A PRAGMATIC APPROACH TO STRUCTURED DATABASE DESIGN

Luiz Tucherman*
Antonio L. Furtado**
Marco A. Casanova***

* Latin American Systems Research Institute - IBM do Brasil
** pontificia Universidade Catolica do R.J.
*** Centro Cientifico de Brasilia - IBM do Brasil

ABSTRACT

A database design methodology, based on the
concept of module, is proposed as a way of
managing the complexity of database descriptions
and, at the same time, enforcing integrity
constraints. The design of databases is carried
out in two levels of abstraction, the specifica-
tion level, which is independent of any database
management system, and the representation level,
that refines the first one into an actual imple-
mentation of the database.

At the specification level, the definition
of a module consists of a high-~level description
of the structures and operations of the module,
as well as the integrity constraints. Two module

constructors, extension and subsumption, are
used to define new modules from old ones.

Extension is similar to the usual view mech-
anism. Subsumption is a new module constructor
that permits adding new structures, operations
and constraints to those of old modules, and
redefining old operations, which may be recuired
to maintain integrity.

The representation lewvel description of a
database is carried out using the SQL/DS system,
which indicates that the modular database design
proposed can be used in conjunction with
present—day systems.

Finally, the concept of module graph is
introduced to capture the modular structure of
the database.

1. Introduction
Database design has been greatly influenced

by the
[ANSI] that suggests dividing the description of

three-level architecture proposed in

219

a database into the internal schema, the concep-
tual schema and-.the external schemas. The inter-
nal schema describes the physical organization
of the database; the conceptual schema defines
the logical organization of the complete data-
base; and the external schemas describe logical
subsets of the database relevant to different
classes of users. Consequently, database design
techniques can be roughly classified as to
whether they address physical or logical data-
base design [TF].

Logical database design may be carried out
by stepwise refinement starting with the early
stages of requirements analysis and culminating
in a oonceptual schema, based on some adeguate
data model. Orthogonal to refinements that cross
levels of abstraction (and precision), database
design methods must also provide for the fact
that databases tend to be large, complex
objects. One such method, view integration,
tries to beat complexity by synthesizing the
conceptual schema by gradually cambining schemas
that represent the knowledge (or requirements)
of the various groups of users [TF, CV, NG, WM,
YMH].

We explore in this paper an alternative
strategy, based on the oconcept of module
[Pa,LZ,ZLT], as a way of managing the complexity
of database descriptions. The design methodol-
ogy we propose has three basic characteristics.
First, it is structure in the sense that .data-
base dbjects and operations are designed gradu-

ally, lewvel by level. Seocond, it provides an

obvious way of enforcing integrity constraints,
through the notion of encapsulation [LZ]. Third,
the design of a database is carried out in two
levels of abstraction,
which uses a high~level design language and is
independent of any DBMS, and the representation
level that refines the first one into an actual
implementation of the database.

Modular database design is not a new idea,
but all references known to us [DMW, EKW, 1LMAW,
SFNC, SNF, We] tend to explore the principles,
theoretical and otherwise, of the method. We go
further and show that a modular database design
currently

the specification level

strategy is quite feasible using
existing DBMSs. We substantiate this claim by
actually showing how the strategy can be imple-
mented on top of the SQL/DS system [IBM1].

This paper is divided as follows. Section 2
carries our informal discussion on modular data-
base design further. Section 3 defines, at the
specification level, the concept of module, the
module constructors we use and the oconcept of
module graph. Section 4 indicates how a modular
description of a database can be implemented on
top of the SQL/DS system. Finally, Section 5

contains conclusions and directions for future
research.
2. Modular Database Design

We outline in this section a database

design methodology based on the ooncept of
modules. Later sections will discuss in detail
the concepts introduced here.

We begin with a brief description of
modules. At the specification lewel, the defi~
nition of a module consists of a high-level
description of the cbjects and operations of the
module as well as their properties. We consider
that the objects of a module are relations
described by relation schemas, and that the set
of consistent relations is defined via a list of
integrity constraints, in the usual way.

Operations are defined as procedures called
level programming

by valwue, using a hich

220

language, the regular programs of [Ha,CBl1,CB2].
(Reqular programs are surveyed in Appendix I,
which may be skipped on a first reading without
loss of ocontinuity). This choice is justified
on the grounds that: (i) regular programs have
a clean syntax and semantics, without departing
too much from currently existing DMLs; (ii)
reqular programs came equipped with a program-
ming logic that permits investigating correct-
ness problems that arise in module definitions;
(iii) our experience [SNFC] indicates that the
alternative approach, axiomatic specifications,
requires quite ocomplex axioms to express even
simple operations.

We stress that operations are an integral
part of module definitions in the sense that,
although users can freely query the current
value of module cbjects, users can only modify
their current value using module operations.

This discipline guarantees that no integrity
constraint is ever violated, if module oper-
ations are designed so that they provably
preserve consistency.

The representation level description of a
module indicates how to implement the objects
and operations contained in the specification
level description of the module. We shall adopt
here for the representation level the DDL/DML of
SOL/DS [IBM2], as mentioned in the Introduction.

This concludes our introduction to ' the
concept of module and we now turn to structured
database design.

At the specification level, the structure

imposed on the database by the designer is
represented by a module graph G=(V,E,r).

Briefly, G is a 1labelled directed acyclic graph
whose nodes represent modules and is such that
there is an edge from node M to node N iff
module N is constructed from module M using one
of the module constructor mechanisms; the label
assigned to N by the labelling function r indi-
cates which constructor was used. A precise
definition of module graphs will he given in the
next section.

