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LinearhashingisadynamicfiIeorganizationpropmed 
by Litwin. A version of it clasifies records uming a 
suffix of the bimuy representation of the key. Random 
ac4wing is possible but aequefltial accming is not. By 
using a prefii instead, sequential acc&ng is posible 
but not always efficient. Other modifications are 
included to avoid poor performance for nequeatial 
==-I!. In ptuddar, only a limited number of 
sparsely filled buckets are allowed to exist. The 
performance of the new data structure is, in pmctice, 
expectedtobebetterthanthatoftheBtree. 

18 lNTRODUClION 

Thebasicoperationperformedonafilcofreands 
is the rebieval of a record given its key. This problem 
has generated a huge amount of rcsarch. (gee 
(Knut73] or [StadO] for a survey.) A hash file provides 
fast access to a record (in most cases). Btreu [Bayen] 
are somewhat slower but permit sequential auxssing. 
That is, once a raxsrd has been retrieved, ib succemor 
canbe found easily. Thus the Btree is an 
-imiexed-sequential” data larwure (IDS). 

Litwin has proposed a data structure, “linear 
hashing”, which supports random but not sequential 
acessing ~twtxl]. Linear hashii is dynamic and 
provides access to the primary page of any bucket in 
exactly one disk access. But linau hashing is not an 
ISIX because sequential accekng cannot be performed 
quickly: the addrem of the succcdsor of r, a record in 
the file, is not related to the address of r. Other 
hashing methods can be made order- in a 
trivial way: by using the hash function h(r) = [r/d 

where r is an integer and s is a fixed scaling factor. 
Linear hashii requires the m of hash functions 
incompatible with this strategy. We propo6e two 
variations of linau hashing which are order-. 
Both random and sequential accedngwiuthalbe 
possible. 

The performance of these new data rtnrcnva is 
at least a8 good as that of the m for uniformly 
distributed data a random access wilI usuaUy cost one 
disk access. If the data is highly chWered then the cost 
of a random access is the same as for a Btree (or 
marginaUy more). In some rare caaa inaer&n will be 
more expensive. 

In the context of a relational database -em, the 
ability to process “range queries” on multiple attribute 
data is important. It was shown in [Ore&21 that any 
ISDScanbeadaptedforthispwpoae.Soournewdata 
stmctum yield new data stN&ue&forrangesearch@. 

We will use the following notation: 4191 I 992 
I . . . I spp denoted the string 

‘1 *1 . . . ‘1 s2 82 . . . II2 . . . “r 3 . . . i+ 
vu- 

“1 n2 . . . 5 
whereeachsiisastringofoneormorebits andeach 
qdl, i = 1, . . . , r, ia a repetition factor. If npl then 
“sini” may be abbreviated to “sin. (E.g. CO112 I O> = 
0110110.) 

2.0 A VARIATION OF UNEAR HASElNG 

2.l uncuhashlng 

Adescriptionofaspecialcaseoflinearhashiiis 
a prerequisite. The data to be stored amaists of 
records of d bits each. Record r can be rega&d as the 
integer -0 I . . . I r&l> where ri is the ith bit of the 
record. The records are to be stored in buckets 0, 1, . . . 
The number of a bucket will alsO be the addrcs of the 
bucket’s primary page. owrflow pages are allocated 
fromaseparateaddressspece. 
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The file is accessed using hash functions Of the 
form 

$tr) = r mod Zi 
(This function extracts the i bit suffix Of r.) The value 
of i is one of two consecutive integers, m and m+l, 
where m is the keel of the file. A pointer to the 
file, n. indicates whether h, or h,+I should be u@ 
(see figure 1). 

Buckets 0 through n-l and 2m through 2m+(n-l) 
are at level m+l; buckets n through 2m-I are at level 
m. n is a pointer to the next bucket to be spfir. It 
travels from left to right so that every bucket is split 
in turn. When bucket n is split, its records are 
distributed between buckets n and n+2m, both of which 
will then be at level mAI, (since n was incremented). 
When n reaches 2m all buckets are at level m+l. m is 
then incremented, n is reset to 0 and starts travelling 
right again. (See the Split algorithm in section 23.) 

