
A Model for Integrated Information Systems

Ian A. Macleod

Department of Computing & Information Science
Queen's University, Kingston, Ontario K7L 3N6.

ABSTRACT
The application of the traditional data
base models in the important areas of
document retrieval and office informa-
tion systems has not yet yielded great
evidence of success. Here we present an
alternative model based on array theory.
This model appears to be better suited
toward other types of information
system,while at the same time, it is
still applicable to conventional data
base operations. An outline of the
model is presented, a description of a
suitable query language is given and
some implementation issues are dis-
cussed.

1. INTRODUCTION
Traditional data base management appli-
cations have been reasonably well served
by the major data models. However, it
is not obvious that these models are ap-
propriate for other information system
aoplications. Two such important appli-
cations are document (or information)
retrieval and office information sys-
tems, hFrOacter referred to as DRS and
OIS, rcsoective'v. The work described
here has evolved out of the author's ex-
oerience in develooing document re-
trieval systems wi??lr a relational con-
text, [5,6', and, more recently, in
modelling an electronic filing system,
Ill.

Of the three traditional models, the re-
lational has the most attraction as a
possible general basis for information
systems because of its dynamic flexibil-
ity and powerful query languages. We
will look at some of the shortcomings of
the relational model in the context of
DRS and 01s and propose an alternative
model, which, as shall be shown, is not
totally incompatible with the relational
model.

The first problem that arises with the
relational model is that caused by nor-
malisation. This has already been noted
in other work, [lo]. Objects in DRS and
in 01s do not naturally lend themselves
to normalisation. A form often contains
lists of information. So, normally, do
documents. For example, a typical ob-
ject i'n a DRS might be a document con-
sisting of a title, a number of authors
and a set of index terms. In ~NF this
CC-~-~ be represented by the relation

+-----+-------+-----r
!TitlelAuthors'"er-s
+-----+-------+-----c

This relation is not optimally normal-
ised. In 3NF, it is represented by the
following three relations

+--+-----+
'IdlTitle!
+-e-+0-w--B-+

+--+----+
\IdlTerml
+-w-+--v-+

The problem now is that what was once a
logical unit of information is dispersed

280

across several relations and a new "ar-
tificial" attribute, the "Id", has been
introduced. Some efforts have been made
to reduce this problem. SQL provides
"views" which are basically higher level
objects derived from the join of basic
relations, (21. Also, Codd's extended
relational model provides "E-relations"
and "P-relations" where the former are
again higher level objects, constructed
from the join of the basic P-relations,
r31. These are both somewhat artificial
approaches, since there are cir-
cumstances where the user must be aware
of the disjoint nature of the underlying
information.

The alternative approach of keeping the
document in 1NF is equally unsatisfacto-
ry. In addition to the usual data
management problems, the document is now
scattered over a number of tuples. From
the point of view of a worker in docu-
ment retrieval, the best solution is to
maintain the document, as a logical
unit, in its original un-normalised
form. (At the often neglected level of
data display, it will be noted in pass-
ing, that such a representation largely
obviates the need for any complex
mechanism for displaying documents, as
the original "natural" representation is
never lost.)

A second problem is that of hierarchy.
The "pure" relational model has no such
concept yet it is a very important one
in many applications. In document re-
trieval, for example, an important way
of classifying documents is hierarchi-
cal. The American Library of Congress
classification is an appropriate exam-
ple. There is no way that such a clas-
sification can be represented naturally
within the relational model. Another
example is in 01s where we might want to
represent the hierarchical filing sys-
tems typically found in offices.

