
Abstract

AN ABSTRACT INTRODUCTION To THE TEMPORAL-HIERARCHIC DATA MODEL (THM) +

Ulrich Schiel++

Dep. de Sistemas e Computa@o, Univ. Fed. da Paraiba
Av. Apr. Veloso, 882 - 58100 Campina Grande/Pb - Brazil

The static concepts of a semantic data-
base model are formalized by axioms of
first-order predicate calculus and set
theory. Then, the basic operations are
defined and, in order to maintain a
database consistent, a set of dynamic
axioms and side-effect axioms is stated
using dynamic and temporal logic.
The necessity and sufficiency of the
dynamic rules is stated and an example
shows how the side-effects works.

I. PRELIMINARIES

The informal philosophical background
for the concepts of the Temporal-
Hierarchic Data Model is an idea of the
existence of three worlds: a concrete
world of physical things, an abstract
world of 'metaphysical' things and the
model world in which we model or repre-
sent concrete and abstract things /BN,
sc2/. From the first two, called real
world, the part of interest for a speci-
fic application is the universe of
discourse. In the model world we
distinguish two levels /Su, BN, ANSI/,
the conceptual and the internal level.
There is a mapping from the universe of
discourse to the conceptual level called
representation. It maps objects to enti-
ties, object types to classes, proper-
ties and associations to relationships,
processes to operations and ocurrences
to events. The image of the complete
universe of discourse gives the concep-
tual schema and the information base
/ISO2/. The inverse of the represen-
tation is the interpretation of concepts
from the model world.

T financial support from the Stifterver-
t+and der Deutschen Wissenschaften

actually at Institut fiir Informatik,
Universitat Stuttgart, Germany.

The theoretical basis is set theory and
first order predicate calculus with
extensions to dynamic and temporal
logic. In order to facilitate the lec-
ture and not exagerate formalization
some trivial details are avoided and all
not quantified variables are considered
universally quantified.

The static concepts of the data model
are specified by a series of axioms
which must hold in all states of the
database. To guarantee this, restric-
tions on the basic operations are stated
by dynamic axioms and single operations
are extended to valid database transfor-
mations by so-called side-effect axioms.

There is a general attempt to formalize
the concepts of semantic data models
/BM/ I as was done for TAXIS /BW, MW/ and
SHM+ /Br/. The difference to the other
approaches is that THM includes three
abstractions with several special cases,
time concepts and dynamic aspects
(operations) with corresponding semantic
side effects. Since all semantic models
have several similarities the results of
this paper can easily be used for other
models.

An informal introduction to THM, with
illustrative examples can be seen
elsewhere /Scl, Sc2, SFCN/.

II. STATIC CONCEPTS

The only basic primitive is the entity.
?It may be interpreted as the represen-
tation of an object from the real world
into the (abstract) information base of
the conceptual level. Entities at this
level are abstract ideas, they cannot be
'touched' or 'seen' and only be iden-
tified by their properties or rela-
tionships to other entities /Fa/.

322

A class is a pair

C = < Ic , MC '

where I, is the identification of C corn--
posed of its name, NC, and eventually
other information about the class such
as an informal description, statistical
values such as number of acesses, number
of members, etc., and other values
related to the class as a whole (so-
called class-relationships). MC is a set
of entities called the members of C.
Here we make the observation that in
this chapter we consider only the static
aspect of the concepts. The content of
classes and relationships changes over
time and the correct writing of a class
C is Ct, meaning 'class C at time
instant t' and C is the family of all
ct. The first axiom is:

Al: N,=Nd =-> C=D (distinct classes
must have distict names)

Depending on the context we speak of a
class C and mean, alternatively, C,
M, or NC. In this sense we always write
e E C istead of e d M,.

Given two classes C and D, a relation r
from C to D is a system

r = < Nr , Rr , minr , maxr >

where Nr is the name of r, R c &xMd,
minr is a positive integer and maxr is a
positive integer or a special symbol,
denoted as *. Min and max are called the
minimal and maximal cardinalities of the
relation r.

