
A Data Modejbg A roach
to Sim@fy the Design of v ser Interfaces

Michel Pilote

Department of Computer Science +
University of Toronto

Toronto, CANADA

ABSTRACT
What is most csuciauy lacking in the area 0.f user

interface design is a set of tools to integrate vartow
mectmdwns that are well understood and wefur, but
each a&resting only limited aspects of the prob&m.

This paper demonstrates how Data Modeling tech-
niques can greatly s+mplCfy the dssign of wer Cnter
faces. he ma& catibutton of this work C a tingle.
highly coherent and very simple framework that can
uniformly represent any aspects of a user interface.

% most sign~cant departwe of our approach
from other programming languages ir the complete
and explicit separation thut we make between seman-
ttc and q&a&c aspects 01 an application. We also
introduce internal objects to mod81 va*w states of
an application anl the vari0W state transjo+matins
thxzt are allowed between these states.

I. Motivation

More than 50% of the code in most commercial
applications involves the definition of interfaces with
the users of these applications; furthermore, this part
of the code is the one that typically requires the most
customization and maintenance, to reflect changes in
users’ requests and methods of operation. Any
simplification and reduction of this portion of software
development is therefore critically needed [Lientz and
Swanson 811.

A user interface can be deflned as any mechan-
ism used to mediate between users and applications.
These include in the simplest case all Input/Output
formatting, up to the most complex cases of so-called
“natural language” front-e!lds to data management
systems. Although our approach could also be applied
to other (graphical or hardware oriented) types of

l Current address: Netron he., 99 St. Regis Cres. N.. Don&en
(Toronto), CANADA, M%J 1Y9

user interfaces, we concentrate our research on
word-oriented user-interfaces in this work.

In this range of interfaces, going from rigid input
formats and command languages to systems trying to
make sense of arbitrary English expressions, the
latter obviously presents a more difficult problem.
But any solution to this larger problem can also be
applied to represent simpler mechanisms. The fo!low-
ing discussion concentrates on the problems and
issues involved in building the more sophisticated
types of user in?erface~, with the understanding that
thess solutions a!so apply to simpler cases. We will,
however, restrict our Gttention to natural language
systems used in practical situations today, as opposed
to the more advanced ones still under research.

11. Overview

This paper demonstrates how Data Modeling tech-
niques can greatly simplify the design of user inter-
faces.

The first simplification is to break down the prob-
lem into three components: semantics, syntax and
pragmatics, according to a distinction familiar to
linguists. We approach the design problem for
interactive information syst.ems from a knowledge
representation point of view. To us. such a system is
above all a knowledge base of “facts”. Some involve the
outside world, its entities, their interrelations, the
events they participate in and their histories (“seman-
tic” knowledge). Cthers are about the grammar and
the lexicon used for a particular user interface (“syn-
tactic” knowledge). Yet others are about the dialogue
structure the system is expected to support (“prag-
matic” knowledge).

A second simp!ification is to re-use as much as
possible of the syntactic means used to specify the
programs and data defimtions typically specified by a
programmer, to automatically provide a working pro-
totype of a user interface. This approach is made pos-
sible by a Data Modeling framework which unifo?m.ly
represents all three aspects of a user interface.

This opens the way to a third simplification, which
is to defer to eventual users of the interface the
definition of any syntactic variation above the gen-
erated prototype. This nlight include defining more
English-like front ends with English words and idioms.
or conversely, defining shorthands and codes for
often-used inpot messages.

290

III. Related work

Among systems for natural language access to
data bases that perform wel! enough to deserve con-
sideration as practical systems, we flnd LIFER [Hen-
drix et al. 761. LUNAR [Woods 771. PLANES [Waltz 781,
SOPHIE [Burton and Brown 761, REL [Thompson and
Thompson 761, RENDER-VOUS [Codd et d. 761 and TQA
[Plath 76. Petrick 611. These research projects have
already lead to commercial products, starting with
Harris’ INTELLECT [Parris 761 at Artificial Intelligence
Corporation, and now followed by Gary Hendrix’
STRAIGHT TALK at Symantec and Roger &hank’s work
at Cognitive Systems. The state-of-the-art in non-
experimental natural language systems, as recognized
by [Barr and Fcignenbaum 791. is still very much
typified by INTELLECT and LIFER.

111.1. Problems and issues in user interfaces

The experience with users of LIFER applications,
as reported in [Hendrix at al. 791. has demonstrated
that a number of facilities are required to obtain more
“natural” user-interfaces. The most important of
these desired facilities are:

1. a syntactically motivated grammar:

2. more complete and flexible paraphrase
mechanism:

3. meta-kilowledge access:

4. uniform representation for all components of
a user-interface.

An important goal of current research in user
interfaces is transportahtiity: to enable non special-
ists to adapt a natural language processing system for
access to an exist.ing conventional data base. Because
of the near-impossibility of transporting LIFER gram-
mars frorn one domain to another, the LIFER develop-
ment team has moved. in their subsequent research
[Hendrix et al. ‘791, toward developing linguistically
motivated grammars, which would facilitate the
transfer from one domain to another. [Robinson 821 is
the most recent account of these efforts. However,
the use of linguistically motivated grammars intro-
duces new problems. “The root of these problems lies
in the very uniformity of syntactic coverage that
makes linguistically motivated grammars transport-
able and resistant to gaps in coverage. In particular, a
uniform treatment of syntax demands a uniform
semantic systent” [Hendrix r?t al 791. i.e. a uniform
treatment of syntax and semantics, not only for data,
but for all aspects of the system.

Also, “users want more than just access to the
data actually recorded in their data bases; this has
been show11 in [Tennant 791, where a distinction is
made between linguistic completeness and conceptual
completeness” [Hendrix et al. 791. According to Hen-
drix, the most promising approach to this problem
involves the creation of an intermediate representa-
tion level that mediates between the language proces-
sor and the various resources available.

