
A MODUIARIZATION t#HXANISM FOR CONCEPTUAL MODELING

A. Albano (*), M. Capaccioli (+I, M.E. Occhiuto (+) and R. Orsini (*)

(*) Dipartimento di Informatica, C.SO Italia, 40, 56100 Pisa, Italy
(+) Systems & Management S.p.A., V.10 S. Pierino 4, 56100 Pisa, Italy

Abstract

The abstraction mechanisms of Semantic Data
Models - aggregation, classification and general-
ization - are considered the basic features to be
supported by conceptual languages, i.e., program-
ming languages with high-level constructs for
database applications. This paper shows that
conceptual languages should also provide a
modularization mechanism as another feature to
achieve a more adequate database modeling capa-
bility. Such a mechanism is required to organize
structural and procedural aspects of a complex
schema in smaller, interrelates units. A proposal
is presented in the framework of Galileo, a
strongly-typed, interactive, conceptual language
designed specifically for database applications.

1. INTRODUCTION

Recently, database research workers have been
paying attention to the design of conceptual
languages, i.e., programming languages for data-
base applications that support the abstraction
mechanisms of Semantic Data Models, besides the
traditional abstraction mechanisms for temporary
data.

A Semantic Data Model is a set of abstraction
mechanisms to describe the structure of databa-
ses: the data abstractions, together with the
implicit constraints and the associated opera-

tions, are explicitly intended to represent
naturally and directly certain types of real-
world information. A survey and analysis of the
motivations for this new generation of data
models is reported in (McLeod 82). Well known
examples of conceptual languages are TAXIS
(Mylopoulos 801, DIAL (Hammer 80), and ADAPLEX
(Smith 81).

Still, an important open problem in conceptual
language design is which features should be
integrated into a programming language to achieve
adequate database modeling capabilities. For
instance, different opinions exist on the use of
data types and on which features a programming
language should have to support the basic
abstraction mechanisms of Semantic Data Models,
i.e., aggregation, classification and generaliza-
tion (Albano 83c, Brodie 80, 81). Examples of
these different trends are: TAXIS, a programming
language based on a procedural semantic network
formalism; DIAL, which has evolved from SDM
(Hammer 81), and ADAPLEX, based on programming
languages with data types extended by a class
construct; RM/T (Codd 79) and SHM (Smith 79),
proposed to extend the relational model outside
the framework of a specific programming language.

There is, however, another issue that deserves
more attention (Wang 77, Mylopoulos 81): which
features are needed to organize structural and
procedural aspects of a complex schema in
smaller, conceptually meaningful, interrelated
units. This requirement is motivated by the
following considerations:

This work was supported in part by the Consiglio
Nazionale delle Ricerche, Progetto Finalizzato
Informatica, Obiettivo DATAID, and in part
by Minister0 della Pubblica Istruzione.

232

a.

b.

C.

d.

A schema should include the definition of
structural aspects of a database together with
the procedural aspects. That is to say, a
database should appear to the user as a module
allowing access to both data and operations on
the database.

One aspect of the schema complexity in the
large number of details. An effective way of
mastering this difficulty is "Taxonomic Speci-
fication", suggested in (Borgida 82). It is a
stepwise methodology, based on the generali-
zation abstraction mechanism, which suggests
organizing the definitions of a complex schema
into hierarchies by a controlled introduction
of details. To support this methodology, it is
useful to have a construct in the language to
organize the schema in distinct, but related,
units corresponding to the different levels of
refinements. In this way the units can also be
used to give zoomed versions of the applica-
ti& model.

Another reason to have a schema organized in
units relies on the need of modeling complex
applications involving different enterprise
sectors. Instead of having a single schema
which does not favor the recognition of the
relationships among its parts, a database
description organized in terms of interrelated
units makes its structure explicit, and
therefore the description results in a more
natural model of the application. In general,
different units do nc't model independent
aspects of the application, but they can share
common data and operations. This notion of a
schema organized in parts is more related to
the problem of mastering complex software by
modular decomposition, than to the view
modeling in DBMSs.

A view modeling capability is another require-
ment for conceptual languages. A view mecha-
nism should be widely variant in capability:
it might only allow access to a subset of the
schema definitions (data and operations), or
it might allow the specification of more
complex mappings among the objects in the view
and those in the schema. In both the cases,
the user of a view would operate on the
accessible objects as if they were those of a
schema, except for the operations explicitly
excluded. A view mechanism should not be
confused with the capability discussed at the
previous point; such a mechanism is comple-
mentary to those available for schema defini-
tion.