A linear hash file can be grown from a single 
empty bucket at level 0. The number and address of 
this bucket are 0, m = 0 and n = 0. m = 0 means 
that 0 bit suffixes are used for classification: all records 
go to bucket 0. 

A bucket is split (and n is incremented) whenever 
a record hashes to a full primary page, (i.e. there is a 
colhsion). The bucket that is split is not, in general, 
the one involved in the collision. 3ut eventually, every 
bucket will be split and (‘deally) all *he overflow pages 
will be emptied and reclaimed. If splitting creata 
sparsely fil!ed buckets and the Isac’ ?actor threatens to 
become “too low”, the sp!it !s supprfssed. 

Litwin claims that a ‘&ear hash file can also 
shrink ~Litv&O~ although he does aot give the deletion 
a!gorithm. It is not di?ficu:t to imagine how deletions 
might be handled. For examde. when the overflow 
pages of any bucket become empty, buckets n and 
n+2m could be combined and n decremented. (See the 
Join algorithm in section 23.) 

To locate a record, r. Randac (r) (for “random 
access”) is called to locate the bucket. We are not 
concerned with searching within the bucket. Randac 
returns the number of the bucket containing r. 

R-f&r) 
B := h,(r) 
ifB<n 
then 

(’ bucket B has been split to ‘) 
(’ give two buckets on level m+l 9 
B := hm+lW 

end 
return(B) 
end Ran&c 

One attractive feature of linear hashing is that the 
file grows smoothly; by one bucket at a time. The 
growth is “linear”. The directory of extendible hashing, 
on the other hand, grows cxpooentially: it doubla ia 
size oLxasionally (but these cxpadom am rare). In 
addition, buckets of exteadibk hashing split what they 
become full, requiring the direct0ry to be updated 
pagi79]. Linear hashing does not have a diraWry. 

Consider the partitioning imposed by the hash 
function h,(r) = r mod 2m. All of the records in a 
given bucket (at level m) agree in the m least 
significant bits, Crhrn I . . . I rd.I>. (Note that m 
varies as records are added and deleted. Thus, the 
number of bits used for classification is not fixed.) 

If, instead, the records agreed in the moat 
significant bits, each bucket would store all of the 
records of the file that fall in a certain range. The 
hash table would then be order-pmservmg. Let left&k) 
and right(+) denote, nqectively, the k leftmost and 
rightmost bits of string s. Mir(==sl I 9 I . . . I p) is 
the “mirror image”, + I . . . I 9 I sp where each si is 
a single bit. 

The simplest way to partition the file on the basis 
of the most significant bits is to store record r in 
bucket h,(mir(r)). That is, the bits are reversed before 
hashing. Clearly 

h,(mir(O) = WWW)mm) 
= mir(left(r&) 

The bucket number is obtained by reversing the bits of 
the m bit prefix of the record. Searching and splitting 
work exactly as for linear hashing. This has to be true 
since, in effect, we are dealing with another file in 
which each record, r, has been replaced by mir(r). If 
the bits of the prefix were not reversed, i.e. hm(r) = 
left(r,m), then splitting works differently. This alternative 
is discussed in [Ore&]. 

Figure 2 shows an example of an order-pnerving 
linear hash file. Notice that the mirror image of the m 
(or m+l) bit prefix of a record at level m (or m+l) 
matches the m (or m+l) bit representation of the 
bucket number. So bucket 3 = 0112 is at level 3 and 
stores records with prefix 11%. 

Burkhard [Burk83) and Ouksel and scbeuernm~ 
[Ouks83] have independently discox& OPLH. They 
apply techniques similar to those of [Oreng2] to yield a 
multidimensionaI data structure for range search@. 
They do not discuss the use of h,(r) = left(r,m), nor 
do they address certain serious problems with the 
performance of OPLH which are discussed in detail in 
sections 4 and 5 Of this paper. Alm, their 
multidimensional transformations are limited to the 
context of OPLH. For a more complete and general 
discussion of the transformation see [Or-en&?]. 
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23 Algorfthms 

Order-presewing linear hashing (OPLH) supports 
random and sequential accessing. Randac, given in 
section 2.1, can be used with OPLH if the argument 
to h, and h,+l is changed from t to mir(r). 

