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The static concepts of a semantic data- 
base model are formalized by axioms of 
first-order predicate calculus and set 
theory. Then, the basic operations are 
defined and, in order to maintain a 
database consistent, a set of dynamic 
axioms and side-effect axioms is stated 
using dynamic and temporal logic. 
The necessity and sufficiency of the 
dynamic rules is stated and an example 
shows how the side-effects works. 

I. PRELIMINARIES 

The informal philosophical background 
for the concepts of the Temporal- 
Hierarchic Data Model is an idea of the 
existence of three worlds: a concrete 
world of physical things, an abstract 
world of 'metaphysical' things and the 
model world in which we model or repre- 
sent concrete and abstract things /BN, 
sc2/. From the first two, called real 
world, the part of interest for a speci- 
fic application is the universe of 
discourse. In the model world we 
distinguish two levels /Su, BN, ANSI/, 
the conceptual and the internal level. 
There is a mapping from the universe of 
discourse to the conceptual level called 
representation. It maps objects to enti- 
ties, object types to classes, proper- 
ties and associations to relationships, 
processes to operations and ocurrences 
to events. The image of the complete 
universe of discourse gives the concep- 
tual schema and the information base 
/ISO2/. The inverse of the represen- 
tation is the interpretation of concepts 
from the model world. 
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The theoretical basis is set theory and 
first order predicate calculus with 
extensions to dynamic and temporal 
logic. In order to facilitate the lec- 
ture and not exagerate formalization 
some trivial details are avoided and all 
not quantified variables are considered 
universally quantified. 

The static concepts of the data model 
are specified by a series of axioms 
which must hold in all states of the 
database. To guarantee this, restric- 
tions on the basic operations are stated 
by dynamic axioms and single operations 
are extended to valid database transfor- 
mations by so-called side-effect axioms. 

There is a general attempt to formalize 
the concepts of semantic data models 
/BM/ I as was done for TAXIS /BW, MW/ and 
SHM+ /Br/. The difference to the other 
approaches is that THM includes three 
abstractions with several special cases, 
time concepts and dynamic aspects 
(operations) with corresponding semantic 
side effects. Since all semantic models 
have several similarities the results of 
this paper can easily be used for other 
models. 

An informal introduction to THM, with 
illustrative examples can be seen 
elsewhere /Scl, Sc2, SFCN/. 

II. STATIC CONCEPTS 

The only basic primitive is the entity. 
?It may be interpreted as the represen- 
tation of an object from the real world 
into the (abstract) information base of 
the conceptual level. Entities at this 
level are abstract ideas, they cannot be 
'touched' or 'seen' and only be iden- 
tified by their properties or rela- 
tionships to other entities /Fa/. 
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A class is a pair 

C = < Ic , MC ' 

where I, is the identification of C corn-- 
posed of its name, NC, and eventually 
other information about the class such 
as an informal description, statistical 
values such as number of acesses, number 
of members, etc., and other values 
related to the class as a whole (so- 
called class-relationships). MC is a set 
of entities called the members of C. 
Here we make the observation that in 
this chapter we consider only the static 
aspect of the concepts. The content of 
classes and relationships changes over 
time and the correct writing of a class 
C is Ct, meaning 'class C at time 
instant t' and C is the family of all 
ct. The first axiom is: 

Al: N,=Nd =-> C=D (distinct classes 
must have distict names) 

Depending on the context we speak of a 
class C and mean, alternatively, C, 
M, or NC. In this sense we always write 
e E C istead of e d M,. 

Given two classes C and D, a relation r 
from C to D is a system 

r = < Nr , Rr , minr , maxr > 

where Nr is the name of r, R c &xMd, 
minr is a positive integer and maxr is a 
positive integer or a special symbol, 
denoted as *. Min and max are called the 
minimal and maximal cardinalities of the 
relation r. 