As we do for classes, in the text we do
not always distinguish between r, Nr and
Rr. We also refer to a relation as
r(min,max) or, if we want identify the
related classes, CrD. If CrD is a rela-
tion and c a member of C we define r(c)
as the set of members of D related to c,
i.e.

r(c) = (d E D / <c,d> B Rr)

and r(c,d) is interpreted as a predicate
which is true iff dc,d> E Rr. The
following axioms must hold

A2: (CrD h CsE A Nr=Ns) =a r=s
(a class cannot have two rela-
tions with the same name)

A3: maxr * * => minr 5 maxr
A4: c E Mc =>

(#[<c,d> / <c,d> E Rrl 2 minr A
(maxr s* =>#[<c,d>/<c,d> e Rrl 15 maxr-)

A5: r(c,d) => gC,D(c 6 C A d f D A CrD)
(entities can be related only if the
corresponding classes are related)

If we admit the existence of a Special
member of each class, called 'nothing'
/BW/ t an inverse of axiom A5 also holds

A5': CrD A c& => 3deD (r(c,d))

Each relation has an inverse

A6: CrD => 3 s(DsC A (r(c,d) <=a s(d,c))

s is also denoted as r-l. Depending on
the maximal cardinalities of a relation
and its inverse, the following charac-
terizations are obtained:

if maxr = maxr-1 = 1
then r is one-to-one,

if-maxr > 1 and maxr-1 = 1
then r is one-to-many,

if maxr = 1 and maxr-1 > 1
then r is many-to-one, and

if maxr > 1 and maxr-1 > 1
then r is many-to-many.

Now we introduce the hierarchical struc-
tures which can occur in a database
schema. The structures and some special
cases are characterized by a predicate
which is true iff the corresponding
structure occurs. Thus the first eguiva-
lence <=> of the axioms may be
interpreted as a definition <=>def.

To give a precise and meaningful carac-
terization of the
generalization/specialization hierarchy
we define first a role as a disjunctive
predicate

p(e) = rate) v . . . v pn(e)

which can be applied to entities e of a
generic class G and such that pi(e) is
true iff e is a member of subclass Ci.
Then, a generalization G of classes cl,
. . . , Cn by role p is given by

Ai': for i=l,2,...n is-a(Ci,G,p)
<=> ((edi A pi(e)) C=, edi)

This characterizes the classes Ci as
subclasses of G with MCi c M . A genera-
lization is denoted as p(G)= Cl,...,Cn) 4
and pi(G)'Ci. If C=Ci we also write
PC(e) instead of pi(e). In practice the
predicate can be determined by the
values of a relation of the generic
class. A role applied to a class D is
disjunctive if the subclasses are
disjoint:

323

A8: for 1 5 i,j 5 n A izj
disjunctive(D,Cl,..,Cn,p)

<=a (pi(e) => - pj(e)))

If each entity of the generic class is
in at least one subclasss the role is
coverina:

A grouping G of C is covering if all
entities of the element class occur in
at least one group:

A14: covering(C,G,p) <=>
(is-elem(c,G,p) A u G = C)

A9: covering(G,Cl,..,Cn,p)
<=, (e EG => =I i pi(e))

From the last definitions it is imme-
diate that

i) if p is disjunctive then
Ci fl Cj = @ for izj

ii) if p is covering then "v Ci = G
i=l

The second hierarchy is obtained when
entities are joined to form new compound
entities. A class A is an aggregation of
classes Cl,...,C, if

AlO: aggregated-by(A,Cl,..,Cn)
c=> Ma c M,lx . . . XM,,

and A is an aggregation of Cl, . . . ,
Cn 9 relations rij iff exactly the
entities related by rij are in the
aggregated class:

All:
i)

aggregated-by(A,Cl,..,Cn, (rij]) <=>
<c~,..,c~B EA <=>

(<Cl r*-,Cn> f ClX..XC, A
(rE(rij I => 7 1*,1m r(ck,cl))