A third problem is that of type.
Records are normally classed by type
into files, mainly because this is a sa-
tisfactory approach to many applications
and is the way things have always been
done. Programming languages have
evolved features to handle this approach
to data organisation. However it is a
somewhat artificial approach in some ap-
plications. For example, in libraries
there are many different types of docu-
ment: books, reports, maps, journals and
so on. We normally go to a library to
collect information, not a particular
type of document. (Even libraries have
difficulties with this problem, though

it deals more with difficulties in
managing physical storage and in catalo-
guing.) A more obvious example is in
"people" files. File folders in filing
cabinets do not, in general, contain do-
cuments of the same type. Indeed, the
content of a file may itself be a file.
What file folders contain is a number of
physically quite different objects, re-
lated by their content rather than their
structure.

In some ways current data models have
evolved from a rather idealistic view of
data. Traditional data processing tech-
niques grew around the view that data
could be organised into clean well
structured files. Data was constrained
to this form. Data models evolved to aid
in the management of related files.
What they reflect is a bias towards
modelling of data suited for a computer
rather than the real world data that ex-
ists in people's libraries and offices.
The information here suffers from never
having been computerised, or, at best,
computerised in a variety of ad hoc
ways, as for example, can be seen in the
case of current document retrieval sys-
tems.

2 THE ARRAY MODEL -- ---

The obvious solution to the problem of
document representation is to retain the
document in its original form. We
could, for example, represent our previ-
ous illustration of a document as fol-
lows:

+-----+---------+-------+
Title\+

1

-----+I+-----+
IAuthors\ (Terms\

I +-------+ +-----+
+-----+---------+-------+

In this notation, the inner boxes denote
non-atomic, un-normalised objects. An
alternative notation is:

(Title (Authors) (Terms))
The implication is that the document is
now a hierarchic object. What is needed
then, is a suitable model for the
representation of such objects. The ob-
vious candidate is the hierarchic model.
However, what is proposed is not an or-
ganisation where all information '
hierarchically connected but rather iz
environment where the basic data objects
are a collection of, possibly, indepen-
dent hierarchies. The model is more
closely akin to the relational model.
The principle difference is that instead
of tables, (or relations), there are

281

hierarchies. In other respects the two
models are similar. In particular,
there is the property of closure so that
the results of a retrieval operation
would itself be a hierarchy.

Rather than develop a totally new model,
the proposal is based upon the array
theoretic model first suggested by More,
(for example, see 181). This model has
evolved out of attempts to generalise
APL. The basic data element in array
theory is an array whose elements may
themselves be arrays or data of arbi-
trary type. A language, known as Nial,
based on the theory has been designed
and implemented on a variety of
machines, 141. In the context of gen-
eralised information systems, this array
based approach is of interest because it
appears to be a more realistic view of
data.

Suppose there exists an array of the
type described earlier, containing ti-
tles, authors and index terms. The fol-
lowing diagram illustrates an array con-
taining three such titles together with
associated authors and index values.

+-----------------------+
+--+-------+----------+
T11+--+--+l+--+--+--+

'I I
I

~Al!A2~!~11~12~13~
+--+--+j+-+-+--+

+--+-------+----------+
+-----------------------+

+--+----+-------+
1 T2, +--+ ’ +--+--+ 1

Ill i
I

pi mm”;;

+--+----+--------+ , I
+-----------------------+

+--+---e---+----+
T3'+--+--+i+--+1

/]AliA3i] :Il' '
+--+--+ A.,-+

+--+-------r,,,-,

The data is represented as a vector
where each element of the vector is it-
self an array, in this case an array of
three elements. Each of these elements
corresponds to one of the attributes of
the data, so that "Authors", for exam-
ple, refers to the second array element.
This too happens to be an array of au-
thor names.

We noted earlier that there are a number
of problems with the relational model:
normalisation, hierarchy and type. We
will now examine each of these problems

in the context of the array model.