As we do for classes, in the text we do 
not always distinguish between r, Nr and 
Rr. We also refer to a relation as 
r(min,max) or, if we want identify the 
related classes, CrD. If CrD is a rela- 
tion and c a member of C we define r(c) 
as the set of members of D related to c, 
i.e. 

r(c) = ( d E D / <c,d> B Rr ) 

and r(c,d) is interpreted as a predicate 
which is true iff dc,d> E Rr. The 
following axioms must hold 

A2: (CrD h CsE A Nr=Ns) =a r=s 
(a class cannot have two rela- 
tions with the same name) 

A3: maxr * * => minr 5 maxr 
A4: c E Mc => 

(#[<c,d> / <c,d> E Rrl 2 minr A 
(maxr s* =>#[<c,d>/<c,d> e Rrl 15 maxr-) 

A5: r(c,d) => gC,D(c 6 C A d f D A CrD) 
(entities can be related only if the 
corresponding classes are related) 

If we admit the existence of a Special 
member of each class, called 'nothing' 
/BW/ t an inverse of axiom A5 also holds 

A5': CrD A c& => 3deD (r(c,d)) 

Each relation has an inverse 

A6: CrD => 3 s(DsC A (r(c,d) <=a s(d,c)) 

s is also denoted as r-l. Depending on 
the maximal cardinalities of a relation 
and its inverse, the following charac- 
terizations are obtained: 

if maxr = maxr-1 = 1 
then r is one-to-one, 

if-maxr > 1 and maxr-1 = 1 
then r is one-to-many, 

if maxr = 1 and maxr-1 > 1 
then r is many-to-one, and 

if maxr > 1 and maxr-1 > 1 
then r is many-to-many. 

Now we introduce the hierarchical struc- 
tures which can occur in a database 
schema. The structures and some special 
cases are characterized by a predicate 
which is true iff the corresponding 
structure occurs. Thus the first eguiva- 
lence <=> of the axioms may be 
interpreted as a definition <=>def. 

To give a precise and meaningful carac- 
terization of the 
generalization/specialization hierarchy 
we define first a role as a disjunctive 
predicate 

p(e) = rate) v . . . v pn(e) 

which can be applied to entities e of a 
generic class G and such that pi(e) is 
true iff e is a member of subclass Ci. 
Then, a generalization G of classes cl, 
. . . , Cn by role p is given by 

Ai': for i=l,2,...n is-a(Ci,G,p) 
<=> ((edi A pi(e)) C=, edi ) 

This characterizes the classes Ci as 
subclasses of G with MCi c M . A genera- 
lization is denoted as p(G)= Cl,...,Cn) 4 
and pi(G)'Ci. If C=Ci we also write 
PC(e) instead of pi(e). In practice the 
predicate can be determined by the 
values of a relation of the generic 
class. A role applied to a class D is 
disjunctive if the subclasses are 
disjoint: 
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A8: for 1 5 i,j 5 n A izj 
disjunctive(D,Cl,..,Cn,p) 

<=a (pi(e) => - pj(e))) 

If each entity of the generic class is 
in at least one subclasss the role is 
coverina: 

A grouping G of C is covering if all 
entities of the element class occur in 
at least one group: 

A14: covering(C,G,p) <=> 
(is-elem(c,G,p) A u G = C) 

A9: covering(G,Cl,..,Cn,p) 
<=, (e EG => =I i pi(e)) 

From the last definitions it is imme- 
diate that 

i) if p is disjunctive then 
Ci fl Cj = @ for izj 

ii) if p is covering then "v Ci = G 
i=l 

The second hierarchy is obtained when 
entities are joined to form new compound 
entities. A class A is an aggregation of 
classes Cl,...,C, if 

AlO: aggregated-by(A,Cl,..,Cn) 
c=> Ma c M,lx . . . XM,, 

and A is an aggregation of Cl, . . . , 
Cn 9 relations rij iff exactly the 
entities related by rij are in the 
aggregated class: 

All: 
i) 

aggregated-by(A,Cl,..,Cn, (rij]) <=> 
<c~,..,c~B EA <=> 

( <Cl r*-,Cn> f ClX..XC, A 
(rE(rij I => 7 1*,1m r(ck,cl)) 