The module graph is constructed gradually
by adding new modules to those already existing.
Modules may be added without any comnection to
previously defined modules. In this case, the
module is called primitive. But a new module
may also be defined with the help of those
already existing using two module constructors,
extension and subsumption.

We say that a module My
extending modules Ml, vee ,D% iff MO contains only
relations derived from those of MM (thus,
the relations of M, are views in the usual
sense) . Moreover, operations of MO are imple-
mented in texrms of those of Ml" ..,1%. Modules
My,...,M are not altered and remain available
for further use in module definitions. ‘'Thus,
the extension constructor is nothing more than

is created by

the usual subschema mechanism.

We say that a module M, is created by
subsuming modules Ml' ve 'Mn iff MO contains new
relations and all the relations of Ml"' "Mn'
Likewise, M, contains new operations (which may
use old operations of M,,.. "N&a as subroutines)
and all operations of Ml' P ,N&).
MO to redefine operations

we
of

However,
also allow
Ml, aee ,IVS,I.

The subsumption constructor is necessary
because sometimes, when adding new structures
and new constraints to the database, it becames
necessary to redefine existing operations so
that they also obey the new constraints. The
fundamental difference between extension and
subsumption lies in that, after M ,._..,Nﬁ,‘ are
subsumed by MO’ modules M ,...,Mn are no longer
available to construct new modules.

We will impose restrictions on how exten-
sion and subsumption can be used so that all
primitive modules and those defined by subsump-
Modules defined by exten-
sion in turn form an acyclic digraph G grafted
in the forest F. Thus, F plays the role of a
hierarchically structured conceptual schema and
G defines a structured set of external schemas,
using the ANSI/SPARC terminology.

tion form a forest F.

221

To summarize, the database design methodol-
ogy outlined provides structured descriptions of
the more traditional notions of conceptual and
external schemas. In our specific proposal,
relation schemas, as well as integrity
constraints, can be introduced in a structured,
orderly fashion that enhances the understanda-
bility of the database design. But, what is
even more important, the strategy of encapsulat-
ing relations within a set of operations
provides an effective method of enforcing integ-
rity constraints. Yet, queries remain unres-
trained as in the traditional approach [Zi].

The next sections will explore
concepts further.

these

3. The Specification ILevel

This section first gives a precise defi-
nition of the concept of module and then moves
to module constructors mechanisms and to the
concept of module graph, all at the lewel of
specification.

3.1. The Concept of Module

Let L be a first-order language containing
all ordinary symbols (such as equality) to be
used in database design.

A module is a triple M = (RS,CN,OP) where
RS is a set of relation schemas, CN is a set of
integrity constraints, and OP is a set of oper-

ations.

We now discuss each of these concepts in
detail.

Since we adopted the relational model, the
data structures of M are relations described by
a set RS of relation schemas of the fomm
R[Al,...,An], vhere R is the relation name and
Al""’An are the attributes of the schema.

For each relation schema R[Al, .o ’An]
RS, we add to L the symbol R as an n-ary predi-
cate symbol and A res./A, as unary predicate
symbols (we assume that none of these synbols is
already in L).
defined is called the language

in

The first-order language thus

of M and is

denoted by IM. We also say that IM was created
by adding the relation schemas in RS to L.

The set (N of integrity constraints of M is
just a set of wffs of IM. N necessarily
oontains, for each relation schema R[Al,.. . 'An]'
a wff of the form
VXy . .Vxn(R(xl,. corX) @ Al(xl) €... €A (%)),
called a relation schema axiam, that conveys the
idea that the interpretation of R must be a
subset of the cartesian product of the interpre-
tations of A reeerB .

Finally, operations are defined by proce-
dure definitions owver IM of the fom
f(xl,...,xm) :p (see Appendix I).

We require from module definitions that:
requirement 1: each operation in P must
preserve consistency with respect to all wffs in
CN (see Appendix I for a precise definition).
This requirement reflects the fundamental preoc—
cupation that the database should always be left
in a consistent -state [CCF].

As a matter of syntactical convenience, we
denote M=(RS,(N,CP) as follows:

module M
schemes RS;
oonstraints CN';
operations OP;
endmodule
where ON' is N without the relation schema
axioms, since these are completely fixed by the

schemes in RS.

We close this section with an example.
EXAMPLE 3.1:
We begin in this example the design of a micro
database that will continue throughout the
paper. The database stores information about
products, warehouses and shipments of products
to warehouses. Information about products and
warehouses is stored and manipulated via the
structures and operations defined in two primi-
tive modules, PRODUCT and WAREHOUSE, defined
below:

222

module PRODUCT
schemes
PROD[P# ,NAME]
constraints
¥p¥n¥n' (PROD(p,n) € PROD(p,n') = n=n')
operations
ADDPROD(p,n} :
if —3n PROD(p,n) ¢ P#(p) € NAME(n)
then PROD := {(x,y) /PROD(x,y) v (x=p € y=n)}
DELPROD (p) :
PROD := {(x,y) /PROD(X,y) € -x=p}

endmodule
Then, PRODICT is the triple P=(RS,N,OP). The
language LP of the module then has the follow-
ing distinguished symbols: a binary predicate
symbol, PROD, and two unary predicate symbols,
P#¥ and NAME. In view of the relation schema
defined, (N oontains, in addition to the wff
listed after the oconstraint clause, the follow-
ing relation schema axiom:
¥pvn (PROD (p,n) = P#(p) € NAME(n))
The set OP consists of the procedure definitiors
listed after operations.
Module WAREHOUSE is defined likewise:
module WAREHOUSE
schemes
WAREHSE[W# ,LOC]
constraints
WwWwWcWe' (WAREHSE (w,c) ¢ WAREHSE (w,c') = c=¢')
operations
OPEN{(w,c) :
if ~ 3c' WAREHSE (w,c') £ W#(w) € LOC(c)
then WAREHSE :=
{(x,y) /MAREHSE (x,y) Vv (x=w € y=c)}
CLOSE (w) =
WAREHSE := {(x,y) /WAREHSE(x,y)ec - x=w}
endmodule
This concludes the example.