(i-) Normalisation: Since we now allow
non-atomic attributes, this problem no
longer exists. Array elements can be
arbitrarily complex objects. For exam-
pie, a document consisting of a title,
authors and their addresses, index terms
and their positions is representable as
follows:

+-----+----------------+------------+

!
title +------ +-------+ +----+-----+

!author(addressl term +---+
+------+-------+ / lib!/

I +----+------+
+-----+----------------+------------+

If this is how the user views the ob-
ject, then it is preferable to represent
it in a similar way rather than decom-
pose it into smaller objects at the cost
of losing the original structure. In
the relational model, the equivalent in-
formation would require a number of re-
lations and it would be non-trivial to
reconstruct the original "document".
Furthermore, any external representation
of the object in a "natural" form will
require a separate process outside the
context of the model. It is not possi-
ble to integrate retrieval and display
in a sensible way. The lack of integra-
tion will degrade interaction if a
user's subsequent behaviour is partially
dependent on the display of intermediate
results, as is often the case in docu-
ment retrieval.

(ii) Hierarchy: Hierarchy is not a prob-
lem within the array model. Arbitrarily
complex hierarchies are permitted, but
at the same time, hierarchies are not
required. It is perfectly feasible, and
for many applications quite natural, to
represent data by "flat files". Hierar-
thy , as we shall see, introduces no ad-
ditional complexities into the retrieval
langauge. It is possible to ascend and
descend trees in quite natural ways.

(iii) Tyl?e: Array theory has little in
tliF way of type restrictions. In par-
ticular, it is not required that all the
elements of an array be of the same
type * They need not even be of the same
structure. Furthermore, there is noth-
ing in the theory that prevents indirec-
tion. Array elements can be array names
and the contents of these array names
can be accessed. In the data base con-
text, this provides a "clean" method for
representing references to objects of

282

different types.

It should be emphasised at this point
that the array model is not an ad hoc
solution to the problems of relational
models. Array theory has a solid
mathematical basis, [4]. At the same
time however, it is necessary to demon-
strate that this representation is in
fact beneficial to the user. In the
remainder of this paper we will examine
the suitability of the model, what type
of query language is appropriate, (the
Nial language mentioned earlier is
analagous to a data sublanguage rather
than to a query language), and some im-
plementation considerations.

In principle, arrays are dynamic objects
and can be created at any time. In
practice, in a multi-user application,
some control will be needed. Arraya are
specified by a statement of the form:

ARRAY name IS (structure)
Here structure is a parenthesised list
structure defining the attributes of the
array. Each parenthesised sub-list can
be preceded by a name. Each attribute
can be followed by a list of data
descriptors. The named sub-arrays are
called "twigs". This mechanism permits
the same sub-array to be common to a
number of arrays, if this is felt to be
desirable. It also allows each sub-
array to be treated as an array. (BY
always referring to twigs, the entire
structure relationship can be ignored so
that the data base can be considered as
being basically relational.) For our
earlier example we might have:

ARRAY Documents IS
(Titles;
Author-names (Authors):
Index-terms (Terms))

The purpose of the data descriptors is
to provide additional specifications re-
garding sort order, uniqueness, OQ-
tionality and so on. One interesting
feature of array theory is its ability
to handle missing data in a consistent
way. This is done through "faults". A
fault is specified by a data descriptor
consisting of a string preceded by a
II 3 II . . A more complete example of the
previous declaration is:

ARRAY Documents IS
(Titles REQ UP:
Author-names (Authors ?Author)
Index-terms (Terms UNIQUE ?Term))

Here UP, (alternative iS DOWN), SpeCi-
fies the array to be sorted by ascending
value of "Titles". A value is required
(REQ) . The value of "Authors" is Op-
tional but if it is omitted, the fault
"?Author" will be stored. Faults are
propagated across array operations. For
example, a count of all authors will re-
turn the value "?Author" unless explicit
provision is made to check for faults.
In the specification for "Terms", the
data descriptor UNIQUE implies that the
same term can only occur once within
each sub-array.

The same attribute-name can appear more
than once in an array. In this case, to
avoid ambiguity, it will be necessary to
qualify the attribute by its twig name
whenever it is used.

