A Dynamic Hash File for Random and Sequential Accessing

Jack A. Orenstein

Department of Computer and Information Science
University of Massachusetts, Amherst

Abstract

Linear hashing is a dynamic file organization proposed
by Litwin. A version of it classifies records using a
suffix of the binary representation of the key. Random
accessing is possible but sequential accessing is not. By
using a prefix instead, sequential accessing is possible
but not always efficient. Other modifications are
included to avoid poor performance for sequential
accessing. In particular, only a limited number of
sparsely filled buckets are allowed to exist. The
performance of the new data structure is, in practice,
expected to be better than that of the Btree.

1.0 INTRODUCTION

The basic operation performed on a file of records
is the retrieval of a record given its key. This problem
has generated a huge amount of research. (See
[Knut73] or [Stan80] for a survey.) A hash file provides
fast access t0 a record (in most cases). Btrees [Baye72]
are somewhat slower but permit sequential accessing.
That is, once a record has been retrieved, its successor
can be found easilyy Thus the Btree is an
“indexed-sequential” data structure (ISDS).

Litwin has proposed a data structure, ™linear
hashing”, which supports random but not sequential
accessing [Litw80]. Linear hashing is dynamic and
provides access to the primary page of any bucket in
exactly one disk access. But linear hashing is not an
ISDS because sequential accessing cannot be performed
quickly: the address of the successor of r, a record in
the file, is not related to the address of r. Other
hashing methods can be made order in a
trivial way: by using the hash function h(r) = [r/d

132

where r is an integer and s is a fixed scaling factor.
Linear hashing requires the use of hash functions
incompatible with this strategy. We propose two
variations of linear hashing which are order-preserving.
Both random and sequential accessing will thea be
possible.

The performance of these new data structures is
at least as good as that of the Btree: for uniformly
distributed data a random access will usually cost one
disk access. If the data is highly clustered then the cost
of a random access is the same as for a Btree (or
marginally more). In some rare cases insertion will be
more expensive,

In the context of a relational database system, the
ability to process "range queries” on multiple attribute
data is important. It was shown in [Oren82] that any
ISDS can be adapted for this purpose. So our new data
structures yield new data structures for range searching.

We will use the following notation: <s;mj | s;n,
i ... 1smn> denotes the string
81 Sl 81 82 52 82) e

—

8 8 - 5
———

ny Ilz er n,
where each s; is a string of one or more bits and each
n=0,i =1, .., r, is a repetition factor. If n;=1 then
"s;n;” may be abbreviated to "s". (Eg. <0112 | 0> =
0110110.)

20 A VARIATION OF LINEAR HASHING

2.1 Linear hashing

A description of a special case of linear hashing is
a prerequisite. The data to be stored consists of
records of d bits each. Record r can be regarded as the
integer <rg | ... | 144> where r; is the ith bit of the
record. The records are to be stored in buckets 0, 1, ..
The number of a bucket will also be the address of the
bucket’s primary page. Overflow pages are allocated
from a separate address space.

The file is accessed using bash functions of the
form)
hy(r) = r mod 2!

(This function extracts the i bit suffix of r) The value

of i is one of two consecutive integers, m and m+],

where m is the level of the file. A pointer to the

file, n, indicates whether hg, or by 4y should be used,

(see figure 1).

Buckets 0 through n-1 and 2™ through 2M+(n-1)
are at level m+1; buckets n through 20-1 are at level
m. n is a pointer to the next bucket to be splir. It
travels from left to right so that every bucket is split
in turn. When bucket n is split, its records are
distributed between buckets n and n+2™, both of which
will then be at level m-+1, (since n was incremented).
When n reaches 2™ all buckets are at level m+1. m is
then incremented, n is reset to 0 and starts travelling
right again. (See the Split algorithm in section 2.3.)

A linear hash file can be grown from a single
empty bucket at level 0. The number and address of
this bucket are 0, m 0 and a = 0. m = 0 means
that 0 bit suffixes are used for classification: all records
go to bucket 0.

