
Jack A. Omstein

Deprcment of Computer and Information gcience
university of Massachwetts, Amherst

LinearhashingisadynamicfiIeorganizationpropmed
by Litwin. A version of it clasifies records uming a
suffix of the bimuy representation of the key. Random
ac4wing is possible but aequefltial accming is not. By
using a prefii instead, sequential acc&ng is posible
but not always efficient. Other modifications are
included to avoid poor performance for nequeatial
==-I!. In ptuddar, only a limited number of
sparsely filled buckets are allowed to exist. The
performance of the new data structure is, in pmctice,
expectedtobebetterthanthatoftheBtree.

18 lNTRODUClION

Thebasicoperationperformedonafilcofreands
is the rebieval of a record given its key. This problem
has generated a huge amount of rcsarch. (gee
(Knut73] or [StadO] for a survey.) A hash file provides
fast access to a record (in most cases). Btreu [Bayen]
are somewhat slower but permit sequential auxssing.
That is, once a raxsrd has been retrieved, ib succemor
canbe found easily. Thus the Btree is an
-imiexed-sequential” data larwure (IDS).

Litwin has proposed a data structure, “linear
hashing”, which supports random but not sequential
acessing ~twtxl]. Linear hashii is dynamic and
provides access to the primary page of any bucket in
exactly one disk access. But linau hashing is not an
ISIX because sequential accekng cannot be performed
quickly: the addrem of the succcdsor of r, a record in
the file, is not related to the address of r. Other
hashing methods can be made order- in a
trivial way: by using the hash function h(r) = [r/d

where r is an integer and s is a fixed scaling factor.
Linear hashii requires the m of hash functions
incompatible with this strategy. We propo6e two
variations of linau hashing which are order-.
Both random and sequential accedngwiuthalbe
possible.

The performance of these new data rtnrcnva is
at least a8 good as that of the m for uniformly
distributed data a random access wilI usuaUy cost one
disk access. If the data is highly chWered then the cost
of a random access is the same as for a Btree (or
marginaUy more). In some rare caaa inaer&n will be
more expensive.

In the context of a relational database -em, the
ability to process “range queries” on multiple attribute
data is important. It was shown in [Ore&21 that any
ISDScanbeadaptedforthispwpoae.Soournewdata
stmctum yield new data stN&ue&forrangesearch@.

We will use the following notation: 4191 I 992
I . . . I spp denoted the string

‘1 *1 . . . ‘1 s2 82 . . . II2 . . . “r 3 . . . i+
vu-

“1 n2 . . . 5
whereeachsiisastringofoneormorebits andeach
qdl, i = 1, . . . , r, ia a repetition factor. If npl then
“sini” may be abbreviated to “sin. (E.g. CO112 I O> =
0110110.)

2.0 A VARIATION OF UNEAR HASElNG

2.l uncuhashlng

Adescriptionofaspecialcaseoflinearhashiiis
a prerequisite. The data to be stored amaists of
records of d bits each. Record r can be rega&d as the
integer -0 I . . . I r&l> where ri is the ith bit of the
record. The records are to be stored in buckets 0, 1, . . .
The number of a bucket will alsO be the addrcs of the
bucket’s primary page. owrflow pages are allocated
fromaseparateaddressspece.

132

The file is accessed using hash functions Of the
form

$tr) = r mod Zi
(This function extracts the i bit suffix Of r.) The value
of i is one of two consecutive integers, m and m+l,
where m is the keel of the file. A pointer to the
file, n. indicates whether h, or h,+I should be u@
(see figure 1).

Buckets 0 through n-l and 2m through 2m+(n-l)
are at level m+l; buckets n through 2m-I are at level
m. n is a pointer to the next bucket to be spfir. It
travels from left to right so that every bucket is split
in turn. When bucket n is split, its records are
distributed between buckets n and n+2m, both of which
will then be at level mAI, (since n was incremented).
When n reaches 2m all buckets are at level m+l. m is
then incremented, n is reset to 0 and starts travelling
right again. (See the Split algorithm in section 23.)

A linear hash file can be grown from a single
empty bucket at level 0. The number and address of
this bucket are 0, m = 0 and n = 0. m = 0 means
that 0 bit suffixes are used for classification: all records
go to bucket 0.