Proposals exist in the literature addressing some
of the previous issues, but none of them casts
the solution in the context of a specific
conceptual language.

The possibility of organizing complex schema in
parts has been considered for relational databa-
ses in ASTRAL (Amble 79). ASTRAL's module
mechanism is used to organize a relational schema
hierarchically, so that if a module A is below a
module B, everything exported from B can be
imported in A. Other proposals have been given in
the area of Artificial Intelligence, but for
different purposes. The problem of interest here
is the modeling of hypothetical worlds and belief
spaces: "context", or "spaces", are organized
hierarchically in PLANNER-like languages, as in
ASTRAL, but data are not shared because contexts
evolve indipendently (Montangero 78). An intere-
sting use of these mechanisms appears in (Abrial
74, Hendrix 75). In Abrial's proposal, a global
context is provided where data are stored
permanently. New contexts can then be created
with the possibility of specifying whether they
are permanent or temporary. Database updates in a
context can be reflected in higher contexts
specified by the user. In (Hendrix 75) spaces
have been proposed as an extension of contexts,
in that they can be structured into an acyclic
graph rather then a tree.

View mechanisms are usually present in DBMSs.
Relational systems are more powerful than those
based on the DBTG proposal because a view is more
general than a subschema, in that any relation
derivable by an expression can be queried as if
it were a relation of a view. This possibility is
also present in some relational database program-
ming languages, in which update operations may be
included in a module definition (Rowe 79, Shopiro
79, Wasserman 79). Among conceptual languages, a
similar approach is adopted by ADAPLEX, with
modules modeling view, while TAXIS and DIAL
provide, respectively, the "script" and "port"
mechanisms to model interaction with the user.
These mechanisms restrict the objects accessible,
but are not used in modeling views.

The purpose of this paper is to propose a
structuring mechanism for conceptual modeling.
The presentation will be centered around Galileo,
a strongly typed, interactive, programming lan-
guage (Albano 85a). In the next section a brief
overview of the language is given. Section 3
describes the notion of environment in Galileo
and Section 4 contains examples showing how

databases can be described in a structured way.

2. OVERVIEW OF Galileo

A complete description of the language is beyond
the scope of this paper, and may be found in
(Albano 85a), and, together with the denotational
semantics, in (Capaccioli 83). A preliminary
implementation of a subset of Galileo has been
described in (Albano 83b). Presently, a more
efficient implementation is in progress on a VAX
11/780 running the UNIX (*) operating system.

Galileo is a programming language supporting the
abstraction mechanisms of Semantic Data Models
and the data abstractions of programming langua-
ges.

The main features of Galileo are:

a.

5.

C.

d.

The language is expression oriented. Each
construct is applied to values and returns a
value.

Every denotable value of the language posses-
ses a type, which defines a set of values
sharing common characteristics, together with
the operators which can be applied to these
values. Besides the usual predefined types of
programming languages, the type constructors
available are: tuple (record), sequence,
discriminated union, function, modifiable
value (reference), and abstract types.

Galileo's type system supports the notion of a
"type hierarchy" (Albano 83~). If a type T is
a subtype of a type T', then a value of type T
can be used as argument of any operation
defined on values of type T', but not vice
versa. The subtype relation is a partial
order.

Every Galileo expression has a type. In
general, the type of any expression can be
statically determined. Every type violation
can be detected by textual inspection (static
type checking). Type information is only used
during the static analysis of expressions, and
is ignored at run-time, when testing is
required for constraints only. This is made
possible since Galileo has a secure type
system: expressions that are syntactically
well-typed are always semantically well-typed,
i.e., such expressions do not cause run-time
type errors and give a value of the expected

type.

e. Galileo provides a mechanism, called "clas-
ses" , to represent real world entities in a
Galileo database by classification and aggre-
gation. Class elements possess an abstract
type and are the only values which can be
destroyed. Predefined assertions on classes
are provided, and, if not otherwise specified,
the operators to add or delete elements from a
class are implicitly defined. Classes can be
defined by subsetting, partitioning, and
restricting other classes. They are used to
model alternative ways of looking at the same
entities, including the IS-A hierarchy.

