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Abstract: We propose an adaptation to the trie 
hashing algorithm published by W. Litwin in 
1980. This adaptation extends the algorithm 
so that it will save necessary information on 
secondary storage to reconstruct the hashing 
function after loss of information (E.G., 
system crash or termination of a find/insert 
program). An algorithm is given to reconstruct 
the trie from the information saved, and an- 
other for optimizing the reconstructed trie. 
A mathematical analysis of the trie data 
structure is given, making visible the essen- 
tial structural properties of these tries; 
based on this analysis correctness of the 
algorithms presented can be established. 

0. INTRODUCTION. 

In 1980 Litwin [4] proposed a new algorithm 
for hashing. Contrary to usual hashing this 
algorithm stores records in order. Furthermore 
the file may be highly dynamic, even entirely 
resulting from a sequence of insertions. The 
load factor stays typically about 70%. The 
search for a record with a given key is per- 
formed in only one disk access. Litwin claims: 
"No other technique attaining such performance 
is known." The algorithm dynamically creates a 
hashing function which might be represented by 
a kind of trie 131. During insertions and 
searches this trie is entirely kept in core. 
Hence after a system crash or termination of 
the program that constructs the trie,the entire 
construction giving access to the file is lost. 

As files may attain millions of records, 
it seems reasonable to think that the informa- 
tion in the file may not only be of use to the 

running program but may be used by subsequent 
programs,which are updating this information. Even 
if there is only one program which builds this 
information and runs forever, a system crash might 
spoil the created hashing function and we would 
be forced to start all over again from scratch. 
Each program that wants to update the information 
in the file would have to reconstruct the trie 
giving access to this file. There are essential- 
ly two ways in which we can enable programs to 
perform this reconstruction: 

First the original construction method can 
be used by reinserting all records on the disk. 
This is a rather slow and tedious job which usual- 
ly will require many disk accesses. Alternative- 
ly we can, during construction of the original 
trie, take steps to save on secondary storage in- 
formation necessary for reconstruction of the 
trie. Assuming that the original trie may be 
kept in core entirely, regaining this information 
will cost only one disk access. 

Our paper investigates this second approach. 
In addition to the reconstruction, we would like 
the new trie to be as efficient as possible with 
respect to search time in the trie. 

The paper is organized as follows: Section 
1 gives an outline of Litwin's original paper. 
Section 2 presents a mathematical formalization 
of the underlying information structure which en- 
ables the trie to perform its role. The main in- 
variant of the trie date structure is extracted, 
and the information necessary for reconstruction 
is obtained. The correspondence between the 
tries described by Litwin and their mathematical 
formalizntions are the subject of section 3. 
Based upon this correspondence the reconstruction 
and optimization algorithms are obtained and seem 
to be correct. Due to lack of space known perfor- 
mance analyses are omitted. Section 4 
presents some test results. Finally, in section 
5 concluding remarks and indications of subjects 
for further research are provided. 

1. LITWIN'S TRIE HASHING ALGORITHM. 

We start this section with a list of defini- 
tions of basic concepts which are used in the 
sequel. 
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1.1 Definitions and notations. 

I.,., Digits - given a finite, totally ordered 

alphabet I: the elements of C are 

called digits ; C contains a minimal 

element denoted ' ' (space) and a - 
maximal element denoted ':' . 

1.1.2 Strings - the elements of I* will be 

called strings. 

1.1.3 Length - the length of the string 

s = sOs,...sk, denoted I(s) equals 

k. Theempty string has length -1 . 

1.1.4 Key space - the subset K c C* will be 

called a key space provided K con- 

sists of all strings over C of length 

n for some natural number n. This 

number n is called the Zength of K, 

and members of K are denoted 

k = kOk,...k . The length of K is 

denoted l(K;. By convention strings 

S with I(s) < n are considered as 

members of K by extending them with 

spaces: s = s 0 . ..s.(~) becomes 

k = so...s ,(s)'--(...'-'. 

1.1.5 Lex:icographicaZ order - given the 

ordering c on C* the Lexicographic- 

aZ order, denoted c 
c 

on C* is de- 

fined by: 

V s s,EZ*is<Es’*3j[V. .[s;=s;l 
l<J 

& sj<s;lI 
Thfs induces a total order nn a key 

space K. 

1.1.6 Initial segment - an element 

s = s . ..s 0 k is called an initial 

se-gment of s' = s'...s' 0 m iff k S m 

and s. = 
1 

si for O<isk. If k<m 

then s is called a proper initia2 

segment of s' , notation s c s' . 

1.1.7 Bmkets - recordswillbe storedinorder 

of theirkeysonsecondary storage called 

disk. A disk is divided into cells 

called buckets. Buckets are numbered 

0,1,2,... . The number of a bucket is 

called its bucket address. Each bucket 

may contain the same number of records 

called bucket capacity, denoted b . 

1.1.8 Search - a search for a record consists 

of two steps: 

i ) an address computation by an algorithm called 

key-to-address-transform fktat) 

ii) a disk access bringing to the main memory 

called core a bucket containing at most b 

records for examination. 

1.1.9 CoZZision - a coZZision occurs when a 

record is inserted into a bucket which 

is already full since it contains b 

records. This bucket will be divided 

in two parts. The key whose position 

in the ordered sequence of b+l keys 

is closest to (b+1)/2 will be called 

the middle key, notation c' . 

1.1.10 !/odes - a node is a structured value 

with the following fields: 

i ) two pointers (UP,LP) called 

upper- and lower pointer respective- 

lY 

ii) a pair called digit fieZd (DF) 
consisting of a digit nwnber (DN) 

in B and a digit value (DV) 

in I:. 

Pointers may be either a reference to 

a node or bucket address, or a special 

value niZ indicating that the pointer 

refers to nothing. 

1.1.1 I Trie - a trie is the dynamic data 

structure composed of nodes, which is 

constructed according to the algorithms 

given in 1.2. 

1.1.12 Weight - the weight of a trie T ,denoted 

w(T) equals the number of nodes in 

the trie. 

A definition like 1.1.11 may look strange 

tothemathematicallytrainedreader, but actually, 

given the way Litwin presents his structure, it 

is the only one possible (short of performing 

the analysis presented in sections 2 and 3 of 

our paper). In reality a trie will be a struc- 

ture based upon a binary tree. As a consequence 

a large amount of standard terminology on binary 
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trees will be used in the sequel. In particular 

we use phrased like father, son, left son, 

right son, ancestor, descendant, left (right) 

subtrie, etcetera. We can freely speak about 

the weight of subtries. In particular, for a 

trie T we denote by wL(T) and wk(T) the 

weight of its left and right subtrie. The coh- 

Crete tries described in this section will be 

called Litwin tries in the sequel to discriminate 

them from the formal tries introduced in section 

2. 

1.2 Construction of the trie. 

Litwin described his data structure by pro- 

viding a verbose description how the structure 

is created by a sequence of insertions. We 

rather strictly follow his description. 

1.2.1 Initial stage. 

As long as no keys are inserted into the 

file, we allocate a single bucket 0 and assume 

that the entire file is hashed onto address 0. 