A bucket is split (and n is incremented) whenever
a record hashes to a full primary page, (i.e. there is a
colhsion). The bucket that is split is not, in general,
the one involved in the collision. 3ut eventually, every
bucket will be split and (‘deally) all *he overflow pages
will be emptied and reclaimed. If splitting creata
sparsely fil!ed buckets and the Isac’ ?actor threatens to
become “too low”, the sp!it !s supprfssed.

Litwin claims that a ‘&ear hash file can also
shrink ~Litv&O~ although he does aot give the deletion
a!gorithm. It is not di?ficu:t to imagine how deletions
might be handled. For examde. when the overflow
pages of any bucket become empty, buckets n and
n+2m could be combined and n decremented. (See the
Join algorithm in section 23.)

To locate a record, r. Randac (r) (for “random
access”) is called to locate the bucket. We are not
concerned with searching within the bucket. Randac
returns the number of the bucket containing r.

R-f&r)
B := h,(r)
ifB<n
then

(’ bucket B has been split to ‘)
(’ give two buckets on level m+l 9
B := hm+lW

end
return(B)
end Ran&c

One attractive feature of linear hashing is that the
file grows smoothly; by one bucket at a time. The
growth is “linear”. The directory of extendible hashing,
on the other hand, grows cxpooentially: it doubla ia
size oLxasionally (but these cxpadom am rare). In
addition, buckets of exteadibk hashing split what they
become full, requiring the direct0ry to be updated
pagi79]. Linear hashing does not have a diraWry.

Consider the partitioning imposed by the hash
function h,(r) = r mod 2m. All of the records in a
given bucket (at level m) agree in the m least
significant bits, Crhrn I . . . I rd.I>. (Note that m
varies as records are added and deleted. Thus, the
number of bits used for classification is not fixed.)

If, instead, the records agreed in the moat
significant bits, each bucket would store all of the
records of the file that fall in a certain range. The
hash table would then be order-pmservmg. Let left&k)
and right(+) denote, nqectively, the k leftmost and
rightmost bits of string s. Mir(==sl I 9 I . . . I p) is
the “mirror image”, + I . . . I 9 I sp where each si is
a single bit.

The simplest way to partition the file on the basis
of the most significant bits is to store record r in
bucket h,(mir(r)). That is, the bits are reversed before
hashing. Clearly

h,(mir(O) = WWW)mm)
= mir(left(r&)

The bucket number is obtained by reversing the bits of
the m bit prefix of the record. Searching and splitting
work exactly as for linear hashing. This has to be true
since, in effect, we are dealing with another file in
which each record, r, has been replaced by mir(r). If
the bits of the prefix were not reversed, i.e. hm(r) =
left(r,m), then splitting works differently. This alternative
is discussed in [Ore&].

Figure 2 shows an example of an order-pnerving
linear hash file. Notice that the mirror image of the m
(or m+l) bit prefix of a record at level m (or m+l)
matches the m (or m+l) bit representation of the
bucket number. So bucket 3 = 0112 is at level 3 and
stores records with prefix 11%.

Burkhard [Burk83) and Ouksel and scbeuernm~
[Ouks83] have independently discox& OPLH. They
apply techniques similar to those of [Oreng2] to yield a
multidimensionaI data structure for range search@.
They do not discuss the use of h,(r) = left(r,m), nor
do they address certain serious problems with the
performance of OPLH which are discussed in detail in
sections 4 and 5 Of this paper. Alm, their
multidimensional transformations are limited to the
context of OPLH. For a more complete and general
discussion of the transformation see [Or-en&?].

133

23 Algorfthms

Order-presewing linear hashing (OPLH) supports
random and sequential accessing. Randac, given in
section 2.1, can be used with OPLH if the argument
to h, and h,+l is changed from t to mir(r).