(the comnonents of members of A must
‘be in the component classes and
related together)

ii) CrD => (rr[rij 1 => C,D e (Cl,..,Cn])
iii) all component classes are tran-

sitively related:
for i,j=l,...,n 2 kl,..,km
(CiriklCklrklk
cklr*-tck, 5 3 -* rkm2cc A Cl,..*, n,

The last hierarchy is given by the defi-
nition of group entities as sets of
single entities. A class G is a grouping
of another class C by predicate p, if
its elements are sets of elements of C
and p holds between elements and groups:

A12: is-elem(C,G,p) <=> G c P(C) A
((gcG A XcC A xcg) =' P(X,g))

A (p(X,g) => (Xd <=> XCJ))

A grouping is disjunctive if each entity
occurs in at most one group:

A13: disjunctive(C,G,p) (=>
(is-elem(C,G,p) A
(gl, 42 E G => 91 n 92 = ti))

II. TIME CONCEPTS

Time considerations were also made for
the Infological Model /Su/ and for CSL
of the Object-Role Model /BFM/. In our
context time is considered as a class T
Ff-$uples t=(tl:ul, . . . ,tn:un) such
LIIQL
i) there is a set of constants

P2rpn called periods,
ii))tl,..,tn are positive integers such

that ti < pi
iii) ui are strings, called units (such

as years, days, seconds),
iv) for i=2,..,n pi:Ui = l:Ui+l (for

ex. 60:seconds=l:minute)

The lowest unit u, is called the granu-
larity of the time points. This means
that a time point is not an infinitely
small point but a 'little interval'.
There are two types of 'subtuples' of a
time point t = <tl,..,tn>. For 1 < k
< n, points of type <tl,..,tk> are time
points with a higher granularity (e.g.
days instead of seconds): and points of
tYPe <tkn **ltn> are periodical (e.g.
each minute).

There is a special time point (or func-
tion or variable) which reflects the
'present moment' /Al/ or 'now' /An/. We
call it clock as the representation of
the timemgnt from the real world
reported by a clock (with calendar). If
only a special unit is needed we write
'clock.day', 'clock.second' and so on.

T has a natural ordering relation < of
time points given by the concepts of
'before' and 'after'. A class I is a
time interval class if it is a grouping
of a time class T such that each time
point between two points in a time group
(or interval) is in this group:

A15: interval(I,T) <=>
(p,rET A p,rEieI) => (p<q<r => qci)

The lower limit of a time interval is
called the from point and the upper
limit is the to point, and if t=from and
s=to we writeT=(t,s). The interval
(t,*) means 'from t to now'.

324

A class with time is an aggregated class employed. All dismissed return to be
C'tCxIofcclass C and a time interval candidates but some candidates never
class I, such that were employed. Now the axioms

A16: timed(C',C,I) <*>
interval(I,T) A aggregated-by(C',C,I) A
(<c,il', cc, i2 >Ec' => (il=i2 V il ni2=@))

A17: timed(C',C,I) =>
(xl5c <=> =I t(<x, (t,*) >rzc') 1

A19: excl-pre(C,D) <=a
(- xcD A o(xcD) => x4)

A20: excl-post(C,D) <=a
(xc'2 A 0(-x&) => o(x<D)

(the temporal operator o(p) means 'in
the next state p is true')

If we update one relationship (e.g.
'has-salary' from EMPLOYEE to SALARY
class) it may be of interest to preserve
the old salarv of the emolovee /WFW/. A
relation with-old values-from C. to D is

III. DYNAMIC ASPECTS

For the description of database opera-
tions it is usual to use the notions of
database state and state transformation
/BS, SNF, SFNC/. We concentrate only on
the operations themselves and use an
approach related to the specification of
abstract data types /GH, Scl/. Consider
the representation of all states of the
universe of discourse in the past, pre-
sent and future /LMP/ and call this UDD
(universe of discourse description
/ISOl/). UDD is composed of:

--I__
a system

r' = < N, R', min, max >

such that

i) <N,R'> is a class with R' = McxMdxI
where I is a time interval class,

ii) <c,d,il>. <c,d,i2> E R' =a
(il=i2 V ilni2 = 4)

iii) for each time point tEid1, if Rt is
the t-projection of R' on M&%d, i.e.
Rt = [s&lcxMd / qi(t~i V <s,i>&'l
then rt = < N , & , min , max >

is a relation from C to D,
iv) V CEC dto -tF t(ttiC A t=lock =>

11 i,d (tEi A <c,d,i> E R')

This concept determines the axiom

A18: old(r') <=> conditions i) to iv)
above holds.