We thus provide storage for up to b records. 

The trie initially is empty, and the pointer to 

its root points directly to address 0. 

1.2.2 First collision. 

When the b+l-st record is inserted into the 

file the first collision occurs. At this stage 

the trie becomes non empty. We proceed as 

follows: 

1.2.2.1) Select the shortest sequence of digits 

such that for some of the b+l records 

c = c 0 . ..cItK) one has 

c;...c; cz co...c. . I. 
1.2.2.2) Allocate bucket I and insert all keys 

satisfying the condition from 1.2.1.1 

into bucket 1 ; the other keys remain 

inserted in bucket 0. 

1.2.2.3) Create i+l nodes, and set their 

values according to the diagram below: 

/’ 
..’ 

1.2.3 Further collisions. 

As further insertions occur buckets which 

have been allocated will overflow. Such a bucket 

will be divided in two. We proceed as follows: 

Let m' be the node containing a pointer to the 

overflown bucket; we denote this pointer by 

OVL(m') . Let m be the address of the overflown 

bucket, and let M be the number of buckets al- 

ready allocated. 

1.2.3.1) Select the initial segment ci...ci of 

of the middle key of minimal length, 

which can serve to split the bucket as 

in 1.2.2.1. 

1.2.3.2) Compute the address for the key ci...ci 

usingthekeytoaddresstransformalgorithm 

describedin 1.2.4 ;however, during this 

search an additional counting is perform- 

ed. We have an integer I initially 

equal to 0. Each time we encounter in 

the address computation a node with 

DN = I and DV = cI we let I := I+1 . 

1.2.3.3) Create i-I+1 nodes and set their values 

as follows: 

c;,i CfL m n 
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1.2.3.4) Allocate bucket M and divide the 

b+l records in the overflown bucket 

between the buckets m and M as in- 

dicated in 1.2.2.3. Set M:=M+l . 

The purpose of the address computation in 

1.2.3.2 is the following. Litwin's key to 

address transform algorithm builds at every node 

of the path traversed a string against which the 

key search for is compared. The selected split- 

ting key cA...ci must be buildable by this 

algorithm. The nodesthatenable us to build the 

string c;. . .c;-1 (which may be empty), are 

found to be already present in the trie; the re- 

maining ones are created by step 1.2.3.3.. 

1.2.4 Key to address transform. 

At any stage during the creation of the trie 

we assume that any key is stored in the bucket 

where it would be inserted if it was not there 

yet, and that every new record will be inserted 

into the bucket where it would have been if it 

had been subject to all splits already perform- 

ed. This rule leads to the following algorithm: 

Let c be the searched key, whereas T is the 

trie considered. The pointer p is initialized 

to the root of T. The strings s aild t ini- 

tially are empty. 

if M= 0 then return 0 #no nodes created yet# - -- 
else result := -1 ; 

while result < 0 

do if DN(p)r I then -- s:=so...s 
DN(p)-1 DV(p) 

else s:=DV(p) 

endif; c' := c . ..c 0 DN(p) ' 
if s< c' - then p:= UP(p) ; s:=t I- 

else p:= LP(p) ; t:=s 

endif; 

if p is a bucket address then result - 
:= p endif 

endwhile; 

return result 

endif; 

During the algorithm s denotes the string 
against which the current input key c is tested 
to direct the further search. The string t 

represents the cumulative information gathered 
during the search so far. The statements s:=t 
and t:=s are needed for the correct performance 
of the algorithm since the information found in 
the current node must be discarded when the algo- 
rithm chooses the upper-pointer. These two state- 
ments were not included in the original paper by 
Litwin. 

In order to gain further insight in the oper- 
ation of the algorithms and the trie data struc- 
ture the reader might consult Litwin's original 
paper. It is, however, difficult to infer from 
this paper the essential properties on which the 
correctness of the trie structure and its support- 
ing algorithms are based. Such insight is needed 
if one wants to investigate the problems of re- 
construction and optimization discussed in the 
introduction. 

The formalization of the trie structure 
proposed in the next section is an attempt to 
locate exactly the fundamental properties under- 
lying Litwin's proposal. 

2. INFORMATION SAVING FOR RECONSTRUCTION. 

2.1 Formalization of tries. 

Before we can give tools for saving informa- 
tion necessary for reconstruction of the trie, we 
must determine which information needs to be 
saved. To do this we look at the key-to-address- 
transform algorithm presented in section 1.2.4. 
This algorithm builds strings to compare to (a 
prefix of) the searched key and then chooses the 
upper- or lower-pointer depending on the outcome 
of the comparison. When choosing the upper- 
pointer the information found in the current node 
is discarded; in the other case the information 
found in all previous nodes is "trimmed" - all 
previous information gathered in nodes with 
DN 2 DN(current node) is discarded. 

Now, evidently, if two keys k and k' in 
the key are hashed into different buckets, the 
key-to-address-transform algorithm somewhere must 
build a string c 
it follows, such t R 

. ..ci on the path in the trie 
at, if compared against this 

string, both keys k and k' behave differently 
for the first time. Assuming without loss of 
generality (WLOG) that k <I k' the condition 
expressing this behaviour can be expressed as 
follows: 

2.1.1.1) for j=O,...,i k.=c. or 3 
J J - 

jsi[kj < cjl 

2.1.1.2) for j=O,...,i-I k!=c. & ki< c. . 
J 3 1 

If the above condition is fulfilled at the node 
where CG...Ci is built and if k and k' 
arrive at this node then the algorithm will 
choose the lower-pointer in the case of k and 
the upper-pointer in the case of k' . Since this 
is the only way in which two strings can become 
separated, it seems reasonable to assign to the 
Litwin trie a formal trie consisting of all 
strings which can be built by the key-to-address- 
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transform. We then obtain a system of probes on 
which we can decide whether or not two keys are 
hashed into the same bucket. 

2.1.2 Definition: A (formal) Key-to-address- 

transfom algorithm on a key space K is a 

function f:K + a. 

Whenever appropriate we use the abbreviation bat. 

2.1.3 Definition: A (formal) Trie T on a key 

space K is an ordered pair (V;f) with: 

2.1.3.1) VcZ* with 1) Vt=tO...tneV.[tn#':'] 

2) Vte V[l(t><l(K) 

3) t#t’EVlt$ft’l. 

2.1.3.2) f a key-to-address-transform algorithm 

on K such that 

Vk< k'c K[f(k)# f(k') 

++ 3t=y0...tnEV.[3i<n[kC...ki<ZtC...ti 

& k;...kfsl = tO...timl & kj>t$ ] ] . 

The property expressed by 2.1.3.2 will be de- 

scribed by the phrase II k is separated from k' 

by t at position i ", and will be notated 

k <t,i] k' . 

2.1.4 Definition: An element k EZ* is a 

prefti in a trie T= (V,F) iff there exists 

a string trV such that kct. - 

2.1.5 Definition: Two tries T= (V,F) and 

T'=(V',f') on a key space K are called 

equivalent iff their key-to-address-trans- 

form algorithms are equal: 

Vkd([f(k) =f'(k)] . 