A significant reduction in development and
maintenance efforts could be achieved if the users

themselves could specify the particular ways in which
they would prefer to use their applications. “System
users and members of the academic community are in
general agreement that one of the most interesting
and useful feature of (LlFER-based systems) is their
ability to be taught new syntactic constructs by ordi-
nary users at run time” [Hendrix et al. 791.

A related approach is to minimize the basic core
of rules that is essential to process the user’s initial
lexicon entries and rules, as illustrated in [Shapiro
and Neal 821. so that “a user could then input rules
and assertions to enhance the system’s capabilities to
acquire both linguistic and non-linguistic knowledge.
In other words, the user will deflne his own input
language for entering knowledge into the system and
conversing with the system.”

Wording the system’s questions in a comprehensi-
ble form involves a number of human engineering
difficulties. as reported in [Crosz 821. An important
issue is therefore, as expressed in [Haas and Hendrix
801. that “a set of readily understandabIe questions is
needed for eliciting information from tutors. The
length and number of questions should be minimized
to impose as small a burden on tutors as possible.”

A common issue faced by all of the above men-
tioned existing or proposed natural language inter-
faces is the problem of “complexity”: the barrier
imposed by the sheer number of details to handle.
Various proposals to control this complexity revolve
around the notion of abslractions, and organization of
abstractions into hierarchies and network structures.
These tools apply as much to the concepts that we
want to represent with natural language as to the pro-
grarnming constructs needed to implement the sup-
port for handling natural language interfaces.

[Winograd 791 provides a good summary of what
needs to be done to achieve a higher level program-
ming system better suited to develop and maintain
complex applications like natural language interfaces:

this
found in [Pilote 83a].

Only a few of the above issues are addressed in
paper, but a more complete treatment can be

A higher level programmine system must emphasize the use of
descriptive languages for communication, with the ability to
create and manipu;ste descriptions in an effective, under-
standable way. &sting formalisms for description (e.g. prcdi-
cate calculus) are clear and well understood, but lack the rich-
ness typlcal in dexriptioLs which people find useful. They CM
serve as a universal basis for description but only in the same
sense that a Turing machme CM express any computation.
They lack the higher level structuring which makes it possible
to manipulate descnptions at an appropriate level of detail.

- T. IF!nograd, Beyond Rog~amning Languages, 1070

IV. -Approach

lV.1. Overview

As argued in [Pilote 83b], most programming
languages offer very few constructs to explicitly deal
with the design of riser interfaces. We believe that
what is most crucially lacking in this area of user

291

interface design is a set of tools to integrate various
mechanisms that are well understood and useful, but
each addressing only limited aspects of the problem.

The essence of our approach is a un-i.fown
representation flamework. able to describe and pro-
vide access to its own definition. We call this
representation framework INTERPRET, to express the
essence of ou:- approach. which consists of interpret-
.iny (or translating) a user-oriented notation into 3

machine understandable one, and also to acknowledge
n strong influence from the so-called “interpreter-
oriented” methods of describing the formal semantics
of programming languages, such as Denotational
Semantics [Gordon 791. on the design of the INTER-
PRET language.

We limil ourselves to mechanisms allowing pri-
marily access to data and programs already stored on
a computer. By this we mean that we view the role of a
user interface as providing access to data and pro-
grams previously defined by a professional program-
mer using a programming language, as opposed to
allowing users to define directly new data types and
programs through an interface. This restriction is
conjectured as very significant in reducing the
number of possible intents in user utterances.

As for the Data Modeling foundation of our work,
we used TAXIS [Mylopoulos at al. 801 as starting point
since, among a “bewildering variety of knowledge
representations . . . one of the most complete is the
TAXIS system which has aspects of all basic kinds of
knowledge” that can be distinguished in the current
projects and approaches to knowledge representation
[Sowa 801. From its strung inf,uence from Artificial
Intelligence, TAXIS is acknowledged as “rich enough to
support a natural language interface to knowledge-
based svsterns” [Sowa OO?. INTERPRET, described in
detail i; [Pilote’83a]. si*mplifles and extends TAXIS
[Mylopoulos et al. SO] to allow for the description of all
aspects of user-interfaces.

IV.2. Basic representation framework

As in TAXIS, the INTERPRET framework considers
three basic types of objects: tokens, classes and
metaclasses. T0ken.r are undecomposable units of
information, usl:alIy modeling actual entities in an
application domatn. Gasses correspond to collections
of tokens sharing some common “properties” (to be
defined below), which iokens are said to be instances
of the class; this ISST&%CE-OF relationship relates an
object, e.g. John, to a c!ass of which it is an instance,
e.g. PERSON. Similarly. collections of classes can be
themselves grouped into higher level classes, called
metaclasses.

All (meta)classes constituting a TAXIS or INTER-
PRET program are organized into an IS-A hierarchy in
terms of the binary relation IS-A which is a partial
order. This IS-A relationship will sometimes be
referred to as “specializalion” when going from more
to less general, or conversely, “generalization”. The
IS-A relationship relates a class, e.g. STUDENT. to
another more general one, e.g. PERSON. In particular,
relations, transactions and exceptions are all treated
as classes defined through the properties that relate

them to other classes, and organized in terms of the
IS-A relation into a hierarchy.

The main difference between TAXIS and
INTERPRET’s IS-A and the traditional subset relation-
ship is that the IS-A relation holds even between
classes with no instances. The subset relation between
the sets of instances of IS-A-related classes is thus
simply a side-effect of the definition of a particular
IS-A relation.

Classes and metaclasses model conceptual
objects which are “defined” by their relations to other
concepts, and the operations that are allowed on their
instances, much in the spirit of “Abstract Data Types”
m Programming Languages. Both these relations and
operations at-e viewed a3 definitional properties

attached to (meta)classes. These definitional proper-
ties restrict the factual properties that can be defined
on instances of these classes. For example.

property age on PERSON is jO..ZOO{

specifies that the age of a particular person, say John.
must be in the range iO..ZOO{. The following expres-
sion is then acceptable:

Johnage + 22

meaning that the value of the property age, wb,en
applied to the object John, becomes the number 22.