(the comnonents of members of A must 
‘be in the component classes and 
related together) 

ii) CrD => (rr[rij 1 => C,D e (Cl,..,Cn]) 
iii) all component classes are tran- 

sitively related: 
for i,j=l,...,n 2 kl,..,km 
(CiriklCklrklk 
cklr*-tck, 5 3 -* rkm2cc A Cl,..*, n, 

The last hierarchy is given by the defi- 
nition of group entities as sets of 
single entities. A class G is a grouping 
of another class C by predicate p, if 
its elements are sets of elements of C 
and p holds between elements and groups: 

A12: is-elem(C,G,p) <=> G c P(C) A 
((gcG A XcC A xcg) =' P(X,g)) 

A (p(X,g) => (Xd <=> XCJ)) 

A grouping is disjunctive if each entity 
occurs in at most one group: 

A13: disjunctive(C,G,p) (=> 
(is-elem(C,G,p) A 
(gl, 42 E G => 91 n 92 = ti)) 

II. TIME CONCEPTS 

Time considerations were also made for 
the Infological Model /Su/ and for CSL 
of the Object-Role Model /BFM/. In our 
context time is considered as a class T 
Ff-$uples t=(tl:ul, . . . ,tn:un) such 
LIIQL 
i) there is a set of constants 

P2r . . ..pn called periods, 
ii))tl,..,tn are positive integers such 

that ti < pi 
iii) ui are strings, called units (such 

as years, days, seconds), 
iv) for i=2,..,n pi:Ui = l:Ui+l (for 

ex. 60:seconds=l:minute) 

The lowest unit u, is called the granu- 
larity of the time points. This means 
that a time point is not an infinitely 
small point but a 'little interval'. 
There are two types of 'subtuples' of a 
time point t = <tl,..,tn>. For 1 < k 
< n, points of type <tl,..,tk> are time 
points with a higher granularity (e.g. 
days instead of seconds): and points of 
tYPe <tkn **ltn> are periodical (e.g. 
each minute). 

There is a special time point (or func- 
tion or variable) which reflects the 
'present moment' /Al/ or 'now' /An/. We 
call it clock as the representation of 
the timemgnt from the real world 
reported by a clock (with calendar). If 
only a special unit is needed we write 
'clock.day', 'clock.second' and so on. 

T has a natural ordering relation < of 
time points given by the concepts of 
'before' and 'after'. A class I is a 
time interval class if it is a grouping 
of a time class T such that each time 
point between two points in a time group 
(or interval) is in this group: 

A15: interval(I,T) <=> 
(p,rET A p,rEieI) => (p<q<r => qci) 

The lower limit of a time interval is 
called the from point and the upper 
limit is the to point, and if t=from and 
s=to we writeT=(t,s). The interval 
(t,*) means 'from t to now'. 
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A class with time is an aggregated class employed. All dismissed return to be 
C'tCxIofcclass C and a time interval candidates but some candidates never 
class I, such that were employed. Now the axioms 

A16: timed(C',C,I) <*> 
interval(I,T) A aggregated-by(C',C,I) A 
(<c,il', cc, i2 >Ec' => (il=i2 V il ni2=@)) 

A17: timed(C',C,I) => 
(xl5c <=> =I t( <x, (t,*) >rzc') 1 

A19: excl-pre(C,D) <=a 
(- xcD A o(xcD) => x4) 

A20: excl-post(C,D) <=a 
(xc'2 A 0(-x&) => o(x<D) 

(the temporal operator o(p) means 'in 
the next state p is true') 

If we update one relationship (e.g. 
'has-salary' from EMPLOYEE to SALARY 
class) it may be of interest to preserve 
the old salarv of the emolovee /WFW/. A 
relation with-old values-from C. to D is 

III. DYNAMIC ASPECTS 

For the description of database opera- 
tions it is usual to use the notions of 
database state and state transformation 
/BS, SNF, SFNC/. We concentrate only on 
the operations themselves and use an 
approach related to the specification of 
abstract data types /GH, Scl/. Consider 
the representation of all states of the 
universe of discourse in the past, pre- 
sent and future /LMP/ and call this UDD 
(universe of discourse description 
/ISOl/). UDD is composed of: 