3. ENVIRONMENTS

To understand the modularization feature we will
illustrate, it is useful to first understand what
are Galileo's environments.

For any expression, the meaning of identifiers in
use is given with respect to the current
environment. An environment is composed of two
parts: a "type component" and a "value compo-
nent".

The type component of an environment is a set of
associations (identifier, type), and it is used
to establish which type a type identifier
denotes. The value component of an environment is
a set of associations (identifier, value) and it
is used to establish uhich value an identifier
denotes.

Environments are defined using the following
operators, which work on both the components.
Only those properties of the operators necessary
to understand how modularization is supported in
Galileo are presented. Examples will be presented
in the next section.

()

denotes the empty environment, in which there are
no associations.

Identifier := Expression

denotes the environment in which the only
association is between Identifier and the value
denoted by Expression, which can be of any kind,
including functions or environments.

Identifier := derived Expression

(*) UiYIX is a Trademark of Bell Laboratories.

234

denotes the environment in which the only
associaticn is between Identifier and a virtual
value, which is obtained by evaluating Expression
every time the value of Identifier is requested.
Since Galileo has a discipline of static scope
binding, Expression is always evaluated in the
definition environment.

In the previous cases the created environment had
an empty type component. In fact, no definition
of types appeared there.

type TypeIdentifier := TypeExpression

denotes the environment in which the only
association is between TypeIdentifier and the
type denoted by TypeExpression. With this form a
concrete type, i.e., non abstract, is defined;
TypeIdentifier is only an abbreviation for the
structure it represents.

type TypeIdentifier c==>
TypeExpressicn
assert BocleanExpression

denotes an environment where:

a. TypeIdentifier is bound to a new abstract
Wef with a domain isomorphic to the domain
of the representation type, given by TypeEx-
pression, possibly restricted by the asser-
tion.

5. The identifier mkTypeIdentifier and repType-
Identifier are bound to two primitive func-
tions that map values, respectively, of the
representation type into the abstract type and
vice versa. In the assert clause, BooleanEx-
pression is a condition on values of the
reoresenta+ion II type. The assertion is a
dynamic constraint and is controlled by the
ccnstructor mkTypeIdentifier. When an asser-
tion is violated the operation that caused it
fails.

type TypeIdentifier C-->
TypeExpression
assert BooleanExpression

If Opi, Opn are predefined operators on
values of the concrete type TypeExpression, this
expression denotes an environment containing all
the bindings constructed by <=> and, in addition,
Opi, Opn redefined to operate on values of
TypeIdentifier.

Identifier class AbstractType

denotes an environment constituted by the bin-
dings exported by AbstracTyse, and, in addition,
the binding (Identifier, empty sequence of
elements of the abstract type). The constructor
of the abstract type values has the additional
property that a constructed value also becomes an
element of the class.

We now show the operators used to define
environments in terms of others. In the follow-
ing, A and B stand for expressions denoting
environments.

A and B

denotes an environment with all the bindings of A
and of B. Both A and B are evaluated independen-
tly in the current environment and must not have
common identifiers.

A ext B

denotes an environment with all the bindings of B
and those of A not redefined in B. A is evaluated
in the current environment, while B is evaluated
in the current envircnment extended with the
bindings of A.

ret A

denotes an environment with bindings of A,
evaluated in the current environment extended by
the bindings of A. This operator is required for
mutually dependent definitions.

A drop Identifier

denotes an environment containing all the bin-
dings of A except the one with binder Identifier.

A rename Identifier in NewIdentifier

denotes an environment with the bindings of A but
the binder Identifier is renamed as NewIdenti-
fier.

An environment A can be used in the evaluation of
an expression, extending the current environment
with the bindings of A:

use A in Expression

4. STRUCTURING DATABASES WITH ENVIRONMENTS

Using the analogy of software design, the

235

structuring mechanisms for conceptual languages
hitherto proposed can be called mechanisms for
"designing databases in the small". They help to
structure a schema as a single unit, but do not
help to solve the problem of "designing in the
large',, where complex applications are involved.
In the software engineering area this need has
been considered, and nowdays programming langua-
ges provide features to deccmpose large software
projects into smaller units.

