
THE RECONSTRUCTION AND OPTIMIZATION OF TRIE HASHING FUNCTIONS

Leen Torenvliet and P. van Emde Boas

University of Amsterdam, Depts of Mathematics and Computer Science
Roetersstraat 15, 1018 WB Amsterdam, the Netherlands.

Abstract: We propose an adaptation to the trie
hashing algorithm published by W. Litwin in
1980. This adaptation extends the algorithm
so that it will save necessary information on
secondary storage to reconstruct the hashing
function after loss of information (E.G.,
system crash or termination of a find/insert
program). An algorithm is given to reconstruct
the trie from the information saved, and an-
other for optimizing the reconstructed trie.
A mathematical analysis of the trie data
structure is given, making visible the essen-
tial structural properties of these tries;
based on this analysis correctness of the
algorithms presented can be established.

0. INTRODUCTION.

In 1980 Litwin [4] proposed a new algorithm
for hashing. Contrary to usual hashing this
algorithm stores records in order. Furthermore
the file may be highly dynamic, even entirely
resulting from a sequence of insertions. The
load factor stays typically about 70%. The
search for a record with a given key is per-
formed in only one disk access. Litwin claims:
"No other technique attaining such performance
is known." The algorithm dynamically creates a
hashing function which might be represented by
a kind of trie 131. During insertions and
searches this trie is entirely kept in core.
Hence after a system crash or termination of
the program that constructs the trie,the entire
construction giving access to the file is lost.

As files may attain millions of records,
it seems reasonable to think that the informa-
tion in the file may not only be of use to the

running program but may be used by subsequent
programs,which are updating this information. Even
if there is only one program which builds this
information and runs forever, a system crash might
spoil the created hashing function and we would
be forced to start all over again from scratch.
Each program that wants to update the information
in the file would have to reconstruct the trie
giving access to this file. There are essential-
ly two ways in which we can enable programs to
perform this reconstruction:

First the original construction method can
be used by reinserting all records on the disk.
This is a rather slow and tedious job which usual-
ly will require many disk accesses. Alternative-
ly we can, during construction of the original
trie, take steps to save on secondary storage in-
formation necessary for reconstruction of the
trie. Assuming that the original trie may be
kept in core entirely, regaining this information
will cost only one disk access.

Our paper investigates this second approach.
In addition to the reconstruction, we would like
the new trie to be as efficient as possible with
respect to search time in the trie.

The paper is organized as follows: Section
1 gives an outline of Litwin's original paper.
Section 2 presents a mathematical formalization
of the underlying information structure which en-
ables the trie to perform its role. The main in-
variant of the trie date structure is extracted,
and the information necessary for reconstruction
is obtained. The correspondence between the
tries described by Litwin and their mathematical
formalizntions are the subject of section 3.
Based upon this correspondence the reconstruction
and optimization algorithms are obtained and seem
to be correct. Due to lack of space known perfor-
mance analyses are omitted. Section 4
presents some test results. Finally, in section
5 concluding remarks and indications of subjects
for further research are provided.

1. LITWIN'S TRIE HASHING ALGORITHM.

We start this section with a list of defini-
tions of basic concepts which are used in the
sequel.

142

1.1 Definitions and notations.

I.,., Digits - given a finite, totally ordered

alphabet I: the elements of C are

called digits ; C contains a minimal

element denoted ' ' (space) and a -
maximal element denoted ':' .

1.1.2 Strings - the elements of I* will be

called strings.

1.1.3 Length - the length of the string

s = sOs,...sk, denoted I(s) equals

k. Theempty string has length -1 .

1.1.4 Key space - the subset K c C* will be

called a key space provided K con-

sists of all strings over C of length

n for some natural number n. This

number n is called the Zength of K,

and members of K are denoted

k = kOk,...k . The length of K is

denoted l(K;. By convention strings

S with I(s) < n are considered as

members of K by extending them with

spaces: s = s 0 . ..s.(~) becomes

k = so...s ,(s)'--(...'-'.

1.1.5 Lex:icographicaZ order - given the

ordering c on C* the Lexicographic-

aZ order, denoted c
c

on C* is de-

fined by:

V s s,EZ*is<Es’*3j[V. .[s;=s;l
l<J

& sj<s;lI
Thfs induces a total order nn a key

space K.

1.1.6 Initial segment - an element

s = s . ..s 0 k is called an initial

se-gment of s' = s'...s' 0 m iff k S m

and s. =
1

si for O<isk. If k<m

then s is called a proper initia2

segment of s' , notation s c s' .

1.1.7 Bmkets - recordswillbe storedinorder

of theirkeysonsecondary storage called

disk. A disk is divided into cells

called buckets. Buckets are numbered

0,1,2,... . The number of a bucket is

called its bucket address. Each bucket

may contain the same number of records

called bucket capacity, denoted b .

1.1.8 Search - a search for a record consists

of two steps:

i) an address computation by an algorithm called

key-to-address-transform fktat)

ii) a disk access bringing to the main memory

called core a bucket containing at most b

records for examination.

1.1.9 CoZZision - a coZZision occurs when a

record is inserted into a bucket which

is already full since it contains b

records. This bucket will be divided

in two parts. The key whose position

in the ordered sequence of b+l keys

is closest to (b+1)/2 will be called

the middle key, notation c' .

1.1.10 !/odes - a node is a structured value

with the following fields:

i) two pointers (UP,LP) called

upper- and lower pointer respective-

lY

ii) a pair called digit fieZd (DF)
consisting of a digit nwnber (DN)

in B and a digit value (DV)

in I:.

Pointers may be either a reference to

a node or bucket address, or a special

value niZ indicating that the pointer

refers to nothing.

1.1.1 I Trie - a trie is the dynamic data

structure composed of nodes, which is

constructed according to the algorithms

given in 1.2.

1.1.12 Weight - the weight of a trie T ,denoted

w(T) equals the number of nodes in

the trie.

A definition like 1.1.11 may look strange

tothemathematicallytrainedreader, but actually,

given the way Litwin presents his structure, it

is the only one possible (short of performing

the analysis presented in sections 2 and 3 of

our paper). In reality a trie will be a struc-

ture based upon a binary tree. As a consequence

a large amount of standard terminology on binary

143

trees will be used in the sequel. In particular

we use phrased like father, son, left son,

right son, ancestor, descendant, left (right)

subtrie, etcetera. We can freely speak about

the weight of subtries. In particular, for a

trie T we denote by wL(T) and wk(T) the

weight of its left and right subtrie. The coh-

Crete tries described in this section will be

called Litwin tries in the sequel to discriminate

them from the formal tries introduced in section

2.

1.2 Construction of the trie.

Litwin described his data structure by pro-

viding a verbose description how the structure

is created by a sequence of insertions. We

rather strictly follow his description.