3.2. Module Constructors

Let L be again a fixed first-order language
containing all ordinary symbols. let Mi =

(Rsi,CNi,OPi) , i=1,...,n, be modules. Assume

that M, and Mj have no relation names in cammon.
The extension oonstructor captures the

usual subschema mechanism and may be used to

redefine or hide structures as well as oper-

ations of o0ld modules. We define a new module M

by extension of Ml’ <o M) as follows:

(1) module M extends Ml,...,lvs1 with

RSO ;

constraints ("_NO;

schemes

operations OPO;

using
views VW;
surrogates SR;
endmodule

This constructor actually has two parts. The
triple (RSO,CNO,OPO) defines a new module My in
the sense of Section 3.1.
relation name of MO is used in Mi’ i=l,...,n.

The pair (W,SR) then couples My to
Ml" ..,r-g] in the following sense. Let IM be the
language cbtained by adding all relation schemas
of MO'Ml""'Mn to L. Let OP be the union of
OPys...,0P (i.e., OP contains all procedures
defined in Ml""’r%)' W oontains, for each
scheme R[Al, e ,Pm] in RSO, a view definition,
which is a statement of the form R[Al,...,Ak]:Q,
where Q is a wff of IM with n free variables
ordered XyrenerXee We interpret Q as defining R
in texms of the relation schemas of Ml" .o ’Mn'
SR contains,
f(yl,...,ym) :p in OPy, a surrogate, which is
again a procedure definition over IM and OP of
the form f(yl,...,ym) :q, (that is, q is a regu-
lar program over IM that may contain calls to
the procedures defined in M ""’Mn) . We under-
stand £(yy,... ,ym) :q as defining f(y,,... ,ym) :p.
In other words, f(yl,. .. ,ym) :p 1is the operation
the user believes he is wusing, but it
f(yl,. ..,ym) :g that actually modifies the data-
base. This remark should be kept in mind
throughout the rest of the paper.

We require that:
requirement 2: if f(yl,...,ym) :q 1is the surro-
gate of £(yy,...,y,):p then q is Vit-equivalent to

We assume that no

for each procedure definition

is

223

p (see Appendix I for a precise definition);
requirement 3: if f(yl,...,ym) :g is a

surrogate, then q can only modify the values of
schemes in Moo through calls to the oper-
ations defined in Ml’ .o .,Mn;

requirement 4: for each wff P in ON,, P’ must
be a logical consequence of (I»Il,...,CNn, where
P' is obtained fram P by replacing each atomic
formula of the form R(zy,... ,zk) by
Q[Zl/xl, .. .,zk/xk], where R(A,,... ,Ak]:Q is a
view definition, and the list of free variables
of Q is Kyreoor¥y.

Requirement 2 gquarantees that g correctly
implements p. That is, p defines an operation
of the module as seen by the user of the module.
However, since this operation is on virtual
cbjects (the views), it has to be implemented by
operations on the base objects. This implementa-
tion is described by g. Requirement 2 can then
be interpreted as saying that p and g must have
the same effect as seen fram the user's point of
view. In other words, we avoid the so-called
view update problem [DB,SF] by passing it back
to the DB designer. Requirement 3 quarantees
that each surrogate preserves consistency with
respect to C’Nl,...,a\ln. Recquirement 4 guarantees
that the integrity constraints of M follows from
those of M,.. .,Mn and the view definitions.
Thus, no local constraints can really be defined
in a module created by extension.
cbserve that requirements 2, 3 and 4 guarantee
that each operation in 0P, preserves consistency
with respect to CNO.

Further requirements will be imposed in
Section 3.3.

EXAMPLE 3.2:
We define a new module, DELIVERY, by extending
the module SHIPMENT of Example 3.3 below as
follows:
module DELIVERY extends SHIPMENT with
schemes
DELVRY[P#,W#];
constraints
/* (none) */

Finally, we

operations
DEL(p,w) :
DELVRY := {(x,y)/ DELVRY(X,v) €
-~ (x=p £ y=w)}
using
views
DELVRY[P#,W#] : dq SHIP(p,w,q)
surrogates
DEL (p,w) :
CANSHIP (p,w)
endmodule
This concludes the exarple.
We now turn to the subsumption constructor.
begin by observing that it should be used to add
new relation schemas and integrity constraints,
and to redefine previous operations (which may
be required to maintain integrity). We indicate
that a new module M is created by subsuming
Ml’ e 'Mn as follows:
(2) module M subsumes Ml’ . "'Mh with
schemes RSy ;
constraints Q\]o;
operations OPO ;

We

using
replacements RE;
endmodule
We take RS, to be a set of relation schemas and
assume that no relation name in RSy occurs in
Ml P ,Mn.

Let IM again be the language obtained by
adding all relation schemas of M. .,l%- and
those in 180 to L. Let OP again be the union of
OPl,...,OPn. Then, CNO is a set of wffs over IM
and OPo is a set of procedure definitions over
IM and OP.

