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Abstract

A simple interface to deal with a set of facts
is presented. The notion of a closed set of
facts is defined. The problem of inserting or
deleting facts in such a model is investigated.
An alternative representation in terms of a uni-
que relation leads to a mew definition of decom-
position which allows the presence of incomplete
information, :

I. INTRODUCTION

Consider a set of attributes, for instance
COURSE, STHDENT, GRADE, TEACHER

There is a number of groupings of these attri-
butes that correspond to predicates from real
life or to sentences while others do not. We call
them objects (cf. Sciore [§ci] ).

For instance :

(A) COURSE STUDENT

(B) COURSE STUDENT GRADE

(C) COURSE TEACHER

(D) COURSE STHDENT YEACHER

(E) COURSE STUDENT GRADE TEACHER

corresponding to the following sentenses

(a) student s takes course c

(b) student s got grad g in course ¢

(c) teacher t teaches course ¢

(d) student s sakes course c from teacher t

(e) student s got grad g in course c taught
by teacher t. ’

Each one of these sentences makes senss by itself
i.e. represents facts that do not relate to any
other side information. Another way to look at

it is to say that each object corresponds to up~
date units in an information system : each fact
from (a) to (e) could be "entered" as a new fact
in a databass.

On the contrary other govoupings ef attributes do
not make sense by themselves.

*Far instance :

(F)  STUDENT GRADE
(G) COURSE GRADE

(H) TEACHER GRADE
(D TEACHER STUDENT
(6)] COURSE GRADE STUDENT

(F) corresponds to :

£ there exists a course ¢ such that student
s got grade g in course c '

(G) corresponds to :

(8) there exists a student s that got grade g
in course ¢

(H) corresponds to :

(h) there exists a student s and a course c
such that student s got grade g in course
c taught by teacher t

(I) corresponds to :

i) there exists a course ¢ such that student
8 takes course ¢ from teacher t

(J) corresponds to :

(i) there exists a student s taking course ¢
from teacher t and who got grade g in that
course.

The sentences (f) to (j) all derive from facts
through the introduction of unknown values : (f)
and (g) derive from (b), (h) and (j) from (e),
(i) from (d). Thus they cannot represent facts.
(We suppose that there is no unknown,or existen-
tial value in the facts).

Some of the objects correspond to "atomic" or un-
decomposable sentences., We call them atoms.

For instance :

(A) COHRSE STUDENT
(B) COURSE STUDENT GRADE
) COURSE TEACHER

are the atoms °

. (D) is not an atom because (d) can be understood
as the conjunction of (a) and (¢)

(d) is : student g _takeg course c.taught by
teacher — e —————
E——— (e)

(c)



. It is the same for (E) :

(e) is : student s got grade g in course c
(® —

taught by teacher t

©

The facts corresponding to the atoms are called
atomic facts.

Given a set of atoms and a set of atomic facts,
new facts can be deduced from them through es-~
sentially two processes : projection and join.

Deriving facts using projection

The fisst obvious remark we can make from the
examples is that if X is an atom then X' & X
is not necessarily an atom.

For instance COURSE GRADE STUDENT is an atom whi-
le COURSE GRADE is not.

It is however possible for both X and X' to be
atoms. Consider : COURSE STUDENT and COURSE STU-
DENT GRADE. In this case, we shall be able to
infer new facts using projection.

For instance if
"John got C in Math "

then we can deduce that "John takes Math courses"

Deriving facts uaing join

One important property of the set of objects is
that it is closed under union of non disjoint
objects : i.e. if X ans Y are objects and
XnY+#@ then X u. Y is also an object.

For instance the union of any two among the set
of objects (A),(B),(C), (D), (E) produces objects.

Furthermore we can infer new facts using join as
follows. If "John takes Maths" and "Martin teaches
Maths" then we can deduce that

"John takes Maths from Martin'".

Intuitively, we suppose that there exists a sort
of "join dependency" between the atoms. Although
this point of view is quite restrictive, it cer-
tainly corresponds to many real life situationms.
It also derives from the definition of the notion
of object as an information that makes sense by
itself.