3.2 References --

A problem with any data base is how to
handle temporary results. This is a
particular problem in document retrieval
where Boolean search strategies are nor-
mally iterative and a large number of
such temporary results are accumulated.
It is also a problem in probabilistic
searches where results are ranked in
order of relevance to the user query.
In this type of search environment, it
is commonplace for a user to "retrieve"
a very large number of documents yet
only look at the first few.

This problem would be even worse in the
array model where conceivably the entire
data base could be retrieved in some ap-
plications. Consequently, an explicit
mechanism is provided for distinguishing
between copies of and references to the
actual data. In the former case a new
COPY is made of the data which then be-
comes completely independent of the ori-
ginal piece of data. In the latter case
a reference to the original data is re-
trieved. In a retrieval by reference, an
update operation will affect all refer-
ences to the same object. (This may or
may not be a disadvantage depending on
the context.) A value can be obtained
from a reference at any time.

References have names. A reference may
refer to an entire array, or it may
refer to a sub-array. Reference names
are declared by a statement of the form:

283

REFERENCE name IS
sub-array OF array-list

The IS clause can be omitted, in which
case the reference is to the entire ar-
ray. The OF clause can also be omitted
at the same time, in which case the
reference can be to any array in the
data base. A sub-array is any sub-tree
of the array, and must be common to all
the arrays if it is associated with more
than one array.

This idea of referencing parts of an ar-
ray also handles the problem, noted ear-
lier, of retrieving multiple types.
Reference lists may be generated as the
result of a retrieval, but they can also
be stored in other arrays. References
can also be specified using the REF data
descriptor. Only a reference to another
array can be stored in such data. For
example, a file containing documents of
different types might be specified by
the following array:

File IS (Name REQ UNIQUE;
(Folder REQ UNIQUE UP:
(Contents REF)))

This mechanism defines the overall
structure of the array but allows refer-
ences to sub-arrays of any type to be
attached to it dvnamicallv. Examples of
this usage are shown later. 4. BASIC
RETRIEVAL

In this section the capabilities of the
proposed query language are informally
outlined. In many ways, array theory is
a generalisation of set theory, so that
many of the relational language con-
structs carry over. We have tried, as
far as possible;to model our language
on SQL, 121, and, to a limited extent
our proposed language can be regarded as
being an extended version of SQL. The
full query language, AQL, 171, is
described elsewhere.

Initially as an illustration, the infor-
mation stored in the array "Books",
shown below will be used. Here there is
a set of documents consisting of a ti-
tle, authors, topics and sub-topics.

Books:
+-----

I Title
----------+---------------------+
+-------+I+------+------------+
\Authorsl

'I
Topics!+----------+

+---e--e+,
1 I

II '
I

ISub-topics\
+----------+

! +------- +-w----------+
+-----+---------a +---------------------+

This structure can be specified in AQL
by:

Books IS (Title[REQl (Authors)
(Topic [UNIQUE]
(Sub-topic [UNIQUE ?Missingl)))

4.1 Retrieval --

The general form of the retrieval state-
ment is:

SELECT [name IS] source ---
FROM target
WHERE conditions

The name is the name of the retrieved
array. It can be omitted in which case
it can be implicitly used as the target
in the immediately following retrieval
operation.

The source specifies the information to
be retrieved. It can be a sub-array, a
reference, the result of a function, or
a combination of all three. For a sub-
array this is a "retrieve-by-value"
operation. A new copy is made of any
data to be retrieved. Data descriptors
may be specified in the source, other-
wise the corresponding target descrip-
tors are inherited. This field is op-
tional. If omitted the entire array is
copied.

The target is a list of one or more ar-
rays from which retrieval is to take
place. If omitted, the previous result
is used as the target.

The conditions specify what conditions
various attributes must satisfy before
retrieval of an array element occurs.
This field can be omitted in which case
all the array elements are retrieved.

4.2 Simple Selection --

Simple selection is analogous to projec-
tion in SQL. It allows sub-arrays to be
retrieved. For example, to select all
titles:

SELECT Title
FROM Books

No filtering of duplicates takes place.
However, array descriptors can be at-
tached to the source. For example, to
retrieve a list of individual authors:

SELECT Authors [UNIQUE]
FROM Books

284

An array structure may be retrieved.