A bucket s split (and n is incremented) whencver
a record hashes to a full primary page, (i.c. there is a
collision). The bucket that is split is not, in general,
the one involved in the collision. 3But eventually, every
bucket will be split and (ideally) all the overflow pages
will be emptied and reclaimed. If splitting creates
sparsely filled buckets and the !0oad factor threatens to
become "too low”, the split is suppressed.

Litwin claims that a linear hash file can also
shrink (Litw80] although he does not give the deletion
algorithm. It is not difficuit to imagine how deletions
might be handled. For example, when the overflow
pages of any bucket becoms empty, buckets n and
n+2™ could be combined ard n decremented. (See the
Join algorithm in section 23.)

To locate a record, r. Randac (r) (for “random
access”) is called to locate the bucket. We are not
concerned with searching within the bucket. Randac
returns the number of the bucket containing r.

Randac(r)

B := hpy(r)

if B<n

then
(* bucket B has been split to *)
(* give two buckets on level m+1 *)
B = hp (D)

end

return(B)

end Randac

133

One attractive feature of linear hashing is that the
file grows smoothly; by one bucket at a time. The
growth is “linear”. The directory of extendible hashing,
on the other hand, grows exponmentially: it doubles in
size occasionally (but these expansions are rare). In
addition, buckets of extendible hashing split when they
become full, requiring the directory to be updated
[Fagi79]. Linear hashing does not have a directory.

22 Order-preserving linear hashing, (OPLH)

Consider the partitioning imposed by the hash
function hy(r) = r mod 2™. All of the records in a
given bucket (at level m) agree in the m least
significant bits, <rg., 1 .. | rg.9>. (Note that m
varies as records are added and deleted. Thus, the
number of bits used for classification is not fixed.)

If, instead, the records agreed in the most
significant bits, each bucket would store all of the
records of the file that fall in a certain range. The
hash table would then be order-preserving. Let left(sk)
and right(sk) denote, respectively, the k leftmost and
rightmost bits of string s. Mir(<s; | 55 | ... | 8>) is
the "mirror image”, <s; | .. ! s | 8;> where each s is
a single bit.

The simplest way to partition the file on the basis
of the most significant bits is to store record r in
bucket hp,(mir(r)). That is, the bits are reversed before

hashing. Clearly
By (mir(r))

right(mir(r),m)

mir(left(r,m))

The bucket number is obtained by reversing the bits of
the m bit prefix of the record. Searching and splitting
work exactly as for linear hashing. This bas to be true
since, in effect, we are dealing with another file in
which each record, r, has been replaced by mir(r). If
the bits of the prefix were not reversed, ie. hp (r) =
left(r,m), then splitting works differently. This alternative
is discussed in [Oren82).

Figure 2 shows an example of an order-preserving
linear hash file. Notice that the mirror image of the m
(or m+1) bit prefix of a record at level m (or m+1)
matches the m (or m+1) bit representation of the

bucket number. So bucket 3 = 011, is at level 3 and
stores records with prefix 110,.

Burkhard [Burk83] and Ouksel and Scheuermann
[Ouks83] bave independently discovered OPLH. They
apply techniques similar to those of [Oren82] to yield a
multidimensional data structure for range searching.
They do not discuss the use of hy,(r) = left(r;m), nor
do they address certain serious problems with the
performance of OPLH which are discussed in detail in
sections 4 and 5 of this paper. Also, their
multidimensional transformations are limited to the
context of OPLH. For a more complete and general
discussion of the transformation see [Oren82).

23 Algorithms

Order-preserving linear hashing (OPLH) supports
random and sequential accessing. Randac, given in
section 2.1, can be used with OPLH if the argument
to hy, and h,, ¢ is changed from r to mir(r).