A new feature of INTERPRET over TAXIS is to con-
sider properties as objects. This means that a pro-
perty category is itself a class of objects in INTER-
PRET, whose instances are properties. The most gen-
eral class of properties is called “property’ (or alter-
natively “properties”), of which all other property
categories are specializations.

lV.3. Three steps design methodology

The design of a user interface can first be
simplified by decomposing the problem into separate
subcomponents. The &le section below illus-
trates the design methodology that is made possible
by the uniform representation of al! aspects of a user
interface:

1. Detne the semantic data objects and programs;

2. Deflne the valid dialogue paths, and specify
responses to exceptional situations:

3. Add a syntactic covering on top of the above facil-
ities, aiming at making them more “natural”: fol-
lowing the approach advocated in this research,
this step could even be handled by a “casual”
user.

The decomposition of a user interface into three
components is particularly significant to reduce the
effort involved in setting up new user-interfaces for
casual users. The methodology proposed, which is as
far as we know original and unique, is to use as much
information as possible from an initial specification by
a programmer, to the exCent of being able already at
this point to provide quite “flexible” facilities to a
“non-technical” user. This working basis can then be

292

successively extand.sd in accord with the syntactic
preferences of the user, which may be more English-
like, or may even be more formal and abbreviated if SO
wished.

As a result of these simplifications, the task of
designing a user interface can in the extreme case be
reduced to the specification of dialogue paths.

Note that, in a sense, the mechanisms of the syn-
tactic and pragmatic components, since they must be
represented and stored as data and programs in a
computer, are also part of what we called the seman-
tic component. In fact, one of the prime goals of this
work is to provide access to these program and data
objects, using the same mechanism and procedures
that are used for more traditional data and programs
in data bases and program libraries. But for the sake
of the discussion, it will be useful to distinguish the
accessiny mechanisms. classified into syntactic and
pragmatic, from the representation of information
stored in the computer.

N.4. Maximize the use of predetined information

The second way in which we simplify the task of
designing a user interface is by taking advantage of
the information already provided by a progrcmming
language specification. This information is made of
two parts: 1) identifiers; 2) a grammar for the pro-
gramming language. By replacing the programming
language grammar by a more English-like one, we
Jready obtain a more flexible and user-friendly inter-
face. Then a wide variety of user inputs in “natural”
language can be translated into a formal equivalent
that. can be accepted by the system.

The approach, illustrated in the Ezample section
below, of ezplicitly and systematically using syntactic
informatron provided by programming language
specifications to support a user interface appears to
be new: this approach is made possible by our uniform
framework which can colnbine the representation of
“internal” information with “external”, user-deflned
knowledge.

N.5. Deferring syntactic customization to the user

Finally, a third way to reduce the job of the user
interface designer is to defer part of this job to a user
of the resulting interface. First, by representing
much of the above mechanism in a sufficiently organ-
ized formalism (i.e. in terms of INTERPRET con-
structs), we increased the comprehensibility of the
interface and reduced the effort required for a user to
understand and introduce further modifications him-
self. This involves primarily modifying the syntactic
component of a user interface, to fit particular prefer-
ences, since the semantic and pragmatic aspects of a
user interface are supposed to be defined by profes-
sional programmers For example, one programmer
may like a very concise and dense notation, while
another will prefer full 1engt.h words, with lots of
prompting from the system. Understanding the
anderlying information is very important to make
modifications possible, but is even more critical to
“debug” and integrate modifications into the rest of
the system.

The next step, illustrated in our example, is to
increase the flexibility of the vocabulary by introduc-
ing synonyms for already defined identiflsrs and cus-
tom paraphrases beside standard English transforma-
tions. The motivation for a syntactic training
mechanism is that users need to be able to adapt the
syntax of an interface to the particular vocabulary of
an application, and their own particular tastes. These
are too diversifled to rely on computer or linguistic
experts to provide the required changes. Further-
more, customizing is beheved. from the author’s per-
sonal experience with “end-users” of computer sys-
tems, to be one of the most important aspects of a
successful user interface.

Current solutions to this requirement for the
acquisition of new syntactic knowledge typically
involve long-winded dialogues to gather the syntactic
classification and features of new words; alterna-
tively, such information is often explicitly given via a
programming language. The first method is likely to
strain the patience of its users while the second
requires a deep familiarity with programming and
linguistics.

Our approach here clearly belongs to the
“language engineering” stream: it is all based upon
conventions between users and programs. Our main
innovation in this respect is to allow the customiza-
tion of an interface, as shown below; we also describe
in [Pilate 83a] techniques that could be used to
describe and access the interface itself. to allow a
user to understand its features and limitations and,
eventually. to modify the interface itself. ’

V. Example of the three steps design of a User Inter-
face

The last section of this paper present a highly
simpliEed example of lhe kinds of information that
must be incorporated in a user interface to make it
truly “flexible”. Although restricted, this example also
illustrates t.he complexity of the phenomena to han-
dle, most of which are often only skimmed in many
interfaces aiming at “user-friendliness”.

Our sample applicat.ion domain is the institu-
tional world of a university, and our particular exam-
ple is the identification of a particular student. The
first step of an interaction between a user and the sys-
tem consists of the user answering a request from the
system to identify himself, from which the system will
decide which data and programs can be made avail-
able to this user. We de.scribe how, even for such a
simple situation, the number of possible responses is
unbounded. However, by taking advantage of the rules
offered by a built-in English grammar, the number of
“patterns” required to match most. of these user
inputs are very limited.

We will first aim at a minimal mechanism able to
produce a particular desired result. without any con-
cern for user oriented features. Our interface will
include barely enough information to support the
semantics of an application. The important point is
that, already after the first step, the user is provided
with a working systern which can be evaluated against
his requirements.

293

Then, in a second step, we will specify dialogue
paths as an extensicn of the semantic component of
OUT interface. These dialogue paths will specify at any
time the range of possible actions that can be trig-
gered in the system or the items of information that
must be obtained by the system from the user.