L.ocating the su-r of any record in a bucket,
other than the last one. is trivial. Let last(b) be the last
rezord in bucket(b). (b is a bucket number. Bucket(b)
stores the recorda whose prefiies are mir(b).) Then
the successor of last(b) can be found aa follows:

The IeVe Of the bucket, mb, is known: mb = m

if nsbQm; mb=m+l otherwise. Bucket(b) stores all
records in the range [<mir(b) t o&mb>, <mir(b) 1
lbmb>], (recall that b is an mb bit number). The
smallest record above this range is

s = air(b) t kd-mb> + 1
= e(b)+1 1 &d-mb>

A search for S (using Ran&c) will locate b’, the
bucket containing the successor of last(b). There is one
problem: b’ may be empty. Repeatins the above
procedure until a noncmpty bucket is found yields the
bucket containing the successor of last(b). The algorithm
is given in [omm].

The bucket splitting and jt%ning algorithms are
Split and Join.

SPW
Bit(ag 1 . . . I rdI>j) is ri.

for each record r in bucket n
if bit(r& = 0
then

(’ the record does not move ‘)
else

move r to bucket n + 2m
end

end

n := n + 1
ifn=2m
then

(’ all buckets arc at level m+l, ‘)
(’ start a new level 9
n := 0
m:=m+l

end

return
end Split

Jdno
n := n - 1
ifn<O
then (’ go down one level 9

m := m - 1
n := 2m - 1

end

move all records from bucket n+2m to bucket n

end Join

3.0 OyERFulW

‘Ike hash function used for OPLH is hm(r) =
mir(Mt(rjn)). It is possible that the hash values
generated will be clustered. That is, left(rjn) may not
scatter the records very well. So overflow wig be more
common than with more traditional hashing methods.

So far, almost nothing has been said about how
overflow is dealt with. Litwin suggests the use of
overflow chains [LitwgO]. A Btree (or variant) is a much
more appropriate data structure in the present context.
Since we want OPLH to be indexed-sequential, the data
structure representing an overflowing bucket must be
also. A chain of records is not an ISDS because it
does not support random accessing. The Btree is
necmsary if we are to avoid the very bad worst case
behaviour characteristic of overflow chains.

Clearly, this organization has very good
performance for random accessing: reading a bucket
that has not overflowed costs one disk access. In the
worst case a Btree containing all of the records has to
be searched. Sequential acuuingisusuauy asfastas
for the Btree.

The use of a Btree complicates operations on
buckets: Split and Join. It is essential that these
operations preserve the properties of Btrees, (the load
factor in patticular). The implementation of the Btree
operations has been discussed in [Oreng2].

46 MuLTr-LEVJX OPLE, (MLOPLIQ

4.1 Prohkms with OPLE

An OPLH file may contain an arbitrary number
of sparsely fiied buckets. Thii can result in poor
perforonnce for sequential accesing. Consider the
situation shown in figure 3, (suppoee that primary page
capacity is four records). To retrieve all the records
whose prefii is oq2, buckets 0, 4 and 8 must be
accused, (thii is clear from fiire 2). These three disk
acceaw yield two records. If the eraire file were at

134

level 2 thar bucket 0 would contain the records which
would be retrieved in one aaxs, (since primuy page
capacity is 4). But if the file were at levei 2, other
scar&s, (e.g. for prefix Oloz>, would be more
expensive. Furthermore, it would take six joins to reach
lever 2. 80 the problem is not solved by joining more
frequently.

The situation demonstrated in figure 3 is
characterized by the appearance of several qmraely filled
buckets. It can occur following a sequence of splits
which distribute the records unevenly or following
repeated deletions concentrated in a few buckets. since
it can occur as a result of deletions, suppr&ng splits
does not solve the problem either.

43 Ad- more levels to OPLIi

Liiear hashing, as described in section 2.1, is
based on the binary trie: it classifies records according
to a sequence of bits whose Iength varies with the
number of records being stored. Other data swucmms
based on this idea are extendible ha&ii [Fagi79],
EXCELL PammSla], HCELL @mmSlb], trie hashing
[LitwSl] and, of course, the trie pred60, Knut73]. What
all of these data structures have in cummon is the
notion of “level”. The levef of a record is the number
of bits used in its clas&ication. Records axe usually
grouped into buckets (as we are doing). The level of a
bucket is the level common to all records in the bucket.