Locating the successor of any record in a bucket,
other than the last one, is trivial. Let last(b) be the last
record in bucket(b). (b is a bucket number. Bucket(b)
stores the records whose prefixes are mir(b)) Then
the successor of last(b) can be found as follows:

The level of the bucket, my, is known: my, = m

if n=b<@™; my=m+1 otherwise. Bucket(b) stores all
records in the range [<mir(b) | O:xd-my>, <mir(b) !
1:d-mp>], (recall that b is an my bit number). The
smallest record above this range is
S = <mir(h) ! ld-mp> + 1

= <mir(b)+1 | O:d-mp>
A search for S (using Randac) will locate b", the
bucket containing the successor of last(b). There is one
problem: b" may be empty. Repeating the above
procedure until a non-empty bucket is found yields the
bucket containing the successor of last(b). The algorithm
is given in [Oren82).

The bucket splitting and joining algorithms are
Split and Join.

Split)
Bit(<rg | ... | tq.4>) is 1.

for each record r in bucket n
if bit(r,m) = 0
then
(* the record does not move *)
else
move r to bucket n + 2™
end
end
n =
if n
then
(* all buckets are at level m+1, *)
(* start a new level *)

+1
2m

I

134

Join(

n:=n-1

fn<oO

then (* go down one level *)
m:=m-1
n:=2D.1

end

move all records from bucket n+2™ to bucket n

return
end Join

30 OVERFLOW

The hash function used for OPLH is () =
mir(left(r,m)). It is possible that the hash values
generated will be clustered. That is, left(r,n) may not
scatter the records very well. So overflow will be more
common than with more traditional hashing methods.

So far, almost nothing has been said about how
overflow is dealt with. Litwin suggests the use of
overflow chains [Litw80). A Btree (or variant) is a much
more appropriate data structure in the present context.
Since we want OPLH to be indexed-sequential, the data
structure representing an overflowing bucket must be
also. A chain of records is not an ISDS because it
does not support random accessing. The Btree is
necessary if we are to avoid the very bad worst case
behaviour characteristic of overflow chains.

Clearly, this organization has very good
performance for random accessing: reading a bucket
that has not overflowed costs one disk access. In the
worst case a Btree containing all of the records has to
be searched. Sequential accessing is usually as fast as
for the Btree.

The use of a Btree complicates operations on
buckets: Split and Join. It is essential that these
operations preserve the properties of Btrees, (the load
factor in particular). The implementation of the Btree
operations has been discussed in [Oren82].

40 MULTI-LEVEL OPLH, (MLOPLH)
4.1 Problems with OPLH

An OPLH file may contain an arbitrary number
of sparsely filled buckets. This can result in poor
performance for sequential accessing. Consider the
situation shown in figure 3, (suppose that primary page
capacity is four records). To retrieve all the records
whose prefix is 002, buckets 0, 4 and 8 must be
accessed, (this is clear from figure 2). These three disk
accesses yield two records. If the entire file were at

level 2 then bucket 0 would contain the records which
would be retrieved in onme access, (since primary page
capacity is 4). But if the file were at level 2, other
searches, (eg. for prefix 010,), would be more
expensive. Furthermore, it would take six joins to reach
level 2. So the problem is not solved by joining more
frequently.

The situation demoanstrated in figure 3 is
characterized by the appearance of several sparsely filled
buckets. It can occur following a sequence of splits
which distribute the records unevenly or following
repeated deletions concentrated in a few buckets. Since
it can occur as a result of deletions, suppressing splits
does not solve the problem either.

42 Adding more levels to OPLH

Linear hashing, as described in section 2.1, is
based on the binary trie: it classifies records according
to a sequence of bits whose length varies with the
number of records being stored. Other data structures
based on this idea are extendible hashing [Fagi?9],
EXCELL [Tamm8la], HCELL [Tamm81b], trie hashing
[Litw81] and, of course, the trie [Fred60, Knut73]. What
all of these data structures have in common is the
notion of "level”. The level of a record is the number
of bits used in its classification. Records are usually
grouped into buckets (as we are doing). The level of a
bucket is the level common to all records in the bucket.