This issue has been addressed in Galileo using
the environment to structure a schema into a set
of smaller, related parts, sharing common data
and operations. As shown in the previous section,
environments can be manipulated by a set of
operators. To structure databases ard to model
views, the useful operators are: "and" and "ext"
to extend or combine environents; "drop" to
exclude definitions; "rename" to rename identi-
fiers. In the sequel it will be shown by examples
the effectiveness of the approach, which has the
following advantages. Firts, the environment may

be used to deal with data and operations as a
single unit, accessible to users. Secondly, it
may be used to deal with data persistence without
resorting to specific data types, such as the
files of programming languages. Thirdly, the
environment may be used to explicitly establish
the way in which applications interact when they
use common data. Finally, the environment may be

used to define application oriented views of
data, in a similar way to the view mechanism of
DBMSs.

The examples, which are intentionally simple,
concern the departments of a firm.

4.1. Data Persistence

Temporary values exist in the system only during
the evaluation of the expressions in which they
are defined. None of Galileo's data types defines
permanent values. For instance, user programs may
contain class definitions, if temporary classes
are to be kept while running an application
prc,gram. To deal with data persistence, a global
environment exists in which all values are
automatically maintained. The globe1 environment
is managed by the language support system. This
approach to data persistence has been also
described in (Albano 81, Atkinson 81).

'i/hen the user enter the system, he is in the
global environment. New bindings are added with

the construct 'use EnvironmentExpression":

use GeneralManager := :*Ada Byron"

Instead of having a single set of bindings, the
user can fruitfully employ the environment
mechanism to structure the global environment.
For instance, in the following example the
environment Personnel is defined modeling a
database schema containing both classes and
operations:

use Personnel :=
(ret Departments class

Department <-->
(Name : string
and Manager : var Employee
and Budget : var mm)
key (Name)

and Emplcyees class
Employee <->

(Name : string
and Sex:<Male or Female>
and Salary : var num
and Dept : var Department)
key (Name));

and ChangeDepartment :=
function (d:Department,

e:Employee) is
Dept of e C- d

and EnrollEmployee :=
function (n:string,

s:CMale or Female x
e.al:num,
d:string):

Emplcyee is
mkEaployee

(Name:=n
and Sex:=s
and Salary:=var s
and Dept:=

var get Depertments
with Name=d

if-fails
failwith ,:Unknown Dept.");

Each expression is evaluated inside an environ-
ment, initially the glcbal one, called the
current environment. Any envircnment that can be
accessed from the global one can become the
current environment with the command "enter
environment". To return to the global environment
there is the command "quit". For example,
assuming that the classes in Personnel have
already been populated, the following is a simple
interactive session.

enter Personnel:

236

the definitions contained in Personnel become
directly accessible and so, for instance, a new
employee can be enrolled into the Research
department with the function EnrollEmployee.

EnrollEmployee("Sibille Ellis",
<Female>,
1000,
"Research");

quit;

4.2. Encapsulation

The environment mechanism can be used to model a
schema as a set of interrelated units. Each unit
encapsulates data and operations which are
ciosely related. For instance, let us assume that
we are interested in describing as distinct units
data relevant to the Planning and Administration
sectors of our hypothetical firm, although these
sectors share data and functions of the environ-
ment Personnel:

use Planning :=
(Personnel
and Projects class

Project <-->
(Name : string
and Budget : var mm)
key (Name));

use Administration :=
(Personnel
and Suppliers class

Supplier <-->
(Name : string
and Address : var string
and Credit : var mm)
key(Name));

Note that because of the semantics of the
environment operators, the Personnel environment
is shared by Planning and Administration, so that
any updating of a class from an environment will
be reflected in the others.

4.3. Refinements

New environments can be defined by extending
other environments with new definitions. This
possibility can be used both to personalize a
schema with new data and operations and to refine
a schema to generate a more detailed description
of the database.

In the following example, an environment is
defined as an extension of Personnel with the
"PartTimeEmployees" class, which is a specializa-
tion of Employees. Thus data concerning the same
application are visible at different levels of
details.

use DetailedPersonnel :=
(Personnel
and Branches class

Branch c->
(Name : string
and Address : string
and Other : string)
key(Name))

ext PartTimeEmployees
subset of Employees class

PartTimeEmployee C-Z
is Employee
and PrivateData : string;

"PartTimeEmployees" is a class subset of Em-
ployees which models an IS-A hierarchy; all
PartTimeEmployees are Employees, but not vice
versa. PartTimeEmployees must be populated expli-
citly by elements of the class Employees.
Moreover PartTimeEmployee is defined as a subtype
of Employee and so it inherits all the attributes
of Employee, as well as having the additional
attribute PrivateData. Consequently, because a
subtype may be used wherever the supertype may be
used, PartTimeEmployee can be used in any context
where an Employee is expected. For example it is
possible to apply the function EnrollEmployee to
an element of PartTimeEmployees.