In order to avoid an indefinite
increasing of the content of a database
usinq classes with time a concept of
lifeiime was also considered for THM
/Sc2jl.he formalization of this concept
is left to the reader.

Another useful concept of THM is the
possibility to make some statements
about the past and future of the enti-
ties from a class. We can state a so-
called pre-post relation between classes
(denoted as C >--.-which means that
entities deleted from C may be inserted
into D and entities inserted into D may
be originated from C. C is a pre-class
of D and D a post-class of C. If we
replace the 'may' by a 'must' we have an
exclusive pre- and/or post class
(denoted as C>b->>D). For example

CANDIDATE >--->> EMPLOYEE .>--> CANDIDATE

means that some candidates can be
employed in future but all employees
must be candidates before beeing

UE = (e / e is an entity of UDD I
UC = I C / C is a class in UDD 1
UR = (r / r is a relation in UDD I

The universe of entities is a union of
disjoint sets, called entity types. For
an entity e the type it belongs to is
denoted as Te, and we say that e is of
type Te.

UC has also a decomposition into dis-
joint subsets, called metaclasses /MW/,
such that there is a biiection between
entity types and metaclasses. If MC c
P(UC) is the set of all metaclasses and
ET the set of all entity types, we have
the mappings

rep : ET --> MC and int : MC -> ET

The basic operations of THM are insert
and delete of entities and establish and
remove of relationships. If T and S are
entity types and M=rep(T) a
corresponding metaclass, then we define:

1) insert ins :TxM ->M
(e,C) + Cute1

2) delete de1 :TxM->M
(e,C) + C-(e)

3) establish est : TxSxUR --> UR
(e,g,r) + ruI<e,g>l

4) remove rem : TxSxUR --> UR
(e,g,r) + r-l<e,g>l

325

Additional operations update and move
can be defined as combinations of basic
operations or directly as

5) move
mov : TxMxM-> MxM

(e,C,D) + (C',D') where C'=C-(e]
and D'=Du(e)

6) update
upd : TxSxSxUR -> UR

(erg,hrr) + (r-(<e,g>))u(<e,h>l

Two special operations for groups and
its elements are needed: g-insert(e,g)
assigns e as a new element of g and g-
delete(e,g) deletes e from g. The effect
of these functions is the same as for
insert and delete, only the domains are
different.

The definitions above determine only the
functional effect of the operations
without considerations about a possible
conceptual schema with its own seman-
tics. As the axioms in the first part,
we need similar statements which must
hold for operations acting on a schema
designed with THM. These statements are
called schema side effects, because the
executionone primitive operation has
as consequence other primitive opera-
tions that guarantees the semantic
integrity of the database. For a
concrete application additional side-
effects can be explicitly defined by
events and triggers, these are the user
side effects. The side effects, in con-
junction with the operation concept of
THM /Sc2/ guarantees completely the
integrity of a database, avoiding the
necessity of stating an explicit set of
integrity constraints.

The axioms for the dynamic rules are
written in dynamic logic /Ha/ with two
types of formulas:

1) p t cop1 =’ q for the dynamic axioms
means 'in a state with p true, op is
allowed only if q is true':

2) p I- cop11 = B Cop2 1 for the side
effects means 'in a state with p true
execution of opl implies execution
of op2'.

