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Abstract 

A simple interface to deal with a set of facts 
is presented. The notion of a closed set of 
facts is defined. The problem of inserting or 
deleting facts in such a model is investigated. 
An alternative representation in terms of a uni- 
que relation leads to a new definition of decom- 
position which allows the presence of incomplete 
information. 

I. INTRODUCTION 

Consider a set of attributes, for instance 

COURSE, STUDENT, GRADE, TEAClUlR 

There is a number of groupings of these attri- 
butes that correspond to predicates from real 
life or to sentences while others do not. We call 
them objects (cf. Sciore [Sci] ). 
For instance : 

(A) COURSE STUDENT 
(B) COURSE STUDENT GRADE 
((3 COURSE TEACRRR 
0) COURSE STUDENT ?XACRRR 
(El COURSE STUDENT GRADE TRACRRR 

corresponding to the following rentenaer 

(4 student s takes course c 
(b) stu,dent s got grad g in cauree c 
(c) teacher t teaches course c 

Idi 
student I raker course c from teacher t 

a student s got grad g in course c tau@t 
by teacher t. 

Each one of these sentencer makes renrn by itself 
i.e. represents facts that do not relate to any 
other side information. Another way to look at 
it is to ray that each object corresponds to up- 
date units in an information system : each fact 
from (a) to (e) could be “entered” as a new fact 
in a database. 

On the contrary other gooupinge of ettributer do 
not auke renre by themselves. 

'For inrtance I 

STUDENT GRADE 
COURSE GIWE 

m TRACRBR GRADE 
(1) TEACHER STUDENT 
(J) COURSE GRADE STUDENT 

(F) corresponds to : 

(f) there exists a course c such that student 
s got grade g in course c 

(G) corresponds to : 

(8) there exists a 
in course c 

(H) corresponds to : 

(h) there exists a 

student s that got grade g 

student s and a course c 
such that student s got grade g in course 
c taught by teacher t 

(I) corresponds to : 

(9 there exists a course c such that student 
s takes course c from teacher t 

(J) corresponds to : 

(j) there exists a student s taking course c 
from teacher t and who got grade g in that 
course. 

The sentences (f) to (j) all derive- from facts 
dzough the introduction of unknown values : (f) 
and (g) derive from (b), (h) and (j) from (e), 
(i) from (d). Thus they cannot represent facts. 
(We suppose that there is no unknown,or existen- 
tial value in the facts). 

So& of the objects correspond to “atomic” or un- 
decomposable sentencer. We call them atoms. 

For instance : 

:r;; 
CONRSE STUDENT 
COURSE STUDENT GRADE 

(Cl COURSE TRACiigR 

are the atoms 
(D) is not an atom because (d) can be understood 

’ as the conjunction of: (a) and (c) 
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It is the same for (E) : 
' (e) is : student s got grade g in course c 

- 
(b) 

4 

taught by teacher t 

Cc) 

The facts corresponding to the atoms are called 
atomic facts. 

Given a set of atoms and a set of atomic facts, 
new facts can be deduced from them through es- 
sentially two processes : projection and join. 

Deriving facts using projection 

The first obvious remark we can make from the 
examples is that if X is an atom then X'c X 
is not necessarily an atom. 

For instance COURSE GRADE STUDENT is an atom whi- 
le COURSE GRADE is not. 

It is however possible for both X and X' to be 
atoms. Consider : COURSE STUDENT and COURSE STU- 
DENT GRADE. In this case, we shall be able to 
infer new facts using projection. 

For instance if 
"John got C in Math " 

then we can deduce that "John takes Math courses" 

Deriving facts uaing join 

One important property of the set of objects is 
tihat it is closed under union of non disjoint 
objects : i.e. if X ans Y are objects and 
X n Y # 8 then X u. Y is also an object. 

For instance the union of any two among the set 
of objects (A),(B),(C),(D),(E) produces objects. 

Furthermore we can infer new facts using join as 
follows. If "John takes Maths" and "Martin teaches 
Maths" then we can deduce that 

"John takes Maths from Martin". 

Intuitively, we suppose that there exists a sort 
of njoin dependency" between the atoms. Although 
this point of view is quite restrictive, it cer- 
tainly corresponds to many real life situations. 
It also derives from the definition of the notion 
of object as an information that makes sense by 
itself. 