RE is a possibly empty set of clauses of
the form

g(Zl,...,Zk) is replaced by f(y]_:--_-:yk)= p
where g(zl,...,zk) is a procedure defined in Mi,
for some i in ([1,n], and f(yl,...,yk) :pis a
procedure definition over IM and OP. We treat
£lyyr.- .,yk) :p as a new procedure definition of
M, just as those in OP0 After the definition of M,
operation ¢ cannot be called directly anymore.

224

The module M defined by the expression in
(2) is then the triple (RS,CN,OP) where RS is the
union of Rso,...,RSn, CN is the union of CNO, ceey
C.‘Nn and OP is the union of OP(S,OP',...,OPI,'l where
Ol-‘i is Op; without all procedure definitions that
were redefined in clauses of RE,for i=l,...n,and
0P6 is the set of all new procedure definitions
contained in OP0 or in clauses of RE.

We require that:
requirement 5: each operation in
consistency with respect to Ny s

OP preserves

requirement 6: each operation in OP can only
modify the values of schemes in Ml,...,lv&]
through calls to the operations defined in
Ml, . ,Mn;

requirement 7: each operation of Mi’ for some

i, replaced in a clause of RE must not have been
used in the surrogates clause of any previously
defined module. Recuirements 5 and 6 guarantee
that each operation in OP preserves consistency
with respect to ON. Requirement 7 guarantees
that operations redefinitions will not propagate
to other modules.
Further requirements will be imposed in
Section 3.3.
EXAMPLE 3.3:
We can add a relationship between PRODUCT and
WRAREHOUSE, called SHIPMENT, as follows:
module SHIPMENT subsumes PRODUCT,WAREHOUSE with
scheres
SHIP[P#,W#,QTY]
constraints
VpWwigiq' (SHIP (n,w,q) € SHIP(p,w,q") = g=g')
Vp(3wdq SHIP (p,w,q) = 3n PROD(p,n))
W (3pdg SHIP(p,w,q) = Jc WAREHSE(w,C))
operations
PDDSHIP (p,w,q) ¢
if In PROD(p,n) € 3c WAREHSE (w,c)
3q' SHIP(p,w,q") € QTY(q)
then SHIP:= {(x,y,2z)/SHIP(X,y,z) V
(x=p € y=w € z=q) };
CANSHIP (p,w) :
SHIP := {(x,y,2)/ SHIP(x,y,2) € ~(x=p € y=w)};
using

replacements
CLOSE is replaced by
CLOSEL (w) :
if -3p3q SHIP(p,w,q) then CLOSE(w);
DELPROD is replaced by
DELPRODL (p) :
if - dwidqg SHIP(p,w,q) then DELPROD(p);
endmodule
This concludes the example.
We close this section by observing that our
module constructors are very general mechanisms
that subsume the database abstractions - aggre-
- of
This reflects our point of view

gation, generalization and correspondence
(ss,DMA,SFNC].
that these three abstractions are just a sample
constructors obtained by
restricting the mappings that can be used to
build new modules.
become interesting when certain properties of
module constructors are sought [DMW].

of the variety of

However, such restrictions

3.3. Module Graphs

As briefly discussed in Section 2, the
structure imposed on the database by the design-
er is represented by a module graph, that is, a
labelled directed acyclic graph whose nodes
represent modules, indicate
relationships between modules and whose label-
ling function assigns tags to nodes indicating
how the module was created.

To define module graphs
we use the concept

whose edges

the new
of active
Intuitively, a module M is active in a

and
requirements,
module.
module graph G iff M is either primitive
defined by subsumption, and in either case M was
not subsumed by another module.

We capture both the dynamic aspects of
module graphs and the new requirements on module

or

constructors in the following recursive defi-

nition of module graphs:

DEFINITION 3.1: The set of module graphs,
together with their sets of active modules,
is recursively defined as follows:

(1) the empty graph is a module graph with an

225

(2)

(3)

(4)

empty active module set;

Let G=(V,E,r) be a module graph with active
module set A. ILet Mbe a primitive module
not in V such that no relation name of M
occurs in a module in V. Then G'=(V',E',r')
is a module graph with active module set A',
where:

V' =V u{M};
LB E;
r'(N) =r(N), if Nis in Vv,
and r'(M) = 'primitive’;
A' = A u {M}.

Iet G=(V,E,r) be a module graph with active
module set A. Let M be a module obtained by
extension from Ml""’r% such that M is not
in Vv and Ml,...,l\/s,1 are in V, and no relation
name of M occurs in a module of V.
Suppose that:
requirement 8:
either defined
active set of G.
Then, G'=(V',E',r') 1is a module graph with
active module set A', where:

V' =v u {M};

E'=E v {M,M/i=l,... n};

r'(N)=r(N), if N is in V,

and r'(M)='extension'.

for each i in [{1,n], Mi is

by extension, or in the

A' = A;
Let G=(V,E,r) be a module graph with active
module set A. Let M be a module obtained by
subsuming Ml' .. .,Mn such that M, is not in V
and Ml""’Mn are in V, and the relation
names of M are those of Ml""’Mn plus a new
set of relation names not occurring in any
module in V.
Suppose that:
requirement 9: for each i in [1,n], Mi is
in the active set of G.
Then, G'=(V',E',r') is a module graph with
active module set A', where:

V' =V u {M};

E' =E v {(M,M/i=l,...,n};

r'(N)=r(N), if N is in V,

and r'(M) = 'subsumption'.

A' =A v M} - {Ml,...,Mn}. [}
The result of module constructors is captured by
G in the sense that there is an arc from N to M
iff the definition of M depends on N. Hence, if
M is a primitive module, it has no ingoing arcs
and if M extends or subsumes Ml,...,l% then
there is an arc from M, toM, for each
..,n. Since definitions must not be circu-
which can easily be

i=1,.
lar, G has to be acyclic,
proved fram the definition.