1.2.1 Initial stage.

As long as no keys are inserted into the

file, we allocate a single bucket 0 and assume

that the entire file is hashed onto address 0.

We thus provide storage for up to b records.

The trie initially is empty, and the pointer to

its root points directly to address 0.

1.2.2 First collision.

When the b+l-st record is inserted into the

file the first collision occurs. At this stage

the trie becomes non empty. We proceed as

follows:

1.2.2.1) Select the shortest sequence of digits

such that for some of the b+l records

c = c 0 . ..cItK) one has

c;...c; cz co...c. . I.
1.2.2.2) Allocate bucket I and insert all keys

satisfying the condition from 1.2.1.1

into bucket 1 ; the other keys remain

inserted in bucket 0.

1.2.2.3) Create i+l nodes, and set their

values according to the diagram below:

/’
..’

1.2.3 Further collisions.

As further insertions occur buckets which

have been allocated will overflow. Such a bucket

will be divided in two. We proceed as follows:

Let m' be the node containing a pointer to the

overflown bucket; we denote this pointer by

OVL(m') . Let m be the address of the overflown

bucket, and let M be the number of buckets al-

ready allocated.

1.2.3.1) Select the initial segment ci...ci of

of the middle key of minimal length,

which can serve to split the bucket as

in 1.2.2.1.

1.2.3.2) Compute the address for the key ci...ci

usingthekeytoaddresstransformalgorithm

describedin 1.2.4 ;however, during this

search an additional counting is perform-

ed. We have an integer I initially

equal to 0. Each time we encounter in

the address computation a node with

DN = I and DV = cI we let I := I+1 .

1.2.3.3) Create i-I+1 nodes and set their values

as follows:

c;,i CfL m n

144

1.2.3.4) Allocate bucket M and divide the

b+l records in the overflown bucket

between the buckets m and M as in-

dicated in 1.2.2.3. Set M:=M+l .

The purpose of the address computation in

1.2.3.2 is the following. Litwin's key to

address transform algorithm builds at every node

of the path traversed a string against which the

key search for is compared. The selected split-

ting key cA...ci must be buildable by this

algorithm. The nodesthatenable us to build the

string c;. . .c;-1 (which may be empty), are

found to be already present in the trie; the re-

maining ones are created by step 1.2.3.3..

1.2.4 Key to address transform.

At any stage during the creation of the trie

we assume that any key is stored in the bucket

where it would be inserted if it was not there

yet, and that every new record will be inserted

into the bucket where it would have been if it

had been subject to all splits already perform-

ed. This rule leads to the following algorithm:

Let c be the searched key, whereas T is the

trie considered. The pointer p is initialized

to the root of T. The strings s aild t ini-

tially are empty.

if M= 0 then return 0 #no nodes created yet# - --
else result := -1 ;

while result < 0

do if DN(p)r I then -- s:=so...s
DN(p)-1 DV(p)

else s:=DV(p)

endif; c' := c . ..c 0 DN(p) '
if s< c' - then p:= UP(p) ; s:=t I-

else p:= LP(p) ; t:=s

endif;

if p is a bucket address then result -
:= p endif

endwhile;

return result

endif;

During the algorithm s denotes the string
against which the current input key c is tested
to direct the further search. The string t

represents the cumulative information gathered
during the search so far. The statements s:=t
and t:=s are needed for the correct performance
of the algorithm since the information found in
the current node must be discarded when the algo-
rithm chooses the upper-pointer. These two state-
ments were not included in the original paper by
Litwin.

In order to gain further insight in the oper-
ation of the algorithms and the trie data struc-
ture the reader might consult Litwin's original
paper. It is, however, difficult to infer from
this paper the essential properties on which the
correctness of the trie structure and its support-
ing algorithms are based. Such insight is needed
if one wants to investigate the problems of re-
construction and optimization discussed in the
introduction.

The formalization of the trie structure
proposed in the next section is an attempt to
locate exactly the fundamental properties under-
lying Litwin's proposal.

2. INFORMATION SAVING FOR RECONSTRUCTION.

2.1 Formalization of tries.

Before we can give tools for saving informa-
tion necessary for reconstruction of the trie, we
must determine which information needs to be
saved. To do this we look at the key-to-address-
transform algorithm presented in section 1.2.4.
This algorithm builds strings to compare to (a
prefix of) the searched key and then chooses the
upper- or lower-pointer depending on the outcome
of the comparison. When choosing the upper-
pointer the information found in the current node
is discarded; in the other case the information
found in all previous nodes is "trimmed" - all
previous information gathered in nodes with
DN 2 DN(current node) is discarded.

Now, evidently, if two keys k and k' in
the key are hashed into different buckets, the
key-to-address-transform algorithm somewhere must
build a string c
it follows, such t R

. ..ci on the path in the trie
at, if compared against this

string, both keys k and k' behave differently
for the first time. Assuming without loss of
generality (WLOG) that k <I k' the condition
expressing this behaviour can be expressed as
follows:

2.1.1.1) for j=O,...,i k.=c. or 3
J J -

jsi[kj < cjl

2.1.1.2) for j=O,...,i-I k!=c. & ki< c. .
J 3 1

If the above condition is fulfilled at the node
where CG...Ci is built and if k and k'
arrive at this node then the algorithm will
choose the lower-pointer in the case of k and
the upper-pointer in the case of k' . Since this
is the only way in which two strings can become
separated, it seems reasonable to assign to the
Litwin trie a formal trie consisting of all
strings which can be built by the key-to-address-

145

transform. We then obtain a system of probes on
which we can decide whether or not two keys are
hashed into the same bucket.

2.1.2 Definition: A (formal) Key-to-address-

transfom algorithm on a key space K is a

function f:K + a.

Whenever appropriate we use the abbreviation bat.

2.1.3 Definition: A (formal) Trie T on a key

space K is an ordered pair (V;f) with:

2.1.3.1) VcZ* with 1) Vt=tO...tneV.[tn#':']

2) Vte V[l(t><l(K)

3) t#t’EVlt$ft’l.

2.1.3.2) f a key-to-address-transform algorithm

on K such that

Vk< k'c K[f(k)# f(k')

++ 3t=y0...tnEV.[3i<n[kC...ki<ZtC...ti

& k;...kfsl = tO...timl & kj>t$]] .

The property expressed by 2.1.3.2 will be de-

scribed by the phrase II k is separated from k'

by t at position i ", and will be notated

k <t,i] k' .

2.1.4 Definition: An element k EZ* is a

prefti in a trie T= (V,F) iff there exists

a string trV such that kct. -

2.1.5 Definition: Two tries T= (V,F) and

T'=(V',f') on a key space K are called

equivalent iff their key-to-address-trans-

form algorithms are equal:

Vkd([f(k) =f'(k)] .