SELECT Title (Topics)
FROM Books

This retrieves a portion of the original
array. Parent-child relationships do
not have to be followed exactly.

SELECT Title (Sub-toQics [UNIQUEI)
FROM Books

This selects each title and its associ-
ated sub-topics. The data descriptor,
UNIQUE,. is included since the terms
might not necessarily be unique.

Not only need parent-child relations be
modified, they can be inverted. Such
inversion is called reshaping. For ex-
ample, the array of papers can be
reshaped to give:

(Authors (Title))

There is no explicit reshape operator.
It is only necessary to SQeCify the
reshaped array as in:

SELECT Authors (Title)
FROM Books

Duplicate parent values are automatical-
ly discarded during a reshape oQeration.

4.3 Conditional Selection --

Retrieval may be based on parts of the
array being required to satisfy certain
conditions. The usual Boolean operators
are allowed between multiple conditions
so in general the conditions are written
as:

condition [ANDIORINOT condition] . . .

In its simplest form, a condition is a
predicate written in a subset of the
Nial language. A predicate can be ap-
plied to any node in the array hierar-
chy. For example:

SELECT Topics
FROM Books
WHERE "War and Peace" IN Title

Here the array of "Title"s is searched
for a Qarticular value. When a Qarticu-
lar Title is found, the array instance
in which it occurs is also available.
An array instance is a particular value
of the upper level element(s) of the ar-
ray together with all "descendants" of
that value. In the "Books" array, each
title will have associated with it a

vector containing authors, a vector of
topics, each element of which has at-
tached to it a vector of sub-topics. In
this particular example, assuming titles
are unique, the vector of topics associ-
ated with this particular title is re-
trieved.

As a further example, to retrieve every
book on the topic of "computers":

SELECT Title
FROM Books
WHERE "computer" IN Topics

This example differs from the previous
one in that there is not a single array
of "T0Qic"s but rather one array for
each title. Thus, the operation is
iterative in the sense that it is ap-
plied to each array in turn. Going down
one more level:

SELECT Title
FROM Books
WHERE "computer" IN Sub-topics

Here there is not just an array of ar-
rays but rather an array of arrays of
arrays. Because this particular sub-
topic value may be associated more than
once with the same title, the same array
instance may be retrieved several times.
If this is undesirable, as it presumably
will be in this case, a quantifier can
be used to avoid unnecessary selections,
(see "Quantifiers", below).

In general a predicate is a sequence of
operators involving a single node.
Various useful functions can be used in
predicates. For example, to select ti-
tles by more than one author

SELECT Title
FROM Paper
WHERE TALLY Author > 2

Evaluation of a predicate is strictly
left to right unless parenthesisation is
used. The result of a function can also
be retrieved. For example, to retrieve
each title and a count of the number of
authors:

SELECT Title, Count FROM Papers
WHERE Count GETS TALLY Author

A further point to note here is that the
result of a predicate is assumed to be
true if it is not false, so that for
this example, there is no need to add a
dummy test to the predicate in order to
ensure a true result.

285

4.4 Quantification --

As we noted above, predicates are ap-
plied iteratively where there are a
number of instances of the array. This
is not always desirable as was shown in
the example:

SELECT Title
FROM Books
WHERE "computer" IN Sub-topics

Here, since there are potentially a
number of arrays of sub-topics associat-
ed with each title, the same title may
be retrieved a number of times. To
avoid this, the selection process can be
quantified. There are three quantif-
iers, EACH, ANY and NOT ANY. Quantif-
iers appear before an array operand and
quantify the number of times individual
instances of arrays are to be tested.
EACH, the default, implies that each ar-
ray is examined: ANY that testing
proceeds until one array occurrence sa-
tisfies the condition; and NOT-ANY im-
plies that testing continues as long as
no array instances satisfy the condi-
tion. Further, both ANY and NOT-ANY,
may be numerically qualified by succeed-
ing them with an integer value which in-
dicates how many array instances must
satisfy the condition.

