

ie if P is a theorem, then so is [u]P.

In the above P and Q are expressions of type
boolean overI! ,that is, they themselves may
include modal symbols; P(x) is an expression of
type boolean overy' with at most the variable x
free; and u is an update symbol ofr' , that is,
we are using u as a metavariable over the L)

The quantification axiom might seem strange, but
note that we are quantifying over all potential

objects. It 4is worth noting that expressions
such as:

"forall x [ulP(x)" and "[u] forall x P(x)"
should not be confused with the similar

expressions using "local quantification®, for

which the quantification axiom does not hold.

One important feature of this system is that our
modal operators can be "pushed around®™ quite
freely within our logic. The static constraints
and the transition constraints act independently
and our logic reflects this. The behaviour of

govey is governed only by the

transition constraints.

geee

The notion of satisfaction is easily extended to
cope with the modal operators. Given a database
instance i, an update symbol L' and a boolean
expression P :

i 1= [uylP ife w,(4) i= P,

It 1is straightforward to check that the axioms
(distribution, negation and quantification) and
the rule presented previously are sound. What we
are doing here 1s replacing the more
conventional relational semantics for modal
logic by a functional semantiecs.

Examples: Let us look at some examples of
transition constraints for our university
database:

- ages cannot be reduced:

forall x forall y ((age-of(x) 1is y)
implies ([u] (age-of(x) GE y)))

This expression reads as follows: for any
student x and any age y, if the age of x at
present is y then after performing any update
the age of x will be at least y.

- certain course, say EE1, once inserted to
the database can never be deleted.

in-course(EE1) implies [ul(in-course(EE1))

Both these examples can, of course, be captured
by the general operator [J . Literally, these
two examples only talk about a "next"™ state, but
a simple application of the rule and schemata
presented above allow the modal constructs to be
iterated to any length. {(See 4.7 below). The
specific operators come into their own when we
wish to make assertions about particular
updates:

not in-student(Jack)
implies [u°] in-student (Jack)

for example, asserts that HQ involves entering

"Jack" into the database. (In practice we would

write 'add-Jack' instead of 'uo'.)

It should be noted that the [u_]l's are specific
and are not parameterized with respect to the
data being manipulated. For example in the case
of adding a new student to the database: add-
Jim, add-Jack, add-Carol, etc., all have to be
included in the 1list u,,..., U gee This
situation 1is clearly not ideal. Neither do we
want to have to specify a separate update for
each change that we might like to make to a
function value. Ve therefore introduce
parameterized updates. Syntactically we need to
modify 2a of our basic definition by requiring

336

that each update symbol be typed (to pick out
those expressions which can be used as
parameters). For example:

tadd-student' would be of type 'students'
and we can make assertions about the adding of
"Jack" by using

[add-student(Jack)]
or about the adding of arbitrary students by
[add-student(x)]

where x is any expression of type 'students’.
Or if 'increase-sal' is of type 'person * nat'

forall x forall y forall z (sal-of(x) isy
implies [increase-sal(x,z)] sal-of(x) is (y+z))

would be a suitable transition constraint about
the increase of salaries.

And, of course, we can form more complicated
expressions by using constructs like:

[increase-sal(employee-~of(Jack),y/10]

We can manipulate the {u(, ,...)] in the same
way as the [u]. Note that occurences of
variables in such parameterised update
constructs are free. And the semantics extends
straightforwardly by modifying 2b so that each
yE is a mapping from DB x (bax ...) to DB,
where u, is of type & .. .

4, Some related aspects
In this section we will address two further
issues: how our modal system relates to others,

and how transactions can be specified using our

modal system,

4.1

[ug], the other modal operators [J and QO are
no essential for the expression of
transition constraints., (O is to be read, as
tall reachable database instances', and © is to
be read as 'some reachable database instance'.)
We can provide semantics as follows:

Since we have the specific modal operators

i l=0O0p 1irf _qeseMg(i)..l) 1= P
for all sequences gd??ﬁf?.l., :g of updates,
and
1 1=0P iffu (u _q...85(1)...) 1= P

for some sequence Yoy Mqseeny Uy of updates.

Given a particular sequence of updates, Next and
Until can be given semantics in the usual way

[Man 79].

Syntactically we can regard { as an abbreviation

for not [Jnot, and add the axiom schema:
1P implies P ;

(3¢ P implies Q) implies ([JP implies(]Q) ;

1P implies(OP;
and the rule Tff—- to reason about []and {.
P

This system 1s usually referred to as Su, and it
is easy to check that these axiom schemata (and
rule) are sound, as long as the pull update is
included in the collection U of update
functions. That 4is, pull: DB =-=> DB is such
that null(i) = i.

4,2 By a transaction we mean a sequence of
update operations. For a sequence of updates

» Uqs , Wwe can use the construct [uo;u1;
given a database instance i and a boolean
expression P we have:

i |= [uo; u,; cee u_Jp
A0 u Couullys (ig(1))ens) 1= B
As each has been defined as a mapping from DB
to DB (ie., from instances to instances) this

amounts only to the composition of updates.
[uo; ++s u,] is equivalent to [un]...[u1][u0]

However we could weaken our definition of the
so that they are mappings from the collection

of algebras to the collection of algebras over
the language. Thus integrity constraints need
not be satisfied during the transaction, only at
the end (algebras need not satisfy the integrity
constraints). We are currently investigating
this area.