The trie stores a record at the lowest level (ie.
nearest the root) providing a classification which avoids
bucket overflow. The same is true of extendible
hashing and EXCELL but each of these has a directory
with all entries at the same level. Linear hashing (and
OPLH) use no more than two consecutive levels but do
not require directories.

The problem with OPLH, described above, would
be alleviated if parts of the file could be stored at
lower levels than normal, (ic. below level m or m+1).
Eg. if, in figure 3, the contents of buckets 0, 4 and 8
could be stored in a level 2 bucket, (corresponding to
prefix 00,), leaving the rest of the file at levels 3 and
4, the problem would be solved. Next, we discuss a
"multi-level” version of OPLH, MLOPLH.

43 Sub-normal buckets

A bucket is sparse if it contains no more than a
given number of records (which is a fraction of the
capacity of the primary page). A sparse bucket will not
be permitted to exist. It will be combined with its
brother to form a sub-normal bucket: a bucket whose
level is lower than normal. If level(b) < NormalLevel(b)
then b is sub-normal. (Level(b) is the level of the
bucket and NormalLevel(b) is m or m+1.) b and b’ are
brothers iff level(d) = level(d?) and b’ = 2level(b}1

135

Note that brothers are combined if at least one of them
is sparse.

Not all buckets have brothers. In figure 3,
0 and 8 are brothers but bucket 4 has no

(Before bucket 0 was split to give buckets 0
buckets 0 and 4 were brothers.)

H

Notice that buckets 0, 4 and 8
eliminate the problem, 0 and 8 are
possible because they are brothers), yielding a
bucket at address 0. The resulting bucket is the
of bucket 4 so buckets 0 and 4 can now be joined.
result of the two joins described is shown in figure

Degenerate splits.

A gplit may yield one or two sparse buckets. It i
not feasible to refrain from splitting until the situati
changes: all further splits are also delayed. Instead, the
bucket that should have been split remains at its current
level and n, (the pointer to the next bucket to be split),
is advanced. This is a degenerate split. For example, a
split of bucket 2 in figure 4 yields a sparse bucket. The
degenerate split leaves the bucket at level 3, (it is then

sub-normal; see figure 5).

Forcing joins.

A bucket can also become sparse following a
deletion. When this occurs, the bucket is joined with
its brother, even if the brother is not sparse. For
example, if a record is deleted from bucket 2 of figure
4, it becomes sparse. It is then joined with its brother,
bucket 6, (see figure 6). (The brother can be created if
it does not exist; see Collection of brother buckets.)

5
i

H
jie;

7

4,

i

A sparse bucket may become nen-sparse.

A sub-normal bucket can, due to insertions, yield
higher level buckets that are both non-parse. For
example if the record deleted from bucket 2 were put
back, it would be correct to distribute the records of
bucket 2 in figure 6 returning to the situation of figure
4.

44 Algorithms

The modifications of OPLH described in section
43 are extensive. We now give the algorithms needed
for the implementation of MLOPLH. Space limitations
prevent us from stating all algorithms explicitly. A
more complete exposition can be found in [Orea82].

Random accessing.

Since records are not always in the buckets they
"should” be in, (eg. due to a forced join), some
mechanism is required for locating a record that has
been moved. Reading an empty bucket (e.g. bucket 4 in

figure 4) is an indication that the records of the bucket
have moved down at least one level and that the
lower level bucket should be searched, (ie. do the
scarch again using a shorter prefix). The Randac
algorithm, given below, searches for the first non-empty
bucket by using successively shorter prefixes.