Given a set of atoms S, we shall say that a set of
atomic facts is closed under S if no new atomic
fact can be derived from it using the projection
and join,

For instance, if we have the set of attributes :
STUDENT, COURSE , TEACHER,DATE

the atoms are

STUDENT ,COURSE
STUDENT, COURSE ,DATE
TEACHER,COURSE

TEACHER, COURSE ,DATE

The following set of atomic facts containing the
three facts

(1) "John takes math on Monday"
(2) "Martin teaches maths"
3 "Smith teaches English on Thursday",

is not closed under S.

By joining (1) and (2) together and projecting
the result on TEACHER,COURSE,DATE, we obtain :

(4) "Martin teaches maths on Monday"

which is not in the set.

Now the set of atomic facts consisting of (1),
(2), (3) and (4) is closed under S.

Intuitively, given a set of facts, the information
it represents is the élosure of this set under

the projection and join derivation rules. It is
therefore important to define properly this clo-
sure and to be able to compute it efficiently.
Then one can worry about the updating problem :
what happens when we update a set of facts ? If
we consider the problem of inserting or deleting
a fact in or from a closed set of facts, the re-
sult is not closed anymore in general.

For instance, if we insert "Max got C in Algebra"
we might have (if it is not already there) to in-
sert the fact "Max takes Algebra".

If we want to delete "Max takes Algebra" we might
have to detete also the facts '"Max got x in Alge-
bra" that could exist in the set of facts. The
problem is then to define and compute the closed
set of facts that represent the result of an up-
date.

In this paper we first present our formal frame-
work by defining atomic facts, derivation rules
and studying the closure of a set of facts.

Then we study the insertion problem. It is shown
that defining the result of an insertion is an
easy task, while computing it can be a complex
one. We give characterizations, in terms of set
of objects, where this computation is easy. These
characterizations are presented using the hyper-
graph formalism.

In section IV we study the deletion problem. It

is shown that defining the result is a difficutlt
problem because, in general, deletions lead to
ambiguity. We give a complete characterizationm,

in terms of set of atoms, of the cases where the
result is uniquely defined and show that, in these
cases, the computation is easy.

We also give in APPENDIX an alternative represen-
tation in terms of a single relation having nulls.
This representation leads us to a new definition
of decomposition including relations with nulls.
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11. SETS OF FACTS CLOSED UNDER §

Let U be a set of attributes, For each A in U the
domain associated with A is denoted D(A).

Let X C U, a2 fact on X is a mapping

x : X+ U D(A) s.t. x(A) € D(A) (i.e. a tuple
AeX on X)

X is called the definition set of x and denoted

S§(x) _

We first define the notion of set of objects in

this context.

Definition : The set of objects is a covering of U
such that if X and Y are objects and X NY # ¢
then X UY is also an object,

The objects correspond to all possible sentences
or real life assertions.

Example 1, If U = {COURSE,STUDENT,GRADE,TEACHER}
the corresponding set of objects is

COURSE STUDENT

COURSE STUDENT GRADE

COURSE TEACHER

COURSE STUDENT TEACHER
COURSE STUDENT GRADE TEACHER

For a given set of objects.z{, the database con-~
sists of a set of facts defined over the set of
objects .

From two facts x and y, we can deduce a new fact
using the "join" operationm.

Definition : Let X, Y be in zf s.t. XNY# 9.
Let x, y be facts over X and Y such that

xny " Yxny

Then x and y are compatible and x * y is the
fact over X v Y defined by x * y}X = x and

X x Y,Y =Y.

We extend the join operation to sets of facts.
Let ¢k and 9 be two sets of facts.

A*x®D txxy/ xeh) A FeD)
A (x and y compatible)}

In order to avoid redundancy, we consider a par-
ticular subset of the set of objects.

Definition : Let.zl be a set of objects. set of

atoms S for‘gf is the minimal subset of such
that for each X in there is a connected (x)
@ ©S verifying X = U Y.
Y€

() € 1s connected if there exists an ordering
Xy...X, of the elements of ‘€ such that
¥ic ?2,..,n} 3j < i such that X3 N X4 # 0.