2.2 Consequences of the definitions.

The first consequence of the formal defini-

tions above is the lemma below. It expresses the

fact that for every string s which is not a

prefix in T, a pair of keys separated by s

can be found that are hashed to the same address.

2.2.1 Lemma: Let T= (V,F) be a trie on a key

space K, let keK and let SE C* be an

initial segment of k which is not a prefix

in T.
If sl(s) # r:r then there exists a

key k' such that k <s,l(s)] k' but

f(k)=f(k') .

proof: Let s = sO...sn. WLOG we may assume

that the number n is minimal so so.. .snml is

a prefix in t Note that sO...snsI may be

empty. Let W = {tcV IsO...sn-, c t1 . Again

W may be empty. Since s is no prefix in T

there exists no t in W with tn=sn, so one

of the following cases arises:

case a) for some t' in W t: > sn

case b) all t in W have tn < sn.

First consider case a; WLOG we select t" in

W with t"> s and t" minimal in the lexico-
n n

graphical order with this property. Then we let

k' = k O...kn-ltIkn+l...kl(K) . Now clearly

k <s,n] k' . Assume that f(k)#f(k') ; by con-

dition 2.1.3.2 there must exist a string FEV

with k <t,i] k' for some number i . But since

k and k' are equal up to digit n-l we must

have i>n and k . ..kn-. = ; ...znml , hence 0 0
CEW. By the choice of t" we have for all

t' E W either t;<kn<k' n or kn<kA<tA, so

i=n is excluded as well. But if i>n then

by condition 2.1.3.2 one has Tn=kn=s con-
n

tradicting the fact that s is not a prefix in

T. So 2 does not exist and hence f(k)=f(k') .

In case b we take k'=ko...kn-,':'kn+,...

...kl(K) . Since sn# ':' we again have

k <s,n] k' , whereas the assumption that f(k)

f(k') leads to a contradiction again. This

completes the proof of the lemma. q

By force of this lemma we are able to iso-

late the main invariant of the trie data structure:

2.2.2 Proposition: Let T= (V,f) and

T'= (V',f') be a pair of equivalent tries

on a key space K. Then V
SEC”

[s is a

prefix in T CI s is a prefix in T' 1 .

proof: Let s= sO...sn be a prefix in T which

is not a prefix in T' . WLOG we assume that

n= l(s) is minimal. There exists a t in V

with to... tn=sO...sn. First assume sn# ':' .

By lemma 2.2.1 there exist keys kcCk' such

that k <s,n] k' but f'(k) =f'(k') , so by equi-

valency we have f'(k)/ f'(k') as well.

146

Contradiction.

In the case that sn= ':' we consider the

string tat . ..t 0 1(t)
; by 2.1.3.1

kt>
1:r

and therefore l(t)> n. Let t'=tO...tl(t)-l I:'

then by 2.1.3.2 f(t>#f(t') . On the other hand

f'(t)#f'(t') would imply that tO...tn is a

prefix in T' quod non. Contradiction again. 0

2.2.3 Corollary: For equivalent tries T= (V,f)

the set V is uniquely determined.

proof: If T and T' are equivalent tries, and

t cV\V' then t is a prefix in T so there

must exist a string t' in V' with tct'

but t#t' . Again t' is a prefix in T’ so

t' must be a prefix in T as well, so there

exists a string t" in V with t'ct". But

now tot" for a pair of different strings in

T contradicting 2.1.3.1.3. 0

A trie T= (V,f) defines an equivalence re-

lation on the key space K by k =T k' iff

f(k)= f(k') . We can extend this equivalence re-

lation to a partial ordering cT on K by:

kc T k' iff (k cT. k' & f(k) # f(k')) ,

2.2.4 Claim: The ordering cT is linear.

proof: We only need to prove the transitivity of

<T ' Assume therefore that k,k' and k" are

keys with k <T k' and k' cT k". The transiti-

vity of the order cc implies k<S k". Further-

more, since f(k')# f(k") there exists a string

t' in V and an integer i such that

k' <t',i] k". By the definition of lexicographic-

al order we have kcrk' * ko...ki<Ek;)...k!

whence k <t',i] k" as well, so f(k) + f(k"; . 0

By the above ordering cT the equivalence

classes determined by the trie are linearly order-

ed. Since f is determined by V,the entire

structure is determined by V. Denote the collec-

tion of equivalence classes by K/T. The number

of elements in K/T denoted #K/T, depends on

V only. In fact one has:

2.2.5 Proposition: Let 7 = ise Z* 1 s is a

prefix in T and ~l(~)# ':'I,

then #K/T=#v+I.

proof: I) #K/T < #v+ 1 . This follows insne-

diately from the fact that CT is linear: Let

#V=n, and suppose that #K/IZn+2. Select a

sequence of n+2 keys k(l) ,a-*,
kh+2) from

different equivalence classes in K/T, such that

i<j implies ,(i> (j) . Each pair
,(i>

<Tk
CT k (i+l) is separated by some prefix p

in T which implies
k(i+l) (i+l)

po...p
l(p)-! =

"'kl(p>-1 and Pi(p)
< k{i$) . This

implies that Al # . 1.I ; moreover the prefixes

p involved must be distinct. Since there are

n+l pairs in the sequence there must be at least

n+l different prefixes in T notending in ':' .

Contradiction. ci

2) #K/T 2 #v+ 1 . We prove this inequali-

ty by providing #v+ I keys which are mutually

inequivalent. Let n=#Y'; and let v consist

of the strings t (0) ,...,t h> in lexicographical

order. We define the set F = {k('),...,k(")l

by letting:

km = I I

,:i) = i(i)

for j = O,...,l(K)

,ji) I
j

for j < l(t(i))

j
the successor of t.l

for j = ,,$ii, in '

,('I = 1 (
j -

for l(t(i)) < j S l(K) .

Clearly Z=n+l , so it suffices to prove that

for i#j we have f(k(i)) # f(k(j)) . Assume

that k(') cc k(j) , and let m be the least

number such that k (j> > kc') . Now by construc-

tion m < l(t(i)> 10 eith:r m = l(t(j)> , in

which case we have k (i) . ..(j) ,m] k(j) , or

m < l(t(j)) , in which case k (3
<c t

(j> and

a fortiori k (i> <t(j),,] k(j) . In both cases

one obtains f(k(i)) # f(k(j)> . 0

The reader should observe that the linear
ordered collection of equivalence classes K/T
is nothing but the chain of buckets into which
the key space is hashed by the trie, where the

147

lexicographical order coincides with the pre-order
in the trie.

2.3 Storage of information.

We have seen above that the information
needed for rebuilding a trie equivalent to the
original trie in the sense of definition 2.1.5
is the collection of strings V, combined with
a sequence of bucket addresses. The set V de-
termines the "formal buckets" K/T, together
with their linear order, but fails to indicate to
which bucket address such equivalence classes are
mapped by the ktat-algorithm f .