The temporal operator o(p) ('in the next
state p is true') /MP/ was also needed
for some side effects. A similar
approach for conceptual schema specifi-
cation can be seen in /SFCN/. First of
all, some general rules, called dynamic
axioms, are:

DAl: I- Cestablish(x,y,r) 1 =>
4 C,D(x& A LED A CrD A
Tmaxr=* v #[<x,2> / r(x,z) IWaxr)

(establish must keep the maximal
cardinality)

DA2: t [remove(x,y,r) I =>
#[<x,2> / r(x,z) I > minr

(remove must keep the minimal
cardinality)

DA3: is-a(C,D,p) + Cinsert(x,C) 1 => PC(X)
(insert must keep the role)

DA4: covering(D,Cl,..,Cn) A
(is-a(Ci,D,p) => w xdi)
I- [insert(x,D) 1 =>g i(pC.(x))
(in a covering generalization we
can not allow an entity only in
the generic class)

DA5: timed(C',C,I)
I- [insert(x,C) 1 => - a, (t,*) ..sc’
,rn a class with time we cannot
insert an entity actually present)

DA6: is-elem(C,G,p)
+ Cg-insert(x,g) 1 => p(x,g)
(group elements must keep the
grouping predicate)

These axioms establish that the opera-
tions are allowed to be executed only if
some conditions hold. Before presenting
the side effects we define two predica-
tes about entities

part(xi,y) : entity xi is the i-th com-
ponent of the aggregated entity y

aggregated(y,xl,..,xn,rl,..,rm) : entity
y is is composed of xl,..,xn related
by rl,..lrm; in this case we write
also y = <Xl,. a,Xn>

The applicability of a side effect
depends on the hierarchical position of
the affected class. We present the
possible side effects for each relative
position of the class in the three
hierarchical structures generalization,
aggregation and grouping with its inver-
ses, called specialization, decom-
position and dissolution respectively.

GENERALIZATION

SEl: is-a(C,D) A - in(x,D)
I- [insert(x,C) 1 => Cinsert(x,D) 1
(an entity of the subclass must be
in the superclass)

SE2: is-a(C,D) A disjunctive(D,Cl,..,Cn)
A q i(lCiSnAxdiA(-cm)

+ ?insert(c,C) 1 => Cielete(x,Ci)l
(an insert may not violate a dis-

joint generalization)
SE3: is-a(C,D) A covering(D,Cl,..,Cn) A

(Ci;43=> - X&i)

I- Cdelete(x,C) 1 q > Cdelete(x,D) 1
(a delete may not violate a
covering generalization)

326

SE4: x& A is-a(C,D,p)
I- ([establish(x,y,r) 1 v

[remove(x,y,r) I) =>
(~C(X)AO(- PC(X)) => Cdelete(x,C) 1

A(- pc(x)~o(pC(x)) => Cinsert(x,C) 1
(if as a consequence of an altera-
tion of a relationship an entity
is no longer allowed to remain in
a subclass it must be moved to
another compatible subclass).

SPECIALIZATION

SE5:
?;$~~F;~b,,^)Y'=">) [insert(x,C) 1
(a new entity of a generic class
must be inserted in all compatible
subclasses)

SE6: is-a(C,D) A x&
I- [delete(x,D) I=> [delete(x,C) 1

AGGREGATION

SE7: aggregated(y,xl,..,Xn,rl,..,rm) A
y<D A (14icJ1=>Xi&i)
+ [delete(xi,Ci)l => Cdelete(y,D) 1
(without one component an aggre-
gated entity must be deleted)

SE8: aggregated(y,xl,..,xn,rl,..,rm) A
yeDA(lsiIn => XiECi)ArkE[rl,..,rmI

+ [remove(Xi,Xj ,rk) I=>Cdelete(y,D) 1
(for an aggregation by rela-
tionships these relationships must
hold for the aggregated entities)

SE9: aggregated-by(D,Cl, - erCn,rl,. . ,rm)
A Xl&l A.-A X,&n A
7! rkE(rl,..,rml
TCirkC j A - related(xi,xj,rk))
c Cestablish(ci,cj,r,c ?)I =>

[insert(<xl,..,xn>,D) 1
(as inverse of SE8, if for a set of
entities for which all relations
of an aggregation hold, the
corresponding aggregated entity
must be in the aggregated class).