The trie stores a record at the lowest level (i.e.
ncarest the root) providing a clasification which avoids
bucka overfIow. The same is true of extendible
hashing and EXCELL but each of these has a directory
with alI entries at the same level. Linear hashing (and
OPLH) use no more than two consecutive IeveIs but do
not require directories.

The problem with OPLH, described above, would
be alleviated if parts of the file could be stored at
lower levels than normal, (i.e. below level m or m+I).
E.g. if, in figure 3, the contents of buckets 0, 4 and 8
could be stored in a level 2 bucket, (-ding to
prefii 002). leaving the rest of @e file at levels 3 and
4, the problem would be solved. Next, we discuss a
“multi-level” version of OPLH, KLOPLH.

43 subaorrrmlhacketa

A bucket is qmrse if it contains no more than a
given number of records (which is a fmction of the
capacity of the primary page). A sparse bucket will not
be permitted to exist. It will be combined with its
brorher to form a sub-m bucket: a bucket whose
level is lower than normal. If level(b) < NormalLavd(b)
then b is su&mrmal. (Level(b) b the level of the
bucket and NormalLevel is m or m+l.) b and b’ are
brothers iff level(b) - level(b’) and lb&l - 21eve@k1

Notethatbro&ersarecombinedifatkaUoneoftban
isfparse.

NotaUbucketshavcbrothm.I11figum3,buckeU
Oand8arebrothembutbucket4hasnobmther.
(Beforebucket0wassplittogivehuckets0and8,
buckets 0 and 4 wm brothers.)

Notice that buckets 0. 4 and 8 are quac. To
elimiite the problan, 0 and 8 are jdnaI (this b
possible becawe they are brothers), yiddhg a level 3
bucket at address 0. The dting bucket is the brather
of bucket 4 so buckets 0 and 4 can now he juined. The
resultofthetwojoinsdescribedisshowninfigure4.

A split may yield one or two qamo buckets. It is
not feasible to refrain from @ting until the situation
ChMgSdlfUl-dWSplitS~dSOdelayed.IlUtd,ti
bucket that should have been split remain8 at its current
level and n, (the pointer to the next bucket to be @it),
is advanced. This is a depwure split. For example, a
split of bucket 2 in figure 4 yields a sparse bucket. The
degenerate split leave8 the bucket at level 3. (it is then
subnormal, see figure

A bucket can
deletion. when this
its brother, mfen if

alsobammeqmnefoIbwinga
occurs,thebuckuisjninedwith
the brother is not tpam. For _ - --

example,ifarecordbdeletedfmm bucketzoffigure
4, it becomes sparse. It is then joined with it8 brother,
bucket 6, (see figure 6). (The brother can be created if
itdoesnotexist;seeG&ctfoa OfhMtfWhlUbtS.)

A sperm hockct may hocome non-.

A subnormal bucket can, due to inaer&m yield
hiier led buckets that are both non&. For
example if the record deleted from bucket 2 were put
back, it would be correct to distribute the records of
bucket 2 in fiin 6 remming to the situation of figure
4.

4.4 Algdthm

The modifiitiona of OPLH -bed in
43 are uctendve. We now give the algorithms _.

section
needed

for the implementation of MLOPLH. Space limitations
prevent us from stating all algorithm eqlicitty. A
more complete expodtien can be found in [Ore&!].

Since recorda are not always in the buckets they
“should” be in, (e.g. due to a forced join), some
mechh is rapired for locating a record that has
been moved. Reading an empty bucket (e.g. h&e4 4 in

135

figure 4) is an indication that the records of the h&et
have moved down at least one level and that the
lower level bucket should be searched, (i.e. do the
search again using a shorter prefix). The Randac
algorithm, given below, searches for the first non-empty
bucket by using sua!essively shorter prefixes.

L is the level of the bucket whose
range contains t.

An insertion to a subnormal bucket may create a
situation in WKCJJ the bucket could be @it to yieId two
non-sparse buckets. l%is split is performed by the
Distribute al#@hm @iscusd below).