Randac(r)
L is the level of the bucket whose

range contains r.

if hp,(mir(r)) < n
then L := m+]
else L ;= m

end

while bucket hy (mir(r)) is empty
L=L-1
end

retun(hy (mir(r))
end Randac

Note that in the worst case m+1 disk reads are
necessary to locate the bucket. Let N be the number of
buckets in the file. (N is proportional to the number
of records in the file - see section 5.) Then, since
m=logyN, we have a problem if we want to compete
with the Btree, (note that the base of the logarithm is
2). Fortunately, this problem can be avoided: the version
of Randac given above may generate up to m+1 disk
accesses during a "sequential search” for the length of
the prefix used to locate the bucket. This search can
be replaced by a binary search, reducing the cost to
o(logym) = oflogplogyN) disk accesses. The details of
this modification are given in [Oren83].

Sequential accessing.

As before, Seqac must construct a successor record
and perform a random access. But since there are no
sparse buckets, it is not necessary to check for and skip
over empty buckets. Thus the Seqac algorithm has been
simplified: construct the successor record, S, and search
for it using Randac.

Splitting and joining buckets.

The Split algorithm works as before except that a
sub-normal bucket may be created. Similarly, Join is
easily modified to deal with the joining of a sub-normal
bucket and an empty bucket.

Insertion and deletion of records.

These algorithms work as before with the
following exceptions:

136

An insertion to a sub-normal bucket may create a
situation in which the bucket could be split to yield two
non-sparse buckets. This split is performed by the
Distribute algorithm (discussed below).

Similarly, if a deletion yields a sparse bucket, the
Collect algorithm will be invoked to join the sparse
bucket with its brother. (A brother can be created if it
does not exist. The Collect algorithm is discussed
below.)

Distribution of records in a bucket.

Distribute is called by the insertion algorithm
when the records of a bucket b at level level(b) are to
be distributed to brother buckets at level level(b)+1.
The records are classified according to the value of the
level(b)+1st bit. SplitBucket(b) performs this

classification. (SplitBucket is discussed in [Oren82])

Note that Distribute is recursive. Consider the
situation of figure 7. Bucket O stores all the records
whose prefix is 0, but the distribution of the records
within the bucket is biased. As soon as two records
with prefix 01, are inserted, bucket 0 can be split to
yield buckets 0 and 2 (corresponding to prefixes 00, and
01, respectively). Now, assuming a uniform distribution
of records within bucket 0 (at level 2), the distributions
shown in figure 8 can occur, (the prefixes are shown).
These distributions are performed by the recursive calls.

Distribute(b)
DistribOK(b) returns true iff bucket b can be

split to yield two non-sparse buckets.

if level(b) < NormalLevel(b)
then (* distribution is possible *)
oldlevel := level(b)
b” := brother(b)
SplitBucket(b)
level(b) := oldlevel + 1
level(b?) := oldlevel + 1
if DistribOK(b) then Distribute(b) end
if DistribOK(b") then Distribute(b?) end
end
return
end Distribute

Collection of brother bockets.

Collect is called by the deletion algorithm to
combine a sparse bucket with its brother. JoinBuckets
manipulates the buckets” data structures (see [Oren82]).

Collect, like Distribute, is recursive. Consider a
Collect of bucket b at level L and b" = brother(b) at
level L° > L. (Since level(b) > level(b), b does not
really have a brother but if it did, its address would be
brother(b).) Before the Collect can occur, b” must be at

level L. To ensure this, b’ is collected even though
neither b” or its brother (#b) is sparse. (An example
is given in section 5.1.)

Collect(b)
b° := brother(b)

(* Bring b and b’ to the same level by °)
(* collecting the higher level bucket *)
if level(d’) < level(b)
then (* interchange b and b" *)
b :=:b
end
while level(b) < level(d)
Collect(b)
end

(* Place result in the left brother, b *)

if > <bthen b :=: b end
JoinBuckets(b,b")

level(b) := level(b) - 1

return

end Collect

50 PROBLEMS WITH MLOPLH

By eliminating sparse buckets, the problem of
potentially poor performance for sequential accessing has
been solved. For random accessing, MLOPLH is at
least as good as the Btree. It can be expected to have
better performance unless the data is highly clustered.