It is clear from the definition that for each set
of objects 4{ , @ set of atoms can be constructed.
As a matter of fact, this set is unique.

Example 2. The set of atoms for the set of
objects of example ! is

COURSE STUDENT
COURSE STUDENT GRADE
and

COURSE TEACHER

Given a set of atoms S, an atomic fact x is a
fact such that §(x) € S.

From now on, the set of atoms § will be fixed un-
less otherwise mentioned. g ,® will denote fini-
te sets of atomic facts.

Definition : Let ¢} be a finite set of atomic
facts, 4" is the limit of the sequence & defin-
ed by ¢kl =t and KO'! = AR x R

(This sequence converges after a finite number of
steps since it is non decreasing and has an upper
bound) .

We can note that :

. ‘j; is closed under join operation
. All the facts of X are defined on‘xf.

Definition : Let x and y be facts on X and Y,
X2y iff XY and x|, = y

(This corresponds to %aniolo's [Za 2] "2" or more
informatjve). .
Denote Qi the set of maximal elements for < of A

£={xe£!¥‘y€£,(y2x)=>x=y}

Note that :

ACSHK and RE X
¥ xeek, Iy s.t. y2x

But in general AT ;ﬁ;

Example 3. Let U be

{ COURSE , STUDENT, GRADE, TEACHER} that we shall ab-
breviate {c,s,G,T}

s = {(c,8),(C,S,6),(C,T)}

X c S G T

Latin Suzan
Latin  Paul
Math Albert 15

Math Martin
Latin Dupont
English Smith

JE = ¢t u {Latin Suzan Dupont, Latin Paul Albert,
Math Albert 15 Martin}

A = {Latin Suzan Dupont, Latin Paul Dupont,
Math Albert 15 Martin, English Smith}

In this example AER O

314



Let X be a set of facts and S the set of atoms.

Define the projection of ¢t on S by :
'"S(ck) = {X!G(X) € SA(3y e (ﬁ , ¥y 2x)}

Note that :
1) Trs(d\:) = ’rrs(,k*) for any set of atomic

facts
2 (M 2k

for any set of atomic
facts

Thus & is the set of facts implied through join
while 7 (ot) is the set of facts implied through
projection. This allows us to define the notion
of closure under S.

Definition : Let Jt be a finite set of atomic
facts. R is closed under S§ iff Trs(ot*) = k.
i.e.

set of ato-
mic facts

set of facts
defined on

of: set of objects

Thus J is closed under S
iff =R

III. INSERTING A NEW FACT

Let &k be a set of facts closed under S. Let x be
an atomic fact. In general &k u {x} is not closed
under S. Thus we must be able to determine the
side effects induced by this insertion. A reason-
able definition for the result of this insertion
is the smallest set of facts 8 closed under $
such that & v x} C ».

Example 4. Let U be {Employee,Department,Manager}
that we shall abbreviate {E,D,M} and $ be {(E,D),
(DM, (E,M)}

(We suppose that the manager of each department is
the manager of all of the employees of that de-
partment).

Let &t be :
E D M
Albert Shoes
Paul Shoes
Jane Books
Jane Smith
Books Smith

& is closed under S.

Suppose we want to insert the atomic fact
"Brown is Paul's manager”

then ® = Jt u {< Paul,Brown >} is not closed

under S since WS(&*) = ® u {< Shoes,Brown >} +%®

Theorem :

Given a finite set of atomic facts JC,
» . » . ~
there exists a unique minimal AS s.t.

N
D o Ac X
As .
2) r° is closed under §
The proof follows from the next theorem.

Theorem : Let Jt be a set of facts over S. "Rs is

the limit of the sequence J, defined by :

oﬁé = & and J\: =1TS(‘£:1)

Proof. (a) We first prove that (Jcn) ne N is

stationary

. *
- for a given ®, »H €&, and 1, is
non decreasing thus (g%n) neW is
an increasing sequence

- for each attribute A in U and for
each integer n, the values of A
appearing in the facts of Jcn are
in

WAy = (x(a)/(x € f£) A (A e 5(x))}

& is finite, thus DA) is finite.

