
The Integrated Data Model:
A Database Perspective

David Beech and J. Samuel Feldman

Computer Research Center, Hewlett-Packard Company
Palo Alto, California 94394, USA

Abstract

The integrated Data Model integrates
concepts from three information disciplines:
database systems, artificial intelligence, and
programming languages. Key concepts are
those of abstract type (allowing multiple
implementations), object (possibly having
multiple types), and relation (definable by
logical formulas). This paper provides a
brief overview of the model from a database
perspective.

1. INTRODUCTION

The Integrated Data Model (IDM) provides a
more general and flexible foundation for the
manipulation of information than models
underlying traditional database management
systems. The facilities provided by the model
can be employed not only for database queries,
updates, and report generation, but also for
managing the arbitrary data structures used by
systems programs and application programs.
Moreover, because this occurs in a database
setting, the ability to share this information
concurrently with other users and to distribute
information among different sites is provided in
the same way as for the more conventional kinds
of data routinely stored in databases.

IDM takes data abstraction as the fundamental
underlying idea, and draws together some
concepts previously employed for database
systems, artificial intelligence applications, and
programming languages. A data model is

fundamental to each discipline. Database
systems are explicit about this, but in fact
every programming language and every artificial
intelligence system also embodies a data model.
We propose that a single data model can combine
the best aspects of all three disciplines and
remove many of the shortcomings of each.

1 .l Storing New and Different Types of Data

Current database systems each support their
own static set of built-in datatypes. Although
work is continuing on extending the
implementations of these systems so that
“unformatted” data may be stored, such
measures are essentially patches.

One important consequence of our application of
recent programming language ideas to databases
is that new datatypes can be defined as needed,
and values of these types may be stored in the
database in the same way as other kinds of e
data. This is accomplished in our design by
our treatment of datatypes as abstract objects,
which provides a formal framework for defining
and using new types dynamically. Another way
of looking at this capability is that programs
may use the same kinds of data structures for
persistent data as for temporary data.

1.2 Natural User Interfaces

The intent of the design is to provide a model
that corresponds naturally to the way we
perceive information, while still providing
sufficient power and allowing for efficient
access. We accomplish this partially with a form
of entity-relationship model [Childs 88;
Abrial 74; Chen 761. Models of this genre are
increasingly being employed for user interfaces
and database design tools [Dahl & Bubenko 82;
Olle et d. 82; Wong t Kuo 821, because of
their suitability for representing the user’s
conceptual model. Attempts to extend the
relational model to introduce an entity concept
seem awkward [Codd 791. (We have in fact
designed an English-like database manipulation
language for our model as one example of a
natural user interface.)

302

2. OBJECTS AND TYPES

The central, pervasive concept in IDM is that of
the object. Everything in an IDM database is
an object; even the database is itself an object.
The simple data abstraction idea is extended in
two significant ways:

l An object may have more than one type.

l An object may gain and lose types
dynamically.

We must now clarify the meaning of “type”.
Each type groups together objects that behave
similarly. One might define types such as
Employee, Account, Document, or Image, for
example. Every object is said to be an instance
of one or more such types.

As in a programming language with data
abstraction, the type provides a set of
operations that define the way instances of that
type may be manipulated. Since an object may
have more than one type, corresponding to the
different roles it may be viewed as playing, it
may be manipulated via the operations of several
types.

As an example, suppose that Jones is a person,
an employee and a pilot. If Jones later becomes
a manager, the type “manager” can be added as
shown.

Jones

1 person j
I__________!

/ employee j
----------I

/ pilot /
---_--------

Jones

! person 1
;----------

’ employee I
!----------
I pilot

I manager 1
--------e-m-

Each type provides a separate set of operations
that can be invoked on Jones. For example,
among the operations defined by the Person type
might be GetAddress and SetAddress, the
Employee type GetManager and SetManager, and
the Pilot type GetLicenseNumber. Each type
added to an object supplies specific additional
capabilities, by providing additional operations.

Types are full-fledged objects. Certain types
are predefined by the model; other types can be
defined by users. The latter is accomplished by
creating a Type object and binding operations to
it; the operations are written (in one of several
programming languages) as functions which take
parameters and return a single result.
Operations are treated as objects also.

To summarize our concept of an object:

l Everything in an IDM database is an
object.

l Each object is an instance of one or more
types.

l Each type defines the operations that are
available for its instances.

l The only action available in IDM is to
invoke an operation on an object.

3. RELATIONS

Relations, like databases, types, and
operations, are objects-each relation is an
instance of the predefined type Relation. In
many object-oriented models, information is
carried in the attributes, properties, or
components of objects. In our model all such
information is regarded as associating one object
to another, and is expressed by relations. For
example, one might define a relation between
employees and their addresses; or between
employees and their departments; or between
documents, their creators, and their creation
dates (these types are termed the domains of
the relation).

The association of a particular employee with a
particular department is represented by a
relationship. The relation represents the
concept of department membership, by defining
the relationships that are valid at any given
moment.