2.2 Consequences of the definitions. 

The first consequence of the formal defini- 

tions above is the lemma below. It expresses the 

fact that for every string s which is not a 

prefix in T, a pair of keys separated by s 

can be found that are hashed to the same address. 

2.2.1 Lemma: Let T= (V,F) be a trie on a key 

space K, let keK and let SE C* be an 

initial segment of k which is not a prefix 

in T. 
If sl(s) # r:r then there exists a 

key k' such that k <s,l(s)] k' but 

f(k)=f(k') . 

proof: Let s = sO...sn. WLOG we may assume 

that the number n is minimal so so.. .snml is 

a prefix in t Note that sO...snsI may be 

empty. Let W = {tcV IsO...sn-, c t1 . Again 

W may be empty. Since s is no prefix in T 

there exists no t in W with tn=sn, so one 

of the following cases arises: 

case a) for some t' in W t: > sn 

case b) all t in W have tn < sn. 

First consider case a; WLOG we select t" in 

W with t"> s and t" minimal in the lexico- 
n n 

graphical order with this property. Then we let 

k' = k O...kn-ltIkn+l...kl(K) . Now clearly 

k <s,n] k' . Assume that f(k)#f(k') ; by con- 

dition 2.1.3.2 there must exist a string FEV 

with k <t,i] k' for some number i . But since 

k and k' are equal up to digit n-l we must 

have i>n and k . ..kn-. = ; ...znml , hence 0 0 
CEW. By the choice of t" we have for all 

t' E W either t;<kn<k' n or kn<kA<tA, so 

i=n is excluded as well. But if i>n then 

by condition 2.1.3.2 one has Tn=kn=s con- 
n 

tradicting the fact that s is not a prefix in 

T. So 2 does not exist and hence f(k)=f(k') . 

In case b we take k'=ko...kn-,':'kn+,... 

...kl(K) . Since sn# ':' we again have 

k <s,n] k' , whereas the assumption that f(k) 

# f(k') leads to a contradiction again. This 

completes the proof of the lemma. q 

By force of this lemma we are able to iso- 

late the main invariant of the trie data structure: 

2.2.2 Proposition: Let T= (V,f) and 

T'= (V',f') be a pair of equivalent tries 

on a key space K. Then V 
SEC” 

[ s is a 

prefix in T CI s is a prefix in T' 1 . 

proof: Let s= sO...sn be a prefix in T which 

is not a prefix in T' . WLOG we assume that 

n= l(s) is minimal. There exists a t in V 

with to... tn=sO...sn. First assume sn# ':' . 

By lemma 2.2.1 there exist keys kcCk' such 

that k <s,n] k' but f'(k) =f'(k') , so by equi- 

valency we have f'(k)/ f'(k') as well. 
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Contradiction. 

In the case that sn= ':' we consider the 

string tat . ..t 0 1(t) 
; by 2.1.3.1 

kt> 
# 1:r 

and therefore l(t)> n. Let t'=tO...tl(t)-l I:' 

then by 2.1.3.2 f(t>#f(t') . On the other hand 

f'(t)#f'(t') would imply that tO...tn is a 

prefix in T' quod non. Contradiction again. 0 

2.2.3 Corollary: For equivalent tries T= (V,f) 

the set V is uniquely determined. 

proof: If T and T' are equivalent tries, and 

t cV\V' then t is a prefix in T so there 

must exist a string t' in V' with tct' 

but t#t' . Again t' is a prefix in T’ so 

t' must be a prefix in T as well, so there 

exists a string t" in V with t'ct". But 

now tot" for a pair of different strings in 

T contradicting 2.1.3.1.3. 0 

A trie T= (V,f) defines an equivalence re- 

lation on the key space K by k =T k' iff 

f(k)= f(k') . We can extend this equivalence re- 

lation to a partial ordering cT on K by: 

kc T k' iff (k cT. k' & f(k) # f(k')) , 

2.2.4 Claim: The ordering cT is linear. 

proof: We only need to prove the transitivity of 

<T ' Assume therefore that k,k' and k" are 

keys with k <T k' and k' cT k". The transiti- 

vity of the order cc implies k<S k". Further- 

more, since f(k')# f(k") there exists a string 

t' in V and an integer i such that 

k' <t',i] k". By the definition of lexicographic- 

al order we have kcrk' * ko...ki<Ek;)...k! 

whence k <t',i] k" as well, so f(k) + f(k"; . 0 

By the above ordering cT the equivalence 

classes determined by the trie are linearly order- 

ed. Since f is determined by V,the entire 

structure is determined by V. Denote the collec- 

tion of equivalence classes by K/T. The number 

of elements in K/T denoted #K/T, depends on 

V only. In fact one has: 

2.2.5 Proposition: Let 7 = ise Z* 1 s is a 

prefix in T and ~l(~)# ':'I, 

then #K/T=#v+I. 

proof: I) #K/T < #v+ 1 . This follows insne- 

diately from the fact that CT is linear: Let 

#V=n, and suppose that #K/IZn+2. Select a 

sequence of n+2 keys k(l) ,a-*, 
kh+2) from 

different equivalence classes in K/T, such that 

i<j implies ,(i> (j) . Each pair 
,(i> 

<Tk 
CT k (i+l) is separated by some prefix p 

in T which implies 
k(i+l) (i+l) 

po...p 
l(p)-! = 

"'kl(p>-1 and Pi(p) 
< k{i$) . This 

implies that Al # . 1.I ; moreover the prefixes 

p involved must be distinct. Since there are 

n+l pairs in the sequence there must be at least 

n+l different prefixes in T notending in ':' . 

Contradiction. ci 

2) #K/T 2 #v+ 1 . We prove this inequali- 

ty by providing #v+ I keys which are mutually 

inequivalent. Let n=#Y'; and let v consist 

of the strings t (0) ,...,t h> in lexicographical 

order. We define the set F = {k('),...,k(")l 

by letting: 

km = I I 

,:i) = i(i) 

for j = O,...,l(K) 

,ji) I 
j 

for j < l(t(i)) 

j 
the successor of t.l 

for j = ,,$ii, in ' 

,('I = 1 ( 
j - 

for l(t(i) ) < j S l(K) . 

Clearly Z=n+l , so it suffices to prove that 

for i#j we have f(k(i)) # f(k(j)) . Assume 

that k(') cc k(j) , and let m be the least 

number such that k (j> > kc') . Now by construc- 

tion m < l(t(i)> 10 eith:r m = l(t(j)> , in 

which case we have k (i) . ..(j) ,m] k(j) , or 

m < l(t(j)) , in which case k (3 
<c t 

(j> and 

a fortiori k (i> <t(j),,] k(j) . In both cases 

one obtains f(k(i)) # f(k(j)> . 0 

The reader should observe that the linear 
ordered collection of equivalence classes K/T 
is nothing but the chain of buckets into which 
the key space is hashed by the trie, where the 

147 



lexicographical order coincides with the pre-order 
in the trie. 