The algorithms in section 1 now can be modi-
fied in such a way that they will save and update
this information on disk; each time the trie is
altered by the allocation of a new bucket, the
information on disk is modified. For this pur-
pose we reserve two areas on disk, henceforth de-
noted NS and BS . Here NS will store a col-
lection of strings and BS a sequence of
integers.

Initially NS= 0 and BS= (0) . Each time
we select the proper initial segment of a middle
ye; 3cd...ci in step 1 of algorithms 1.2.2 or

* - , we extend NS by this string ch...ci,
removing from NS the string s c cb...ci pro-
vided such a string is present in NS . The modi-
fication of BS is somewhat trickier, since a
new bucket may be allocated either by splitting
an overflown existing bucket, or by inserting a
first key in a bucket located at a position in
the trie where one had a nil-pointer before. In
both cases the sequence BS is updated by either
inserting the new bucket M after the number
corresponding to the overflown bucket, or by re-
placing the niZ-address by address M+l .

In the second case we face the problem that
there may occur several niZ-pointers in the trie,
and one must indicate which one should be updated.
We propose the following solution: instead of
having a single value niZ we use a variable
NIL , initialised at -1 ; whenever a new value
n7: Z should be assigned to some pointer p we
perform the actions p :=NIL ; NIL:=NIL-I . Now
in case the insertion algorithm finds a bucket
address < 0 it will allocate a new bucket M+l
at this point in the trie, and increase M by 1;
next it will insert the proper disk address in
the sequence BS at the position taken by the
negative bucket address found. This modification
has as a consequence that the key-to-address-
transform algorithm 1.2.4 must be recoded,
since the outcome of the test "result < 0" no
longer is valid. Instead, by use of a tag-bit
one must discriminate between nodes and bucket
addresses as values of pointers.

The update on BS seems to require a se-
quential search on BS for locating the update
position. In the case of a split a sequential
scan seems needed anyhow for the copying due to
the insertion in the middle. In the case of a
niZ-replacement a local update will do, provided
we can have direct access to the update position.

This position can be computed during the ktat-
algorithm provided we reserve additional storage
at every node for storing weight information (IE.,
the number of nodes in the left subtrie). With
this additional information a single nil-value
will again suffice.

Since in our paper the primal purpose of
storing BS and NS on disk is the availability
of this information for reconstruction purposes,
we abstain from investigating the organization of
this information in detail. During the running
of the algorithm we assume to have a copy of BS
and NS available in core as well. If core is
scarce it may be necessary to store BS and NS
on disk only, which will lead to additional
problems concerning the organization of this in-
formation on disk.

Obviously, the reloading of NS and BS
requires at least one disk-access. If more disk-
accesses are needed they would be required anyhow
for bringing the reconstruction information into
core. From the assumption made that the entrie
trie can be kept in core, it seems reasonable to
infer that no further disk-accesses are needed
for performing the reconstruction. Note that one
does not need to have BS and NS in core at
the same time.

3. RECONSTRUCTION AND OPTIMIZATION.

3.1 Equivalence between Litwin tries and formal
tries.

In the previous section we derived a neces-
sary condition for two formal tries to be equi-
valent; they should have the same set of strings:
V=V' . In the present section we address the
following two questions:

1) In which way does a Litwin trie determine a
formal trie?

2) In which way can one obtain from a formal
trie a Litwin trie which is equivalent in the
sense that its corresponding formal trie is
the one given.

It turns out that the correspondence between
Litwin tries and formal tries is many-one. Con-
sequently, question 2 can be refined to the
following two subproblems:

2a) (Reconstruction) Given a formal trie,
construct as easily as possible an equivalent
Litwin trie

2b) (Optimization) Given a formal trie, construct
a Litwin trie which is optimally balanced.

We describe a greedy algorithm for solving 2b.
We conjecture that this algorithm indeed yields
an optimal trie, but due to the way in which sub-
sequent moves in the greedy algorithm depend on
previous moves - a phenomenon which does not
occur in the superficially related problem of
the reconstruction of an optimally balanced bi-
nary search tree [I] - we are unable to prove

148

this. Clearly, an optimal trie can be obtained
by a back-tracking algorithm, but we abstain from
proposing such a method.

3.2 From Litwin tries to formal tries.

The key-to-address-transform algorithm 1.2.4
is the ultimate tool which decides whether two
keys k and k' are mapped into different
buckets. Let k<Ik'. These strings are mapped
into different buckets iff the algorithm, having
arrived at some node p with DV(p)=x ,
DN(p)=n will move left while transforming k
whereas it moves right when transforming k' .
If s is the string built at p by the ktat-
algorithm, we observe that this occurs iff
k <s,nlk' , and if this situation never occurred
on the path from the root to p before, since
otherwise the paths traversed by k and k'
would have diverged at some earlier stage.

Conversely, the only way a prefix w in a
formal trie can perform its separation task in a
Litwin trie, is by occurring as string s built
at some node p in a Litwin trie be the ktat-
algorithm; moreover, there should exist a pair
of keys k and k' such that the ktat-algo-
rithms arrive at p transforming both k and
k' , such that k and k' are separated by s .
To express this crucial role of the string s
we define:

3.2.1 Definition: Suppose that the key-to-
address-transform algorithm follows a path
from the root to node p and has, upon
arriving in p, formed string s=s . ..s ;
let DN(p)=n and DV(p)=x; then iode mp
is said to represent the string
t=s...s x 0 n-l in the trie.

3.2.2 Definition: Given a Litwin trie construct-
ed as described in section 1.2 its corre-
sponding formal trie consists of all maximal
strings represented at some node p in T.

In a Litwin trie the buckets are assigned to
leaves, whereas in a formal trie buckets are ob-
tained as equivalence classes in K/T. In both
cases there exists a linear order on the set of
buckets, being the trie traversal order for the
Litwin trie and the order cT for the formal
trie. In order that the formal and the Litwin
trie show equal behaviour these two orders should
coincide.

3.2.3 Proposition: The sequence order of
buckets met in preorder traversal of a
Litwin trie equals the order <T on the set
K/T obtained from its corresponding formal
trie.

proof: Let k and k' be a pair of keys hashed
intobuckets B and B' such that B precedes
B' in preorder traversal. The ktat- algorithm,
having arrived at some node p goes left for k
and right for k' . This is equivalent to saying

that k <s,n]k' for the string s represented
at p where n=l(s) . This exactly means
k cT k' .