Updates occasionally generate calls to Distribute or
Collect. For some distributions of records (characterized
by clusters of records) these calls can generate a lot of
work; every bucket is accessed in the worst cases. In
this section, the problem is explained and a solution is
proposed.

5.1 The problem

Consider the situation of figure 9. A rash of
deletions from bucket O have caused it to become
sparse. It must be collected but its brother does not
exist. If it did exist, it would be in bucket 1 which is
currently at level 4. Bucket 1 must therefore be
collected, putting it at leve! 3. By the time that bucket
1 reaches level 1, the contents of buckets 3, 5, 7 and 9
will have been moved to bucket 1. Half of the buckets
have been affected.

A similar problem plagues Distribute. Generally,
Collects and Distributes involving buckets at very low
levels: 0, 1, 2, etc. involve very large fractions of the
file.

137

The cost of moving records from one bucket to
another is a minor concern: the records in
buckets b and b° can be merged in time OCog(n

and b respectively, (the algorithm is in [Oren82]). This
is possible because all the records in b are smaller than
those in b° (or vice versa) and only the ™ " of the

Btrees have to be modified. Splitting a Btree (required
by the Distribute algorithm) costs O(log?n) [Oreas2).

involved. For example, collecting
may cause as many as about Nr2L
accessed where N is the number of buckets,
2msNQm+l

52 The solution

Clearly, the solution involves placing a lower
bound on the level of a bucket. For example, if the
lowest level permitted is 5, them a bucket being
collected will be at least on level 6 and no more than
126 = 164th of the buckets could be involved in any
Collect.

A consequence of this strategy is that some sparse
buckets may exist. In general, if the lowest level
permitted is L then there may be as many as 2L sparse
buckets.

A few modifications to MLOPLH are required to
make this work:
® The file is initialized with 2L empty buckets,
(instead of one empty bucket).
® Sparse buckets must be kept track of. The address
and leve! of each must be known. When a new sparse
bucket is created, causing the number of sparse buckets
to exceed 2L, the sparse bucket at the highest level is
collected, (this is probably the cheapest one to collect).

It is interesting that there is a tradeoff between
the worst case costs of sequential accessing and
updating: an update may require accessing N2L buckets
and there are up to 2 sparse buckets which can slow
down sequentia! processing.

60 PERFORMANCE

MLOPLH is a complicated but potentially faster
alternative to the Btree. We can make the following
qualitative statements about the performance of
MLOPLH relative to that of the Btree.
® Random accessing costs one disk access if the
accessed bucket has not overflowed and is not sparse. In
the case of overflow, a (probably small) Btree has to be
searched. In case of sparseness, the required bucket can
be located in o(logylogyN) disk accesses.

® Sequential accessing usually costs the same as for a
Btree. The cost may be somewhat higher when a bucket
boundary is crossed. (Links between consecutive buckets
can be used to avoid the increased cost.)

® Updating will usually be comparable to the cost for
the Btree but could be worse: ie. when a Collect or
Distribute accesses a fixed fraction of the buckets. This
cannot happen very often.

® The worst case load factor of a Btree is 50%
[Baye72]. The load factor of |linear hashing is
controllable but the use of Btrees will result in a lower
load factor than the use of overflow chains. The
important point is that the load factor of MLOPLH
cannot get arbitrarily close to zero as is possible with
some other trie-based methods, (e.g. the trie).

Clearly, a lot of work is necessary before
MLOPLH can be recommended as the successor of the
Btree. This work falls into four areas:

1) Fine tuning: selecting values for parameters (e.g.
threshhold for sparseness, number of sparse buckets
permitted).

2) Studying various strategies for administrative details
such as when to split and when to join.

3) Performing experiments to compare MLOPLH and
the Btree.

4) Finding a clever and melodious name to replace
"MLOPLH”. This is essential before widespread
acceptance of the data structure is possible.

Acknowledgement

I am grateful to Prof. Tim Merrett for his
comments on earlier drafts of this paper.