2.3 Storage of information. 

We have seen above that the information 
needed for rebuilding a trie equivalent to the 
original trie in the sense of definition 2.1.5 
is the collection of strings V, combined with 
a sequence of bucket addresses. The set V de- 
termines the "formal buckets" K/T, together 
with their linear order, but fails to indicate to 
which bucket address such equivalence classes are 
mapped by the ktat-algorithm f . 

The algorithms in section 1 now can be modi- 
fied in such a way that they will save and update 
this information on disk; each time the trie is 
altered by the allocation of a new bucket, the 
information on disk is modified. For this pur- 
pose we reserve two areas on disk, henceforth de- 
noted NS and BS . Here NS will store a col- 
lection of strings and BS a sequence of 
integers. 

Initially NS= 0 and BS= (0) . Each time 
we select the proper initial segment of a middle 
ye; 3cd...ci in step 1 of algorithms 1.2.2 or 

* - , we extend NS by this string ch...ci, 
removing from NS the string s c cb...ci pro- 
vided such a string is present in NS . The modi- 
fication of BS is somewhat trickier, since a 
new bucket may be allocated either by splitting 
an overflown existing bucket, or by inserting a 
first key in a bucket located at a position in 
the trie where one had a nil-pointer before. In 
both cases the sequence BS is updated by either 
inserting the new bucket M after the number 
corresponding to the overflown bucket, or by re- 
placing the niZ-address by address M+l . 

In the second case we face the problem that 
there may occur several niZ-pointers in the trie, 
and one must indicate which one should be updated. 
We propose the following solution: instead of 
having a single value niZ we use a variable 
NIL , initialised at -1 ; whenever a new value 
n7: Z should be assigned to some pointer p we 
perform the actions p :=NIL ; NIL:=NIL-I . Now 
in case the insertion algorithm finds a bucket 
address < 0 it will allocate a new bucket M+l 
at this point in the trie, and increase M by 1; 
next it will insert the proper disk address in 
the sequence BS at the position taken by the 
negative bucket address found. This modification 
has as a consequence that the key-to-address- 
transform algorithm 1.2.4 must be recoded, 
since the outcome of the test "result < 0" no 
longer is valid. Instead, by use of a tag-bit 
one must discriminate between nodes and bucket 
addresses as values of pointers. 

The update on BS seems to require a se- 
quential search on BS for locating the update 
position. In the case of a split a sequential 
scan seems needed anyhow for the copying due to 
the insertion in the middle. In the case of a 
niZ-replacement a local update will do, provided 
we can have direct access to the update position. 

This position can be computed during the ktat- 
algorithm provided we reserve additional storage 
at every node for storing weight information (IE., 
the number of nodes in the left subtrie). With 
this additional information a single nil-value 
will again suffice. 

Since in our paper the primal purpose of 
storing BS and NS on disk is the availability 
of this information for reconstruction purposes, 
we abstain from investigating the organization of 
this information in detail. During the running 
of the algorithm we assume to have a copy of BS 
and NS available in core as well. If core is 
scarce it may be necessary to store BS and NS 
on disk only, which will lead to additional 
problems concerning the organization of this in- 
formation on disk. 

Obviously, the reloading of NS and BS 
requires at least one disk-access. If more disk- 
accesses are needed they would be required anyhow 
for bringing the reconstruction information into 
core. From the assumption made that the entrie 
trie can be kept in core, it seems reasonable to 
infer that no further disk-accesses are needed 
for performing the reconstruction. Note that one 
does not need to have BS and NS in core at 
the same time. 

3. RECONSTRUCTION AND OPTIMIZATION. 

3.1 Equivalence between Litwin tries and formal 
tries. 

In the previous section we derived a neces- 
sary condition for two formal tries to be equi- 
valent; they should have the same set of strings: 
V=V' . In the present section we address the 
following two questions: 

1) In which way does a Litwin trie determine a 
formal trie? 

2) In which way can one obtain from a formal 
trie a Litwin trie which is equivalent in the 
sense that its corresponding formal trie is 
the one given. 

It turns out that the correspondence between 
Litwin tries and formal tries is many-one. Con- 
sequently, question 2 can be refined to the 
following two subproblems: 

2a) (Reconstruction) Given a formal trie, 
construct as easily as possible an equivalent 
Litwin trie 

2b) (Optimization) Given a formal trie, construct 
a Litwin trie which is optimally balanced. 

We describe a greedy algorithm for solving 2b. 
We conjecture that this algorithm indeed yields 
an optimal trie, but due to the way in which sub- 
sequent moves in the greedy algorithm depend on 
previous moves - a phenomenon which does not 
occur in the superficially related problem of 
the reconstruction of an optimally balanced bi- 
nary search tree [I] - we are unable to prove 
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this. Clearly, an optimal trie can be obtained 
by a back-tracking algorithm, but we abstain from 
proposing such a method. 

3.2 From Litwin tries to formal tries. 

The key-to-address-transform algorithm 1.2.4 
is the ultimate tool which decides whether two 
keys k and k' are mapped into different 
buckets. Let k<Ik'. These strings are mapped 
into different buckets iff the algorithm, having 
arrived at some node p with DV(p)=x , 
DN(p)=n will move left while transforming k 
whereas it moves right when transforming k' . 
If s is the string built at p by the ktat- 
algorithm, we observe that this occurs iff 
k <s,nlk' , and if this situation never occurred 
on the path from the root to p before, since 
otherwise the paths traversed by k and k' 
would have diverged at some earlier stage. 

Conversely, the only way a prefix w in a 
formal trie can perform its separation task in a 
Litwin trie, is by occurring as string s built 
at some node p in a Litwin trie be the ktat- 
algorithm; moreover, there should exist a pair 
of keys k and k' such that the ktat-algo- 
rithms arrive at p transforming both k and 
k' , such that k and k' are separated by s . 
To express this crucial role of the string s 
we define: 

3.2.1 Definition: Suppose that the key-to- 
address-transform algorithm follows a path 
from the root to node p and has, upon 
arriving in p, formed string s=s . ..s ; 
let DN(p)=n and DV(p)=x; then iode mp 
is said to represent the string 
t=s...s x 0 n-l in the trie. 

3.2.2 Definition: Given a Litwin trie construct- 
ed as described in section 1.2 its corre- 
sponding formal trie consists of all maximal 
strings represented at some node p in T. 

In a Litwin trie the buckets are assigned to 
leaves, whereas in a formal trie buckets are ob- 
tained as equivalence classes in K/T. In both 
cases there exists a linear order on the set of 
buckets, being the trie traversal order for the 
Litwin trie and the order cT for the formal 
trie. In order that the formal and the Litwin 
trie show equal behaviour these two orders should 
coincide. 

3.2.3 Proposition: The sequence order of 
buckets met in preorder traversal of a 
Litwin trie equals the order <T on the set 
K/T obtained from its corresponding formal 
trie. 

proof: Let k and k' be a pair of keys hashed 
intobuckets B and B' such that B precedes 
B' in preorder traversal. The ktat- algorithm, 
having arrived at some node p goes left for k 
and right for k' . This is equivalent to saying 

that k <s,n]k' for the string s represented 
at p where n=l(s) . This exactly means 
k cT k' . 