Let » be the set of facts defined as follows :
For each X in S, X = (A;...A,) such that '\J’(Ai)
# 0, ¥i.

For each (al...ak) in V(AI) X .. X ’U/(Ak)

x : X> U D(A)
AeX is in
A.l->a.1
and that is all.

$ is a finite set of facts such that & & 5
for any integer n. n

Thus there existsN such that ‘XN = +k Y ke N
More specifically dy = c’(N+I = 7rs( N)

Thus ‘ﬁ'N is closed under S.

(b) Let B be a set of facts closed under §
such that §» 2 cﬂa*
We have $H= 7rS(:b } (0> closed under S)

2r.A ® 2

Then by induction on n we have thn
¥nelN

Thus £ 2& and CtN = :&S Q.E.D.

Going back to example 4, we have :

8 = & u {< Paul,Brown >}
S'bl = 1rs(55‘) = $ v {< Shoes,Brown >}
®, = WS(&’;) = 5’.)1 u {< Albert,Brown >}

D, = T (R)) = B,
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-~
Thus &° = 552 :

E D M
Albert Shoes
Paul Shoes
Albert Brown
Paul Brown
Shoes Brown
Jane Books
Jane Smith
Books Smith

Thus in this example we obtain the result of
this insertion after two steps.

Theorem : If U is infinite or if there exist
three attributes in U such that the cardinality
of their domain is infinite then for each inte-
ger n there existsa set of atoms S, and a set of
atomic facts ¢k associated such that

504,

The proof is given in Appendix |. From a computa-
tional point of view it is important to characte-
rize the cases where the sequence converges in
few steps. (Note that the number of steps condi-
tions the number of joins and projections neces-—
sary to compute the result).

We shall say that the set of atoms S converges

in n steps iff for each set of atomic facts Gk,
g% is computed at most in n steps (i.e.
S = where ;_Xo = ¢k and ‘kk-!-l =T (ckk))

We will give a characterization of this property
for n=0 or 1, We identify S with a hypergraph
(U,S) where U is the set of nodes and S is the
set of edges.

If H = (Jr,ZE) is a hypergraph and
, we call minimum precycle

Definition :
X an element of

description of X a subset C of & \{X} such that:

(1) there exists a numbering Xj...X, of the
elements of C such that X; n (X; v ... U
xi-l) #0, ¥i¢ {2,...,n} (C is connected)

(i1) X SU Y
YeC
(iii) C is minimum in the following way : every

proper subset of C fails to satisfy (i)
and (ii).

MPC(X) will be the (possibly empty), set of the
minimum precycle description of X.

S converges in O steps iff
¥xeS, MPC(X) = ¢

Proposition :

Examples :

. MPC(X) # ¢

—)
. MPC(X) = @, ¥ X ¢ 8

%

In the example 4 :

)
@M

U = {E,D,M} “!:,
S

¢

MPC((E,D)) = {{(M,D),(E,M)}}
MPC((M,D)) = {{(E,D),(E,M)}}
MPC((M,E)) = {{(E,D),(M,D)}}

Proof.
1) Suppose

3Xes, 3CCS, Ce MPC(X)

We define & as follows :

x : X> U D(A)
AeX

X is in &
A->0
For ¥ in C yg 1 Y U D(A)
AeY
Yy is in
A->1

and that is all.

(We have assumed, for the sake of simplicity that
each attribute A has {0,]} in its domain)
then

z: U Y-+ U D(A)
YeC AeU Y
YeC is in Sb*
A1

by projection on X we obtain :

z' : X+ U D)
AeX

A1
z' € WS(‘?; NBD
Thus S does not converge in O step.
*
2) Conversely, suppose that X 4 ﬂs(dk ) for a
set of facts ¢¢ over S.