Given a set of atoms S, we shall say that a set of 
atomic facts is closed under S if no new atomic 
fact can be derived from it using the projection 
and join. 

For instance, if we have the set of attributes : 

STUDENT,COURSE,TEACHER,DATE 

the atoms are 

STUDENT,COURSE 
STUDENT,COURSE,DATE 
TEACHER,COURSE 

TEACHER,COURSE,DATE 

The following set of atomic facts containing the 
three facts 

(1) "John takes math on Monday" 
(2) "Martin teaches maths" 
(3) "Smith teaches English on Thursday", 

is not closed under S. 

By joining (1) and (2) together and projecting 
the result on TEACHER,COURSE,DATE, we obtain : 

(4) "Martin teaches maths on Monday" 

which is not in the set. 

Now the set of atomic facts consisting of (I), 
(2), (3) and (4) is closed under S. 

Intuitively, given a set of facts, the information 
it represents is the closure of this set under 
the projection and join derivation rules. It is 
therefore important to define properly this clo- 
sure and to be able to compute it efficiently. 

Then one can worry about the updating problem : 
what happens when we update a set of facts ? If 
we consider the problem of inserting or deleting 
a fact in or from a closed set of facts, the re- 
sult is not closed anymore in general. 

For instance, if we insert "Max got C in Algebra" 
we might have (if it is not already there) to in- 
sert the fact "Max takes Algebra". 

If we want to delete "Max takes Algebra" we might 
have to detete also the facts "Max got x in Alge- 
bra" that could exist in the set of facts. The 
problem is then to define and compute the closed 
set of facts that represent the result of an up- 
date. 

In this paper we first present our formal frame- 
work by defining atomic facts, derivation rules 
and studying the closure of a set of facts. 

Then we study the insertion problem. It is shown 
that defining the result of an insertion is an 
easy task, while computing it can be a complex 
one. We give characterizations, in terms of set 
of objects, where this computation is easy. These 
characterizations are presented using the hyper- 
graph formalism. 

In section IV we study the deletion problem. It 
is shown that defining the result is a difficult 
problem because, in general, deletions lead to 
ambiguity. We give a complete characterization, 
in terms of set of atoms, of the cases where the 
result is uniquely defined and show that, in these 
cases, the computation is easy. 

We also give in APPENDIX an alternative represen- 
tation in terms of a single relation having nulls. 
This representation leads us to a new definition 
of decomposition including relations with nulls. 
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II. SETS OF FACTS CLOSED UNDER S 

Let U be a set of attributes. For each A in U the 
domain associated with A is denoted D(A). 

Let XC U, a fact on X is a mapping 

x : X + U D(A) s.t. x(A) E D(A) (i.e. a tuple 
AEX on X) 

X is called the definition set of x and denoted 
6(x) 

We first define the notion of set of objects in 
this context. 

Definition : The setofobjects is a covering of U 
such that if X and Y a-objects and X fl Y # 0 
then X U Y is also an object. 

The objects correspond to all possible sentences 
or real life assertions. 

Example 1. If U = CC~URSE,STUDENT,GRADE,TEACHER~ 
the corresponding set of objects is 

COURSE STUDENT 
COURSE STUDENT GRADE 
COURSE TEACHER 
COURSE STUDENT TEACHER 
COURSE STUDENT GRADE TEACHER 

For a given set of objects 4 the database con- 
sists of a set of facts defined over the set of 
objects A. 

From two facts x and y, we can 
using the "join" operation. 

deduce a new fact 

Definition : Let X, Y be in J4 s.t. x n Y z 0 . 
Let x, y be facts over X and Y such that 

x1x n Y = Y!x n Y 

Then x and y are compatible and x * y is the 
fact over X u Y defined by x * ye = x and 
x*Y 

IY 
= y. IX 

We extend the join operation to sets of facts. 
Let &and % be two sets of facts. 

&*53 :Cx*y/(xE&)A(Y~a) 

A (x and y compatible)] 

In order to avoid redundancy, we consider a par- 
ticular subset of the set of objects. 

Definition : Let A be a set of objects. 
22 

set of 
atoms S for -$ is the minimal subset of such 
that for each X in -$ there is a connected (*) 

* ES verifying X = U Y. 
YEIZ 

-connected if there existaan ordering 
Xl . ..X of the elements of (e such that 
Yic P2 ,..,n) 3 j < i such that Xi fl Xj # 0. 