3.3 From formal tries to Litwin tries. 

Assuming correct behaviour of the key-to- 
address-transform algorithm on a well-designed 
Litwin trie, it is clear that 3.2.2 is a well- 
defined notion. On the other hand, we could 
extend notion 3.2.1 by investigating the behaviour 
of the ktat-algorithm in a trie consisting of an 
arbitrary collection of nodes, disregarding the 
question whether the algorithm would ever reach 
certain nodes while processing a key. We simply 
inspect what the algorithm would do in case some 
genie forces it to traverse some path from the 
root to some node p . Under these circumstances 
the following observation can be made: 

3.3.1 Observation: The string s represented 
at P is determined entirely by the values 
DN(pj, DV(p) in combination with the string 
S’ represented at the lowest ancestor 4 of 
p in the path from the root to p where a 
lower-pointer was taken. 

This observation is based upon the fact that in- 
formation gathered at some node is discarded when 
the upper-pointer is followed. 

The observation shows that the structure of 
a binary tree present in a trie is less suitable 
for investigating the interactions of the various 
nodes. In order to get some grasp on the rela- 
tion between nodes p and q above, we introduce 
on the nodes of a Litwin trie another tree struc- 
ture, called the godfather tree. 

3.3.2 Definition: The right (left) spine of a 
binary tree is the maximal path consisting 
of right (left) pointe%only, starting at 
the root. A right (left) spine in some tree 
is the right (left) spine in some subtree. 

3.3.3 Definition: Given a binary tree its god- 
father tree is obtained as follows: each 
node becomes the son of its godfather - the 
lowest ancestor of which it is a left-descen- 
dant. The different sons of a godfather 
form the right spine of its left subtree; 
they are ordered as sons in the order in 
which they occur on this right spine. A new 
root is introduced which becomes the god- 
father of all nodes on the right spine of 
the original tree - these nodes have no 
godfather in the binary tree. 

This is a well-known transformation transforming 
binary trees into ordered forests, where we have 
added the new root to obtain a tree instead of a 
forest. The transformation is easily inverted. 
Given an ordered tree a binary tree is obtained 
by transformaing the ordered list of sons of node 
p into the right spine of its left subtree (and 
discarding the root which obtains no right son). 
See the figure below: 
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3.3.4 A binary tree with corresponding godfather 
tree. 

Observation 3.3.1 shows that the string re- 
presented by some node in a Litwin trie is not 
determined by the entire path between the node 
and the root but by the nodes on its godfather 
path to the new root. In order to make 3.2.1 
meaningful for nodes on the right spine we must 
give the new root in the godfather tree a DN- 
value and a DV-value as well. We take DN=-I 
and DV=' '; as a consequence the new root re- 
presents tKe empty string, and the ktat-algo- 
rithm will always select the lower-pointer, IE., 
it will enter the real trie. 

Next consider the situation where a node p 

with DN(p)=n, DV(p)=x has a godfather q 

representing the string sO...sm; we have 

m=DN(q) . Now p will represent the string 

sO...sn-Ix' but this is meaningful only if 

n < m+l ; otherwise a string "with holes" will 

arise. This observation leads to a further re- 

striction on the structure of Litwin tries: 

3.3.5 Observation: For every node p with god- 

father q one has DN(p) < DN(q)+l ; conse- 

quently all nodes on the right spine have 

DN(p)= 0. 

From the fact that on the godfather path to 

the root the length of the represented string 

never decreases by more than I we obtain by a 

simple induction on string length: 

3.3.6 Proposition: If string s=s . ..s is 0 n 
represented at some node p in the trie 

then the initial segment sO...sn-1 is re- 

presented somewhere on the godfather path 

of P to the new root. 

Consequently, if a string s is represented then 
so will be all its initial segments. 

The numerical observation 3.3.5 still does 
not cover all structure present in a Litwin trie, 
for the fact that every node might represent a 
good looking string does not yet edorce that this 
node will ever separate a pair of keys. To see 
this assume that the ktat-algorithm, while pro- 
cessing a key k, arrives at node p where 
string s is represented. Suppose that the lower- 
pointer is selected, indicating that either 
k <T s or sck. Next we arrive at some node q 
representing a string t such that s' cc t for 
every extension s' 3 s. Then the lower-pointer 
is selected at q regardless of which string k 
brought us there, so node q is useless - its 
right-hand subtrie will never be entered. 

Similarly, it is useless to represent in the 
right-hand subtrie of p any string t such that 
t<Ts or s c t, since then the lower-pointer 
at q will never be selected. Finally, it is 
meaningless to represent an initial segment of s 
in any subtrie of p since it again would lead 
to a test with one impossible outcome. This 
leads to the following observation. 

3.3.7 Observation: Let the nodes p and q in 
a Litwin trie represent strings s and t 
respectively. If q occurs in the left-hand 
subtrie of p then either tcI.5 or set; 
if q occurs in the right-hand subtrie of 
p then s <C t and s # t . If q occurs 
below p in the trie then t # s . 

3.3.8 Proposition: In a Litwin trie, satisfying 
condition 3.3.7 , every string s is repre- 
sented at most once in the trie. 

proof: Condition 3.3.7 clearly excludes the case 
that a string is represented twice on a path from 
the root to some node in the tree. So if string 
t is represented at two different nodes q and 
q' we may assume that q and q' are unrelated. 
Let p denote the lowest common ancestor of q 
and q' in the trie, and let s denote the 
string represented at p. Since q and q' are 
unrelated we have q#pfq'. Assume WLOG that 
q occurs in the left subtrie of p. By 3.3.7 
we have t<Zs or s=t since t is represent- 
ed by q. But we also have s cc t and s#t 
since t is represented by q' in the right sub- 
trie of p. Contradiction. 0 

3.3.9 Corollary: For every Litwin trie the cor- 
respondence between nodes and prefixes of its 
formal trie will be one-one. 

Under this correspondence the empty prefix is map- 
ped onto the new root of the godfather tree,sowe'd 
better disregard the empty string from being a 
prefix. 

There remains the step of showing that for a 
given formal trie a Litwin trie can be defined, 
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which moreover should satisfy the conditions 
3.3.5 and 3.3.7. Such a trie now is easily 
obtained by first constructing its godfather 
tree and subsequently transforming it into a 
binary tree. 

3.3.10 Theorem: For every formal trie T= (V,f) 
there exists a Litwin trie T’ satisfying 
conditions 3.3.5 and 3.3.7 , such that T 
is the formal trie corresponding to T’ . 

proof: The godfather tree 5? of T’ is ob- 
tained as follows: the nodes of y are the 
prefixes of strings in V including the empty 
one. The goifather of every nonempty prefix 
xO...xn in T is the prefix x0.. .xn-1 in T”. 
Brothers are ordEred lexicographically. At node 
x=xs...x, in T we let DN(x) =n and 
DV(x) =x, . For the root r we kave DN(r)=-1 
and DV(r)= ’ ’ . Transforming T into a binary 
trie by the standard construction yields the re- 
quired Litwin trie T’ . 