There existsa sequence tj...
such that

tm of elements of
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£ (eaa(ty ot )eevt) (1) (tem (AEDINK)
1 2 m S

We take a minimal sequence tl"'tk such that (1)
is true. :
We have

. {Xl...Xk} satisfy (i) and (ii) since (1) is
true

. {x ...Xk} satisfy (iii) since t ety is mini-

! mal. !

Thus {xl...x } € MPC(X) 0.E.D.

k

Finally there existsa complete characterization

in terms of hypergraph for the property '"conver-—
ges in 1 step" (See [Ver] for full description).
Examples :

. S converges in 1 step

. S does not converge in 1 step
(L D2
Nota :

When S is tree-structured [Ban]
S is such that :

i.e.
n X#¢
XeS

¥ X ¢S, {YnX|Yec S} forms a chain for
the set inclusion

then S converges in 1 step.
Furthermore, given S tree-structured and d& a
set of factsever S then

d(, is consistent w.r.t. S iff ‘rrs(gﬁ;) E&

In this section we have studied the problem of an in-
sertion in a set of facts. We have shown that the
result of an insertion is uniquely defined. We
have shown that, in the general case, the number
of joins and projections necessary to compute the
result is unbounded and we have characterized the
sets of atoms where this number is limited to O
and 1.

IV. THE DELETION PROBLEM

Similarly, given a set of facts dt closed under

S and x ¢ X , in general Jft\{x} is not closed
under S. We want to define the result of the de-
letion of x by the largest ¥ closed under S such
that § & A\(x}. Unfortunately :

317

Examples :

Theorem : In general, given a set of atomic facts
there is no unique § closed under S s.t.

1) HES X

(ii) no proper super set of P satisfies (i)
Example : Let us take the previous example
s = {ED,DM,ME}

Jt H E D M

Albert Shoes

Paul Shoes

Jane Books
Jane Smith
Books Smith

If we want to délete "Smith is Jane's manager"
&N\{< Smith,Jane >} is not closed under S

We have two different solutions for the deletion:

H: E D M

Albert Shoes
Paul Shoes
Jane Books

The effect of the deletion is : Smith is not
Jane's manager because he is not the manager of
Books department

or Fy : E D M
Albert Shoes
Paul Shoes
Books Smith

The meaning of the deletion is : Smith is not
Jane's manager because Jane is not an employee of
the Books department.

We can characterize the sets of atoms which per-
mit to uniquely define a deletion as follows :

Theorem : Given a set of atoms S, for any set dt

closed under S and for any atomic fact x in ¢f,

there exists an unique set T such that 35 closed
under S, $ C &(\{x}, and  maximum iff :

(for any X in S if MPC(X) # @ then for any C in
MPC(X) [Ci = 1) (a)

S permits to uniquely define a dele-
tion :

39 &

\&



S does not permit to uniquely define a deletion:
A

Proof. 1) Let S be a set of atoms such that (a)
is true, ¢k a set of atomic facts and t an ele-
ment of Jk. Let us note that if T is closed
under S and included in AN\{t} then

Vre®
Let 5 = &\{r|r ¢ X and r > t}

Then for any‘g closed under S and included in
ANt} , EBED

Suppose that 3D is not closed under S.

Then there exists T in nS(Sb*)\sb

we have r # t.

So there exists a minimal sequence tj...t; of
elements of such that

r < (...(tl* tz)* tk) so {é(tl...d(tk)} e MPC(8(x))
S satisfies (a) so k=!.

Then t] 2 t and t, ¢ 3 which is impossible.

Thus 8 is the soiution for the deletion of t in

2) Suppose that S contains X such that
3C e MPC(X), !C! > !. Consider the set of atomic
facts

= {t](B(t) S U ¥) A 8(t) € S A (£(A)=0,
Y<C
¥ Ae §(£))?

dt is closed under S.

Let s be the element of dt defined on X.

We will show that there exist at most two solu-
tions for the deletion of s in

By the definition of MPC(X) there exists a num-
bering Yl"'Yk of the elements of C such that

Y. 0 U Yj 0
j<i
and, by the minimality of C, Y n IN(U Y. n X)
@. j<k J

Consider the set :

I= {55[55 closed under S, {t|t ek A &8(t) ¢
A\ HED,

S A\(s,s' 1

where s' is the element of dt defined on Yk

I is not empty by the choice of Y, .