It is clear from the definition that for each set 
of objects -$ a set of atoms can be constructed. 
As a matter of'fact, this set is unique. 

Example 2. The set of atoms for the set of 
xjects of example 1 is 

COURSE STUDENT 
COURSE STUDENT GRADE 
and 
COURSE TEACHER 

Given a set of atoms S, an atomic fact x is a 
fact such that 6(x) E S. 

From now on, the set of atoms S will be fixed un- 
less otherwise mentioned. &,% will denote fin& 
te sets of atomic facts. 

Definition : Let &, be a finite set of atomic 
facts, * is the limit of the sequence &? defin- 
ed by it I=& and &n+l= Jtn*& 
(This sequence converges after a finite number of 
steps since it is non decreasing and has an upper 
bound). 

We can note that : 

. A* is closed under join operation 

. All the facts of $ are defined on A. 

Definition : Let x and y be facts on X and Y, 
x t y iff XZY and x 
(This corresponds to 1Hn~o~o's CZa 21 ‘5” or more 
informative): 
Denote & the set of maximal elements for 5 of & 

& = Ix E & I Y y E & , (y 2 x) => x = yl 

Note that : 

. & E fl and 55 s 

. Y x E &, 3y E jt s.t. y 2 x 

But in general &e & 

Example 3. Let U be 

(c~URSE,STUDENT,GRADE,TEACHER) that we shall ab- 
$eviate CC,S,G,T) 

s = i(c,s),(C,s,~),(~,T>} 

Jt: C S G T 

Latin Suzan 
Latin Paul 
Math Albert 15 
Math Martin 
Latin DuPont 

English Smith 

& = & u {Latin Suzan DuPont, Latin Paul Albert, 
Math Albert 15 Martin) 

& = {Latin Suzan DuPont, Latin Paul DuPont, 
Math Albert 15 Martin, English Smith} 

In this example & $? & Cl 
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Let &be a set of facts and S the set of atoms. 
Define the projection of & on S by : 

71&l = {x16(x) c s A (3y E 3t , y 2 x)1 

Note that : 

1) iqjt) = &*I f or any set of atomic 
facts 

2) @*) 2 Jt for any set of atomic 
facts 

Thus &*is the set of facts implied through join 
while r,(k) is the set of facts implied through 
projectron. This allows us to define the notion 
of closure under S. 

Definition : Let &be a finite set of atomic 
facts. Jt is closed under S iff xs(&,*) = ft. 
i.e. 

a* * .&a 

cl=3 ?T 
l ’ set 

mic 
set of facts 
defined on .& 

of ato- 
facts 

Ad: set of objects 

Thus Ais closed under S 
iff a=& 

III. INSERTING A NEW FACT 

Let&be a set of facts closed under S. Let x be 
an atomic fact. In general & u {xl is not closed 
under S. Thus we must be able to determine the 
side effects induced by this insertion. A reason- 
able definition for the result of this insertion 
is the smallest set of facts .% closed under S 
such that & L' !x!E 3. 

Example 4. Let U be !Employee,Department,Manager} 
that we shall abbreviate iE,D,Xj and S be {(E,D), 
(D,M, (E,W i 
(We suppose that themanager of each department is 
the manager of all of the employees of that de- 
partment). 

Let&be : 

E D M 

Albert Shoes 
Paul Shoes 
Jane Books 
Jane Smith 

Books Smith 

& is closed under S. 

Suppose we want to insert the atomic fact 

"Brown is Paul's manager" 

then % = ck u I< Paul,Brown >) is not closed 
under S since '$(a*) = 3b u {< Shoes,Brown >) +B 

Theorem : Given a finite set of atomic facts &, 
there exists a unique minimal 2 s.t. 

1) hh.2 

2) &” 
The proof 

is closed under S 

follows from the next theorem. 