For example, the previous example can be
modified so that only one title is re-
trieved, by writing:

SELECT Title
FROM Books
WHERE "computer" IN ANY Sub-topics

4.5 Qualification --

Often it is desirable to access a value
or array whose position is dependent on
some previously accessed value. For ex-
ample, to retrieve titles indexed by the
topic "computer" and the sub-topic "in-
formation":

SELECT Title
FROM books
WHERE "computer" IN Topics
AND "information" IN Sub-topics

However, this query does not guarantee
that "information" is a sub-topic of the
topic "computer". It only guarantees
that there is some topic which has "in-
formation" as a sub-topic. If this is
not what is wanted, it is necessary to
restrict the second predicate to the
sub-array satisfying the first predi-

cate. This can be done using the "WITH"
qualifier. In general, a condition
takes the form:

predicate [WITH (conditions) 1

The conditions in the WITH clause are
applied to the nodes satisfying the
predicate, together with any descendants
it might have. The above query would be
correctly written as:

SELECT Title
FROM Books
WHERE "computer" IN Topic
WITH ("information" IN Sub-topic)

Sometimes it is necessary to do more
than simply establish a position inside
an array. Rather the location must be
remembered for subsequent use. For ex-
ample, suppose there is a set of papers
consisting of titles, authors, terms and
the positions of the index terms, as il-
lustrated below:

Papers:
+-----+---------+------------------+
Title\+ -------+ +-----+----------

yE:i ~-pj~~;;";~~ 1

+-----+--w-e-----+
+-----+--------- +------------------+

Suppose the purpose of the query is to
find the titles of all papers containing
"information" and "retrieval" with "re-
trieval" occupying the next position
after "information". . In this case, it is
necessary to remember which array ele-
ment contained the term "information" so
that its corresponding sub-array, "posi-
tion", can be later accessed. This can
be done as follows:

SELECT Title
FROM Papers
WHERE X IS "information" IN Terms
AND "retrieval" IN Terms
WITH (ANY X.Position+l IN Position)

The "X IS" operation is basically a lo-
cal assignment which identifies all the
array elements satisfying the subsequent
condition. The notation "X.Position",
then refers to any "Position" arrays as-
sociated with these array elements.

5. RETRIEVAL ACROSS MORE THAN ONE ARRAY -----

Our examples so far have all shown re-
trieval from a single array. However,
there is no intrinsic reason why more

286

than one array may not be involved. The
major restriction is that the sub-array
being retrieved must be common to all
the arrays from which retrieval is tak-
ing place. If the retrieved array is
not contained in the target array, noth-
ing from that array will be retrieved.
Any conditional test of a field not con-
tained in one of the arrays is automati-
cally considered to have failed. For
example:

SELECT Title (Authors)
FROM Book, Paper

In this type of retrieval, the identical
structure must occur in all the target
arrays.

More interestingly, information from
differently structured arrays can be
combined by creating a virtual array,
(see below). For example, suppose we
have an array containing the current ad-
dresses of authors of the form illus-
trated below.

Location:
+----+-------+
lName\Addressl
+----+-------+

We can now create a new array of the
form:

(Name; Address: (Title))

Conceptually, this array is created by
sequencing through both existing arrays
in parallel, that is for each distinct
value of "Name". The appropriate query
is:

SELECT Name: Address: (Title)
FROM Location, Papers
WHERE EACH Location.Name

IN Papers.Authors

This operation in analogous to the join
of SQL, and like the join its efficiency
will be very dependent on the physical
storage organisation. However, for many
applications it should be a relatively
infrequent operation because there will
be less need to decompose un-normalised
data.