An important consequence of using environments
together with the class specialization mechanism
is that the general environment behaves really
like a stable model of the application, and it
can be refined later on when the model must be
tailored to new requirements.

Environments can also be defined by combining
more than one environment. For instance, the
following ProjectManager environment is defined
to include all data and operations of Planning
and Administration, as well as its own data.

ProjectManager :=
(Planning
ext Administration
ext Parts class

Part +->
(Code : int

237

and Price : int
and UsedBy : seq Project
and SuppliedBy : Supplier)
key (Code));

4.4. View Modeling

To provide filtered access to the database, it is
possible to provide different views of an
environment by excluding some of its data and
operations.

use FemaleEmployees :=
Personnel drop Employees;

In OnlyDepartments the Class Employees is not
accessible. In the following environment, only
female employees can be accessed and modified:

use FemaleEmployees :=
(use Personnel
in Women restriction of Employees

with Sex is Female class
Woman <-> is Employee);

In the previous example the class Women is a
restriction of the class Employees contained in

Personnel. Another way of modeling views is shown
in the following example.

use MaleEmployees :=
(use Personnel
in Men :=

derived
for Employees with Sex is Male

loop (Name:= Name
and Salary:= Salary
and Dept := Name of Dept));

Unlike the previous case, the sequence of
elements bound to Men is calculated every time
the identifier Men is used and cannot be updated.
This way of modeling views is similar to virtual
relations of relational DBMSs, in that the same
set of operators is available to access virtual
and real data.

In modeling views, it is also possible to change
only the names of the objects in the schema:

use AnotherPlanning :=
Planning rename Projects in ResearchProjects;

5. CONCLUSIONS

The problem of structuring complex database
schemas has been discussed. Conceptual languages
hitherto proposed support only the abstraction
mechanisms of Semantic Data Models, which are
based on the assumption that a data base should
be modeled in terms of data abstractions explic-
itly intended to represent, naturally and direct-

ly, the semantics of the application. The
abstration mechanisms have been shown to be an
effective tool in schema design, but they do not
help to structure a complex schema in smaller,
related parts.

A solution has been presented centered around the
conceptual language Galileo, in which this issue
has been an important design goal. We believe
that this paper provides evidence of how the
environment construct allows a schema to be
structured. This capability appears also to
provide the linguistic support necessary to
incrementally design databases, according to a
methodology of stepwise refinement by specializa-
tion, proposed in the TAXIS project. Databases
can be designed and tested incrementally, while
preserving the levels of refinement, which can be
used to give zoomed versions of an application:
Different classes of users can then access the
database at different levels of detail. It is
interesting to point out that, with the proposed
approach, a database is not seen as a monolithic
entity, which can be accessed through views, but
a database is modeled as a set of interrelated
units.

ACKNOWLEDGEMENTS

We are indebted to the members of the Galileo
Project for their constructive criticisms to the
contents of the paper: L. Cardelli, F. Giannotti,
B. Magnani, D. Pedreschi, and M.L. Sabatini. Also
many thanks to M. Meyer for improving this
paper's presentation.

238

REFERENCES

Abrial, J.R.,(74) "Data Semantics", in Data Base

Management, J.W. Klimbie and K.L. Kofferman
(eds), North-Holland Amsterdam, l-60, 1974.

Albano A, M.E. Occhiuto and R. Orsini (81), "A
Uniform Management of Temporary and Persi-
stent Complex Data in High-Level Languages",
in Pergamon Infotech State of Art Report on

Database, M.P. Atkinson (ed.), Series 9,
N.8, Pergamon Infotech Ltd, Maidenhead,
319-344, 1981.

Albano A, L. Cardelli and R. Orsini (83a),
"Galileo: A Strongly Typed Interactive
Conceptual Language", Technical Note N.30,
University of Toronto, January 1983.