Theorem : Let & be a set of facts over S. &s is 
theit of the sequence & defined by : 

and &+l = a,(&:) 

Proof. (a) We first prove that (&,) ne N is 
stationary 

- for a given %, % E a*, and x is 
non decreasing thus (A,> n e ii* 1s 
an increasing sequence 

- for each attribute A in U and for 
each integer n, the values of A 
appearing in the facts of &,, are 
in 

v(A) = bi(A)/( x E &> A (A E 6(x))} 

dt is finite, thus eA) is finite. 
Let % be the set of facts defined as follows : 
For each X in S, X = (Al,..A$ such that v(Ai) 
# 0, Y i. 
For each (a,...ak) in '@(Al) x . . . x /1y(A,) 

x : X + IJ D(A) 
AeX is in53 

Ai + ai 

and that is all. 

fi is a finite set of facts such that an c a 
for any integer n. 
Thus there existsN such that &W = 
More specifically &,N = c$+l = rs( i% 

+kvkcN 

Thus AN is closed under S. 
N) 

(b) Let 3 be a set of facts closed under S 
such that & 2 & 
We have 55 = n,(a* ) (% closed under S) 

(55 2 k) 

Then by induction on n we have JZ% z&n 
VncN 
Thus fiz‘&aand 4= As Q.E.D. 

Going back to example 4; we have : 

3 = & u {< Paul,Brown >) 

$1 = ?rs(%*) = .% u {< Shoes,Brown >) 

332 = up;, = aI u {< Albert,Brown >) 

s$ = 7rsc5?q = n2 
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Thus ‘S 
33 - 8, : 

E D 

Albert Shoes 
Paul Shoes 

Albert 
Paul 

Shoes 
Jane Books 
Jane 

Books 

M 

Brown 
Brown 
Brown 

Smith 
Smith 

Thus in this example we obtain the result of 
this insertion after two steps. 

In general the sequence &h reaches its limit 
in a finite but unbounded number of steps. 

Theorem : If U is infinite or if there exist 
three attributes in U such that the cardinality 
of their domain is infinite then for each inte- 
ger n there existsa set of atoms S, and a set of 
atomic facts & associated such that 

(jp + Lkn 

The proof is given in Appendix 1. From a computa- 
tional point of view it is important to characte- 
rize the cases where the sequence converges in 
few steps. (Note that the number of steps condi- 
tions the number of joins and projections neces- 
sary to compute the result). 

We shall say that the set of atoms S converges 
<in n ste s iff for each set of atomic facts &, 

Ii+- 
is computed at most in n steps (i.e. 

S =&, where &, = & and &+1 = a,(&\)). 

We will give a characterization of this property 
,for n=O or 1. We identify S with a hypergraph 
(U,S) where U is the set of nodes and S is the 
set of edges. 

Definition : If H = 
X an element of g , 

&a is a hypergraph and 
we call minimum precycle 

description of X a subset C of E \(X] such that: 

(i) there exists a numbering Xl...X,, of the 
elements of C such that X1 n (Xi u . . . u 

X i-l) # 0, Y i E {2,...,n) (C is connected) 

(ii) xcu Y 
YEC 

(iii) C is minimum in the following way : every 
proper subset of C fails to satisfy (i) 
and (ii). 

MPC(X) will be the (possibly empty), set of the 
minimum precycle description of X. 

Proposition : S converges in 0 steps iff 

Y x E S, MPC(X) = 8 

Examples : 

. MPC(X) # 0 

. MPC(X) ‘0,YXES 

In the example 4 : U = {E,D,M} 

MPC((E,D)) = II(M,D),(E,M)~I ED 
MPC((M,D)) = I((E,D),(E,M))~ 
MPC((M,E)) = ~{(E,D),(M,D)II Gil 

Proof. 

1) Suppose 

3xc s, 3 C C S, C E MPC(X) 

We define s as follows : 

x:x+ u D(A) 
AeX 

X is in !% 
A+0 

ForYinC yy:Y+ U D(A) 
AeY 

A+1 
yy is in 53 

and that is all. 

(We have assumed, for the sake of simplicity that 
each attribute A has (0,)) in its domain) 
then 

z: u Y-t u D(A) 
YEC AeU Y 

YCC 

A+1 

by projection on X we obtain : 

2' : X + U D(A) 
AeX 

A'1 
z' E T&s >\!i?J 

is in & 

Thus S does not converge in 0 step. 