The ooncept of a module graph would be

PRy By PR TR Ry

complemented by the concept of an oOperation
graph representing the calling relationship
between operation specifications. Such graphs

would be very similar to the D-graphs of [Wel.
However, for reasons of brevity we omit its
definition.

illustrates

The following example the

construction of module grarhs.

EXAMPLE 3.4:
The module graph corresponding to the modules
in Examples 3.1 to 3.3 is shown below. The

following notational convention is wused to
represent the labelling function: an oval,
rectangle or double rectangle represents a node
labelled 'primitive', 'extension' or 'subsum-

tion', respectively.

(o) G)
P

SHIPMENT

¥
This concludes the example. fJ

The nodule graph captures the camplete
modular structure of the database. However, not
all modules are visible to users, that is, the
Likewise,

user cannot query all modules in G.
since same operations are redefined whereas
others have surrogates, not all operations can
be called directly to modify the database, but
only those that are active.

DEFINITION 3.2: Let G=(V,E,r) be a module graph

226

with active module set A.

the modules in A form the conceptual schema
corresponding to G, and the set of all
modules in V defined by extension form the
set of external schemas of G. These are the
modules that are visible to the users.

The set of active operations of G consists

(a)

(b)

of the set of all operations of active
modules of G, plus the set of all surrogates
of modules defined by extension in G.

The definition above captures the meaning
of a module graph G=(V,E,r) from the user's
point-of-view. Another question we may ask is
vhat is the formal semantics of the database
described by G. We now briefly discuss this
point. We begin by cbserving that we can asso—
ciate with G a first-order theory T=(LT,AT) and
a set of regular programs RP over LT, where:

(1) LT is the first-order language obtained by
adding all relation schemes in modules in V
to the base first-order language L;

(ii) AT is the set of all integrity constraints
in modules of G,
for views;

(iii) RP is the set of procedure
contained in modules in V.

Now we cbserve that the semantics of the data-

base described by G is fixed once a universe U

for LT (see Appendix I) is fixed. We

assume that each structure of LT in U satisfies

plus the defining axioms

definitions

mst

all view defining axiams so that views can
indeed be considered as defined synbols of T.

Thus, each structure in U oorresponds to a data-
base state, together with the appropriate values

for views and for the ordinary symbols. Given U,

the meaning of all cperations of modules in V is

also fixed by definition (see Appendix I).

The reader is referred to [DMW,EKW] for an
alternative formal discussion on modular data-
base specifications.

Finally, we observe that requirements 1, 2
and 5 depend on the universe U that fixes the
meaning of the database. However, if U
chosen so that the module graph satisfies these

is

requirements as well as all others, then all
active operations indeed preserve consistency.
THEOREM 3.1l: Let G=(V,E,r) be a module graph.
Let U be the universe that fixes the meaning
of the database. Suppose that requirements 1
through 9 satisfied during the
construction of G (for this choice of
Then, every active operation of G

were

universe) .
preserves consistency with respect to the set
of all constraints defined in modules of G.
Sketch of Proof
Follows by induction on the nmumber of nodes of
G, using requirements 1 through 9 (see [TFC]). O

We can also prove that the set of primitive
modules and those defined by subsumption form a
hierarchy.

PROPOSITION 3.2: Let G=(V,E,r) be a module
graph. Let G'=(V',E') be the subgraph of G
spanned by the set of all nodes of G labelled
with 'primitive' or 'subsumption'. Then, G’
is a forest.

Sketch of Proof

Follows directly from requirement 9 and Defi-

nition 3.1. 0

This concludes our discussion about struc-

tured database design as far as the specifica-
tion level goes. The next section explains how
to represent these ideas in a concrete environ-

ment.

4. The Representation Level
This
descriptions of modules from the specification
level to the representation level. As already
we adopt SQL/DS
as our target system. We begin with a brief
description on how SQL/DS facilities can be used
to represent module and module constructors.
Then, we exemplify the discussion by showing the
representation of the SHIPMENT module.

Consider first a oprimitive module M=
(RS,CN,0P). Each relation schema is RS can be
defined directly in SQL/DS through the 'CREATE
TARLE' command,

section discusses how to map

mentioned in previous sections,

227

EXAMPIE 4.1:
The schema of Example 3.3 would be defined as
follows:

CREATE TABLE SHIP

(P¥ CHAR(10) NOT NULL,
w# CHAR(10) NOT NULL,
QTY INTEGER)
IN dbspace-name; . 0

Constraints in N do not generate state-
ments in SQL. Indeed, the role of constraints is
limited to a declarative definition of the
semantics of the database, which is procedurally
implemented through the definition of the oper-
ations.

Operations are implemented as PL/I proce-
dures with embedded SQL statements.
using the following skeleton for the procedures
(although we do not show it here for reasons of

We suggest

clarity, error routines should also be present
in the actual implementation of operations):
PROGRAM-NAME : PROC (parameter list)
delcaration of SQL/DS variables
verification of conditions that prevent
violation of integrity constraints
effect of the operation
update of the database using DBMS primitives
or
call to subsumed operaticns
return to the calling program
END
Note that there is no COMMIT or ROLIBACK state-
ments in the above skeleton. In fact, we do not
define an operation as an SQL/DS work unit,
since it sbould be the user's responsability to
define which sequences of operations constitute
Hence, the user
is responsible for establishing the initial
connection with SQL/DS for authorization and for
concluding his transaction with COMMIT or ROLL~
BACK,
action. A prologue and epilogue for

a transaction (or work unit).

depending on the success of his trans-
these
purposes could be implemented as PL/I macros.
This concludes our brief discussion about primi-

tive modules.