L.ocating the su-r of any record in a bucket, 
other than the last one. is trivial. Let last(b) be the last 
rezord in bucket(b). (b is a bucket number. Bucket(b) 
stores the recorda whose prefiies are mir(b).) Then 
the successor of last(b) can be found aa follows: 

The IeVe Of the bucket, mb, is known: mb = m 

if nsbQm; mb=m+l otherwise. Bucket(b) stores all 
records in the range [<mir(b) t o&mb>, <mir(b) 1 
lbmb>], (recall that b is an mb bit number). The 
smallest record above this range is 

s = air(b) t kd-mb> + 1 
= e(b)+1 1 &d-mb> 

A search for S (using Ran&c) will locate b’, the 
bucket containing the successor of last(b). There is one 
problem: b’ may be empty. Repeatins the above 
procedure until a noncmpty bucket is found yields the 
bucket containing the successor of last(b). The algorithm 
is given in [omm]. 

The bucket splitting and jt%ning algorithms are 
Split and Join. 

SPW 
Bit(ag 1 . . . I rdI>j) is ri. 

for each record r in bucket n 
if bit(r& = 0 
then 

(’ the record does not move ‘) 
else 

move r to bucket n + 2m 
end 

end 

n := n + 1 
ifn=2m 
then 

(’ all buckets arc at level m+l, ‘) 
(’ start a new level 9 
n := 0 
m:=m+l 

end 

return 
end Split 

Jdno 
n := n - 1 
ifn<O 
then (’ go down one level 9 

m := m - 1 
n := 2m - 1 

end 

move all records from bucket n+2m to bucket n 

end Join 

3.0 OyERFulW 

‘Ike hash function used for OPLH is hm(r) = 
mir(Mt(rjn)). It is possible that the hash values 
generated will be clustered. That is, left(rjn) may not 
scatter the records very well. So overflow wig be more 
common than with more traditional hashing methods. 

So far, almost nothing has been said about how 
overflow is dealt with. Litwin suggests the use of 
overflow chains [LitwgO]. A Btree (or variant) is a much 
more appropriate data structure in the present context. 
Since we want OPLH to be indexed-sequential, the data 
structure representing an overflowing bucket must be 
also. A chain of records is not an ISDS because it 
does not support random accessing. The Btree is 
necmsary if we are to avoid the very bad worst case 
behaviour characteristic of overflow chains. 

Clearly, this organization has very good 
performance for random accessing: reading a bucket 
that has not overflowed costs one disk access. In the 
worst case a Btree containing all of the records has to 
be searched. Sequential acuuingisusuauy asfastas 
for the Btree. 

The use of a Btree complicates operations on 
buckets: Split and Join. It is essential that these 
operations preserve the properties of Btrees, (the load 
factor in patticular). The implementation of the Btree 
operations has been discussed in [Oreng2]. 

46 MuLTr-LEVJX OPLE, (MLOPLIQ 

4.1 Prohkms with OPLE 

An OPLH file may contain an arbitrary number 
of sparsely fiied buckets. Thii can result in poor 
perforonnce for sequential accesing. Consider the 
situation shown in figure 3, (suppoee that primary page 
capacity is four records). To retrieve all the records 
whose prefii is oq2, buckets 0, 4 and 8 must be 
accused, (thii is clear from fiire 2). These three disk 
acceaw yield two records. If the eraire file were at 
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level 2 thar bucket 0 would contain the records which 
would be retrieved in one aaxs, (since primuy page 
capacity is 4). But if the file were at levei 2, other 
scar&s, (e.g. for prefix Oloz>, would be more 
expensive. Furthermore, it would take six joins to reach 
lever 2. 80 the problem is not solved by joining more 
frequently. 