2) Conversely, suppose that A # x,(jt* ) for a 
set of facts & over S. 
There existsa sequence tl...t, of elements of 
ck such that 
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t 5 (...(t* *t*)... * tm) (1) (ttrS(&*)\c%) 

We take a minimal sequence tl...tk such that (1) 
is true. 
We have 

. ix,... X,3 satisfy (i) and (ii) since (1) is 
true 

. IX,... X,1 satisfy (iii) since tl...tk is mini- 
mal. 

Thus {Xl...Xkl E MPC(X) Q.E.D. 

Finally there existsa complete characterization 
in terms of hypergraph for the property "conver- 
ges in 1 step" (See CVerl for full description). 

Examples : 

. S does not converge in 1 step 

B C 

0 A 

Nota : 
When S is tree-structured [Ban1 
i.e. S is such that : 

n xP0 
xrs 

Y x F: s, {Y Q X/Y E S} forms a chain for 
the set inclusion 

then S converges in 1 step. 
Furthermore, given S tree-structured and Aa 
set of factsover S then 

Lk is consistent w.r.t. S iff 7Ts(&)C& 

In this section wehave studied theproblem ofanin- 
sertion in a set of facts. We have shown that the 
result of an insertion is uniquely defined. We 
have shown that, in the general case, the number 
of joins and projections necessary to compute the 
result is unbounded and we have characterized the 
sets of atoms where this number is limited to 0 
and 1. 

IV. THE DELETION PROBLEM 

Similarly, given a set of facts & closed under 
S and x E A, in general&..\ix) is not closed 
under S. We want to define the result of the de- 
letion of x by the largest5 closed under S such 
that& E 3t\x!. Unfortunately : 

Theorem 
m 

(i) 5% 

(ii) no 

Example 

In general, given a set of atomic facts 
is no unique & closed under S s.t. 

proper super set of s satisfies (i) 

Let us take the previous example 

s = (ED,DM,ME) 

jt: E D M 

Albert Shoes 
Paul Shoes 
Jane Books 
Jane Smith 

Books Smith 

If we want to dLlete "Smith is Jane's manager-n 

&\I < Smith,Jane >I is not closed under S 

We have two different solutions for the deletion: 

j3: E D M 

Albert Shoes 
Paul Shoes 
Jane Books 

The effect of the deletion is : Smith is not 
Jane's manager because he is not the manager of 
Books department 

or $ : E D M 

Albert Shoes 
Paul Shoes 

Books Smith 

The meaning of the deletion is : Smith is not 
Jane's manager because Jane is not an employee of 
the Books department. 

We can characterize the sets of atoms which per- 
mit to uniquely define a deletion as follows : 

Theorem : Given a set of atoms S, for any set c)t 
closed under S and for any atomic fact x in &, 
there exists an unique set% such that% closed 
under S,A E &\{x}, and% maximum iff : 

(for any X in S if MPC(X) # !ii then for any C in 
MPC(X) iC/ = 1) (a) 

Examples : S permits to uniquely define a dele- 
tion : 
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S does not permit to uniquely define a deletion: 

(sgTy+ 

Proof. 1) Let S be a set of atoms such that (a) 
Gtrue, & a set of atomic facts and t an ele- 
ment of ,&. Let us note that if ri3 is closed 
under S and included in &\{t] then 

tb = {tlt E & A 6(t) EY, A 6(t) E s? 

is an element of J, and 3 and %? incomparables. 

Q.E.D. 

Yrc% wehaverjlt. 

Let % = A\{rlr E &, and r 2 t.) 
Then for any% closed under S and included in 
k\ct, , eE9 
Suppose that 53 is not closed under S. 
Then there exists r in n,(s*)\% 

We can now address the problem of computing the 
result of a deletion when it is uniquely defined. 

Theorem : When S permits to define a deletion 
then,iven&closed under S and x in A, the 
result of the deletion of t in & is n : 

So there exists a minimal sequence tl".tk of 
elements of 3 such that 

%= &\{yjy E & and Y 2 d 

r .5 (...(t, *t2) *t,) so (6(tl...6(tk)} E MPC(g(r)) 

S satisfies (a) so k=!. 
Then tl 2 t and t 

i 
E % which is impossible. 

Thus & is the so ution for the deletion of t in 
ck- 

Proof. The proof follows directly from the first 
pdint,f the proof of the previous theorem. 

We can note that when S permits to define a dele- 
tion, then S converges in 1 step. Thus it allows 
easy insertions (see CVerl). 