138

References

Baye72 R. Bayer, E. McCreight.
Organization and maintenance of large
ordered indexes.
Acta Informatica 1, 3 (1972), 173-189.
Burk83 W.A. Burkhard.
Interpolation-based index maintenance.
Proc. 2nd ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, (1983), 76-85.
Fagi?9 R. Fagin et al.
Extendible hashing - a fast access method
for dynamic files.
ACM TODS 4, 3 (1979), 315-344.
Fred60 E.H. Fredkin.
Trie memory.
CACM 3, 9 (1960), 490-499.
Knut73 D.E. Kouth.
The Art of Computer Programming, vol. 3:
Sorting and Searching.
Addison-Wesley, Mass., (1973).
Litw80 W. Litwin.
Linear hashing: A new tool for file
and table addressing.
Proc. VLDB6, (1980), 212-223.
Litw81 W. Litwin.
Trie hashing.
Proc. ACM SIGMOD, (1981), 19-29.
Oren82 J.A. Orenstein.
Algorithms and data structures for the implementation
of a relational database system.
Ph.D. thesis, McGill University, (1982).
Also available as Technical Report SOCS-82-17.
Oren83 J.A. Orenstein.
On the efficient searching of MLOPLH.
Manuscript, (1983), COINS Department,
University of Massachusetts, Amherst.
Ouks83 M. Ouksel, P. Scheuermann.
Storage mappings for multidimensional linear
dynamic hashing.
Proc. 2nd ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, (1983), 90-105.
Stan80 T.A. Standish.
Data Structure Techniques.
Addison-Wesley, Reading, Mass., (1980).
Tamm8la M. Tamminen.
Order ing extendible hashing and bucket tries.
BIT 21, 4 (1981) 419435,
Tamm81b M. Tamminen.
Expected performance of some cell based organization
schemes.
Report HTKK-TKO-B28, (1981),
Helsinkii University of Technology.

Bucket 0 1
Suffix | 0000f 0001 | 010 | ONM 100 | 101 110 | 111 | 1000 | 1001

Level 4 3 L

Figure 1. Linear hashing

2 3
0w
N W

N - D

Bucket O 1
Prefix| 0000 1000 § 010 | 110 { 001 | 101 0N 11 | 0001 | 1001

Level 4L 3 L

Figure 2. Order-preserving linear hashing

0 3
n on
N W

Bucket 0 1 2 3 4 5 6 7 8 9
Nl 1 4 2 6 1 _5 6 5 0 4

Level 4 3 4

Figure 3. OPLH with sparse buckets. (A bucket
is sparse if it contains 0 or 1
records.)

139

Bucket
N

Level

Normal level

Bucket
N

Level

Normal level

Bucket
N
Level

Normal level

1 3 L 5 8 9
A 6 - 5 -1
L 3 - 3 . A
3 4
Figure 4. Multi-level OPLH: sparse buckets
have been eliminated.
1 3 L5 ? 9 10
4 6 -1 s A
4 3 -1 3 N A
A 3 A
Figure 5. Bucket 2 has undergone a degenerate spnlit.
1 3 L 5 8 9
A 6 - | s -1
L 3| - | 3 - 4
3 L

Figure 6. Buckets 2 and 6 have been joined.

140

Bucket 0 1 2 3 & 5 6 ‘1 & 9

N 267 3 | - | & | -3] -]2]-]3
Level | 1 4 - 3 - | 3 - 3 o
Normal level b 3 b
X 00: 24 Figure 7. A large cluster of records in bucket O.
01: 0
/ oo\
/000\ 001
0000 0001

Figure 8. Distribution of the bucket 0 records.

Bucket 0 1 2 3 L 5 6 7)

N[1 7 - 8 - -7 - 8 - 8
Level| 1 A - 3 - 3 - 3 - IA
Normal level 4 3 L

Figure 9. Half of all the buckets are involved
when bucket 0 is collected.

141