By construction the trie T’ satisfies 
3.3.5 ; in fact we have for node p with god- 
father q that DN(p) = DN(q) + I . Moreover, by 
construction node x represents string x. 
Hence, the left subtrie of x only represents 
extensions y=x 9 whereas the right subtrie 
of x only represehts strings y with x<Iy 
and x # y . All initial segments of x form 
precisely the godfather path from x to the 
new root r . 0 

The following property of Litwin tries can 
be obtained from the structural constraints 
3.3.5 and 3.3.7 as well: 

3.3.11 Proposition: The value DN(p) is non- 
decreasing if p traverses-a right spine 
in a Litwin trie. 

proof: Assume to the contrary that there exists 

a right spine P~‘P~‘...,P, such that for some 

j DN(Pj) ’ DN(p* J+1) * Take j minimal with 

this property. Let q be the common godfather 

of all nodes p. and let s=s 
1 0 

. ..s be the 

string represented at q, so n=DN;q) . Let 

m=DN(pj) , m’ =DN(p. J+I) - By 3.3.5 we have 

mln+l ; combined with m>m’ this yields m’ln. 

Let x=DV(pj) , x’=DV(p. J+l) - 
We conclude that 

the nodes represent strings sO...sm-lx and 

so’..sm’-lx’ respectively. Since p. 
J+’ 

occurs 

in the right subtrie of p. one has 
J . 

s~...s~-Jx<~ s~...s~,-~x’ with inclusion being 

excluded both by the inequality m’ <m and by 

3.3.7. On the other hand p. 
J+J 

occurs in the 

left subtrie of q so we have 

so...sm,-lx’~z sO...sn, again the case of in- 

elusion SO...Sn = SO...sm’-, x1 being excluded 

by m’ln. But, after truncating these two lexi- 

cographical inequalities upto length m’sm-l,n 

we obtain: 

’ < sO...sml <I SO...Sm’~,X c SO...Sm’ 

yielding a contradiction. 0 

3.4 The reconstruction algorithm. 

We will now present an algorithm which re- 
builds a trie from the sets NS and BS satis- 
fying the structural constraints on Litwin tries 
3.3.5 and 3.3.7. As the proof of theorem 3.3.10 
is constructive we could easily convert this 
proof to a reconstruction algorithm. We will by- 
pass the godfather tree in our construction; as 
the reader may easily verify the results are the 
same. 

We define a recursive procedure GENTR that 
builds a left subtrie for a node p and returns 
a pointer to the root of this subtrie. The para- 
meters are a set of strings L and an integer 
level. 

procedure GENTR ( L,level ) 

begin declare pointer p ; p:=niZ ; 
for c in Z - 
do Lc := {vcL - 

if Lc# 0 - 
then create -- 

endif 

end f or ; 

return p 

end . 

Procedure 
Next we assign 
pointers by: 
1) set i:= 0 

GENTR is called by GENTR(NS,O) . 
bucket addresses to the nil- 

2) traverse the trie in preorder and for each 
pointer p = niZ encountered set p :=BS[il 
and i := i+l . 

from ‘:’ down to ’ ’ -- - 

IV level 
=cl ; 

node n c ; UP(nc> := p ;DV(nc):= c ; 

DN(nc) := level ; 

LP(nc):=GENTR(Lc,level+l) ; 

3.4.1 Example: In the paper by Litwin a trie 
was presented with alphabetical keys, con- 
structed by insertion of the most frequent- 
ly used English words inserted in the order 
of decreasing frequency. After construction 
it looks like: 
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If we apply the reconstruction algorithm to this 
trie we get: 

The sets NS and BS belonging to this trie are: 

NS = {ar,b,f,he,i'-',o,t) 

BS = {0,9,4,10,7,8,6,3,2,1,5). 

3.5 Transformations on tries for optimization. 

Given a formal trie V and a Litwin trie T 
such that V is the formal trie corresponding to 
T, we investigate now how much freedom there re- 
mains in modifying T preserving the equivalence 
with V . Clearly, the structural properties 
3.3.5 and 3.3.7 must be preserved as well. The 
same holds for the consequences of the properties 
like 3.3.6, 3.3.8 and 3.3.11 . 

Consider a node p in the trie representing 
string sO...sn. By 3.3.6 the string sO...s,,-1 
is represented at some node q which is located 
on the godfather path between p and the new 

root. It is not excluded by 3.3.6 that this 
godfather path between p and q contains other 
nodes as well. However, it is not difficult to 
see that these intermediate nodes only can repre- 
sent extensions s' with sO...sn-1 c s' and 
s, < sr; . 

The following observation is a direct con- 
sequence of 3.3.7 and 3.3.8 : 

3.5.1 Given a Litwin subtrie T representing a 
collection of strings W, the string s 
represented at the root r of T deter- 
mines completely the weight of the left- and 
right-hand subtrie of r . 

This follows, since the nodes in T are in one- 
one correspondence with strings in W in such a 
way that strings s' satisfying s'<S s or 
scs are represented in the left subtrie of r , 
whereas the right-hand subtrie only represents 
nodes with .s<c s' and s4 s' . This split is 
determined entirely by the string s . 

In the case of the construction of an opti- 
mal binary search tree a condition like 3.5.1 
trivially holds. This leads to the following 
well-known greedy algorithm: "seaect as the root 
a node yielding an optimal balance between the 
weights of the left- and right-hand subtrees and 
perform this optimization recursively on both 
subtrees". We would like to apply the same 
greedy approach in our case. However, condition 
3.3.6 imposes constraints on the possible 
choices of the root. In fact, previous choices 
of roots of embracing subtries affect these con- 
straints. For this reason we no longer can prove 
that the greedy approach, which underlies the 
algorithm presented below, indeed yields an opti- 
mal trie. We conjecture this to be the case. We 
can prove, however, that the trie obtained is 
equivalent to the one given. 

As with the reconstruction algorithm, it is 
advantageous to explain the optimization by con- 
sidering its functioning on the godfather tree 
structure. We need the following concept: 

3.5.2 Definition: A node p in the trie (god- 
father tree) is called undisturbed if all 
its descendants in the godfather tree are 
undisturbed, and have DN-values > DN(p) . 

Note that the nodes in the left subtree of an un- 
disturbed node p represent extensions of the 
string s represented at p; moreover, these 
extensions only are represented in the left sub- 
tree of p by 3.3.6 and 3.3.8. 

It is clear that the new root of the god- 
father tree corresponding to the trie built by 
the reconstruction algorithm in section 3.4 is 
undisturbed. 

The greedy optimizing. strategy which we have 
in mind, goes as follows: 

(I) Select one of the nodes in the trie to be the 
new root, in such a way that for this node r 
we have IwL(r) - wk(r)] as small as possible. 
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(2) Perform a local transformation, distributing 
the nodes in the left and right subtries, 
which preserves the equivalence; 

(3) recursively apply steps (I) and (2) on both 
sibtries of the new root. 

Note that the new root in step 1 must be 
eligible, given the structural constraints on 
Litwin tries. Note moreover that the transfor- 
mation in step 2 will affect both the trie and 
its godfather tree since the two determine each 
other in a unique way. 