3.3 From formal tries to Litwin tries.

Assuming correct behaviour of the key-to-
address-transform algorithm on a well-designed
Litwin trie, it is clear that 3.2.2 is a well-
defined notion. On the other hand, we could
extend notion 3.2.1 by investigating the behaviour
of the ktat-algorithm in a trie consisting of an
arbitrary collection of nodes, disregarding the
question whether the algorithm would ever reach
certain nodes while processing a key. We simply
inspect what the algorithm would do in case some
genie forces it to traverse some path from the
root to some node p . Under these circumstances
the following observation can be made:

3.3.1 Observation: The string s represented
at P is determined entirely by the values
DN(pj, DV(p) in combination with the string
S’ represented at the lowest ancestor 4 of
p in the path from the root to p where a
lower-pointer was taken.

This observation is based upon the fact that in-
formation gathered at some node is discarded when
the upper-pointer is followed.

The observation shows that the structure of
a binary tree present in a trie is less suitable
for investigating the interactions of the various
nodes. In order to get some grasp on the rela-
tion between nodes p and q above, we introduce
on the nodes of a Litwin trie another tree struc-
ture, called the godfather tree.

3.3.2 Definition: The right (left) spine of a
binary tree is the maximal path consisting
of right (left) pointe%only, starting at
the root. A right (left) spine in some tree
is the right (left) spine in some subtree.

3.3.3 Definition: Given a binary tree its god-
father tree is obtained as follows: each
node becomes the son of its godfather - the
lowest ancestor of which it is a left-descen-
dant. The different sons of a godfather
form the right spine of its left subtree;
they are ordered as sons in the order in
which they occur on this right spine. A new
root is introduced which becomes the god-
father of all nodes on the right spine of
the original tree - these nodes have no
godfather in the binary tree.

This is a well-known transformation transforming
binary trees into ordered forests, where we have
added the new root to obtain a tree instead of a
forest. The transformation is easily inverted.
Given an ordered tree a binary tree is obtained
by transformaing the ordered list of sons of node
p into the right spine of its left subtree (and
discarding the root which obtains no right son).
See the figure below:

149

3.3.4 A binary tree with corresponding godfather
tree.

Observation 3.3.1 shows that the string re-
presented by some node in a Litwin trie is not
determined by the entire path between the node
and the root but by the nodes on its godfather
path to the new root. In order to make 3.2.1
meaningful for nodes on the right spine we must
give the new root in the godfather tree a DN-
value and a DV-value as well. We take DN=-I
and DV=' '; as a consequence the new root re-
presents tKe empty string, and the ktat-algo-
rithm will always select the lower-pointer, IE.,
it will enter the real trie.

Next consider the situation where a node p

with DN(p)=n, DV(p)=x has a godfather q

representing the string sO...sm; we have

m=DN(q) . Now p will represent the string

sO...sn-Ix' but this is meaningful only if

n < m+l ; otherwise a string "with holes" will

arise. This observation leads to a further re-

striction on the structure of Litwin tries:

3.3.5 Observation: For every node p with god-

father q one has DN(p) < DN(q)+l ; conse-

quently all nodes on the right spine have

DN(p)= 0.

From the fact that on the godfather path to

the root the length of the represented string

never decreases by more than I we obtain by a

simple induction on string length:

3.3.6 Proposition: If string s=s . ..s is 0 n
represented at some node p in the trie

then the initial segment sO...sn-1 is re-

presented somewhere on the godfather path

of P to the new root.

Consequently, if a string s is represented then
so will be all its initial segments.

The numerical observation 3.3.5 still does
not cover all structure present in a Litwin trie,
for the fact that every node might represent a
good looking string does not yet edorce that this
node will ever separate a pair of keys. To see
this assume that the ktat-algorithm, while pro-
cessing a key k, arrives at node p where
string s is represented. Suppose that the lower-
pointer is selected, indicating that either
k <T s or sck. Next we arrive at some node q
representing a string t such that s' cc t for
every extension s' 3 s. Then the lower-pointer
is selected at q regardless of which string k
brought us there, so node q is useless - its
right-hand subtrie will never be entered.

Similarly, it is useless to represent in the
right-hand subtrie of p any string t such that
t<Ts or s c t, since then the lower-pointer
at q will never be selected. Finally, it is
meaningless to represent an initial segment of s
in any subtrie of p since it again would lead
to a test with one impossible outcome. This
leads to the following observation.

3.3.7 Observation: Let the nodes p and q in
a Litwin trie represent strings s and t
respectively. If q occurs in the left-hand
subtrie of p then either tcI.5 or set;
if q occurs in the right-hand subtrie of
p then s <C t and s # t . If q occurs
below p in the trie then t # s .

3.3.8 Proposition: In a Litwin trie, satisfying
condition 3.3.7 , every string s is repre-
sented at most once in the trie.

proof: Condition 3.3.7 clearly excludes the case
that a string is represented twice on a path from
the root to some node in the tree. So if string
t is represented at two different nodes q and
q' we may assume that q and q' are unrelated.
Let p denote the lowest common ancestor of q
and q' in the trie, and let s denote the
string represented at p. Since q and q' are
unrelated we have q#pfq'. Assume WLOG that
q occurs in the left subtrie of p. By 3.3.7
we have t<Zs or s=t since t is represent-
ed by q. But we also have s cc t and s#t
since t is represented by q' in the right sub-
trie of p. Contradiction. 0

3.3.9 Corollary: For every Litwin trie the cor-
respondence between nodes and prefixes of its
formal trie will be one-one.

Under this correspondence the empty prefix is map-
ped onto the new root of the godfather tree,sowe'd
better disregard the empty string from being a
prefix.

There remains the step of showing that for a
given formal trie a Litwin trie can be defined,

150

which moreover should satisfy the conditions
3.3.5 and 3.3.7. Such a trie now is easily
obtained by first constructing its godfather
tree and subsequently transforming it into a
binary tree.

3.3.10 Theorem: For every formal trie T= (V,f)
there exists a Litwin trie T’ satisfying
conditions 3.3.5 and 3.3.7 , such that T
is the formal trie corresponding to T’ .

proof: The godfather tree 5? of T’ is ob-
tained as follows: the nodes of y are the
prefixes of strings in V including the empty
one. The goifather of every nonempty prefix
xO...xn in T is the prefix x0.. .xn-1 in T”.
Brothers are ordEred lexicographically. At node
x=xs...x, in T we let DN(x) =n and
DV(x) =x, . For the root r we kave DN(r)=-1
and DV(r)= ’ ’ . Transforming T into a binary
trie by the standard construction yields the re-
quired Litwin trie T’ .

By construction the trie T’ satisfies
3.3.5 ; in fact we have for node p with god-
father q that DN(p) = DN(q) + I . Moreover, by
construction node x represents string x.
Hence, the left subtrie of x only represents
extensions y=x 9 whereas the right subtrie
of x only represehts strings y with x<Iy
and x # y . All initial segments of x form
precisely the godfather path from x to the
new root r . 0

The following property of Litwin tries can
be obtained from the structural constraints
3.3.5 and 3.3.7 as well:

3.3.11 Proposition: The value DN(p) is non-
decreasing if p traverses-a right spine
in a Litwin trie.

proof: Assume to the contrary that there exists

a right spine P~‘P~‘...,P, such that for some

j DN(Pj) ’ DN(p* J+1) * Take j minimal with

this property. Let q be the common godfather

of all nodes p. and let s=s
1 0

. ..s be the

string represented at q, so n=DN;q) . Let

m=DN(pj) , m’ =DN(p. J+I) - By 3.3.5 we have

mln+l ; combined with m>m’ this yields m’ln.