--I__ 
a system 

r' = < N, R', min, max > 

such that 

i) <N,R'> is a class with R' = McxMdxI 
where I is a time interval class, 

ii) <c,d,il>. <c,d,i2> E R' =a 
(il=i2 V ilni2 = 4 ) 

iii) for each time point tEid1, if Rt is 
the t-projection of R' on M&%d, i.e. 
Rt = [ s&lcxMd / qi(t~i V <s,i>&'l 
then rt = < N , & , min , max > 

is a relation from C to D, 
iv) V CEC dto -tF t(ttiC A t=lock => 

11 i,d (tEi A <c,d,i> E R') 

This concept determines the axiom 

A18: old(r') <=> conditions i) to iv) 
above holds. 

In order to avoid an indefinite 
increasing of the content of a database 
usinq classes with time a concept of 
lifeiime was also considered for THM 
/Sc2jl.he formalization of this concept 
is left to the reader. 

Another useful concept of THM is the 
possibility to make some statements 
about the past and future of the enti- 
ties from a class. We can state a so- 
called pre-post relation between classes 
(denoted as C >--.-which means that 
entities deleted from C may be inserted 
into D and entities inserted into D may 
be originated from C. C is a pre-class 
of D and D a post-class of C. If we 
replace the 'may' by a 'must' we have an 
exclusive pre- and/or post class 
(denoted as C>b->>D). For example 

CANDIDATE >--->> EMPLOYEE .>--> CANDIDATE 

means that some candidates can be 
employed in future but all employees 
must be candidates before beeing 

UE = ( e / e is an entity of UDD I 
UC = I C / C is a class in UDD 1 
UR = ( r / r is a relation in UDD I 

The universe of entities is a union of 
disjoint sets, called entity types. For 
an entity e the type it belongs to is 
denoted as Te, and we say that e is of 
type Te. 

UC has also a decomposition into dis- 
joint subsets, called metaclasses /MW/, 
such that there is a biiection between 
entity types and metaclasses. If MC c 
P(UC) is the set of all metaclasses and 
ET the set of all entity types, we have 
the mappings 

rep : ET --> MC and int : MC -> ET 

The basic operations of THM are insert 
and delete of entities and establish and 
remove of relationships. If T and S are 
entity types and M=rep(T) a 
corresponding metaclass, then we define: 

1) insert ins :TxM ->M 
(e,C) + Cute1 

2) delete de1 :TxM->M 
(e,C) + C-(e) 

3) establish est : TxSxUR --> UR 
(e,g,r) + ruI<e,g>l 

4) remove rem : TxSxUR --> UR 
(e,g,r) + r-l<e,g>l 
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Additional operations update and move 
can be defined as combinations of basic 
operations or directly as 

5) move 
mov : TxMxM-> MxM 

(e,C,D) + (C',D') where C'=C-(e] 
and D'=Du(e) 

6) update 
upd : TxSxSxUR -> UR 

(erg,hrr) + (r-(<e,g>))u(<e,h>l 

Two special operations for groups and 
its elements are needed: g-insert(e,g) 
assigns e as a new element of g and g- 
delete(e,g) deletes e from g. The effect 
of these functions is the same as for 
insert and delete, only the domains are 
different. 

The definitions above determine only the 
functional effect of the operations 
without considerations about a possible 
conceptual schema with its own seman- 
tics. As the axioms in the first part, 
we need similar statements which must 
hold for operations acting on a schema 
designed with THM. These statements are 
called schema side effects, because the 
executionone primitive operation has 
as consequence other primitive opera- 
tions that guarantees the semantic 
integrity of the database. For a 
concrete application additional side- 
effects can be explicitly defined by 
events and triggers, these are the user 
side effects. The side effects, in con- 
junction with the operation concept of 
THM /Sc2/ guarantees completely the 
integrity of a database, avoiding the 
necessity of stating an explicit set of 
integrity constraints. 