We represent a module defined by extension
as follows. The schemes,constraints and oper~
ations clauses of the module definition may be

igrored. Each view definition in the views
clause is represented directly by the 'CREATE
VIEW' comand of SQL/DS.

EXAMPLE 4.2: The L[ELVRY view of Example 3.2

would be defined as follows:
CREATE VIEW DELVRY AS

SELECT P#, wW#

FROM SHTP; .11
Operations defined in the surrogates clause are
implemented as normal operations,
ability to call predefined operations from other
predefined operations provided by SQL/DS, if it
is the case. The fact that each view update is
accompanied by an implementation (a surrogate)
in terms of the base relations has two advan-
tages. First, the restrictions imposed by SQL/DS
on view updates do not affect our discussion.
Second, users will still interact with the data-
base as if they were actually updating views.

Ve now turn to the subsumption operator. A
module M defined using the subsumption operator
is also straightforward to represent. Each new
scheme and each new operation or operation
redefinition of M is represented as for primi-
tive modules.
how to control access to redefined operations,
since users cannot call them directly anymore.
This restriction is implemented by simulating a
CONNECT statement inside a redefined operation
so that only the DBA has access to it. (The
authorization mechanisms of SQL/DS camnot be
used for this purpose because the CONNECT state-
executed by the user's program and
remains in effect for the entire execution of
the transaction. This solution was, in fact, the
first one adopted and did not work To
simulate a OONNECT, each user must pass as addi-
tional parameters his ID and password. VWhen an
operation p is redefined, its code is altered to
explicitly test if the user ID and password are
those of the DBA. If not, then the operation is

using the

The interesting point concerns

ment is

out) .

228

rejected. Moreover, if the new operation g
(replacing the old operation p) will call p,
then g must call p with the ID and password of
the DBA. This strategy is reflected in the
implementation of CIOSEl and DELPROD1 shown in
Example 4.3 below.

This concludes our brief discussion on the
representation of modules. We close this section
by exhibiting the complete representation of the
SHIPMENT module of Example 3.3.

EXAMPLE 4.3: The SHIPMENT module of Example 3.3
is represented as follows:
a) Representation of the schemes:

CREATE TABLE SHIP
(P# CHAR(10) NOT NULL,
w# CHAR(10) NOT NULL,
QTY INTEGER)
IN dbspace—-name;

b) Representation of the operations:

ADDSHIP :PROC(P# ,W# ,QTY ,USERID, PASSWD, RETCODE) ;
EXEC SQL BEGIN DECLARE SECTION;

DCL Py CHAR(10) ;
DCL, W# CHAR(10) ;
DCL QTY FIXED BIN(31);

DCL, COUNTO FIXED BIN{(31);
DCL COUNT1 FIXED BIN(31):
DCL COUNT2 FIXED BIN(31);
EXEC SQL END IECLARE SECTION;
DCL USERID FIXED CHAR(8);
DCL PASSWD FIXED CHAR(8);
DCL RETCODE FIXED BIN(31);
/*
execution of SQL/DS statements
*/
EXEC SQL SELECT COUNT(*) .INTO :COUNTO
FROM SHIP
WHERE P# = :P# AND W# = :W#;
EXEC SQL SELECT COUNT(*) INTO :COUNT1
FROM PROD ’
WHERE P# = :P#;
EXEC SQI. SELECT COUNT (*)
FROM WAREHSE
WHERE W# = :W#;

INTO :COUNT2

/*
update of the database, provided that no
constraint will be violated
(see Exarple 3.3 for constraint definition)
*/
IF QOUNTO =0 €
/* check violation constr. 1 */
COUNT1 = 0 €
/* check violation constr. 2 */
COUNT2 ~= 0
/* check violation constr. 3 */
THEN
DO;
EXEC SQI, INSERT
INTO SHIP VALUES (:P#,:W#,:QTY);

/* SOL/DS return code ignored */
RETCODE = 0; /* indicates normal return */
END;

ELSE
RETCODE = 1;
/* indicates integrity violation */
RETURN;
END;

CANSHIP :PROC (F#,W# , USERID, PASSWD, RETCODE) ;
EXEC SQL BEGIN DECLARE SECTION:
DCL p# CHAR(10);
DCL W# CHAR(10) ;
EXEC SOL END DECLARE SECTION:
DCL USERID FIXED CHAR(8):
DCL PASSWD FIXED CHAR(8);
DCL RETCODE FIXED BIN(31):
/*

*/
EXEC SQL DELETE FROM SHIP
WHERE P# = :P# AND W# = :W#;

/* SQL/DS return code ignored */
RETCODE = 0; /* indicates normal return */
RETURN;

END;

CLOSEL : PROC (W# , USERID, PASSWD , RETCODE) ;
DCL CLOSE ENTRY (CHAR(10) ,FIXED CHAR(8),
FIXED CHAR(8),FIXED BIN(31)) EXTERNAL;
EXEC SQL BEGIN DECLARE SECTION;
DCL, W# CHAR(10) ;
DCL, COUNT FIXED BIN(31):;
EXEC SQI, END DECLARE SECTION;
DCL USERID FIXED CHAR(8);
DCL PASSWD FIXED CHAR(8);
DCL RETCODE FIXED BIN(31);

operation effect

DCL DBAID FIXED CHAR(8);
DCL DBA PASSWD FIXED CHAR(8);
/*
execution of SQL/DS statements
*/
EXEC SQL SELECT COUNT(*) INTO :COUNT
FROM SHIP
WHERE W# = :W#;
/*

execution of the CLOSE operation under new
conditions that reflect the new constraints.
(CLOSE 1is called as if the user were the
DBRA since users should not have access to

it anymore)
*/
IF COUNT = 0 THEN
DO;
DBATD = 'YYYYYYYY';

DRA_PASSWD = "XXXOXOXXXXX';

CALL CLOSE (W#,DBAID,DBA PASSWD,RETOODE) ;
END;

ELSE

RETCODE = 1;

/* indicates integrity violation */
RETURN;

END;

DELPRCD] : PROC (P# , USERID, PASSWD, RETCODE) ;
(Structured identically to CLOSEL)

229

This concludes the example arnd this section.