Thirdly and finally, we will deflne a syntactic
interface for the dbove facilities that will allow either
access in a programming language-like format, or in
an English-like more “natural” fashion. This last step
illustrates that artificial and natural languages are
not incompatible but can, in fact, be intermixed
according to the user’s needs and preferences.

Appendices l-4 collect the detailed and complete
INTERPRET dec1arat.ion.s supporting the following
example. In this example, user inputs are shown fol-
lowing the symbol “>“.

V.l. The semantic component

The semantic component for our example
Includes a data class representing student informa-
tion, as shown in Pprpendiz 1. Graphically. our seman-
tic component includes the data classes and tokens
shown in Figure 1.
----- -_-- - ----- -

PERSON (si#. address. name, phone#)

STUDEKr (si#. address, name, phone#,
student#, faculty, year, status)

I
John (‘123456769’, ‘37 Purdon Dr., Toronto’,

‘John Smith’, ‘412-7641’, ‘007612345’,
‘Arts and Science’, 1,)

Mary (‘234567699’. ‘37 Purdon Dr., Toronto’,
‘Mary Smith’, ‘412-7641’)

F&l- Semantic object defined in Appendix 1: double
arrows represent the IS-A relationship, and single ar-
rows represent IKSTANCE-OF.
---_----__----

Instances of the classes PERSON and STUDENT are
data objects with a number of attributes. Using only
semantic facilities (with a standard programming
language syntax -- INTERPRET in this case) we can
explicitly refer to Instances of these classes with
expressions like:

al> John e the STUDENT
with name = ‘John Smith’:

where John is an identifier assigned values by the
INTERPRET expression following the arrow. An expres-
sion like ‘variable-name 6 the CLASS tith poparty =
value ’ can be viewed (in terms more familiar to many
readers) as a database “query”.

If this request is not sufficient to identify

uniquely an instance of STUDENT, the INTERPRET con-
struct the will raise the exception MORE-THAN-ONE.
The user then has to examine the environment,
maybe query the class STUDENT to examine the multi-
ple instances named ‘John Smith’, to be able Anally to
pinpoint a combination of properties able to identify
the desired individual. To get a unique instance of
STUDENT, the user may end up having to re-enter a
more complete expressio;) like:

John + the STUDENT with name=‘John Smith’,
address=‘37 Purdon Dr., Toronto’:

V.2. The pragmatic component

v.2.1. Deunitions

A user could obtain essentially the same result as
in the above semantic component more simply by
allowing the program to guide the interaction and
explicitly ask for needed information. This effect is
obtained via “scripts”, which basically specify the
allowable successions of input/output interactions
between the user and the program. INTERPRET scripts
simplify and extend TAXIS scripts [Barron 601, inspired
from Zisman’s Augmented Petri Nets (Zisman 771. A
script to support and complement the above semantic
component is shown in Appendiz 2.
------__--_-_____

F‘ig.2 - Graphical representation of MASTER-SCRIPT.

This “master” script can help identify unique
instances of the class STUDENT. It directs a complete
session with a user. and is activated by some
unspecified means. The flrst action of this script is to
execute the INTERPRET expression

take(user. person):

The variable ZLser. defined for this master script. con-
tains a reference to the user terminal and must be
included in any script expression used to communi-
cate from the program to the user. Once a request
has been made for some value, these can be furnished
to the system in any order, after an arbitrary period
of time. Scripts are designed to stay active for as long
as they have not completed their purpose, i.e. until
their state end is “reached’. Conversely, this user
sends messages to the script by mentioning a refer-
ence to this script in an expression such as:

give(system. person e John);

294

where ‘sysrtem’ is the internal lexical token denoting
the instance of MASTER-SCRIPT used in our example,
and where ‘John’ is the name of an instance of the
data class PERSON. This instance could have been
obtained as in the “semantic component” section
above. So far, the only gain is to allow to specify argu-
ment when desired, and. to possibly perform some
action automatically, in case a particular exception is
raised.

We could also further simplify the user responsi-
bility by automating the process of selecting a unique
instance of a variable class, in this case STUDENT.
This simplification would involve deflning an addi-
tional script-class to gat,her enough property values
on STUDENT to ident,ify uniquely an instance of this
class.

V.3. The syntactic component

V.3.1. Internal syntax

Nothing has been said in the above “script” exam-
ple about how the user is informed of a request by a
script for a part,icular item of information. Unless
explicit messages are provided, the above take com-
mands will generate default expressions in terms of
the requested object. The default format on a take
command is:

“<script-id>: Please enter a <object.name>”

where the identifier of the script requesting an input
from a user is shown before the command. This set-up
results in the following dialogue from the user point of
view:

System: Please enter a PERSON.
IEl)i.DDi

The purpose of the syntactic component of a user
interface is to support the syntactic aspects of printed
man-machine communications, such as extracting
semantic information from the above user input, or
from any equivalent form, as we will see below.

We have seen above the representation of the
semantic component for our example of a user inter-
face for an Interactive Information System. The
semantic declarations also define entries in an “inter-
nal lexicon”. These lexical objects can be used by two
built-in grammars to provide, on one side, a program-
ming language format (the INTERPRET language) for
programs listings, maintenance and further develop-
ments by programmers and, on the other side, an
English-like format to describe and recognize aeman-
tic objects while interacting with “casual” users
unfamiliar with INTERPRET syntax. We want to stress
that already at this stage, an INTERPRET program can
be used and manipulated by both kinds of users, using
this internal lexicon and built-in grammar rules.

For example, the syntactic component of a user
interface could extract from the above user input a
reference to an instance of the data class PERSON.