Let x=DV(pj) , x’=DV(p. J+l) -
We conclude that

the nodes represent strings sO...sm-lx and

so’..sm’-lx’ respectively. Since p.
J+’

occurs

in the right subtrie of p. one has
J .

s~...s~-Jx<~ s~...s~,-~x’ with inclusion being

excluded both by the inequality m’ <m and by

3.3.7. On the other hand p.
J+J

occurs in the

left subtrie of q so we have

so...sm,-lx’~z sO...sn, again the case of in-

elusion SO...Sn = SO...sm’-, x1 being excluded

by m’ln. But, after truncating these two lexi-

cographical inequalities upto length m’sm-l,n

we obtain:

’ < sO...sml <I SO...Sm’~,X c SO...Sm’

yielding a contradiction. 0

3.4 The reconstruction algorithm.

We will now present an algorithm which re-
builds a trie from the sets NS and BS satis-
fying the structural constraints on Litwin tries
3.3.5 and 3.3.7. As the proof of theorem 3.3.10
is constructive we could easily convert this
proof to a reconstruction algorithm. We will by-
pass the godfather tree in our construction; as
the reader may easily verify the results are the
same.

We define a recursive procedure GENTR that
builds a left subtrie for a node p and returns
a pointer to the root of this subtrie. The para-
meters are a set of strings L and an integer
level.

procedure GENTR (L,level)

begin declare pointer p ; p:=niZ ;
for c in Z -
do Lc := {vcL -

if Lc# 0 -
then create --

endif

end f or ;

return p

end .

Procedure
Next we assign
pointers by:
1) set i:= 0

GENTR is called by GENTR(NS,O) .
bucket addresses to the nil-

2) traverse the trie in preorder and for each
pointer p = niZ encountered set p :=BS[il
and i := i+l .

from ‘:’ down to ’ ’ -- -

IV level
=cl ;

node n c ; UP(nc> := p ;DV(nc):= c ;

DN(nc) := level ;

LP(nc):=GENTR(Lc,level+l) ;

3.4.1 Example: In the paper by Litwin a trie
was presented with alphabetical keys, con-
structed by insertion of the most frequent-
ly used English words inserted in the order
of decreasing frequency. After construction
it looks like:

151

If we apply the reconstruction algorithm to this
trie we get:

The sets NS and BS belonging to this trie are:

NS = {ar,b,f,he,i'-',o,t)

BS = {0,9,4,10,7,8,6,3,2,1,5).

3.5 Transformations on tries for optimization.

Given a formal trie V and a Litwin trie T
such that V is the formal trie corresponding to
T, we investigate now how much freedom there re-
mains in modifying T preserving the equivalence
with V . Clearly, the structural properties
3.3.5 and 3.3.7 must be preserved as well. The
same holds for the consequences of the properties
like 3.3.6, 3.3.8 and 3.3.11 .

Consider a node p in the trie representing
string sO...sn. By 3.3.6 the string sO...s,,-1
is represented at some node q which is located
on the godfather path between p and the new

root. It is not excluded by 3.3.6 that this
godfather path between p and q contains other
nodes as well. However, it is not difficult to
see that these intermediate nodes only can repre-
sent extensions s' with sO...sn-1 c s' and
s, < sr; .

The following observation is a direct con-
sequence of 3.3.7 and 3.3.8 :

3.5.1 Given a Litwin subtrie T representing a
collection of strings W, the string s
represented at the root r of T deter-
mines completely the weight of the left- and
right-hand subtrie of r .

This follows, since the nodes in T are in one-
one correspondence with strings in W in such a
way that strings s' satisfying s'<S s or
scs are represented in the left subtrie of r ,
whereas the right-hand subtrie only represents
nodes with .s<c s' and s4 s' . This split is
determined entirely by the string s .

In the case of the construction of an opti-
mal binary search tree a condition like 3.5.1
trivially holds. This leads to the following
well-known greedy algorithm: "seaect as the root
a node yielding an optimal balance between the
weights of the left- and right-hand subtrees and
perform this optimization recursively on both
subtrees". We would like to apply the same
greedy approach in our case. However, condition
3.3.6 imposes constraints on the possible
choices of the root. In fact, previous choices
of roots of embracing subtries affect these con-
straints. For this reason we no longer can prove
that the greedy approach, which underlies the
algorithm presented below, indeed yields an opti-
mal trie. We conjecture this to be the case. We
can prove, however, that the trie obtained is
equivalent to the one given.

As with the reconstruction algorithm, it is
advantageous to explain the optimization by con-
sidering its functioning on the godfather tree
structure. We need the following concept:

3.5.2 Definition: A node p in the trie (god-
father tree) is called undisturbed if all
its descendants in the godfather tree are
undisturbed, and have DN-values > DN(p) .

Note that the nodes in the left subtree of an un-
disturbed node p represent extensions of the
string s represented at p; moreover, these
extensions only are represented in the left sub-
tree of p by 3.3.6 and 3.3.8.

It is clear that the new root of the god-
father tree corresponding to the trie built by
the reconstruction algorithm in section 3.4 is
undisturbed.

The greedy optimizing. strategy which we have
in mind, goes as follows:

(I) Select one of the nodes in the trie to be the
new root, in such a way that for this node r
we have IwL(r) - wk(r)] as small as possible.

152

(2) Perform a local transformation, distributing
the nodes in the left and right subtries,
which preserves the equivalence;

(3) recursively apply steps (I) and (2) on both
sibtries of the new root.

Note that the new root in step 1 must be
eligible, given the structural constraints on
Litwin tries. Note moreover that the transfor-
mation in step 2 will affect both the trie and
its godfather tree since the two determine each
other in a unique way.

In the sequel we shall call a node for which
the actions 1 and 2 have been performed a
processed node. The greedy algorithm will process
the nodes in the trie in a top-down manner.

Some further explanation is needed concern-
ing the phrase “local transformation” in step 2 .
Such a transformation amounts to an assignment
of new values to a small finite collection of
pointers in the trie, involving nodes close to
either the old or the new root in the subtrie
considered.