DECOMPOSITION

SElO: aggregated-by(D,Cl,..,Cn)
I- Cinsert(y,D) 1 => (lli5il A

part(xi,y) => [insert(xi,Ci)l)
(the parts of an aggregated entity

must be in the component classes)
SEll: aggregated-by(D,Cl,..,Cn,rl,..,rm)

c iinsert(y,D) 1 => (1SiSn A
part(xi,y) => [insert(xi,Ci) 1 A

(is-related(Ci,Cj,rk) A
rk e (rl,..,rmJ A
=> [establish(ci,cj,rk) 1 1)

(same as for SE10 with the addition
that the corresponding rela-
tionships are established)

GROUPING

SE12: is-elem(C,G,p) A g& A p(x,g)
t [insert(x,C)l <=a Cg-insert(x,g) 1
(if p(x,g) holds then x is of the
element class iff it is in g)

SE13: covering(C,G,p) A -7 g(p(x,g))
I- [insert(x,C) 1 => Cif;sert([xl,G) 1

A p(X, [Xl)
(by a covering grouping each entity
of the element class must be in at
least one group)

SE14: is-elem(C,G,p) A x E g
I- [delete(x,C)l=> Cg-delete(x,g) 1
(see comment on SE12)

DISSOLUTION

SE15: is-elem(C,G)
I- Cinsert(g,G) I=> (x e g A - xrC

=> Cinsert(x,C) 1)
(the elements of a group must be in
the element class)

SE16: covering(C,G)

I- ~d~1~;~~14~~~~~~~e~x~~~l

SE17: disjunctive;C,G)
I

I- [g-insert(x,g)l =>3 h((hzg A xch

(i;
> Cg-delete(x,h) I)
a group-insert violates the

disjoint property the entity is
deleted from the other groups)

Among these, we have the side effects

SE18: related(x,y,r) A XrzC
I- Cdelete(x,C) 1 => Cremove(x,y,r) 1
(for a delete all existing rela-
tionships must be removed)

SE19: - related(y,x,r-l)
I- Cestablish(x,y,r) 1

=> Cestablish(y,x,rB1) 1
(each relation must have an inverse)

and some side effects envolving time
aspects

SE20: timed(C',C,I)
t [insert(x,C) 1

<=> [insert(<x,(clock,*)>,C')]
SE21: timed(C',C,I)

I- [delete(x,C)l <=> (<x,(t,*)>eC
=> Cdelete(<x,(t,*)>,C')l A

[insert(<x,(t,clock)>,C') 1
(in a class with time a deleted
entity is moved to the past)

SE22: old(r') A t=clock
I- Cestablish(x,y,rt) 1

<=> Cinsert(<x,y,(t,*) >,R'l
(this and the next side effect
maintains relations with old
values)

327

sE23: old(r') A t=clock
c [remove(x.y,rt) 1

<=> (<X,y, (to,*) >cR’ =>
[delete(<x,~,(t~,*)>,~') 1 A
Cinsert(<x,y,(t,,t)>,~') 1

SE24: excl-pre(C,D)
I- Cinsert(x,D) 1 => Cdelete(x,C)l

SE25: excl-post(C,D)
I- Cdelete(x,C)l => [insert(x,D)l

To finish this section we present the
main theorem who connects the dynamic
and static formulas and shows the
completness of dynamic rules.

THEOREM: The dynamic axioms DAl-DA6 and
the side effects SEl-SE25 are

necessarysand sufficient to maintain a
database in a consistent state,
according to axioms Al-A20.

We let the proof for another publication
/Sc4/ and present here an example to
illustrate how the side-effects work.