After the data definitions shown in &pen&z I,
and before any additional syntactic information, the
user interface knows about the lexical tokens shown in
Figure 3 as direct instances of the classes &Const.
%Class. %Property and %Token. As shown in this
figure, beside the lexical token ‘John’. which is recog-
nized as an instance of the class PERSON. the lexical
information known about the class PERSON includes
the lexical tokens ‘PERSON’, ‘ident’, ‘si#‘. ‘address’,
‘name’ and ‘phone#‘. for the definition of the class
itself, plus the lexical tokens ‘STUDENT’, ‘id’. ‘stu-
dent#‘, ‘faculty’, and ‘year’, for its specialization
classes. Also known in the internal lexicon are the
values for enumerations of lexical tokens, such as
‘part-time’ and ‘full-time’. Finally. the lexicon
includes the printable values for the factual proper-
ties of the semantic tokens deflned in the data base.
These include the lexical tokens ‘John Smith’, ‘37 Pur-
don Dr.. Toronto’, ‘Arts and Science’ and ‘Mary Smith’.
We can see from the above list that many of these lexi-
cal tokens can be used directly in natural English
expressions.

Note how “internal” lexical classes like %Const
and %C&xss are specializations of “English” lexical
classes like %RoperNoun and %Concept respectively,

number’
‘number’

‘address’ ‘37 Purdon Drive’
‘name’ ‘Arts and Science’
‘phone# ‘Mary Smith’
‘id’
‘student#’
‘faculty’
‘year’
‘status’

295

which are used by a built-in English grammar such as
shown in Appsndti 4 to recognize English-like expres-
sions. In our example, the lexical token ‘Joha’ is first
recognized as an instance of XConst. and therefore
also as an instance of WProperNoun. Any rule of the
Built-in English Grammar using a %PropeTMwn will
therefore accept ‘John’ as a proper noun.

V.3.2. Syntactic customization

A distinctive characteristic of INTERPRET over
‘I’AXIS and over most other programming languages is
that we explicitly model all syntactic objects, i.e.
there is an internal object for each printable object in
the Interface.

Syntactic (lexical) objects are connected to the
semantic object which they denote by the relation
named den. .Uany syntactic objects can be deflned as
denoting the same semantic object by using the rela-
tion trans between them, specifying that one is a
translation of the other, For example, given the lexi-
cal loken ‘John’, the identifier ‘John’. the token John,
and the following factual properties:

‘John’.trans = ‘John-Smith’
‘John-Smith’.den = John-Smith

we can derive the following equalities:

‘John’.den
= ‘John’.trans.den
= ‘John-Smith’.den
= John-Smith

although we gave no direct representation of the fac-
tual property

‘John’.den = John-bMt.h

In summary, the essence of our approach to syntactic
customization is to introduce intermediate transla-
tions leading to some denotation predef’lned by a pro-
grammer.

The most interesting aspect of the syntactic com-
ponent is the extensions that a user interface
designer may define for a particular application, and
for particular users. These extensions include both
additions of lexical and grammatical information.
These additions can again be done in two modes,
corresponding to the two main types of users. Pro-
grammers can use INTERPRET syntax to define new
lexical and grammatical classes, assign their denota-
tions and insert new Iexica! tokens in the lexicon.
Casual users can obtain the same effect, indirectly,
under the control of another built-in grammar for
“syntactic training”, whose patterns trigger the same
semantic actions as those specified by programmers.
Of course, this “syntactic training” grammar, as the
“ordinary English” one, can not claim to capture all
semantic actions that a programmer may define. It is
sufficient that they capture most of the common uses
and definitions, with facilities to describe the limits of
their capabilities and guide one into extending these
limits when desired.

The syntactic component can thus be extended to

handle more natural interactions like the following
sample dialogue:

System: Please identify yourself.
cl> 1 am John Smith.

I System: OK, you are the student John Smith.

The main additions required to produce the
behavior shown above are for data class names and for
some abbreviated property names. These will be
defined as:

%CONCEPT ‘person’ with trans + ‘PERSON’:
XCONCCPT ‘student’ with trans 6 ‘STUDENT’:

XRELATION ‘soci;*l insurance number’
with trans + ‘si#‘;

%RELATION ‘telephone number’
with trans + ‘phone#‘;

%RELATION ‘number’ with trans 6 ‘student#‘;

Our lexicon now contains the l-classes and lexical
tokens shown in Figure 3.

Some of these lexical tokens need to be further
classified to be correctly used by the built-in English
grammar:

%PROPER-NOIJN ‘Mary Smith’ with den + Mary;
%PROPER-NOUN ‘John Smith’ with den + John;
%PROPER-NOLAN ‘123456769’ with den + John;
XPROPEK-NOIJN ‘234567699’ with den + Mary;

These expressions define the corresponding lexical
tokens as ab!e to play a subject or object role in an
English sentence, according to the Built-in English
Grammar shown in Appendix 4.

We also have to extend the built-in English gram-
mar with patterns that relate specifically to the data
classes defined in the semantic component of an
INTERPRET program (unless they are also built-in for
such common data classes as PERSON, but we assume
it is not the case here). Some of the most common
expressions that could be used to answer the request
‘Please identify yourself’ are:

‘John Smith ’
‘lam John ,Smith’
‘My name is John Sinith’
‘123456769’
‘My social insurance number is 123456789’
‘I five at 37 Purdon Dr., Toronto ’
%@phone#is 412-7841’
‘I am 009812345’
‘I am the stv.dent 007812345’
‘I am the first year student

from Arts and &Science ’
‘I am the person named John Snith’
etc...

and the list could go on. But much of this apparent
diversity can be raptured with a few basic patterns:

296

C-CLASS &I-AM
:= ([“I am”] &NOUN-PHRASE);

GCLASS &MY -IS
.- “My <APROPERTY> is <%TOKEN>” .-

A more detailed specification of these grammati-
cal classes is given in Append& 3. The definition of
grammatical classes for a given application can be
much simplified by taking advantage of built-in gram-
matical classes. For example. the definition of the
specialization of the grammatical class &GET-PERSON
illustrates the gains obtained by borrowing grammati-
cal classes from the built-in English grammar: any
expression involving lexical tokens satisfying the
rules of the built-in grammatical class &NOUN-PHRASE
IS recognized and decomposed into standard com-
ponents, and receives an also standard interpretation
from the interpretation of the lexical tokens involved.