5. Conclusion

One of the main contributions of the theory of
abstract datatypes to programming has been the
introduction of application dependent objects
and operations to be manipulated directly at a
logical 1level by programs (and programmers).
This has eased the burden of program design
because analysis can be performed at the
abstract, logical 1level by both the designers
and users of the program. We feel that database
designers and users should benefit from the same
approach,

Much of the effort in database design in the
past has concentrated on the implementation
oriented approach exemplified by the various

traditional models: relational, hierarchical,
ete. These models provided general purposes
tools for query, formation, information
representation, and the definition of static

337

constraints (eg: various kinds of dependencies).
The use of these languages in particular
applications was unstructured in the same sense
that data representation and manipulation was
before the use of abstract data types. Users
have to formulate queries in terms of the
representation (eg: relations and types) and its
associated operations (eg: Jjoin. prniection,
etc., in the case of relational algebra) instead
of the concepts which might be more familiar.

Updates were even less formalised as none of the
traditional models addressed this problem
directly. Typically, the only update operations

available were again primitive, implementation
dependent ones (eg: 1insert a tuple in a
relation).

Recently efforts have been made to apply the
techniques of abstract data types to data base

specification. Thus application dependent
objects and operations are becoming more
acceptable. However, these presentations have

of updates and database instances and have
tended to concentrate on static constraints.

We have attempted above to provide a theory of
databases which allows designers and users to
deal with the objects and operations logically
relevant to the application both for queries and
updates.

Designers can specify the properties of the
primitive (application dependent) query
operations, ie: static constraints, using what
is essentially first order logic augmented with
general query forming operators thought to be
sultable for database specification. The
dynamic properties of databases are again
defined using application dependent primitive
update operations by means of a modal logic.
These general operators, first order logic and
the modal system, are a fixed specification
language for database applications. They have
the further advantage that a user can formulate
queries and updates using this formal system.
Thus the specification language is also a
general purpose query and update language.

Moreover, such specifications offer the same
advantages as abstract data type specifications.
One can decicde on an optimal implementation
method and then prove its correctness with
respect to the specification.

6. References

[ADJ 78] Goguen J A , Thatcher J W , Wagner E G
"An initial algebra approach to the
specification, correctness, and implementation
of abstract data types"

In "Current trends in programming methodology",

Vol, IV , pp 81-149 , Prentice Hall 1978,

[CaBe 80] Casanova M A , Bernstein P A

"A formal system for reasoning about programs
accessing a relational database"

ACM TOPLAS , Vol. 2 , No. 3, pp 386-41% , July
1980.

[CaFu 82] Casanova M A , Furtado A L

"A family of temporal languages for
description of transition constraints®
Workshop on logical bases for data bases,
Toulouse 82.

the

[DaBe 82) Dayal U , Bernstein P A
"On the correct translation
operations on relational views"
ACM TODS , Vol., 8 , No. 3 , pp 381-U416 , Sept
1982.

of update

[DMS 82] Dosch W , Mascari G , Wirsing M
"On the algebraic specification of databases"

Proc. of 8th VLDB Conf. Mexico City , Sept
1982,

[Gold 82] Goldblatt R

"Axiomatising the logic of computer
programming”

Lecture Notes in Computer Science 130 ,

Springer-Verlog 1982,

[Gol 82] Golshani F

"Varqa, a functional query language based on an
algebraic approach and conventional
mathematical notation"

PhD thesis, Theory of Computation Report No. 43
Warwick University , UK.

[Gol 82a] Golshani F

"Growing certainty with null values"

Research Report DOC 82/22 , Imperial College ,
UK.

[Gol 83] Golshani F

"A mathematically designed query language"
Research Report DOC 83/1 , Imperial College ,
UK.

[HuCr 68] Hughes G E , Cresswell M J
"An introduction to modal logic"
Methuen and Co. Ltd , London , 1968.

[KMM 80] Kalish D , Montague R , Mar G
"Loglic, techniques of formal reasoning®
Harcourt Brace Jovanovich inc. , 2nd ed., 1980.

338

[Mai 77] Maibaum T S

"Mathematical semantics and a
databases"

Proc. IFIP 77 , (Gilchrist ed.)

model for

pp 133-138.

[Mai 81] Maibaum T S E
"Database instances,
database specification"
To appear in the Journal of Computing.

abstract data types and

[MSF 80] Maibaum T S E, dos Santos C S ,

Furtado A L

"A uniform logical treatment of queries and
updates™"

Research Report C(CS-80-11 , University of

Waterloo , Canada.

[Man 81] Manna 2

"Verification of sequential programs:
Axiomatization®

Report No. STAN-CS-81-8T77 , Stanford University
1981,

Temporal

[MaPn 79] Manna Z , Pnueli A
"The modal logic of programs"
Report STAN-CS-T79-751 , Stanford University ,

1979.

[Nie 82] Nicolas J=-M

"Logic for improving integrity
relational databases"

Acta Informatica 18 , pp 227-253 ,

checking in
1982,

[Nic 83] Nicolas J-M
Private communication.

[NiYa 78] Nicolas J-M , Yazdanian K

"Integrity checking in deductive databases"

in "Logic and databases"™ (Gallaire, Nicolas
eds.) , pp 325-344,

Plenum Press , New York , 1978.

[Seh T71] Schwartz J T

®Abstract and concrete problems in the theory
of files"™

in "Database systems" Courant Computer Science
Symp. 6 , (Rustin ed.), Prentice Hall , 1971.

[SeFu 78] Sevick K C , Furtado A L

"Complete and compatibale sets of update
operations®
In Int. Conf. on Management of data (ICMOD) ,

Milan Italy , June 1978.

[Tod 77] Todd S

"Automatic Constraint maintenence and updating
defined relations"

Proc. IFIP 77 , (Gilchrist ed.) North-Holland ,

1977,

[Web 76] Webber H

"A semantic model of integrity constraints on a
relational database"

Modelling in database management
North~Holland , 1976.

systems,

[Wol 81) Wolper P

"Temporal logic can be more expressive®

Proc. of 22nd Symp. on Foundation of Computer
Seience , Nashville, 1IN,

October 1981.

339