There is the well known example of an
information system about the organiza-
tion if an IFIP Working Conference /OSV/.
This Example was described with THM in
unpublished notes by A. Horndasch and we
take a little slice out of it. The
corresponding (partial) data schema is
in the figure below. We show the con-
sequences of a single statement
establishing a new relationship between
two entities. First we define an addi-
tional user side-effect which, in fact
can also be generalized to a schema
side-effect:

Notation

Class

0
relation

-f(ti;Y,tiar)

generalization

7% role

aggregation

+l 1 1
. ‘ . *

328

USEl:
I- [establish(x,y,group.involvedin] =>

(prx => Cestablish(p,y,involvedin) I)
(all members of a Working-Group who
organizes a Working Conference are
involved in this conference)

The statements are written in THM/DML
/Sc2/ but we hope that they are self
explanatory enought. Given a new Working
Conference bc'organized by the Working
Group @wg':

1.

2.

3.

4.

5.

6.

7.

8.

establish WC has-wg wg
(original statement)
establish wg group.involvedin WC
(by SE19 applied to 1.)
for each p elem wg
establishpnvolvedin WC
(by USE1 applied to 2.)
establish WC has-participant p
(by SE19 a%lied to 3.)
insert p into WC PERSON
(by4 ased To 3.)
let WC be involvedin
let wpsbe part.W CONF-PERSONS
zabli.si;-p elem wps
(by SE12 applied to 5.)
insert p in:0 WC WG MEMBER
(bv5 aaed To 3.)
insert p into WC PERSGN TO INVITE
(by5 ased To 5. or by SE1

applied 7.)

IV. CONCLUSION

According to a three level architecture
we intend to define a mapping of a THM
conceptual schema to an internal rela-
tional schema /Sc3, Sc4/. To analyse the
correspondence of the two schemata a
formalization in mandatory. If classes
and relationships determine relations in
the internal schema, operations gives
transactions and the first idea was to
generate triggers from the side-effects.
But, since it is not an easy task to
implement triggers, assertions and de-
pendencies for relational databases and
there are crucial design problems, we
have chosen another way. The side-effects
of THMIDML operations at the conceptual
level are added to the operations as
additional statements or suboperations,
such that for the transformation only
consistent operations are mapped to
transactions. Only if we want to allow a
direct access for an user to the inter-
nal schema the consistence conditions of
the conceptual schema must be expressed
in relational semantics. Actually we are
analysing correspondeces between

grouping and multivalued dependencies
/Fag/ and between generalization and
inclusion dependencies /CFP/.

THM is part of a project called PROSEM,
intended to define the complete process
of database design and use within the
three-level architecture. Thanks to
Prof. E.J. Neuhold and the members of
the PROSFM group, Angelika Horndasch,
Inge Walter and Ramin Yasdi for valuable
discussions about the data model. Spe-
cial thanks also to Udo Pletat and Rudi
Studer for a critical reading of a draft
of this paper.

/Al/

/An/

/AS/

/BS/

/BN/

/BM/

/BW/

REFERENCES

J.F. Allen. "An interval-based
representation of temporal
knowledge". Proc. Int. Joint Con-
ference on Artificial Intelligence,
Vancouver, 1981.
T.L. Anderson, "Modeling tima at
the concewtual level" in Imnrovina
Database Usability and
ness, P.

Re;ⅈ;<
Scheuermanned.

Holland, 1982.
"The ANSI/X3/SPARK DBMS framework.
Report of the Study group on Data-
base Management Systems", D.
Tsichritzis and A. Klug (eds.) Inf.
Systems, Vol.3 pp.173-191, 1978.
F. Bancilhon, N. Spyratos. "Data
Base Mappings, Part I: Theory", in
notes of the Advanced Seminar on
Theoretical Issues in Data Bases
(TIDB), Cetraro, Italy, 1981.
H. Biller, E.J. Neuhold, "Semantics
of Data Bases: The Semantics of
Data Models", Inf. Systems Vol.3 ,
1978
A. Borgida and J. Mylopoulos,
"Semantic Models in Databases: some
formal aspects". In notes of the
Advanced Seminar on Theoretical
Issues in Databases (TIDB),
Cetraro. Italv. 1981.
A. Borgida and'H. K. T. Wong,
"Data models and data manipulation
langages: complementary semantics
and proof theory", Proc. Very
Large Data Bases, 260-271, 1981.