5. Conclusions and Directions for Future

Research

In this paper we outlined a methodology
that provides mechanisms both to structure the
logical design of databases, using the concept
of module, and to enforce consistency preserva—
through the encapsulation of database
structures within predefined operations. Unlike
previous work on modular database design,
covered implementation aspects of the methodol-
ogy, rather than concentrating on theoretical
issues.

Central to the development of the paper was
the selection of module constructors that could
be easily implemented and yet helped structure
the database design. The implementation of such
constructors could be carried out further by
designing a preprocessor that would automat-

tion,

we

ically do some of the translation from module
specifications to SQL/DS statements outlined in
Section 4.

Finally, we observe that modular database
design acquires another (and considerable)
significance in the context of database evolu-
tion, since variations of subsumption could also
be used to change the database
response to evolutions in the application.
ACKNOWLEDGEMENTS :
C.J. Date

discussions.

design in

The authors are grateful to

for helpful suggestions and

REFERENCES

[ANSI] "Study Group on Data Base Management Sys-
tems: Interim Report", FDT 7.2,ACM (1975)
M.A.Casanova,P.A.Bernstein. "The logic of
a Relational Database Manipulation
Language”. Proc. 5th AM Symp. Principles
of Procramming Languages (1979)
M.A.Casanova, P.A.Bernstein.
System for Reasoning about Programs
Accessing a Relational Data Base". AMM
Trans.on Programming Languages 2,3 (1980)
M.A.Casanova, J.M.V. de Castilho and
A.L. Furtado. "Properties of Conceptual
and External Database Schemas". Proc. of
the TC 2 ~ Working Conference on Formal
Description of Programming Concents II,
Garmish-Partenkirchen (1982)

[CB1}
"A Formal

[cB2]

[CCFI

[ev]

(DMWY]

[EKW]

[Fs]

{pB]

(Ha]

{reM1]

[1IBM2]

[1MWW]

[(Lzl

[NG]

[Paj

[SFNC]

[SNF]

[ss]

[TF]

[TFC]

[wel

CwMl

[ywH]

M.A.Casanova, V.M.P. Vidal. "Towards a
Sound View Integration Methodology".
Proc. 2nd ACM SIGMOD/SIGACT Conf. on
Principles of Database Systems (1983).

W. Dosch, G. Mascari, M Wirsing. "On the
Algebraic Specification of Databases".
Proc. 8th Int'l Conf. on Very large Data
Bases (1982)

H. Ehrig, H. - J. Kreowski, H.weber.
"Algebraic Specification Schemes for Data
Base Systems". Proc. 4th Int'l Conf. on
Very large Data Bases (1978)

A.L. Furtado, K.C. Sevcik. "Permitting
Updates through Views of Data Bases”.
Information Systems 4 (1979)

U. Dayal, P.A. Bernstein, "On the Correct
Translation of Update Operations on

Relational Views". ACM TODS 7.3 (1982)
D. Harel. "First-Order Dynamic Logic",
Lecture Notes in ter Science (1979)
IRM Pub. SH24-5014. "SQl/Data System
Plamning ard Administration”

IEM Pub. SH24-5018. "SgL/Data System

Application Programming"

P.C. Lockemann, H.C, Mayr, W. H, Weil,
W.H. Wohlleber. "Data Abstractions for
Data Base Systems".ACM Trans. on Database
Systems, 4.1 (1979)

B. Liskov, S. Zilles. "Specification
Techniques for Data Abstractions”. IEEE
Trans. Software Engineering SE-1 (1975)

S.B.Navathe, S.G.Gadgil. " A Methodology
for View Integration in lLogical Database
Design",Proc.8th Int'l Conf.on Very Large
Data Bases (1982)

D. Parnas. "On the Criteria to be Used in
Decomposing Systems into Modules".
CACM 15.12 (1972)

U. Schiel, A.L. Furtado, E.J. Neuhold,
M.A.Casanova. "Towards Multi-level and
Modular Conceptual Schema Specifications"
Technical Report Institut fur Informatik,
Universitat Stuttgart (1982)

C.S dos Santos, E.J.Neuhold, A.L.Furtado.
"A Data Type Approach +to the Entity-
Relationship Model". Int. Conf. on the
Entity-Relationship Approach to Systems
Analysis and Design (1980)

J.M. Smith, D.C.P. Smith. "Database
Abstractions: Aggregation and Generali-
zation". ACM TODS 2.2 (1977)

T.J.Teorey, J.P.Fry, "Design of Database
Structures", Prentice-Hall, Ihc. (1982)

L.Tucherman, A.L. Furtado, M.A. Casanova.
"A Pragmatic Approach To Structured Data-
base Design", Departamento de Informatica
Pontificia Universidade Catdlica, Rio de
Janeiro, Brazil (1983).