In the sequel we shall call a node for which 
the actions 1 and 2 have been performed a 
processed node. The greedy algorithm will process 
the nodes in the trie in a top-down manner. 

Some further explanation is needed concern- 
ing the phrase “local transformation” in step 2 . 
Such a transformation amounts to an assignment 
of new values to a small finite collection of 
pointers in the trie, involving nodes close to 
either the old or the new root in the subtrie 
considered. 

The equivalence between the two Litwin tries 
involved (before and after the transformation) 
requires that the setsof strings represented are 
equal. Given the one-one correspondence between 
prefixes in the formal trie and nodes in the 
Litwin tries, and given the fact that the prefix 
represented at node p determines the values of 
DN(p) and DV(p) these values are preserved as 
well. We can use these values as “tags” for 
identifying these nodes during the transformation, 
even though a given DN-DV value pair can 
occur many times in the trie. All our transfor- 
mations will leave the values of the DN- and 
the DV- fields invariant, and only update LP- 
and UP-pointers. The string represented at a 
node gives this node a unique identity. which 
enables us to trace its position during the 
transformation. 

Consider a node p in the left subtrie of 
some node q . Under which circumstances can it 
become the root of the left subtrie of p while 
the set of left descendants of 0 remains un- 
changed ? In general, tl~is question has no clear- 
ly described answer. For example, the original 
root of the left subtrie of p may have been 
moved to the interior of this subtrie by some 
transformations, where it still is eligible of 
becoming the root by undoing these transforma- 
tions. 

In the sequel we present a lemma which 
states that all nodes on the right spine of the 
left subtrie of p are candidate roots. If 
moreover, some additional structural information 
is available it can be shown that these nodes 
are the only candidate roots. 

For the rightsubtrie a similar question 
shouldbeanswered. However, in this case the role 
performed by node p becomes empty, since p 
does not occur as godfather for any node in its 
right subtrie. The same holds for 311 nodes in 
between p and its godfather. Hence, in order 
to investigate the candidate roots of the right- 
hand subtrie of p we will consider the situa- 

tion where this right-hand subtrie is the left- 
hand subtrie of the godfather of p, and where 
all intermediate nodes , including p , together 
with their left descendants are eliminated. 
Under this interpretation the lemma announced 
above becomes meaningful for right subtries as 
well. 

3.5.3 Lemma: Let p be a node and let T be 
the left subtrie of p, then for every node 
q on the right spine of T there exists a 
local transformation of T turning q into 
the root of T, which preserves the strings 
represented at these nodes. If moreover all 
godfather-sons of p are undisturbed then 
these godfather-sons are the only nodes 
eligible in the trie T for being the new 
root of T . 

proof: We first describe a transformation on the 
left subtrie T of p, which turns an arbitrary 
node q on the right spine of T (IE., a god- 
father-son of p) into the new root of p , and 
which leaves the strings represented at every 
node invariant. The transformation is indicated 
in figure 3.5.4 below: 

3.5.4 A local transformation. 

The transformation makes q the left-hand 
son of p . The right subtree of q is unchanged. 
The left subtrie of q is inserted as a whole 
as right subtrie of the lowest node in the right 
spine of p’s truncated left subtrie, which sub- 
trie, after this modification, becomes the left 
subtrie of q . 

We show that this transformation has the 

required properties. The only node that obtains 
left descendants which it did not have before, is 
node q. In terms of the godfather tree this 
means that q Secomes the godfather of those 
brothers that preceded q in the order of p’s 
godfather-sons. ?;o other godfather relations 
are changed, from which it follows that all 
strings represented at nodes are unchanged, 
except for those elder brothers of q. It suf- 
fices therefore to show that these elder brothers 
represent the same string before and after the 
transformation. 

Let q’ be such an elder brother of q, 
and let s,t and s’ be the strings represented 
by q,p and q’ respectively. By 3.3.11 we 
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have DN(q') =l(s') 5 l(s)=DN(q) . Before the 

transformation we have: 

’ = t 0 “‘tDN(q)-, DV(q) and 

s' = t 0 . . .tDN(q,)-,DV(q') . 

After the transformation we have: 

s = t ...tDN(q)-lDV(q> and 0 
s' = s 0 "'SDN(q')-I DV(q') = to...tDN(q,)-,DV(q') . 

This shows that these strings are unchanged. 
In order to prove the second part of the 

lemma we assume that all nodes on the right spine 
of p's left subtrie are undisturbed. Let q be 
one of these godfather-sons of p and let q' 
be a proper descendant of q in T. We show 
that q' cannot become the root of T without 
disturbing the strings represented at some nodes. 

Let s and s' denote the strings repre- 
sented at q and q' . Since q is undisturbed 
we have sc.5' before the transformation. By 
3.3.6 after the transformation q must occur 
on the godfather path from q' to the root. 
However, if q' becomes the root of T then p 
becomes the godfather of q' , so q would have 
to become a godfather ancestor of p, showing 
that the node q would have to be placed outside 
T after the transformation. Aside from no 
longer being a transformation that transforms 
the subtrie T inside itself, actually we can 
show that such a position outside T is impos- 
sible as well. Consider the string represented 
by P> say t . Since q occurs in the left 
subtrie of p by 3.3.7 we have s#t and 
either 
tion q 

scZt or tcs. After the transforma- 
becomes a godfather ancestor of p and 

we have t # s and either tcZ s or set. This 
clearly yields a contradiction. 0 

Lemma 3.5.3 shows that the set of candidate 
roots of a (left) subtrie is restricted to the 
right spine of this subtrie, provided all these 
candidates are undisturbed. Starting with the 
trie resulting from the reconstruction algorithm 
from section 3.4 we know that all nodes are un- 
disturbed. We need to show that the transforma- 
tion from the previous proof leaves the undis- 
turbedness of most nodes invariant. 

3.5.5 Observation: Let p be a node such that 
all its godfather-sons are undisturbed, and 
let q be some node on the right spine of 
p's left subtrie. Then the transformation 
3.5.4 performed in such a way that q be- 
comes the root of p's left subtrie leaves 
the undisturbedness of all nodes in p’s 
left subtrie invariant except for the new 
root q . 

The proof of this observation is evident, given 
the fact that transformation 3.5.4 leaves all 
the DN -fields invariant, and given the fact 
that the only node obtaining godfather descen- 
dants which it had not before, is the new root q . 

This observation is used in the next section 
to prove that our greedy optimization strategy 
investigates at each step all presently available 
candidates for being the root. 

3.6 The optimization algorithm. 

Having explained all necessary concepts and 
tools in the previous section we now come to a 
specification of our greedy optimization method. 
Our greedy method selects some node yielding an 
optimal balance on the right spine of the trie 
considered, turns this node into the new root by 
performing transformation 3.5.4 and calls itself 
recursively on both resulting subtries of the 
new root (if nonempty). 