We have not yet deflned the lexical tokens
‘named’ and ‘live at’. This is done as follows:

ZONE-PLACE-MOD ‘named’ with transe ‘name’

ZTRANSITIVE-VERB ‘live’ with trans + ‘address’

These definitions then allow for input sentences such
as ‘I am named . ..I. ‘I live at . ..‘. using the specializa-
tions %I-AM-MOD and &I-VERB of &I-PRED, also deflned
in Appendix 3.
-----._-_----__---_----__
Flg.4 -

&SENTENCE

&GET-PERSON

&I-PRED

’ %-VERB &l-AM-MOD

As an example of the analysis of an input sen-
tence matched by the grammatical class &GET-
PERSON and its specializations, the input sentence ‘I
am 123456769’ is Arst matched by the grammatical
class &I-AM (see Appendiz 3). because the input frag-
ment ‘123456769’ matches the specialization
&PROPER-NOUN of &NOUN-PHRASE (see Append&z 4).
This fragment becomes the value of the local variable
person in &I-AM. with a den property specified in
&PROPER-NOUN as the result of ‘123456769’.den.

We then have:

‘I am 123456769’.den
= ‘123456769’.den
= John

Depending on the degree of flexibility desired at
this level we may want to deflne other lexical or gram-
matical classes relating to the recognition of
instances of PERSON. For example. ‘first Year’ as a
ZMOD denoting the property-value pair ‘year=l’.
‘from’ as a ZONE-PLACE-MOD standing for ‘faculty’,
etc. Or we may define &GET-PERSON as a specializa-
tion of the built-in grarnrnatical class &SENTENCE, to
take advantage of built-in transformations that will
transform input sentences of the form “I think <@EN-
TENCE>“. “I tell you that <&SENTENCE>“. etc. into a
recognizable “<&SENTENCE>“.

Taking stock of the grammatical classes deAned
in .@endiz 3, we have a set of specializations of the
grammatical class &GET-PERSON. as depicted in Kg-
ure 4. ‘The final mechanism needed is the attache-
ment of this mini-grammar to the class PERSON, such
that a request for an instance of this class may use
&GET-PERSON to recognize and obtain its answer from
an input sentence.

Finally, we need to extend in the following way
the defmitions of MASTER-SCRIPT given in &oendi.z 2
to account for our dialogue example:

property format on MASTER-SCRIPT . . person is
“Please identify yourself”:

property grammar on MASTER-SCRIPT . . person is
&GET-PERSON;

This means that any expression like ‘I am John Smith’
has to match the grammatical class &GET-PERSON to
be recognized as a valid reference to an instance of
the data class PERSON. A request for the value of a
property uses the “pattern” attached to the format
property of the first property to generate an expres-
sion to be sent to userl. The reply has to match the
pattern attached to the grammar property to be
recognized and accepted. A grammar pattern will
decompose a successfully matched input expression,
and produce a “denotation”, i.e. a reference to some
“internal” object(s). The denotation of an expression
matched by a pattern is given by the value of the pro-
pert.y den applied on this expression.

VI. Conclusion

the

1.

2.

This paper described three main ways in which
design of user interfaces can be simplifled:

we reduced the complexity of the problem by
breaking it down in three components; this
decomposition results in a unique and novel
approach to user interface design which allows
the specification of user-oriented syntactic
aspects to be postponed to the last step of the
design:

we showed how to maximize the use of syntactic
information already specified in the declaration
of data types and programs:

297

3. part of the design job could then be deferred to a
user of the interface.

As mentioned at the beginning, the main goal of
this work is to integrate various mechanisms found
useful in many different approaches to represent and
design user interfaces, as opposed to trying to break
new grounds along any of these directions. Once we
reached a commn? basis to this effect, we found that
we could expand it arbitrarily to follow any direction
of current research. yet remained able to compare
these diflerent solutions between each other.

In particular, any of the current works on
representing and analyzing complex queries can be
expressed and integrated in our framework. An
extreme example of this capability is the representa-
tion in [Pilote 83a] of the syntax and model semantics
of of subset of English according to the work of Gazdar
[Cazdar 821. which is storming the linguistic world.

The decomposition of a user interface into three
components is particularly significant to reduce the
effort involved in setting up new user-interfaces for
casual users. These interfaces can be designed in
three separate steps, taking successively care of the
semo.ntic, pragmatic and syntactic aspects of the
interface.

Once a “natural” interface has been defined for
data and programs represented using the semantic
features of INTERPRET, an interesting side-effect of
our approach is that this interface can then be used to
examine and even modify its own structures, since all
information underlying t.his interface is represented
in exactly the same way as any other purely semantic
information. The impnclt of such a mechanism
remains to be explored but it promises far-reaching
results. The feasibility of this approach has already
been demonstrated by the users of LIFER [Hendrix et
d. 791. relying exclusively on synonyms and para-
phrases to customize a particular user interface.
Again, our goal here is first of all to duplicate such
results in a more organized framework. This allowed
us in particular in [Pilate 83a] to integrate LIFER-like
mechanisms with more !inguistica!ly oriented ones
such as the work of Gazdar.

Acknowledgements

The author wishes to thank Dr. John Mylopoulos
for providing the framework for this research and
numerous discussions that led to the results
presented in this paper.

Bibliography

[Barr. A. and Feignenbaum. E.A.. 793
Natural Lanouaga Understandang, a section of the
Handbook oi Arhcial Intelligence. Stanford Com-
puter Science Dept.. Rep. No.STAN-CS-79-754
(microfiche, July 1979). Also. printed as a book,
Barr & Feignenbaum (eds.), Los Altos. Cal., Willi-
am Kaufman. Inc. (1981).

[Barron, J.L., SO]
Dialogue Organization and .5tn~ciure for hterao-
tiue htform&tion *stems, Tech. Rep. CSRC-108.
Univ. of Toronto, (MSC. Thesis, Dept. of
Comp.Science. 1980).