Albano A. and R. Orsini (83b), "Dialogo: An
Interactive Environment For Conceptual De-
sign In Galileo", in Metodology and Tools
for Database Design, S. Ceri (ed.), No-
rth-Holland, Amsterdam, 229-253, 1983.

Albano A., (83~) "Type Hierarchies and Semantic
Data Models", ACM Sigplan '83: Symposium on

Programming Languages Issues in Software
Systems, S. Francisco Ca, 178-186, 1983.

Amble, R., K. Bratbergsengen and D. Risnes, (79)
"ASTRAL, a Structured and Unified Approach
to Data Base Design and Manipulation", IFIP
Work, Conf. on. Data Base Architecture,
Venice, Italy, 1979.

Atkinson M.P., K. Chisolm and E. I. Cockshott
(81), "The New Edinburgh Persistent Algori-
thmic Language", in Pergamon Infotech State
of Art Report on Database, M.P. Atkinson
(ed.), Series 9, N.8, Pergamon Infotech
Ltd., Maidenhead, 299-319, 1981.

Borgida A.T., J. Mylopoulos and H.K.T. Wong (82),
"Methodological and Computer Aids for Inte-
ractive Information System Design", in
Automated Tools for Information System

Design, H.J. Schneider and A. Wasserman
(eds), North-Holland, Amsterdam, 109-124,
1982.

Brodie M.L. (801, "The Application of Data Types
to Database Semantic Integrity", Information
Systems 5, 4, 287-296, 1980.

Brodie M.L. and S.N. Zilles (eds) (811, Proc.

Workshop on Data Abstraction, Data Bases and

Conceptual Modelling. ACM SICMOD Special
Issue 11, 2, 1981.

Capaccioli M. (83), "La Semantica Denotazionale
de1 Galileo", Tesi di Laurea in Scienze
dell'Informazione, Universitl di Pisa, Ita-
lY9 1983.

Codd E.F. (79), "Extending the Relational Model
to Capture More Meaning", ACM TODS 4,

397-434, 1979.

Hammer M. and B. Berkowits (80). "DIAL: A
Programming Language for Data Intensive
Application", Proc. of ACM SICMOD Conferen-

ce, Santa Monica Ca, 75-92, 1980.

Hammer M. and D. McLeod (81). "Database Descrip-
tion with SDM: A Semantic Database Model",
ACM TODS 6. 3, 351-386, 1981.

Hendrix, G. (75) "Expanding the Utility of
Semantic Networks Through Partitioning",
Proceedings IJAI-75, Tbilisi USSR, Sept.
1975.

McLeod D. and R. King (82), "Semantic Database
Model's", in Principle of Database Design,
S.B. Yao (ed), Prentice Hall, 1982 (to
appear).

Montangero C., G. Pacini, M. Simi and F. Turini
(78), "Information Management in Context
Trees", Acta Informatica 10, 85-94, 1978.

Mylopoulos J. and H. Levesque (81) "An Overview
of Knowledge Representation", Proc. of the
Workshop on Data Abstraction, Database and
Conceptual Modelling; ACM SICMOD Special

Issue 11,2,5-12, 1981.

Mylopoulos J., P.A. Bernstein and H.K.T. Wong
(80), "A Language Facility for Designing
Database-Intensive Application", ACM TODS 5,

2, 185-207, 1980.

Rowe L. A. and K.A. Shoens (791, "Data Abstrac-
tion, Views and Updates in RIGEL", Proc. of

ACM SIGMOD Conference, Boston, Mass, 71-81,
1979.

Shopiro, J.E., (79) "A Programming Language for
Relational Databases", ACM TODS 4, 4, 1979.

Smith J. M. and D.C.P. Smith (79) "Database

239

Abstraction: Aggregation and Generaliza-
tion", ACM TODS 2, 105-133, 1979.

Smith J. M., S. Fox and T. Lancers (811,
"Reference Manual for ADAPLEX", Technical
Report CCA-81-02, Computer Corporation of
America, January 1981.

Wasserman A. I. (79). "The Data Management
Facilities of PLAIN", Proc. of ACM SIGMDD
Conference, Boston, Mass., 60-70, 1979.

Wong H. K. T. and J. Mylopoulos (77), "Two Views
of Data Semantics: A Survey of Data Models
in Artificial Intelligence and Database
Management", Infor 15, 3, 344-382, 1977.

240