The axioms for the dynamic rules are 
written in dynamic logic /Ha/ with two 
types of formulas: 

1) p t cop1 =’ q for the dynamic axioms 
means 'in a state with p true, op is 
allowed only if q is true': 

2) p I- cop11 = B Cop2 1 for the side 
effects means 'in a state with p true 
execution of opl implies execution 
of op2'. 

The temporal operator o(p) ('in the next 
state p is true') /MP/ was also needed 
for some side effects. A similar 
approach for conceptual schema specifi- 
cation can be seen in /SFCN/. First of 
all, some general rules, called dynamic 
axioms, are: 

DAl: I- Cestablish(x,y,r) 1 => 
4 C,D(x& A LED A CrD A 
Tmaxr=* v #[<x,2> / r(x,z) IWaxr) 

(establish must keep the maximal 
cardinality) 

DA2: t [remove(x,y,r) I => 
#[ <x,2> / r(x,z) I > minr 

(remove must keep the minimal 
cardinality) 

DA3: is-a(C,D,p) + Cinsert(x,C) 1 => PC(X) 
(insert must keep the role) 

DA4: covering(D,Cl,..,Cn) A 
(is-a(Ci,D,p) => w xdi) 
I- [insert(x,D) 1 =>g i(pC.(x)) 
(in a covering generalization we 
can not allow an entity only in 
the generic class) 

DA5: timed(C',C,I) 
I- [insert(x,C) 1 => - a, (t,*) ..sc’ 
,rn a class with time we cannot 
insert an entity actually present) 

DA6: is-elem(C,G,p) 
+ Cg-insert(x,g) 1 => p(x,g) 
(group elements must keep the 
grouping predicate) 

These axioms establish that the opera- 
tions are allowed to be executed only if 
some conditions hold. Before presenting 
the side effects we define two predica- 
tes about entities 

part(xi,y) : entity xi is the i-th com- 
ponent of the aggregated entity y 

aggregated(y,xl,..,xn,rl,..,rm) : entity 
y is is composed of xl,..,xn related 
by rl,..lrm; in this case we write 
also y = <Xl,. a,Xn> 

The applicability of a side effect 
depends on the hierarchical position of 
the affected class. We present the 
possible side effects for each relative 
position of the class in the three 
hierarchical structures generalization, 
aggregation and grouping with its inver- 
ses, called specialization, decom- 
position and dissolution respectively. 

GENERALIZATION 

SEl: is-a(C,D) A - in(x,D) 
I- [insert(x,C) 1 => Cinsert(x,D) 1 
(an entity of the subclass must be 
in the superclass) 

SE2: is-a(C,D) A disjunctive(D,Cl,..,Cn) 
A q i(lCiSnAxdiA(-cm) 

+ ?insert(c,C) 1 => Cielete(x,Ci)l 
(an insert may not violate a dis- 

joint generalization) 
SE3: is-a(C,D) A covering(D,Cl,..,Cn) A 

(Ci;43=> - X&i) 

I- Cdelete(x,C) 1 q > Cdelete(x,D) 1 
(a delete may not violate a 
covering generalization) 
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SE4: x& A is-a(C,D,p) 
I- ([establish(x,y,r) 1 v 

[remove(x,y,r) I) => 
(~C(X)AO(- PC(X)) => Cdelete(x,C) 1 

A(- pc(x)~o(pC(x)) => Cinsert(x,C) 1 
(if as a consequence of an altera- 
tion of a relationship an entity 
is no longer allowed to remain in 
a subclass it must be moved to 
another compatible subclass). 