Similarly, if a d&ion yields a sparse bucket, the
Collect algorithm will be invoked to &in the rparre
bucket with its brother. (A brother can be created if it
does not exist. Tbc Cdlect algorithm is discusd
IXlOW.)

if h,(mir(r)) < n
then L := m+l
else L := m
end

while bucket hL(mir(r)) is empty
L := L - 1

end

DlStdhUti~OfUC4WdSIn~bdGL

Distribute is called by the insertion fdgorithm
when the records of a buck& b at level level(b) are to
be distributed to brother buckets at level level(b)+l.
The records are classified acxodng to the value of the
Ievel(b)+lst bit. SplitBucket performs this
clauification. (SplitBucket is discussed in [oral82].)

Note that in the worst case m+l disk reads are
necesary to locate the bucket. Let N be the number of
buckets in the file. (N is proportional to the number
of records in the file - see section 5.) lllen, since
m=log2N, we have a problem if we want to compete
with the Btree, (note that the base of the logarithm is
2). Fortunately, this problem can be avoided: the version
of Ra~~dac given ahove may generate up to m+l disk
accewu during a “sequential search” for the length of
the prefix used to locate the bucket. ‘llii search can
be replaced by a binary search, reducing the cost to
o(log2m) = o(log2log2N) disk accmses. The details of
thii modification are given in [Ore&].

As before, Seqac must axWuct asuccessorrecord
and perform a random access. But since there are no
sparse buckets, it is not necesary to check for and skip
over empty buckets. Thus the Seqac algorithm has been
simplifiedz construct the successor record, S. and search
for it using Randac.

Note that Distribute is recur&e. &naider the
situation of figure 7. Bucket 0 stores all the records
whore prefii is 02 but the distribution of the records
within the bucket is biased. As XKWJ as two records
with prefix 012 are inserted, bucket 0 can be split to
yield buckets 0 and 2 (corresponding to prefixes 002 and
012 respectively). Now, assuming a uniform distribution
of records within bucket 0 (at level 2). the distributions
shown in figure 8 can occur, (the prefiies are shown).
These distributions are performed by the recwsive calls.

DistribOK(b) returns true iff bucket b can be
split to yield two non-spame buckets.

if level(b) < Nom&Level(b)
then (’ distribution is possible l)

oldlevel := level(b)
b’ :5 brother(b)
SplitBucket
level(b) := oldlevel + 1
level(b3 := oldlevel + 1
if DistribOK(b) then Distribute(b) end
if DistribOK(b’) then Distribute@‘) end

end

end Distribute

tIzdktlon of brother llockus.
The Split algorithm works as before except that a

subnormal buck& may be created. SMlarly, Join is
easilymodifiedtodealwiththejainingofasubnormal
bucket and an empty bucket.

Collect is called by the deletion algorithm to
combine a sparse bucket with its brother. JoinBuckets
manipulates the buckets’ data structures (ree [Ore&Q.

rllsmth and deluh of real*.

These algorithms work as before with the
following exceptions:

Collect, like Distribute, is recursive. Consider a
C~Uect of bucket b at level L and b’ = brother(b) at
level L’ > L. (Since level(b’) > level(b), b ti not
really have a brother but if it did, its address would be
brother(b).) &fore the Collect can occur, b’ must be at

136

level L. To ensure this, b’ is co&ted mn though
neither b’ or its brother (Zb) is sparse. (An example
is given in section 5.1.)

b’:=broth@b)

(*Bringbandb’tothesameRvdby*)
(.cou~thehighcrkvdbucket’)
if kvel(b-) < level(b)
then ~interchangebandb’*)

b :=: b

(’ place result in the left brother, b 9
if b’ < b then b :=: b’ end
JoinBuckets(b,b’)
level(b) := level(b) - 1

end Collect

5.6 PROBLEMS WITH MLOPLB

By eliminating sparse buckets, the problem of
potentially poor performance for sequential accessing has
been solved. For random gazer&g, MLOPLH is at
least as good as the Btree. It can be expected to have
better performance unlals the data is hiiy clustered.

updates occcasionauy generate calls to Distribute or
Cokct. For some distributions of records (character&d
by clusters of records) these calls can generate a lot of
work; every bucket is accessed in the worst cases. In
this section, the problem is explained and a solution is
propasad*

5.1 ZIle protJlem

Consider the situation of figure 9. A rash of
deletions from bucket 0 have caused it to become
space. It must be collected but its brother does not
exist. If it did exist, it would be in bucket 1 which is
currently at level 4. Bucket 1 must therefore be
colleued. putting it at leve! 3. By the time that bucket
1 reaches level 1, the contents of buckets 3, 5.7 and 9
will have been moved to bucket 1. Half of the buckets
have been affected.