6. UPDATING -

Updating operations permit items to be
added to an array and to be removed from
it. DISCARD and FILE operations are pro-
vided. An item can be detached from an
array by discarding it. The general

form of a discard is:

DISCARD name
FROM array
WHERE conditions

Here the name is any attribute of the
array. The effect is to discard any
attribute(s) satisfying the conditions
together with any sub-arrays. For exam-
ple,

DISCARD Title
FROM Book
WHERE "smith" IN Author

This would remove all the documents and
associated sub-arrays where one of the
authors is "smith".

Filing is the converse of discarding.
The general form a file statement is:

FILE [subarray FROM1 source
IN array
[AT condition]
[IF condtionsl

The source is either a single literal
value, or is the name of an array con-
taining the data to be filed. The
subarray specifies which attributes are
being updated, if a complete array in-
stance is not being added. The 'AT"
condition is only needed where a sub-
array is being filed. It identifies the
location of the update within the array
structure. The "IF" conditions can be
used to specify integrity constraints.

For example, suppose we want to create a
file containing documents of various
types with each file categorised by to-
pic. First we specify the file:

Myfile IS
(Filename; Topic: Contents (Ref))

Next we can create an instance of a
file:

FILE "File/l"; "01s"; (I" IN Myfile

Next we might collect all documents
about "01s".

SELECT Mylist [REFI
FROM Papers, Books
WHERE TERM = "01s"

We can then add this set to our file by:

287

FILE (Contents)
FROM Mylist
IN Myfile
AT Topic = "01s"

~'gr~~~~l?work has recently been
directed towards some form of integra-
tion. Most of this work has centred
around the relational model. Macleod,
[51, and more recently Stonebraker,
[ll], have suggested means whereby rela-
tional languages can be applied to docu-
ment retrieval. However, neither ad-
dress the basic problem of the suitabil-
ity of the model. Tsichritsis, [12,131,
has concentrated on the integration of
messaging within a data base system. A
more radical approach is that taken by
Schek and Pistor, [lOI, who have pro-
posed a significant modification to the
original model by allowing elements of
sets to be themselves sets. This idea
largely disposes of the problems caused
by normalisation. However there seems
to be little value in continuing with
the idea of the basic data element being
a set since in practice ordering and po-
sition are of fundamental importance.
The Schek model recognises position by
providing template matching which, to be
efficient, is based upon an implementa-
tion of fragment indexing. The array
model permits a lower level view of po-
sition and, at the same time, does not
require any special implementation
structures. An array can be implement-
ed by:

(i) A "picture" or schema defining
the array

(ii) A set of inter-related tables
where each table corresponds to a
nested sub-array.

For example, the array:

+-----+---------+
ITitle'+-------:I

1 Iauthors.
I f +-------+,

+-----+----------+

can be represented by the following two
tables:

288

+---+-----+
\$TIiTitle\
+----+---me+

+---+-e-+-------+

\$ATJ!$TI\Authors~
+---+---+-------+

Each table has a surrogate whose value
uniguelv identifies each
table. -

tuple of the
Additionally, each - sub-array

element contains the surrogate value of
its parent. Thus the surrogates serve
as associative addresses for the purpose
of representing an array structure.

An alternative aproach to integration iS
to conceal as many of the problems of
the underlying model as possible by us-
inq a high level interface. Some of
Zloof's work, for example see 1141, can
be considered in this light as well as
some of the existing natural language
interfaces. However these approaches
are only partially satisfactory. A join
in QBE in no more natural an operation
than it is in SQL. An advantage of the
array model is that it is a more natural
representation of data and requires less
manipulating at the interface level to
be easily usable.

8. SUMMARY --

Current data models are inadequate for
handling information systems outside the
traditional scope of data base manage-
ment systems. In particular, none have
been proposed as the basis of
hierarchical filing system and while the"
relational model has been considered as
a basis for document retrieval systems,
it certainly has non-trivial handicaps
in this context.