SPECIALIZATION 

SE5: 
?;$~~F;~b,,^)Y'=">) [insert(x,C) 1 
(a new entity of a generic class 
must be inserted in all compatible 
subclasses) 

SE6: is-a(C,D) A x& 
I- [delete(x,D) I=> [delete(x,C) 1 

AGGREGATION 

SE7: aggregated(y,xl,..,Xn,rl,..,rm) A 
y<D A (14icJ1=>Xi&i) 
+ [delete(xi,Ci)l => Cdelete(y,D) 1 
(without one component an aggre- 
gated entity must be deleted) 

SE8: aggregated(y,xl,..,xn,rl,..,rm) A 
yeDA(lsiIn => XiECi)ArkE[rl,..,rmI 

+ [remove(Xi,Xj ,rk) I=>Cdelete(y,D) 1 
(for an aggregation by rela- 
tionships these relationships must 
hold for the aggregated entities) 

SE9: aggregated-by(D,Cl, - erCn,rl,. . ,rm) 
A Xl&l A.-A X,&n A 
7! rkE(rl,..,rml 
TCirkC j A - related(xi,xj,rk)) 
c Cestablish(ci,cj,r,c ?)I => 

[insert(<xl,..,xn>,D) 1 
(as inverse of SE8, if for a set of 
entities for which all relations 
of an aggregation hold, the 
corresponding aggregated entity 
must be in the aggregated class). 

DECOMPOSITION 

SElO: aggregated-by(D,Cl,..,Cn) 
I- Cinsert(y,D) 1 => (lli5il A 

part(xi,y) => [insert(xi,Ci)l ) 
(the parts of an aggregated entity 

must be in the component classes) 
SEll: aggregated-by(D,Cl,..,Cn,rl,..,rm) 

c iinsert(y,D) 1 => (1SiSn A 
part(xi,y) => [insert(xi,Ci) 1 A 

(is-related(Ci,Cj,rk) A 
rk e (rl,..,rmJ A 
=> [establish(ci,cj,rk) 1 1) 

(same as for SE10 with the addition 
that the corresponding rela- 
tionships are established) 

GROUPING 

SE12: is-elem(C,G,p) A g& A p(x,g) 
t [insert(x,C)l <=a Cg-insert(x,g) 1 
(if p(x,g) holds then x is of the 
element class iff it is in g) 

SE13: covering(C,G,p) A -7 g(p(x,g)) 
I- [insert(x,C) 1 => Cif;sert( [xl,G) 1 

A p(X, [Xl) 
(by a covering grouping each entity 
of the element class must be in at 
least one group) 

SE14: is-elem(C,G,p) A x E g 
I- [delete(x,C)l=> Cg-delete(x,g) 1 
(see comment on SE12) 

DISSOLUTION 

SE15: is-elem(C,G) 
I- Cinsert(g,G) I=> (x e g A - xrC 

=> Cinsert(x,C) 1) 
(the elements of a group must be in 
the element class) 

SE16: covering(C,G) 

I- ~d~1~;~~14~~~~~~~e~x~~~l 

SE17: disjunctive;C,G) 
I 

I- [g-insert(x,g)l =>3 h((hzg A xch 

(i; 
> Cg-delete(x,h) I) 
a group-insert violates the 

disjoint property the entity is 
deleted from the other groups) 

Among these, we have the side effects 

SE18: related(x,y,r) A XrzC 
I- Cdelete(x,C) 1 => Cremove(x,y,r) 1 
(for a delete all existing rela- 
tionships must be removed) 

SE19: - related(y,x,r-l) 
I- Cestablish(x,y,r) 1 

=> Cestablish(y,x,rB1) 1 
(each relation must have an inverse) 

and some side effects envolving time 
aspects 

SE20: timed(C',C,I) 
t [insert(x,C) 1 

<=> [insert(<x,(clock,*)>,C')] 
SE21: timed(C',C,I) 

I- [delete(x,C)l <=> (<x,(t,*)>eC 
=> Cdelete(<x,(t,*)>,C')l A 

[insert( <x,(t,clock)>,C') 1 
(in a class with time a deleted 
entity is moved to the past) 

SE22: old(r') A t=clock 
I- Cestablish(x,y,rt) 1 

<=> Cinsert(<x,y,(t,*) >,R'l 
(this and the next side effect 
maintains relations with old 
values) 
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sE23: old(r') A t=clock 
c [remove(x.y,rt) 1 

<=> (<X,y, (to,*) >cR’ => 
[delete(<x,~,(t~,*)>,~') 1 A 
Cinsert(<x,y,(t,,t)>,~') 1 

SE24: excl-pre(C,D) 
I- Cinsert(x,D) 1 => Cdelete(x,C)l 

SE25: excl-post(C,D) 
I- Cdelete(x,C)l => [insert(x,D)l 

To finish this section we present the 
main theorem who connects the dynamic 
and static formulas and shows the 
completness of dynamic rules. 