The equivalence between the two Litwin tries
involved (before and after the transformation)
requires that the setsof strings represented are
equal. Given the one-one correspondence between
prefixes in the formal trie and nodes in the
Litwin tries, and given the fact that the prefix
represented at node p determines the values of
DN(p) and DV(p) these values are preserved as
well. We can use these values as “tags” for
identifying these nodes during the transformation,
even though a given DN-DV value pair can
occur many times in the trie. All our transfor-
mations will leave the values of the DN- and
the DV- fields invariant, and only update LP-
and UP-pointers. The string represented at a
node gives this node a unique identity. which
enables us to trace its position during the
transformation.

Consider a node p in the left subtrie of
some node q . Under which circumstances can it
become the root of the left subtrie of p while
the set of left descendants of 0 remains un-
changed ? In general, tl~is question has no clear-
ly described answer. For example, the original
root of the left subtrie of p may have been
moved to the interior of this subtrie by some
transformations, where it still is eligible of
becoming the root by undoing these transforma-
tions.

In the sequel we present a lemma which
states that all nodes on the right spine of the
left subtrie of p are candidate roots. If
moreover, some additional structural information
is available it can be shown that these nodes
are the only candidate roots.

For the rightsubtrie a similar question
shouldbeanswered. However, in this case the role
performed by node p becomes empty, since p
does not occur as godfather for any node in its
right subtrie. The same holds for 311 nodes in
between p and its godfather. Hence, in order
to investigate the candidate roots of the right-
hand subtrie of p we will consider the situa-

tion where this right-hand subtrie is the left-
hand subtrie of the godfather of p, and where
all intermediate nodes , including p , together
with their left descendants are eliminated.
Under this interpretation the lemma announced
above becomes meaningful for right subtries as
well.

3.5.3 Lemma: Let p be a node and let T be
the left subtrie of p, then for every node
q on the right spine of T there exists a
local transformation of T turning q into
the root of T, which preserves the strings
represented at these nodes. If moreover all
godfather-sons of p are undisturbed then
these godfather-sons are the only nodes
eligible in the trie T for being the new
root of T .

proof: We first describe a transformation on the
left subtrie T of p, which turns an arbitrary
node q on the right spine of T (IE., a god-
father-son of p) into the new root of p , and
which leaves the strings represented at every
node invariant. The transformation is indicated
in figure 3.5.4 below:

3.5.4 A local transformation.

The transformation makes q the left-hand
son of p . The right subtree of q is unchanged.
The left subtrie of q is inserted as a whole
as right subtrie of the lowest node in the right
spine of p’s truncated left subtrie, which sub-
trie, after this modification, becomes the left
subtrie of q .

We show that this transformation has the

required properties. The only node that obtains
left descendants which it did not have before, is
node q. In terms of the godfather tree this
means that q Secomes the godfather of those
brothers that preceded q in the order of p’s
godfather-sons. ?;o other godfather relations
are changed, from which it follows that all
strings represented at nodes are unchanged,
except for those elder brothers of q. It suf-
fices therefore to show that these elder brothers
represent the same string before and after the
transformation.

Let q’ be such an elder brother of q,
and let s,t and s’ be the strings represented
by q,p and q’ respectively. By 3.3.11 we

153

have DN(q') =l(s') 5 l(s)=DN(q) . Before the

transformation we have:

’ = t 0 “‘tDN(q)-, DV(q) and

s' = t 0 . . .tDN(q,)-,DV(q') .

After the transformation we have:

s = t ...tDN(q)-lDV(q> and 0
s' = s 0 "'SDN(q')-I DV(q') = to...tDN(q,)-,DV(q') .

This shows that these strings are unchanged.
In order to prove the second part of the

lemma we assume that all nodes on the right spine
of p's left subtrie are undisturbed. Let q be
one of these godfather-sons of p and let q'
be a proper descendant of q in T. We show
that q' cannot become the root of T without
disturbing the strings represented at some nodes.

Let s and s' denote the strings repre-
sented at q and q' . Since q is undisturbed
we have sc.5' before the transformation. By
3.3.6 after the transformation q must occur
on the godfather path from q' to the root.
However, if q' becomes the root of T then p
becomes the godfather of q' , so q would have
to become a godfather ancestor of p, showing
that the node q would have to be placed outside
T after the transformation. Aside from no
longer being a transformation that transforms
the subtrie T inside itself, actually we can
show that such a position outside T is impos-
sible as well. Consider the string represented
by P> say t . Since q occurs in the left
subtrie of p by 3.3.7 we have s#t and
either
tion q

scZt or tcs. After the transforma-
becomes a godfather ancestor of p and

we have t # s and either tcZ s or set. This
clearly yields a contradiction. 0

Lemma 3.5.3 shows that the set of candidate
roots of a (left) subtrie is restricted to the
right spine of this subtrie, provided all these
candidates are undisturbed. Starting with the
trie resulting from the reconstruction algorithm
from section 3.4 we know that all nodes are un-
disturbed. We need to show that the transforma-
tion from the previous proof leaves the undis-
turbedness of most nodes invariant.

3.5.5 Observation: Let p be a node such that
all its godfather-sons are undisturbed, and
let q be some node on the right spine of
p's left subtrie. Then the transformation
3.5.4 performed in such a way that q be-
comes the root of p's left subtrie leaves
the undisturbedness of all nodes in p’s
left subtrie invariant except for the new
root q .

The proof of this observation is evident, given
the fact that transformation 3.5.4 leaves all
the DN -fields invariant, and given the fact
that the only node obtaining godfather descen-
dants which it had not before, is the new root q .

This observation is used in the next section
to prove that our greedy optimization strategy
investigates at each step all presently available
candidates for being the root.

3.6 The optimization algorithm.

Having explained all necessary concepts and
tools in the previous section we now come to a
specification of our greedy optimization method.
Our greedy method selects some node yielding an
optimal balance on the right spine of the trie
considered, turns this node into the new root by
performing transformation 3.5.4 and calls itself
recursively on both resulting subtries of the
new root (if nonempty).

The method is described by the following re-
cursive procedure OPT; its input parameter is
a pointer to the trie to be optimized.

procedure OPT(p)

begin declare pointer pl,p2,new root ; integer M ; --

P’ := p2 := p ; M := w(p)-1 .

while wk(pl)> M/2 do pl := UP(pl) endwhile; -
if pl#p then -

while UP($) #PI &J P2 :=UP(p2) endwhile ;

;r (wP(p2) -M/2) (M/2 -w&l))

then new root :=p2

else new root :=pl

endif ;

if new root # p then -

P' :=p;while UP(pl)#new root &

P’ := UP(pl) endwhile

p2 := LP(new root) ; LP(new root) := p .

UP(Pl) :=p2 ; p:=newroot

endif

endif ;

if LP(newroot) is not a bucket address then -
then OPT(LP(newroot)) endif ;

if UP(newroot) is not a bucket address -
then OPT(UP(newroot)) endif

end . -

Note that this procedure does nothing except
for the recursive calls in case it finds out that
the present root is already optimal.