3.1 Manipulation of Relations

The type Relation provides operations to find,
insert, update, or delete specific relationships.
For example, a relation can be queried to find
all the employees in a given department, or,
since relations in our model are inherently
symmetrical, the department of a given
employee.

It is sometimes more natural to carry out these
manipulations as operations on the instances of
the domains. For example, one might want to
ask a particular employee object what its
department is. This is easily accomplished by
providing operations on Employees such as
“GetDepartment”, “SetDepartment”, etc., which
simply access the proper relation (compare with
the functional data model [Shipman 811).

3.2 Generality of Relations

Objects such as paragraphs, images, and
documents can be arbitrarily complex structures
(the operations defined by their respective
types define the legal interfaces for manipulating
them). Since there is no restriction on which
types constitute the domains of a relation, such
objects may be related by the same mechanism

303

described for simpler objects such as employees,
departments, and addresses. Thus, one could
create relations to express the correspondence
between paragraphs and images, between artists
and the images they have created, or between
employees and the voice messages sent to them.

4. OTHER IMPORTANT FEATURES

Our model supports multiple implementations of
the same type. For example, one might define a
HashTable type with several alternative
implementations; users of a particular hash table
object need not know which kind of hash table it
is, only that it responds to the same interface.

Relations may be derived-instead of storing the
actual relationships, they are computed as
needed. Because relations are objects with a
specific fixed interface, users of the relation do
not need to distinguish between derived and
stored relations-at least when making
retrievals. The view update problem may be
addressed within the framework of the model by
taking advantage of multiple implementations to
provide special update procedures.

As in other similar models, types may be
arranged into a hierarchy (actually a lattice,
since a type may have more than one parent).
If Employee is a subtype of Person, for
example, creation of an employee object will
automatically include the Person type. The type
lattice facilitates compile-time operation name
resolution; for example, a reference to
“GetName” on an employee can be bound at
compile time to the “GetName” operation defined
by type Person.

5. CONCLUSION

The Integrated Data Model offers generality,
power, and flexibility. At the same time, we
believe that it provides a basis for building
friendly and natural interfaces.

Subsets of the model and of an English-like
interface have been prototyped. Implementation
of the model consisted of writing the low-level
layer to support abstract objects, and then
simply creating each of the predefined types and
writing the operations defined by these types.

We believe that a full implementation can perform
competitively; similar designs ([Chan et al. 821
[Cattell 831) have shown promise that
optimization techniques (such as clustering of
relationship tuples, and replication of immutable
objects like integers) can be successfully
applied.

Work is in progress on the important areas of
transaction management, synchronization, and
distribution. We are taking a fairly conventional

approach in the design of these features-
although, of course, they will be expressed in
terms of operations provided by predefined
types.

REFERENCES

[Abrial 741 Abrial, J.R. Data Semantics. In
[Klimbie 741, l-59.

[Cattell 831 Cattell, R.G.G. Design and
Implementation of a Relationship-Entity-Datum
Data Model. Xerox Palo Alto Research
Center, Computer Science Laboratory
CSL-83-4 (1983).

[Chan et al. 821 Chan, A.; Danberg, S.;
Fox, S.; Lin, W.; Nori, A.; and Ries, D.
Storage and Access Structures to Support a
Semantic Data Model, Proc. 8th Int. Conf.
on Very Large Data Bases (1982 September),
122-130.

[Chen 761 Chen, P.P.-s. The Entity-
Relationship Model-Toward a Unified View of
Data. ACM Trans. on Database Syst. 1: 1
(1976 March), 9-36.

[Childs 681 Childs, 0. L. Description of a
Set-Theoretic Data Structure. Proc. FJCC .
1968, 557. North Holland.

[Codd 791 Codd, E.F. Extending the
Database Relational Model to Capture More
Meaning. ACM Trans. on Database Syst.
4:4 (1979 December), 397-434.

[Dahl & Bubenko 821 Dahl, R.; and Bubenko,
J. IDBD: An Interactive Design Tool For
Codasyl-DBTG-Type Data Bases. Proc. 8th
Int. Conf. on Very Large Data Bases (1982
September), 108-121.

[Klimbie 741 Klimbie, J.W. and Koffeman, K.L.
(eds.). Data Base Management. North
Holland (1974).

[Olle et al. 821 Olle, T.W.; Sol, H.G.; and
Verrijn-Stuart, A.A. Information Systems
Design Methodologies: A Comparative Review.
North Holland (1982), 648~~.

[Shipman 811 Shipman, D.W. The Functional
Data Model and the Data Language DAPLEX.
ACM Trans. on Database Syst. 6:l (1981
March), 140-173.

[""G~u~~uo 821 Wong, H.; and Kuo, I.
Graphical

Databale Exploration.
User Interface for

Proc. 8th Int. Conf.
on Very Large Data Bases (1982 September),
22-32.

304