The situation demonstrated in figure 3 is 
characterized by the appearance of several qmraely filled 
buckets. It can occur following a sequence of splits 
which distribute the records unevenly or following 
repeated deletions concentrated in a few buckets. since 
it can occur as a result of deletions, suppr&ng splits 
does not solve the problem either. 

43 Ad- more levels to OPLIi 

Liiear hashing, as described in section 2.1, is 
based on the binary trie: it classifies records according 
to a sequence of bits whose Iength varies with the 
number of records being stored. Other data swucmms 
based on this idea are extendible ha&ii [Fagi79], 
EXCELL PammSla], HCELL @mmSlb], trie hashing 
[LitwSl] and, of course, the trie pred60, Knut73]. What 
all of these data structures have in cummon is the 
notion of “level”. The levef of a record is the number 
of bits used in its clas&ication. Records axe usually 
grouped into buckets (as we are doing). The level of a 
bucket is the level common to all records in the bucket. 

The trie stores a record at the lowest level (i.e. 
ncarest the root) providing a clasification which avoids 
bucka overfIow. The same is true of extendible 
hashing and EXCELL but each of these has a directory 
with alI entries at the same level. Linear hashing (and 
OPLH) use no more than two consecutive IeveIs but do 
not require directories. 

The problem with OPLH, described above, would 
be alleviated if parts of the file could be stored at 
lower levels than normal, (i.e. below level m or m+I). 
E.g. if, in figure 3, the contents of buckets 0, 4 and 8 
could be stored in a level 2 bucket, (-ding to 
prefii 002). leaving the rest of @e file at levels 3 and 
4, the problem would be solved. Next, we discuss a 
“multi-level” version of OPLH, KLOPLH. 

43 subaorrrmlhacketa 

A bucket is qmrse if it contains no more than a 
given number of records (which is a fmction of the 
capacity of the primary page). A sparse bucket will not 
be permitted to exist. It will be combined with its 
brorher to form a sub-m bucket: a bucket whose 
level is lower than normal. If level(b) < NormalLavd(b) 
then b is su&mrmal. (Level(b) b the level of the 
bucket and NormalLevel is m or m+l.) b and b’ are 
brothers iff level(b) - level(b’) and lb&l - 21eve@k1 

Notethatbro&ersarecombinedifatkaUoneoftban 
isfparse. 

NotaUbucketshavcbrothm.I11figum3,buckeU 
Oand8arebrothembutbucket4hasnobmther. 
(Beforebucket0wassplittogivehuckets0and8, 
buckets 0 and 4 wm brothers.) 

Notice that buckets 0. 4 and 8 are quac. To 
elimiite the problan, 0 and 8 are jdnaI (this b 
possible becawe they are brothers), yiddhg a level 3 
bucket at address 0. The dting bucket is the brather 
of bucket 4 so buckets 0 and 4 can now he juined. The 
resultofthetwojoinsdescribedisshowninfigure4. 

A split may yield one or two qamo buckets. It is 
not feasible to refrain from @ting until the situation 
ChMgSdlfUl-dWSplitS~dSOdelayed.IlUtd,ti 
bucket that should have been split remain8 at its current 
level and n, (the pointer to the next bucket to be @it), 
is advanced. This is a depwure split. For example, a 
split of bucket 2 in figure 4 yields a sparse bucket. The 
degenerate split leave8 the bucket at level 3. (it is then 
subnormal, see figure 

A bucket can 
deletion. when this 
its brother, mfen if 

alsobammeqmnefoIbwinga 
occurs,thebuckuisjninedwith 
the brother is not tpam. For _ - -- 

example,ifarecordbdeletedfmm bucketzoffigure 
4, it becomes sparse. It is then joined with it8 brother, 
bucket 6, (see figure 6). (The brother can be created if 
itdoesnotexist;seeG&ctfoa OfhMtfWhlUbtS.) 

A sperm hockct may hocome non-. 

A subnormal bucket can, due to inaer&m yield 
hiier led buckets that are both non&. For 
example if the record deleted from bucket 2 were put 
back, it would be correct to distribute the records of 
bucket 2 in fiin 6 remming to the situation of figure 
4. 