2) Suppose that S contains X such that 
3 C E MPC(X), !CI > !. Consider the set of atomic 
facts 

&= ttl(6(t) s U Y) A 6(t) E S A (t(A)=O, 
YEC 

V A E 6(t)>; 

In this section we have studied the problem of a 
deletion from a set of facts. We have shown that, 
in &he general case, the result of a deletion is 
not uniquely defined and we have characterized 
the sets of atoms where the result is unique and 
shown that in this case the computation is simple. 

v. CONCLUSION 

3t is closed under S. 
Let s be the element of & defined on X. 
We will show that there exist at most two solu- 
tions for the deletion of s in &. 

We have described a model that representsfacts 
over a set of attributes. We have introduced the 
notion of set of facts closed under a set of atoms 

By the definition of MPC(X) there exists a num- 
bering Yl... Yk of the elements of C such that 

Yi n u Yj # 0 
'<' 

and, iylthe minimality of C, Yk n X\( U Yj n X) 
# 0. j<k 
Consider the set : 

In this framework we have investigated the problem 
of inserting or deleting facts. This led us to the 
characterization of well behaved sets of atoms in 
terms of hypergraphs. 

It was shown that, in these cases, the insertion 
and deletion could be : 

I) uniquely defined. 
2) easily computed. 

I = {s/s closed under S, {tit E& A 6(t) s 
We have given also an alternative approach of this 
model in terms of a single relation with null va- 
lues. 

APPENDIX A. 
where s' is the element of & defined on Y k 
I is not empty by the choice of Yk. 
I has at most a maximal elementb for the set 
inclusion. 

Proof of the theorem 

$ is also a maximal element of : 

J = {%/!&closed under S, % c dt\{s>> 

If U is finite or if there exist three attributes 
in U such that the cardinality of their domain is 
infinite, then for each integer n there exists a 
set of atoms S, and a set of atomic facts asso- 
ciated such that 

If&3%?,s/ Ithus s' <fi 
Then {tit E & A 6(t) c cl c 55 
Thus n 3s which contradicts the definition ofa 
J has another maximal element since 
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,as”,& 
n 

@ Suppose U infinite 

t n EN, we construct Sn recursively as fol- 
lows : 

S1 is . ' . 

@ 

S n+l 
is obtained from Sn by transforming each 

in adding 3 
new vertices 
and 5 new 

for example 

3 3 

m 

we represent it by 
2 2 a graph since all 

3 3 the edges have the 
1 same cardinalityP.2 

set of atomic facts such that % 
under S, is defined as follows : 

. For each couple n-n (when n > 1) : 

C 

@ 

tn : 
I 
B-t1 
A+1 

B nI n D r : B-+1 n C+l 
F I 

A n-l E 
s : n I 

C+l 
F-t1 

are in 9c. 

. For each couple k-k 1 < k < n : 

. For 1 : 

Then t 

2 2 & B 
A 1 C 

A+1 t E k+l 

D+l tatR, 0 

t’ : c-+2 n F-+1 

r’ : 

I 

c-+2 n D+2 

s’ : 
I 
D-+2 n E-+2 

tk : I c-+2 
F*l 

rk : 
I 

c+ 1 
F+l 

are in 3t 

tl :I 
c-+2 
D-+1 

@ Suppose that there exist three attributes A, 
B, C in U such that D(A), D(B) and D(C) are 
infinite. 
We will show that s = (AB,BC,AC} does not 
converge in n steps for any integer n. 

(We assume, for simplicity that D(A), D(B) and 
D(C) contain H). 

Let n be an integer, n > 1. Then the set of ato- 
mic facts & defined as follows is such that A,, 
is not closed under S : 

on ABI We have {(i,j)l Ii-j\ < 1 and 
BC 
AC I 

-(i,j}C {1,...2"+l + 111 

Then ?r,(Jt") = 4 is composed of the facts 

on AB 
BC I {(i,j>[ Ii-j/ 5 2 and 

and AC1 
(i,j) C {l...2"+l + 111 

and is composed of the facts, for any k 5 n+l 

on AB 
BC {(i,j)l Ii-j1 < 2k and {i,j} C{l.*. 
AC 2 n+l + 1)) 

Thus Jn # &n+1 and 9, is not closed under S. 