[Burton, R.R. and Brown, J.S., 76
k Semantic Grammar: A Tee nique for Construct-

ing Natural Language fnterfaces to htructionat
S’ptams, BBN Heport No.3567 (ICAl Rep. No.5).
Cambridge, Mass. (May 1977).

[Codd, E.F., Arnold, R.S., Cadiou, J.-M., Chang, C.L. and
ilousso oulos N 761

R.&NDEZ- ‘VO’& Version 1: A72 Ezparimental
English- Language Query Fbrmulation S&stem for
Casual Users of Relational Data Bases. Res. Reo.#
RJ2144, IBM Rgsearch Lab., San Jose, Calif. (JHi:
1978).

[Gazdar, G.. 021
Phrase Structure Grammar, in The Nature of Syn-
tactic Representation, Jacobson, P., Pullum. G.K.
(Eds.), Dordrecht. D. Reidel.

[Gordon, M.J.C., 791
The Denotational Description of Programming
Languages - Au Introductir n. Springer Verlag.

[Grosz, Ei., 821
Pansaortable Natural-Lunouaoe Merfaces: prob-
lems hnd techniques, Proc: of”t.be 20th An&g. of
the Assoc. for Computational Linguistics. Univer-
sity of Toronto, June 82. 46-50.

[Haas, N. and Hendrix. G.G.. 601
An Approach to Acquiring and Applying Knowledge
, Tech. Note 227, SRI Intern. (Nov. 80).

[Harris. L.R.. 781
me ROBOT System: Naturd Language Processing
Applied to Data Base Query, Proc. ACM Conf. 1976,
165-172.

[Hendrix, G.G., Sagalowicz. and Sacerdoti, E.D.. 79
Research on 7tansportable ,&tglish-Access Ii

edia

to Distributed and -heal Data &es, Proposal for
Research to DARPA No.ECU 79-103. (Nov. 1979).
SRI International.

[Mylo
R

oulos. J., Bernstein, P, and Wong. H.K.T.. 801
Language Facility for the Design of Meractiue

Database-Intensive Applications, Trans. on Data-
base Systems, Vo1.5, No.2, June 1980, pp.185-207:
also Tech.Rep. CSRC-105, Univ. of Toronto, July
1979.

[Petrick. S.R.. 811
FWd Testing the Transformational Question
Answering (?QA) .Yystem, tioc. 19th Ann. Mtg. of
the ACL, June 1981, pp. 35-36.

[Pilote, M. f33a]
A flamework for the Design of Linguitic User In-
terfaces, Ph.D. Thesis, Dept. Computer Science,
Univ. of Toronto. CSRG Technical Note #32. Jan.
1983.

298

[Pilate, hf. 83b]
A Programming hznguage hmework for Design-
ing User hterfaces,~&..I,AN Notices, Vol. 18, No.
6. Proc. of the SICPLAN’BB Symp. on Programming
Language Issues in Software Systems, San Fran-
cisco, California, June 1983. pp. 118-136.

l?latgfJV.~~]
A Natural Language @e&on-

Answering System. IBM Joumal of Research and
Development, 20.4. July 1976. pp. 326-335.

[Robinson, J.J.. 82
DIAGRAM: A Jr ammar for Dialogues, Comm. ACM.
Vol.25 No. 1. Jan 1982. pp.27-47.

[Shapiro, SC. & Neal, J.G., 821
A knowledge engineering approach to natural
language understanding, Proc. of the 20th
An.Ytg. of the Assoc. for Computational Linguia-
tics. University of Toronto, June 82. 136-144.

[Sowa, J.F., 801
A Conceptual Schema jar Knowledge-Based Z&s-
tems. in F’roc. Workshop on Data Abstraction, Da-
taBases and Conceptual Modeling, (June 80).

[Tennant, H., 791
Bzperience with the Evaluation of JWural
Language @uestion-.4nswerers, Pr0c. 6th Intern.
Joint Conf. on Artificial Intelligence, Tokyo, 874-
879.

[Thompson, F’. and Thompson, B., 781
Rapidly Eztensible Natural Language, Proc. of
ACM National Con&. Washington, DC., (Dec. 1978).
173-...

1 Waltz, D.L.. 78
An Englis d I,anguage Question Answering astern
for a Large Relational Database, Comm. ACM, 21,
No. 7 (July 1978). 526-539.

Comm. ACM.
Vo1.22. No.7, (July 79), pp.391-401.

[WonhH..K.T.. 81b
sa.qn und erification of fnteractive hfonnation

Systems Using -TXUSB Univ. of Toronto, Tech. Rep.
CSRG-129 (April 81). PhD thesis, Univ. of Toronto,
Jan. 1983.

l”““~.J~p~~l
and Quantification in Natural

Language Question Answering. Advances in Corn--
puters. Vo1.17. Yovits. XC. (ed.), Academic Press
(1978). 2-88. Also Report No.3687, Bolt Beranek
and Newman (Nov. 77).

[Zisman, M.D., 77)
Representatzon. Specification, and Automation of
Office Procedures, Ph.D. Thesis, Dept. of Decision
Science, The Wharton School, Univ. of Penn., Sept.
77.