In our view, the array model resolves
most, if not all, of the fundamental
problems encountered when applying the
relational model to these other con-
texts. It contains many of the charac-
teristics of network, hierarchical and
relational models. While it may be
temptinq to classify the array model as
an ad hoc collection of parts of these --
other models, it most certainly is not.
The query language described here is,
like most new languages, somewhat exper-
imental, but the underlying model is
strongly founded. If the array model
has one defect, it is that it is expen-
sive to implement in terms of storage
requirements. A large number of associa-
tive links and indexes are needed for
its efficient implementation. On the

other hand, the costs of such storage
have been and are continuing to be sig-
nificantly less from year to year.

The main motivation for this work has
been to further efforts towards the in-
tegration of information systems. Given
the rapidly expanding use of computing
systems in information oriented applica-
tions, this is becoming a serious prob-
lem, as, for example, anyone with access
to a network messaging system knows.
There is a real need for flexible tools
with which to organise and manage data.
Traditional information systems such as
DBMS and document retrieval systems tend
to be narrowly focussed and lack flexi-
bility. At the present time our model
is being prototyped in Nial. The Nial
language is an implementation of More's
array theory. It has been implemented
on a wide variety of machines including
IBM PC's. It is also available under
Berkeley 4.2 Unix. This prototype is
also serving as a model for a realistic
implementation using disk for array
storage.

REFERENCES

1.

2.

3.

4.

5.

6.

Barnard, D.T. and Macleod, I.A. "A
Methodology for the Development of
Office Information Systems",
Proceedings of the Canadian Informa-
tion Processing Society, pp. 127-
134, 1982.

Chamberlin, D. and Boyce, R. "SEQU-
EL: A Structured English Query
Language", Proceedings of the 1974
ACM-SIGMOD Workshop on Gtaxscrip- --
z, T Access and Control. Ann Ar-
bor, Michigac(May 1974), pp. 249-
264.

Codd, E.F., "Extending the Relation-
al model to Capture more Meaning",
ACM Transactions on Database - - -- sys-
=, Volume 4,1979.

Jenkins, M.A. "The Q'Nial Reference
Manual, Tech. Report 82-123, Queen's
University, Kingston, Ontario, 1982.

Macleod, I. A. "SEQUEL as a Language
for Document Retrieval", Journal of -- -
the American Society for Information 7 Science. Vol. 30,pp. 243-249,
1979.

Macleod, I. A. "A Data Base Manage-
ment System for Document Retrieval

7.

8.

9.

10.

11.

12.

13.

14.

Macleod, I.A. "AQL - A Query
Language for the Array Model",
Technical Report, Department of Com-

tario, 1983.

More, T. "A Theory of Arrays with
Applications to Databases* Tech. Re-
port G320-2106, IBM Scientific Cen-
tre, Cambridge, Mass., 1975.
More, T. "Notes on the Diagrams,
Logic and Operations of Array
Theory", Tech. Report G320-2137, IBM
Scientific Centre, Cambridge, Mass.,
1981.

Schek, H.J. and Pistor, P. "Data
Structures for an Integrated Data
Base Management and Information Re-
trieval System", Proceedings of the --
Eighth International Conference on
Very Large Data Bases.
pp.197-207,1982.

Mexico City,

Stonebraker, M. et al. "Document
Processins in a Relational Database
System", ACM Transactions on Office
Information Systems, Volume 1, pp.
143-158, 1983. _

Tsichritzis, D. and Christodoulakis,
S. "Message Files", ACM Transactions
on - Office InformXon-
Volume 1, pp.88-98, 1983.

Systems,

Tsichritzis, D. "Integrating Data
Base and Message Systems", Proceed-
ings of the Seventh International
Conferenceon Very Large Data Bases,
Cannes, pp.z6-362, 1981.--

Zloof, M.M. "Query-by-Example: A
Data Base Language", IBM
Journal, Volume 16, 1977,

Systems
--

Applications, Information Systems,
Vol. 6, PQ. 131-137, 1981.

289