APPENDIX B 

Alternative approach : representing facts by a 
unique relation. 

Given a set of facts A, the information contain- 
ed in ft is all the possible facts that can be 
deduced from & i.e. #. It can be represented 
by dt , the minimal (in terms of facts) set of 
facts Minformation equivalent" (as Zaniolo's 
CZa 21) to A*. 

In general, it is not possibleto represent & by 
a simple relation unless we use nulls : a course 
might have students and no teacher,a student 
might not yet have a grade. The solutions propo- 
sed for the formal treatment of incomplete rela- 
tions in database operations ([Cod], [Lip], [ImL 
CBisl, [Sag], [Vasl, CKoUl, [Zall, CZa21, . ..) 
show np that the interpretation of null values 
adds computational complexity and semantic pro- 
blems. Thus we propose a simple model, following 
Zaniolo in his representation of nulls. 

Given a set of facts ck , we associate with it a 
relation over U as follows : 

1) Extend each domain by a special null value : 

E(A) = D(A) u i-1 

'-1 means "no information" as Zaniolo CZa21 
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2) For each fact x in &, extend x to IJ as fol- 
lows 

q5(x) = x 
;(A) = - Y A E IJ\6(x) 

3) We call this set of tuples Rel&) 

Example : 

Let jt be : 

COURSE STUDENT GPaE TEACHER 

French Suzan 
French Paul 15 

Math Martin 
French DuPont 

then Rel&) is : 

COURSE STUDENT GRADE TEACHER 

French Suzan - DuPont 
French Paul 15 DuPont 

Math Martin 0 

Conversely, given a relation R with nulls and a 
set of atoms S we define an associated set of 
atomic facts Fact (R) as follows : S 

Facts(R) = {x16(x) E Sh (V AE 6(x),x(A)#-) A 

(3 ye R, yrx)) 

> is extended to tuples : 

x 2 y iff xiIA1 = yCAl or yCA1 = '-' P A E U 

Facts(R) is the total projection of R over the 
set of atoms S. Let R be a relation eventually 
with null values. We say that R has a lossless 
decomposition (LLD) with respect to S iff 

R = Rel(Facts(R)) 

Theorem : If R has 
FactS(R) is closed 

Proof: 

LLD with respect to S then 
under S. 

a) Let us consider the composition of operations : 

FactSoRe : {set of atomic facts) -f 

(set of atomic facts} 

To apply Rel to a set of atomic facts 

(1) compute I% 

(2) complete eventually the elements of& by '-' 
to obtain an inocmplete relation over U 

To apply Facts to an incomplete relation we : 

(3) eliminate the '-' in the tuples 

(4) project upon S the set of facts resulting 
of (3). 

Thus we can eliminate (2) and (3) in the process. 
We have : for any set of atomic facts 

Facts(Rel(&)) = r,(x) 

b) Suppose R has LLD with respect to 

then FactS(R) = Facts(Rel(Facts(R)) 

thus Facts(R) = rs(Facts(R)) by (a) 

Nota : The converse is not true. 

S 

Q.E.D. 

But : if & is closed under S then Rel(& ) has 
LLD w.r.t. S. 

Theorem : If R is total (i.e. without nulls) and 
has LLD with respect to S then R satisfies the 
join dependency WS. The converse is not true. 

Example : U = {Name,Child,Car,Registration number, 
Address) 

that we shall abbreviate {N,CH,C,RN,A] 

R: N CH C RN A 

DuPont Zoe Renault XYZ2375 Paris 
DuPont Zoe Citroen UU1245 Orldans 
DuPont Zazie Renault XYZ2375 Paris 
DuPont Zazie Citroen UU1245 OrlBans 

s = IIN,CHI, {N,C,RNI, {N,A;, IN,c,A)) 

i.e. each car has a registration number and is 
associated with an address. 

But : Facts(R) = {DuPont Zoe, DuPont Zazie, 
DuPont Renault XYZ2375, 
DuPont Citroen UU1245, 
DuPont Paris. DuPont OrlLans, 
Dupont Renault P&is, 
DuPont Citroen OrlBans) 

By joining the three facts DuPont Renault 
DuPont Orleans and DuPont Zazie, we obtain 
DuPont Zazie Renault XYZ2375 Orleans which 
in R. 
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