It follows from lemma 3.5.3 that this algo-
rithm yields an equivalent trie to the given one,
since transformation 3.5.4 preserves the corre-
sponding formal trie. Next consider the case that
the input trie is obtained as the result of the
reconstruction algorithm in section 3.4. Then the
recursive top-down strategy preserves the follow-
ing invariant:

154

3.6.1 Invariant: All nodes in the trie are
either undisturbed or processed; all ances-
tors of processed nodes are processed.

As a consequence , given the fact that the
invariant is established by having the recon-
structed trie as input, we see that by 3.5.3 all
possible candidate roots are located on the right
spine of the trie given as an argument'to OPT,
and that this property holds for the subtries
given as argument in the recursive calls as well.
This shows that our optimization method is opti-
mal within the class of greedy algorithms.

From the above we may conclude that our op-
timization method always finds a trie which is a
binary trie in the class [t,il in the sense of
Mehlhorn C51, unless we find at some level a sub-
trie that consumes more than half of the nodes
available. But in this extreme case we can do
no better than shifting all these nodes either in
the left or in the right subtrie, without violat-
ing some of the structural constraints on Litwin
tries.

4. TEST RESULTS.

The reconstruction and optimization algo-
rithms werecoded in a program of approximately
1000 lines of C , and run on a PDP-I 1 under
LNIX% . Tries were obtained by generating up to
5000 strings (with possible repetitions), both
by random generation, or by processing existing
text files. Bucket sizes 10 and 20 were
used. The results indicate that the original
trie is reasonable, the reconstructed trie being
extremely unbalanced, whereas the optimized trie
has an average path length of appr 2% up to 7%
less than the original one.
Keys inserted: Max. Average Max. Average Average
Intern. nodes Pathl. Pathl. wL-wR wL-wR I wL-wRI

COlL3tr 8 6.595 3 0.609 0.902
ban 540:42 37 19.428 40 -16.634 16.634
Optim 7 6.476 ’ - 0.292 0.488

Canstr 9 6.837 15 I.119 !.452
R~CO~ 558:43 40 21.325 39 -18.667 18.667
Optim 7 6.511 ! - 0.452 0.500

cocstr 9 7.269 13 0.661 1.241
Recon 892:63 43 24.066 57 -20.850 20.850
Optim a 7.066 2 - 0.367 0.700

Constr II 7.965 26 1.071 I.894
Recon 1013:88 39 24.667 82 -20.337 20.771
Optim I! 7.503 5 - 0.108 0.831

constr 16 10.902 172 1.546 3.114
Recon 5154:423 57 34.789 410 -28.814 29.513
Optim I9 10.175 19 - 0.0332 1.4916

% Unix is a trademark of Bell Laboratories

s. DISCUSSION.

In his paper Litwin introduced trie hashing
by describing the algorithms in a verbose style,
claiming a high performance. He did not present
any theory on the data structures involved. Our
present research was motivated by a question
asked by H. van Emde Boas-Lubsen, after a pre-

sentation by Litwin in Jan 1980; she asked
whether it was possible to reuse the structure
after a system crash. The authors acknowledge
to her this inspiring idea which led them to
several unexpected theoretical results.

It turns out that the reconstruction algo-
rithm is not too difficult to invent. The opti-
mization method requires some more effort; The
main problem, however, seems to show that these
algorithms are correct. Hence, one must show
that these algorithms preserve the relevant pro-
perties which were never defined by Litwin at
all. Since the meaning of a Litwin trie, opera-
tionally is given by its key-to-address transform
algorithm, it is reasonable to declare two tries
to be equivalent in case they yield the same
ktat algorithm. The theory developed in sections
2 and 3 represents the result of 14 years of
struggle by the authors with the problem of
translating this operational equivalence in
structural properties of the trie, based on which
the correctness of our algorithms can be proved.

We believe that our experience gives a nice
illustration of how non-trivial data structures
require a rather complex mathematical analysis
in order that interesting algorithms operating
on them can be shown to be correct. Theoretical
Computer Science can be practical !

After submission of our paper we were inform-
ed about another investigation related to Litwin
tries by J. Dur & S. Koopmans, IBM DCSSC,
Uithoorn L21. Although their motivation was
different from ours (their purpose being data
compression, rather than optimizing search time),
they arrived at a structure which at a theoreti-
cal level is similar to our reconstructed tries,
except for the trivial modification of selecting
for equal keys the upper-pointer instead of the
lower one. Actually this choice would clean up
the theory in as far as the complex condition
s SC s' or s' c s can be replaced by the
simple condition s <c s' ; Litwin's choice of
moving left on equal keys and the traditional
definition of lexicographical order don't fit
together well.

Some remaining open problems are:
5.1 The optimization algorithm is correct for
arbitrary Litwin tries, but in general it will
not investigate all possible candidate roots of
a left subtrie. Can one obtain simple (heuris-
tic) tools for locating candidate roots outside
the right spine of the left subtrie? We have a

.method for locating such candidates on the left
spine but no idea about the value of this heuris-
tics.

5.2 The paper uses a number of hypotheses on the
environment. We assume that the entire trie fits
in core. Moreover, we assume that reconstruction
information on disk (NS and BS) can be brought
in core in a single disk access and can be pro-
cessed in core together with the trie under re-
construction. Both assumptions seem to become
unreasonable for large-scale applications. The
problems on the proper paging and segmentation

155

methods required for obtaining a reasonable be-
haviour under circumstances where these assump-
tions are invalid, are left for further research.
Possible solutions are the logging of transac-
tions or the implementation on a virtual core
machine.

5.3 To our knowledge the reconstruction problem
has not been investigated for any dynamic data
structure before. It might be interesting to
know whether the overall strategy followed here
is applicable to other structures, in order
that they may be protected against system
crashes and other nasty habits of computers.

5.4 Prove or disprove our conjecture that our
optimization algorithm yields an optimal equiva-
lent trie.

REFERENCES.

Aho, A.V., J.E. Hopcroft & J.D. Ullman, The
design and analysis of computer algorithms,
Addison Wesley 1974.

Dur, J. & S. Koopmans, Cactus Index, Internal
Report IBM DCSSC, May 1983, Uithoorn, the
Lqetherlands.

Knuth, D.E., The art of computer programming
vol. 3, Addison Wesley 1973.

Litwin, W., Trie Hashing, Sirius Map I-013,
Inst. Nat. de Recherche en Informatique et
Automatique, 1980. Also in P.M.G. Apers,
ed., CoZZoquium Databankorganisatie, deel 2,
MC Syllabus 46.2 (1982), pp. 27-52.

Mehlhorn, K., Dynamic Data Structures, in
- J.W. de Bakker & J. van Leeuwen eds.,

Foundations of Computer Science III, part 1,
MC Tracts 108 (1979), pp. 71-96. -

156