A simii problem plagues Distribute. &rmrahy,
CMkcts and Distributes involving buckets at very low
levek 0, 1, 2. etc. involve very large fractions of the
file.

Ihecostofmovingrecordsfromottebucketto
another is a minor concern: theraxmbinbmth
buckets b and b’ can be merged in time O(Iog(tt) +
log@?) where n and II* are the number of records in b
and b’ respe&ively, (the algorithm is in [OreatZD. lltis
ispcasiblebecausealltherecordsinbarermalJerthan
thoeinb’ (orviceversa)andonlythe”edga”ofthe
Btrees have to be modified. T+Mting a Btree (required
by the Distribute algorithm) costs o(log%) [oram].

The major concern is the number of buckets
involved. For example, a&cting a bucket on level L
may cfme as many
aaxmd where N
2msNQm+1

as about NEtL bucketstobe
is the number of buckets,

5.2 mesohlrha

Clearly, the solution involvea placing a lower
bound on the level of a bucket. For example, if the
lowest level permitted is 5, then a bucket being
collected will be at least on level 6 and no more than
l/26 = M4th of the buckets could be involved in any
cukct.

A consequence of this strategy is that some sparse
buckets may exist. In general, if the lowest level
permitted is L then there may be as many as ZL sparse
buckets.

A few modifications to MLOPLH are required to
make this work:
0 The file is initialized with 2L empty buckets,
@stead of one empty bucket).
l Sparse buckets must be kept track of. The address
and level of each must be known. When a new sparse
bucket is created, causing the number of sparse buckets
to exceed 2L, the sparse bucket at the highest level is
collected, (thii is probably the cheapest one to collect).

It is intemsting that there is a tradeoff between
the worst cas a&s of sequential acxdng and
updating: an update may require acc&ng NnL buckets
and there are up to 2L sparse buckets which can slow
down sequential proWsing.

6.0 PERPORMANCE

MLOPLH is a complicated but potentially faster
alternative to the Btree. We can make the following
qualitative statements about the performance of
MLOPLH relative to that of the Btree.
l Random faxsing costs one disk B if the

accusedbuckethasnotoverflowedandisnotsparse.In
the case of overflow, a (probably small) Btree has to be
searched.Incaseofsparseness,the rapiredbuckUcan
be located in o(log210g2N) disk -.

137

l sesu=- Bcccl(iDg usually coas the same as for a
Btn%. ‘IIke cost may be somewhat higher when a bucket
baundaryisu0SKd.(Linksbuween amsecutive buckets
can be used to avoid the incmsed cost.)
l updatingwiuusuallybecompeuabletotheco6tfor
the Btree but could be wm: i.e. when a Collect or
Distribute accesra a fixed fmction of the buckets. This
cannot happea very often.
0 The worst case load factor of a Btra is 50%
[Bayen]. The load factor of linear hashing is
controllable but the use of Btreu will result in a lower
load factor than the use of overflow chains. The
important point is that the load factor of MLOPLH
cannot get arbitrarily close to zero as is possible with
some other triebased methods, (e.g. the &e).

Clearly, a lot of work is II- before
MLOPLH can be recommended as the nuxusor of the
Btrce. This work falls into four areas:
1) Fine tuning: selecting valueJ5 for parameters (e.g.
threshhold for sparseness, number of sparne buckets
permitted).
2) Studying various strategies for administrative details
such as when to split and when to join.
3) Performing experiments to compare MLOPLH and
the Btree.
4) Finding a clever and melodious name to repiace
“MLOPLH”. ni!3 is essential before widespread
acceptanceofthedatastruaun is possible.

ACkQOW&fJgClUUlt

I am grateful to Prof. Tii MelTett for his
comments on earlier drafts of this paper.

Referalcu

Bay&? R. Bayer, E. M&eight.
organization and maintenance of large
ordered illdexes.
Acta Informatica 1. 3 (l!V2), 175189.