THEOREM: The dynamic axioms DAl-DA6 and 
the side effects SEl-SE25 are 

necessarysand sufficient to maintain a 
database in a consistent state, 
according to axioms Al-A20. 

We let the proof for another publication 
/Sc4/ and present here an example to 
illustrate how the side-effects work. 

There is the well known example of an 
information system about the organiza- 
tion if an IFIP Working Conference /OSV/. 
This Example was described with THM in 
unpublished notes by A. Horndasch and we 
take a little slice out of it. The 
corresponding (partial) data schema is 
in the figure below. We show the con- 
sequences of a single statement 
establishing a new relationship between 
two entities. First we define an addi- 
tional user side-effect which, in fact 
can also be generalized to a schema 
side-effect: 

Notation 

Class 

0 
relation 

-f(ti;Y,tiar) 

generalization 

7% role 

aggregation 

+l 1 1 
. ‘ . * 
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USEl: 
I- [establish(x,y,group.involvedin] => 

(prx => Cestablish(p,y,involvedin) I) 
(all members of a Working-Group who 
organizes a Working Conference are 
involved in this conference) 

The statements are written in THM/DML 
/Sc2/ but we hope that they are self 
explanatory enought. Given a new Working 
Conference bc'organized by the Working 
Group @wg': 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

establish WC has-wg wg 
(original statement) 
establish wg group.involvedin WC 
(by SE19 applied to 1.) 
for each p elem wg 
establishpnvolvedin WC 
(by USE1 applied to 2.) 
establish WC has-participant p 
(by SE19 a%lied to 3.) 
insert p into WC PERSON 
(by4 ased To 3.) 
let WC be involvedin 
let wpsbe part.W CONF-PERSONS 
zabli.si;-p elem wps 
(by SE12 applied to 5.) 
insert p in:0 WC WG MEMBER 
(bv5 aaed To 3.) 
insert p into WC PERSGN TO INVITE 
(by5 ased To 5. or by SE1 

applied 7.) 

IV. CONCLUSION 

According to a three level architecture 
we intend to define a mapping of a THM 
conceptual schema to an internal rela- 
tional schema /Sc3, Sc4/. To analyse the 
correspondence of the two schemata a 
formalization in mandatory. If classes 
and relationships determine relations in 
the internal schema, operations gives 
transactions and the first idea was to 
generate triggers from the side-effects. 
But, since it is not an easy task to 
implement triggers, assertions and de- 
pendencies for relational databases and 
there are crucial design problems, we 
have chosen another way. The side-effects 
of THMIDML operations at the conceptual 
level are added to the operations as 
additional statements or suboperations, 
such that for the transformation only 
consistent operations are mapped to 
transactions. Only if we want to allow a 
direct access for an user to the inter- 
nal schema the consistence conditions of 
the conceptual schema must be expressed 
in relational semantics. Actually we are 
analysing correspondeces between 

grouping and multivalued dependencies 
/Fag/ and between generalization and 
inclusion dependencies /CFP/. 

THM is part of a project called PROSEM, 
intended to define the complete process 
of database design and use within the 
three-level architecture. Thanks to 
Prof. E.J. Neuhold and the members of 
the PROSFM group, Angelika Horndasch, 
Inge Walter and Ramin Yasdi for valuable 
discussions about the data model. Spe- 
cial thanks also to Udo Pletat and Rudi 
Studer for a critical reading of a draft 
of this paper. 

/Al/ 

/An/ 

/AS/ 

/BS/ 

/BN/ 

/BM/ 

/BW/ 
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