299

Appendix 1

Detinitions of semantic data classes

Appendix 2

Script de&&ion

DATA-CLASS PERSON with
keys person: (si#);
characteristics

si#: %DIGIT*9:
attributes

address: XToken;
name: ZToken:
phone#: &Phone#:

end

DATA-CL.&S STUDENT isa PERSON with
keys student.: (student#);
characteristics

student#: ZDIGIT*S;
attributes

faculty: XToken;
year: 1 l..7j;
status: {‘part-time’. ‘full-time’];

end

In addit.ion to the above “type” declarations, we
dedne the following “data” as part of the extension of
these classes:

STUDENT John with
name c ‘John Smith’.
si# *- ‘123456789’,
address + ‘37 Purdon Dr., Toronto’,
phone# + ‘412-7846’.
student/l 6 ‘007812345’,
faculty 4- ‘Arts and Science’,
year + 1;

PERSON Mary with
name e ‘Mary Smith’,
si# + ‘234587099’,
address + ‘37 Purdon Dr., Toronto’,
phone# + ‘4 127941’:

Notalion

- the class PERSON is an instoncs of the mrtaclwe DA!&-
- the property “name” is an instance of the properrY cdvpory w
P--w
- “name” takes an ins’ance of PERSON as argument to produce a lex-
xal token.
- the class STUDPNT x a subclass oi PERSON:
- the property E0WvsS is tnulti-valued;
- Il..71 is a range c!ass o! al’ integers between 100 and 2988;

SCRIPT-CLASS
MASTER-SCRIPT: (start, user + end) with

states
start, end: STATE;
gotPerson isa start: STATE with conditiona

person in STUDENT exe waitperson:
&Student isa gotPerson with condittons

person in STUDENT;
waitperson: EXCEPTION-STATE:
moreThanOne

isa waitPerson: EXCEPTION-STATE;
locals

user: ‘TERMINAL-CODE;
person: PERSON;

transitions

GetPerson: (waitperson + gotperson) with
actions

al: take(user, person):
end

Studld: (gotstudent -) end) with
actions

a 1: instantiate
STUDENT-SCRIPT(user);

a2: give(user, “OK. You
are the student. <user.name>“);

end

GetCancel: (waitperson 4 end) with
actions

al: take(user. “Bye”);
a2: give(user, “OK. Bye.“);

end
end MASTER-SCRIPT

Notation

An instance of MASTER-SCRIPT represents a function from a
stub which is named ‘start’. to produce a new state named ‘end’.
This script also tskcs LLS hnother argument an instance of
TERY’NALCODE. which identifles M external entity (user or another
script) which will send messages to the script and to which replies
will be sent.

As in Petn nets, any successful transition disactivater its
argument state(s) and activates its target state(r). Ae soon as one
transition activates end, the script terminates.

300

Appendix 3 Appe!ndix4

Usea-dehed grammatical daarar BullttuglammlItlcalcla&4wuaedluAppendix3

~TICAL-CLASS &GET-PERSON isa &SENTENCE
:= &I-AM I &MY-IS I &I-PRED;

GfUMMATlCAL.-CUSS I-AM : = “[I am] /person>” with
locals

person: &NOUN-PHRASE;
den: PERSON default personden;

conditiins
cl’ NP-ISA-RELA’iED(person.head. PERSON);

end

CRAMHATHXL-CLASS &!vIY-IS :=“My <prop> is <this>” with
locals

GRAMMATICAL-CLASS &SENTENCE with
locals

subject: &NOUN-PHRASE;
pred: &VERB-PHRASE;

end

CUAMHATICAL-CLASS &NOUN-PHRASE

CRAMIIATKX-CLASS &VERB-PHRASE with
bcah

verb: %VERR 1 &VERB-PHRASE;
object: &NOUN-PHRASE 1 &PREP-PHRASE;

end

prop: XRELATION;
this: &NOUN-PHRASE; GRAywTICAIrCLASS &PREP-PHRASE wltb
trans: “the person whose <prop.trans> is <this.trans>“; locals

conditiona prep: XPREP;
cl: ISA-RELATED(prop.den.subject, PERSON) subject: &NOUN-PHRASE:

exe NOT-A-PROP-OF-A-PERSON; end

end GRAMMATHxLrCusS &PROPER-NOUN iee &NOUN-PHRASE

GRAYMATICAL-CLASS &I-PRED := &I-AM-MOD 1 &I-VERB with := head with

locals IOCdS

trans: “the person whose <pred.trans> is <obj.trans>“; head: %PROPER-NOUN;
obj: &NOUN-PHRASE; trans: “<head.trans>“;

end end

CfWRdATICAL.-CLASS &I-AM-MOD ise &I-PRED
:= “I am <pred> <obj>” with

1OCdS
pred: &ONE-PLACE-MOD:

end

GRAMMATICAL-CUSS &I-VERB ise &I-PRED
:= “I <pred> <obj>” with

1OCdS

GRAUYATICALKLASS &NOUN-PHRASE1 iaa &NOUN-PHRASE
‘- “the <head>
‘-lOdS

whose <prop> is <np>” with

head: %CLASS;
prop: %PROPERTY;
np: &NOUN-PHRASE:
trans: “the <head.trans>

with <prop.trans> = <np.trans>“;
end

pred: %TRANSITlvE-VERB;
end

Assuming that

CRAMMATICAkCLASS &NOUN-PHRASE2 La &NOUN-PHRASE
:= “the <head> <ap>” with

locals
head:.%CLASS;
ao: XADJECTWE;

a-claw: ANY-CLASS;
np. &NOUN-PHRASE.
rev- BOOLEAN &fault fab.

rtimu
al Unp head # neth~then

lfnp.head ia ZPROPEF-NOUN Umn
ifnp hesd.dsn In a-class than

i-es c true
elm if np head in ZCOMHON-NOUN t&m

UISA-REWITED(np.head.den. .wlass) them
res + inn!.

end

trans: “the <head.trans> with <ap.trans>“;
end

CRAMMATKAkCLASS &NOUN-PHRASE3 iaa &NOUN-PHRASE
:= “the <head> who <VP>” with

locals
head: %CLASS;
vp: &VERB-PHRASE;
trans: “the <head.trans> with <vp.trans>“;

end

GRAMMATICALrCuSS &I-TRANSFORM inn &SENTENCE with
locahr

subj: “I”;
trans: “<pred verb> <user> <pred.object>“:

llUN.S&X’ION-CUSSISA-REXAT! (s-classI. !~lnss2 + IV.*) with

klcda

end

aclarsl, s-class2 ANY-CLASS.
res BOOLEAN default k)r:

mciiQl8
al’ I (s-class1 ir r-claea2) or

(*class2 a a-claua1) Lbm
i-es. une:

end

301