Burk83 WA. Burkhard.
Interpolatioa-based index main-.
Proc. 2nd ACM SIGACX-SIGMOD Symposium on
Principle3 of Database Systems, (1983). 7685.

Fagi R. Fagin et al.
Extakiible nashii - a fast access method
for dynamic files.
ACM TODS 4.3 (1979), 315344.

Fred60 ER. Fredkin.
Trie mcmoxy.
CACM 3, 9 (X%0), 490499.

Knut73 D.E. Knuth.
The Art of Computer Programming, vol. 3:
Sorting and Searching.
Addison-Wesley, Mass., (1973).

LitwSO W. Litwin.
Linear ha&ii: A new tool for file
and table addressing.
Proc. VLDB6. (l!XQ 212-223.

Litw81 W. Litwin.
Trie ha&ing.
Proc. ACM SIGMOD, (1981), 19-29.

Oren J.A. Orenstein.
Algorithms and data structures for the implementation
of a relational database system.
Ph.D. thesis, McGill university, (1982).
Also available as Ta%ical Report SOC%2-17.

Oren JA. Orenst&
On the efficient sear&ii of MLOPLH.
Manuscript, (1983), COINS Depertment,
University of Massachusetts, Amherst.

ouks83 M. ouksel, P. ScheuermaM.
Storage mappings for multidimensional iinau
dynamic ha&ii.
Proc. 2nd ACM SIGACT-SXGMOD Symposium on
Principles of Database systems, (1983). 9&10!5.

Stan80 TA. Standish.
Data Saucture Techniques.
Addiaon-Wesley, Reading, Mm., (1980).

Tammlla M. Tamminen.
Order pmerving extendible hashii and bucket tries.
BIT 21, 4 (1981) 419-435.

TammSlb M. Tamminen.
Expected performance of some cell based organization
schemes.
Report HTKK-TKCkB28, (1981).
Hdsinkii University of Technology.

138

Bucket 0 1 2 3 4 5 6 7 8 9

Suffix 0000 0001 010 011 100 101 110 111 1000 1001

Level 4 3 4

m=3
n=2

Figure 1. Linear hashing

Bucket Bucket 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 9 9

Prefix Prefix 0000 0000 1000 1000 010 010 110 110 001 001 101 101 011 011 111 111 0001 0001 1001 1001

Level Level 4 4 3 3 4 4

m=3
n=2

Figure 2. Order-preserving linear hashing

Bucket 0 1 2 3 4 5 6 7 0 9

N14 2 615 6 5 04

Level 4 3 4

Figure 3. OPLH with sparse buckets. (A bucket
is sparse if it contains 0 or 1
records.)

139

Bucket 0 1 2 3 4 5 6 7 8 9

N 2 4 2 6 - 5 6 5 - 4

Level 2 4 3 3 - 3 3 3 - 4

Normal leve 1 4 3 4

Figure 4. Multi-level OPLH: sparse buckets
have been eliminated.

Bucket 0 1 2 3 4 5 6 7 8 9 10

N2 4 2 6 - 5 6 5 - 4 -

Leve’L 2 4 3 3 - 3 3 3 - 4 -

Norma I leve L 4 3 4

Figure 5. Bucket 2 has undergone a degenerate solit.

Bucket 0 1 2 3 4 5 6 7 8 9

N2 4 7 6 - 5 - 5 - 4

Level 2 4 2 3 - 3 - 3 - 4
1

Normal Level 4 3 4
Figure 6. Buckets 2 and 6 have been joined.

140

f3ucket 0 1 2 3 4 5 6 ‘7 0 9
f

N 24= 3 - 4 - 3 - 2 - 3

Level 1 4 - 3 - 3 - 3 - 4

Normal level 4 3 4

* 00: 24
01: 0

Figure 7. A large cluster of records in bucket 0.

/OO\
000 001

A
0000 0001

Figure 8. Distribution of the bucket 0 records.

Bucket 0 1 2 3 4 5 6 7 0 9
1

N 1 7 - 8 - -7 - 8 - 0

Level 1 4 - 3 - 3 - 3 - 4

Normal level 4 3 4
Figure 9. Half of all the buckets are Involved

when bucket 0 is collected.

141