H. Weber., "Modularity in Data Base Sys-—
tems Design". Proc. Joint IBM/Univ,
Newcastle upon Tyne Seminar (1979)

G. Wiederhold, R. El-Masri. "A Structural
Model for Database Systems”, TR STAN-CS-
79-722, Stanford Univ. (1979)

S.B. Yao, V.E. Waddle, B.C. Housel, "View
Modelling and Integration using the

230

IEEE Trans. on
SE-8.6 (1982)

Functional Data Model".
Software Engineering,

[zil S.N.Zilles."Types,Algebras and Modelling"
Proc.of the Workshop on Data Abstractions
Data bases and Conceptual Modelling,
Pingree Park, Colorado (1980)

[zrr] S.N. Zilles, P. ILucas, J.W. Thatcher.

"A Look at Algebraic Specifications™.
Research Rep. RJ 3568 IBM Thomas J.Watson
Research Center (1982)

APPENDIX I

let L be a first-order language with a set
of distinguished constants, called scalar
program variables, and a set of distinguished
n-ary predicate symbols, called n~-ary predicate
program variables, for each n > 0. (The relation
names must be chosen from this special set of
predicate symbols). A universe U for L is a set
of structures of L satisfying three conditions:

(1) any two structures in U differ only on the
values of the scalar or predicate program
variables;

(ii) for any I in U, any scalar program variable
x and any element e of the domain of I, there is
Jin Usuch that I and J differ only on the
value of x, which is e in J;

(iii) for any I in U, any n-ary predicate
program variable R and any n-ary relation r over
the domain of I, there is J in U such that I and
J differ only on the value of R, which is r in
J.

These conditions guarantee that, for example, if
the value of x is changed to e, the resulting
structure is in U. That is, the universe is
closed under assignment, so to speak. Note
that, by (i), all structures in U have the same
domain.

The set of regqular programs over L,
is then defined inductively as follows:

RP[L],

tax
(1) For any scalar program variable x of L and
any term t of L, x:=t is in RP[L] and is
called an assigrment;
(2) for any n-ary predicate program variableR
of Land any wff P of . with a list
RypeenrXy of free variables,

r:={ (xl,...,xn)/P} is in RP[L]and is called

a relational assignment;

(3) for any wif P of L, P? is in RP[L] and is
called a test;

(4) for any p and g in RP[L], p vqg, p ; g and
p* are in RP[L] and are called the union of
p and g, the composition of p and q and the
iteration of p, respectively.

For a given structure I of L and a symbol s of
L, let I(s) dencte the value of s in 1I.
Likewise, let I(t) be the value of a term t of L
in I.

semantics: for a fixed universe U of L, the
meaning of programs in RP[{L] is given by a func-
tion m assigning to each r in RP[L] a binary

relation m(r) in U as follows:

(5) m(x:=t) = {(I,3)/ J is equal to I, except
that J(x)=I(t)}

(6) m(R:={ (xl,...,xn)/P})
to I, except that J(R) is the n-ary ©
defined by P in I}

(7) mp?) = {(I,1)/ P is valid in I}

(8) m(pug) =m(p) v mig (union of both bina-
ry relations)

(9) m(p;q) = m(p) o m(q)
binary relations)

(10) m(p*) = (m(p))*
closure of m(r))

We proceed by introducing the notion of
procedures. lLet C be a set of procedure decla-
rations, which are statements of the form
f(xl,...,xm), where £ is a new symbol not in L

and Xy, ... 1 X, are scalar or predicate program

variables of L. The set of reqular programs over
L and C, RP[L,C], is defined as before, with one
additional rule:

(11) if f(xl,...,%n) is in C, then f(zl,...,zm)

is in RP[L,C], where z; is a termof L, if

(composition of both

(reflexive and transitive

Xy is a scalar program variable of L, or z;
is of the form {(yl,...,yk)/P}, if z; is a
k-ary predicate program variable of L;
Meaning is assigned to programs in RP[L,C]
as follows. First, we associate a procedure
body p with each procedure declaration
f(xl,...,xm) in C, where p is a program in

RP[L,C]. Then, we define a
before, except that

(12) m(f(zl,. ..,zm)) =

m(xl:=z:L HE

function m as

PRI p).

We may also introduce some familiar constructs
by definition as follows:
(13) if P then r else s
(14) if P thenr

(15) while P do r

This completes our brief description of regular
programs. We refer the reader to [CBl,CB2] for
a fuller discussion.

(P?2;x) v (P2?;s)
(P?;xr) v -P?
(P?;1)*;-P? v -~P?

We close this appendix with two concepts. Let W
be a set of wffs. We say that program P
preserves consistency with respect to W (in a
given universe U) iff for any (I1,J) in m(p), if
I satisfies all wffs in W, then so does J.

Iet V be a finite set of view definitions,

Ri[Ail,...,Aimi]:Pi, i=l,...,n. Let r be the

program -

(16)R, := 1xl/Pl} Poeee 3 Roi= {xn / Pn}

let p and g be two programs. We say that p is

V-equivalent to q iff

(1) if (I,J) is in m(p;r) then there is (I,K) in
m(r;q) such that the values of R; in J and K
are the same, for each i=l1,...,n;

(ii) if (I,K) 4is in m(r;q) then there is (I,J)

in m(p;r) such that the values of Ry in J
ard K are the same, for each i=l,...,n;

Intuitively, program r constructs all views in V
fram the base relations. Program r;q captures
the idea that view update g is applied to the
views constructed by r from some initial state
I. Program p;r translates the view update by
applying same update p to the base relations and

constructing the views using r. If p is
V-equivalent to q, then we consider that p is a
faithful translation of gq. This concludes our
brief summary of the definitions concerning
regular programs that we need in the body of the
paper.

231