I has at most a maximal element @ for the set
inclusion.

€ is also a maximal element of :

J = {HD closed under 5, B & A\ (s}}
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Let 55 € J, 19522 fg-

IfF HDOE, B ¢ 1 thus s’ «

Then {tlt ek AS(r) e C} C I

Thus 3% 3 s which contradicts the definition of 3}
J has another maximal element since

H={tlt ek » §(t) E Y, A 8(t) e 8}

is an element of J, and § and € incomparables.
Q.E.D.

We can now address the problem of computing the
result of a deletion when it is uniquely defined.

Theorem : When S permits to define a deletion

then, givengk.closed under S and x in Jt, the

result of the deletion of t in Jt is

- &.\{y{y € Jc and y 2 x}

Proof. The proof follows directly from the first

point of the proof of the previous theorem.

We can note that when S permits to define a dele-
tion, then S converges in ! step. Thus it allows
easy insertions (see [Verl]).

In this section we have studied the problem of a
deletion from a set of facts. We have shown that,
in ehe general case, the result of a deletion is
not uniquely defined and we have characterized
the sets of atoms where the result is unique and
shown that in this case the computation is simple.

V. CONCLUSION

We have described a model that representsfacts
over a set of attributes. We have introduced the
notion of set of facts closed under a set of atoms

In this framework we have investigated the problem
of inserting or deleting facts. This led us to the
characterization of well behaved sets of atoms in
terms of hypergraphs.

It was shown that, in these cases, the insertion
and deletion could be :

1) uniquely defined.
2) easily computed.

We have given also an alternative approach of this
model in terms of a single relation with null va-
lues.

APPENDIX A.

Proof of the theorem

If U is finite or if there exist three attributes
in U such that the cardinality of their domain is
infinite, then for each integer n there exists a
set of atoms S, and a set of atomic facts asso—
ciated such that



S
By g
(:) Suppose U infinite

¥ n ¢N, we construct Sn recursively as fol-

lows :
s, is <§E§E§>
Sn+1 is obtained from Sn by transforming each

in adding 3
new vertices
and 5 new
edges to
each

we represent it by
a graph since all
the edges have the
same cardinality=2.

Given S_, otset of atomic facts such that Jt
is not closed under 5, is defimed as follows :

. For each couple n-n (when n > 1)

C t, !B -+ 1 t; : {Cc >
A1 F -1
B
n | nND ro: |B~1 ré IC > 2
c~+1 D~ 2
A E
sy |C+l sr'1 |D+2
F->1 E~>2
are in o\;
. For each couple k-k | < k < n :
k+] ty ¢ 'C + 2
F -+ 1
k+1 L 'C > 1
F-1
arein"c
. For 1
2 2 ty ¢ c~+2
AC D~
L ek
Then t [A > 1 t ¢ ‘xnﬂ
pr1 td & O
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Suppose that there exist three attributes A,
B, C in U such that D(A), D(B) and D(C) are
infinite.

We will show that S = {AB,BC,AC} does not
converge in n steps for any integer n.

(We assume, for simplicity that D(A), D(B) and
D(C) contain N).

Let n be an integer, n > 1. Then the set of ato—
mic facts defined as follows is such that
is not closed under S :

on AB| We have {(i,j)| |i-j| <1 and

BC PR n+l

AC {3431 {1,...2 + 11}
Then Ws(ﬁ*) = ‘kl is composed of the facts
on AB

Bc| {(i,i)| [i-j| < 2 and
and AC

(i1 (1...2% v an
and ‘*ﬂ is composed of the facts, for any k < n+l

on k
li-j| < 2" and {i,3} €{1...

2n+l + l}}

AB
BC
AC

{(1,]

Thus g*.n # Jcn+l and ‘h;: is not closed under S.

APPENDIX B
Alternative approach : representing facts by a
unique relation.