/BFM/ B. Breutmann, E. Falkenberg, R.
Maurer, "CSL: A Language for
Defining Conceptual Schemas", in
Data Base Architecture, Bracchi and
Nijssen (eds.), North Holland, 1979

/Br/ M. Brodie, "Axiomatic definitions
for data model semantics". Inform.
Systems, Vol.7 No.2, pp. 183-197,
1982.

329

/CFP/ M.A. Casanova, R. Fagin and C-H.
Papadimitriou, "Inclusion Dependen-
cies and their Interaction with
Functional Dependencies", IBM
Res. Report RJ3380, 1982.

/Fag/ R. Fagin. "Multivalued Dependen-
cies and a New Normal Form for
Relational Databases". ACM TODS 2,3
1977, 262-278.

/Fa/

/GH/

/Ha/

E. Falkenberq. "Concepts for
Modelling Information". In Modelling
in Data Base Management Systems. G.
M. Nijssen ted.) North Holland,
1976
J.V. Guttag and J.J. Horning, "The
Algebraic Specification of Abstract
Data Types", Acta Informatica. Vol.
10, 27-52, 1978.
D. Harel. "First-order dynamic
logic". In Lecture Notes in Com-
puter Science, vol. 68, Springer-
Verlag, 1979.

/ISOl/ IS0 TC97/SCS/WG3 "Concepts and
terminology for the Conceptual
Schema, 1981.

/IS02'/TC97/SC5/WG3 "Concepts and
terminology for the Conceptual
Schema and the Information Base",
J.J. Griethuysen ted.), 1982.

/LMP/ H. Laine, 0; Maanavilja and E.
Peltola, "Grammatical data base
model", Inform. Systems Vol.4 pp.
257-267, 1979.
Z. Manna and A. Pnueli,
"Verification of concurrent
orourams: the temnoral framework",

/MP/

/MW/

Problem in Com-
S. Boyer and J. S.

Academic Press, 1981.
J. Mylopoulos and H.K.T. Wong,
"Some features of the TAXIS data
model", Proc. 6th. VLDB, Montreal,
1980.

/OSV/ T.W. Olle, H.G. Sol and A.A.
Verrijn-Stuart teds.), "Information
Systems Design methodologies: a
corn arative review", North-Holiand, --
1982.

/RU/ Rescher and Urquhart. "Temporal
Logic". Library of Exact Phllo-
sophy, Springer Verlag (1971).

/SNF/ C.S. dos Santos, E.J. Neuhold
and A.L. Furtado, "A Data Type
Approach to the Entity-Relationship

/SC1

Model", Proc. Entity-Relationship
Approach to Systems Analysis and
Design, 1980.

/ U. Schiel, "Data Structures as

/Sc3/ U. Schiel, "A semantic database
model and its mapping to an inter-
nal relational model" in Databases:
Role and Structure" P. Stocker, M.
Atkinson and P. Gray (eds.1,
Cambridqe University Press, 1983.

/Sc4/ U. Schiel, "Ein semantisches Daten-
model1 und se= Abblldunq auf die --
interneEbene", Dissertation,
InstitutrInformatik, Univ.
Stuttgart (to appear).

/SFNC/ U. Schiel, A.L. Furtado, E.J.
Neuhold and M.A. Casanova, "Towards
multilevel and modular conceptual
schema specifications", Inform.
Systems, Vo1.9, No.1, 1984.

/Su/ B. Sundgreen, "Conceptual fOUn-
dation of the Infological Approach
to data bases", in Data Base Mana-
qement, J.W. Klimbie and K.L. Kof-
feman (eds), North Holland, 1974

/WFW/ G. Wiederhold, J.F. Fries and
s. Woyl, "Structured organization
of clinical data bases", Pro-
ceedings AFIPS, 1975. -

Categories", working paper, Inst.
fiir Informatik, U. Stuttgart, 1981.

/Sc2/ U. Schiel, "The Temporal-
Hierarchic Data Model (THM)"
Bericht lo/82 Institut fiir Infor-
matik, Univ. Stuttgart, 1982.

330