The method is described by the following re- 
cursive procedure OPT; its input parameter is 
a pointer to the trie to be optimized. 

procedure OPT(p) 

begin declare pointer pl,p2,new root ; integer M ; -- 

P’ := p2 := p ; M := w(p)-1 . 

while wk(pl)> M/2 do pl := UP(pl) endwhile; - 
if pl#p then - 

while UP($) #PI &J P2 :=UP(p2) endwhile ; 

;r (wP(p2) -M/2) (M/2 -w&l)) 

then new root :=p2 

else new root :=pl 

endif ; 

if new root # p then - 

P' :=p;while UP(pl)#new root & 

P’ := UP(pl) endwhile 

p2 := LP(new root) ; LP(new root) := p . 

UP(Pl) :=p2 ; p:=newroot 

endif 

endif ; 

if LP(newroot) is not a bucket address then - 
then OPT(LP(newroot)) endif ; 

if UP(newroot) is not a bucket address - 
then OPT(UP(newroot)) endif 

end . - 

Note that this procedure does nothing except 
for the recursive calls in case it finds out that 
the present root is already optimal. 

It follows from lemma 3.5.3 that this algo- 
rithm yields an equivalent trie to the given one, 
since transformation 3.5.4 preserves the corre- 
sponding formal trie. Next consider the case that 
the input trie is obtained as the result of the 
reconstruction algorithm in section 3.4. Then the 
recursive top-down strategy preserves the follow- 
ing invariant: 
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3.6.1 Invariant: All nodes in the trie are 
either undisturbed or processed; all ances- 
tors of processed nodes are processed. 

As a consequence , given the fact that the 
invariant is established by having the recon- 
structed trie as input, we see that by 3.5.3 all 
possible candidate roots are located on the right 
spine of the trie given as an argument'to OPT, 
and that this property holds for the subtries 
given as argument in the recursive calls as well. 
This shows that our optimization method is opti- 
mal within the class of greedy algorithms. 

From the above we may conclude that our op- 
timization method always finds a trie which is a 
binary trie in the class [t,il in the sense of 
Mehlhorn C51, unless we find at some level a sub- 
trie that consumes more than half of the nodes 
available. But in this extreme case we can do 
no better than shifting all these nodes either in 
the left or in the right subtrie, without violat- 
ing some of the structural constraints on Litwin 
tries. 

4. TEST RESULTS. 

The reconstruction and optimization algo- 
rithms werecoded in a program of approximately 
1000 lines of C , and run on a PDP-I 1 under 
LNIX% . Tries were obtained by generating up to 
5000 strings (with possible repetitions), both 
by random generation, or by processing existing 
text files. Bucket sizes 10 and 20 were 
used. The results indicate that the original 
trie is reasonable, the reconstructed trie being 
extremely unbalanced, whereas the optimized trie 
has an average path length of appr 2% up to 7% 
less than the original one. 
Keys inserted: Max. Average Max. Average Average 
Intern. nodes Pathl. Pathl. wL-wR wL-wR I wL-wRI 

COlL3tr 8 6.595 3 0.609 0.902 
ban 540:42 37 19.428 40 -16.634 16.634 
Optim 7 6.476 ’ - 0.292 0.488 

Canstr 9 6.837 15 I.119 !.452 
R~CO~ 558:43 40 21.325 39 -18.667 18.667 
Optim 7 6.511 ! - 0.452 0.500 

cocstr 9 7.269 13 0.661 1.241 
Recon 892:63 43 24.066 57 -20.850 20.850 
Optim a 7.066 2 - 0.367 0.700 

Constr II 7.965 26 1.071 I.894 
Recon 1013:88 39 24.667 82 -20.337 20.771 
Optim I! 7.503 5 - 0.108 0.831 

constr 16 10.902 172 1.546 3.114 
Recon 5154:423 57 34.789 410 -28.814 29.513 
Optim I9 10.175 19 - 0.0332 1.4916 

% Unix is a trademark of Bell Laboratories 

s. DISCUSSION. 

In his paper Litwin introduced trie hashing 
by describing the algorithms in a verbose style, 
claiming a high performance. He did not present 
any theory on the data structures involved. Our 
present research was motivated by a question 
asked by H. van Emde Boas-Lubsen, after a pre- 

sentation by Litwin in Jan 1980; she asked 
whether it was possible to reuse the structure 
after a system crash. The authors acknowledge 
to her this inspiring idea which led them to 
several unexpected theoretical results. 

It turns out that the reconstruction algo- 
rithm is not too difficult to invent. The opti- 
mization method requires some more effort; The 
main problem, however, seems to show that these 
algorithms are correct. Hence, one must show 
that these algorithms preserve the relevant pro- 
perties which were never defined by Litwin at 
all. Since the meaning of a Litwin trie, opera- 
tionally is given by its key-to-address transform 
algorithm, it is reasonable to declare two tries 
to be equivalent in case they yield the same 
ktat algorithm. The theory developed in sections 
2 and 3 represents the result of 14 years of 
struggle by the authors with the problem of 
translating this operational equivalence in 
structural properties of the trie, based on which 
the correctness of our algorithms can be proved. 

We believe that our experience gives a nice 
illustration of how non-trivial data structures 
require a rather complex mathematical analysis 
in order that interesting algorithms operating 
on them can be shown to be correct. Theoretical 
Computer Science can be practical ! 

After submission of our paper we were inform- 
ed about another investigation related to Litwin 
tries by J. Dur & S. Koopmans, IBM DCSSC, 
Uithoorn L21. Although their motivation was 
different from ours (their purpose being data 
compression, rather than optimizing search time), 
they arrived at a structure which at a theoreti- 
cal level is similar to our reconstructed tries, 
except for the trivial modification of selecting 
for equal keys the upper-pointer instead of the 
lower one. Actually this choice would clean up 
the theory in as far as the complex condition 
s SC s' or s' c s can be replaced by the 
simple condition s <c s' ; Litwin's choice of 
moving left on equal keys and the traditional 
definition of lexicographical order don't fit 
together well. 

Some remaining open problems are: 
5.1 The optimization algorithm is correct for 
arbitrary Litwin tries, but in general it will 
not investigate all possible candidate roots of 
a left subtrie. Can one obtain simple (heuris- 
tic) tools for locating candidate roots outside 
the right spine of the left subtrie? We have a 

.method for locating such candidates on the left 
spine but no idea about the value of this heuris- 
tics. 

5.2 The paper uses a number of hypotheses on the 
environment. We assume that the entire trie fits 
in core. Moreover, we assume that reconstruction 
information on disk ( NS and BS ) can be brought 
in core in a single disk access and can be pro- 
cessed in core together with the trie under re- 
construction. Both assumptions seem to become 
unreasonable for large-scale applications. The 
problems on the proper paging and segmentation 
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methods required for obtaining a reasonable be- 
haviour under circumstances where these assump- 
tions are invalid, are left for further research. 
Possible solutions are the logging of transac- 
tions or the implementation on a virtual core 
machine. 

5.3 To our knowledge the reconstruction problem 
has not been investigated for any dynamic data 
structure before. It might be interesting to 
know whether the overall strategy followed here 
is applicable to other structures, in order 
that they may be protected against system 
crashes and other nasty habits of computers. 

5.4 Prove or disprove our conjecture that our 
optimization algorithm yields an optimal equiva- 
lent trie. 
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