Given a set of facts dt, the information contain-
ed in & is all the possible facts that can be
deduced from & i.e. &°. It can be represented

by R , the minimal (in terms of facts) set of
facts "information equivalent" (as Zaniolo's

[za 2]) to .

In general, it is not possibleto represent & by
a simple relation unless we use nulls : a course
might have students and no teacher, a student
might not yet have a grade. The solutions propo-
sed for the formal treatment of incomplete rela-
tions in database operations ([Cod], [Lip], [ImL]
[Bis], [Sagl, [Vas], [KoUJ, [Zall, [Za2], ...)
show up that the interpretation of null values
adds computational complexity and semantic pro-
blems. Thus we propose a simple model, following
Zaniolo in his representation of nulls.

Given a set of facts Jt, we associate with it a
relation over U as follows :

1) Extend each domain by a special null value :
D(a) = p(a) v {-}

'~' means "no information' as Zaniolo [Za2]



2) For each fact x in Jf, extend x to U as fol-

lows
x,d(x) = X
x(4) = - ¥ A ¢ U\S(x)

3) We call this set of tuples Rel(dt)

Example :

Let Jt be :

COURSE STUDENT GRADE TEACHER

French Suzan

French Paul 15

Math Martin

French Dupont
then Rel(Jt) is :

COURSE STURBENT GRADE TEACHER

French Suzan - Dupont

French Paul 15 Dupont

Math - - Martin 0

Conversely, given a relation R with nulls and a
set of atoms S we define an associated set of
atomic facts Facts(R) as follows :

Factg(R) = {x{8(x) € SA (¥ A€ 8(x),x(A)#-) A
(3yeR, y2x)}

> is extended to tuples :

x 2y iff x[A] = y[A) or y[Al = '~' ¥ A e U
Fact,(R) is the total projection of R over the

set of atoms 8. Let R be a relation eventually
with null values. We say that R has a lossless

decomposition (LLD) with respect to S iff
R = Rel(FactS(R))
Theorem : Lf R has LLD with respect to S then

FactSZR) is closed under S.

Proof:

a) Let us consider the composition of operatioms :

Fact,ORel : {set of atomic facts} -

S
{set of atomic facts}

To apply Rel to a set of atomic facts

(1) compute ;t

(2) complete eventually the elements of &t by '-'
to obtain an inocmplete relation over U

To apply Fact, to an incomplete relation we :

S

T

eliminate the

3) in the tuples
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project upon S the set of facts resulting
of (3).

(4)

Thus we can eliminate (2) and (3) in the process.
We have : for any set of atomic facts

()

b) Suppose R has LLD with respect to S

FactS(Rel(,ﬁ.)) =

then FactS(R) = FactS(Rel(Facts(R))

thus Facts(R) = WS(FactS(R)) by (a) Q.E.D.

Nota : The converse is not true.
But ¢ if Jt is closed under S then Rel(g)\:) has

LLD w.r.t. S.

Theorem : If R is total (i.e. without nulls) and
has LLD with respect to S then R satisfies the
join dependency D4 S. The converse is not true.

U = {Name,Child,Car,Registration number,
Address}

that we shall abbreviate {N,CH,C,RN,A}

Example :

R : N CH c RN A
Dupont Zoe Renault  XYZ2375 Paris
Dupont Zoe Citroen  UU1245 Orléans
Dupont Zazie Renault  XYZ2375 Paris
Dupont Zazie Citroen UU1245 Orléans

s = {{N,CH}, {N,C,RN}, {N,A}, {N,C,A}}

i.e. each car has a registration number and is
associated with an address.
But : FactS(R) = {Dupont Zoe, Dupont Zazie,
Dupont Renault XYZ2375,
Dupont Citroen UU1245,
Dupont Paris, Dupont Orléans,
Dupont Renault Paris,
Dupont Citroen Orléans}

By joining the three facts Dupont Renault XYZ2375,
Dupont Orléans and Dupont Zazie, we obtain

Dupont Zazie Renault XYZ2375 Orléans which is not
in R.
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