4.4 Algdthm 

The modifiitiona of OPLH -bed in 
43 are uctendve. We now give the algorithms _. 

section 
needed 

for the implementation of MLOPLH. Space limitations 
prevent us from stating all algorithm eqlicitty. A 
more complete expodtien can be found in [Ore&!]. 

Since recorda are not always in the buckets they 
“should” be in, (e.g. due to a forced join), some 
mechh is rapired for locating a record that has 
been moved. Reading an empty bucket (e.g. h&e4 4 in 
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figure 4) is an indication that the records of the h&et 
have moved down at least one level and that the 
lower level bucket should be searched, (i.e. do the 
search again using a shorter prefix). The Randac 
algorithm, given below, searches for the first non-empty 
bucket by using sua!essively shorter prefixes. 

L is the level of the bucket whose 
range contains t. 

An insertion to a subnormal bucket may create a 
situation in WKCJJ the bucket could be @it to yieId two 
non-sparse buckets. l%is split is performed by the 
Distribute al#@hm @iscusd below). 

Similarly, if a d&ion yields a sparse bucket, the 
Collect algorithm will be invoked to &in the rparre 
bucket with its brother. (A brother can be created if it 
does not exist. Tbc Cdlect algorithm is discusd 
IXlOW.) 

if h,(mir(r)) < n 
then L := m+l 
else L := m 
end 

while bucket hL(mir(r)) is empty 
L := L - 1 

end 

DlStdhUti~OfUC4WdSIn~bdGL 

Distribute is called by the insertion fdgorithm 
when the records of a buck& b at level level(b) are to 
be distributed to brother buckets at level level(b)+l. 
The records are classified acxodng to the value of the 
Ievel(b)+lst bit. SplitBucket performs this 
clauification. (SplitBucket is discussed in [oral82].) 

Note that in the worst case m+l disk reads are 
necesary to locate the bucket. Let N be the number of 
buckets in the file. (N is proportional to the number 
of records in the file - see section 5.) lllen, since 
m=log2N, we have a problem if we want to compete 
with the Btree, (note that the base of the logarithm is 
2). Fortunately, this problem can be avoided: the version 
of Ra~~dac given ahove may generate up to m+l disk 
accewu during a “sequential search” for the length of 
the prefix used to locate the bucket. ‘llii search can 
be replaced by a binary search, reducing the cost to 
o(log2m) = o(log2log2N) disk accmses. The details of 
thii modification are given in [Ore&]. 

As before, Seqac must axWuct asuccessorrecord 
and perform a random access. But since there are no 
sparse buckets, it is not necesary to check for and skip 
over empty buckets. Thus the Seqac algorithm has been 
simplifiedz construct the successor record, S. and search 
for it using Randac. 

Note that Distribute is recur&e. &naider the 
situation of figure 7. Bucket 0 stores all the records 
whore prefii is 02 but the distribution of the records 
within the bucket is biased. As XKWJ as two records 
with prefix 012 are inserted, bucket 0 can be split to 
yield buckets 0 and 2 (corresponding to prefixes 002 and 
012 respectively). Now, assuming a uniform distribution 
of records within bucket 0 (at level 2). the distributions 
shown in figure 8 can occur, (the prefiies are shown). 
These distributions are performed by the recwsive calls. 

DistribOK(b) returns true iff bucket b can be 
split to yield two non-spame buckets. 

if level(b) < Nom&Level(b) 
then (’ distribution is possible l ) 

oldlevel := level(b) 
b’ :5 brother(b) 
SplitBucket 
level(b) := oldlevel + 1 
level(b3 := oldlevel + 1 
if DistribOK(b) then Distribute(b) end 
if DistribOK(b’) then Distribute@‘) end 

end 

end Distribute 

tIzdktlon of brother llockus. 
The Split algorithm works as before except that a 

subnormal buck& may be created. SMlarly, Join is 
easilymodifiedtodealwiththejainingofasubnormal 
bucket and an empty bucket. 

Collect is called by the deletion algorithm to 
combine a sparse bucket with its brother. JoinBuckets 
manipulates the buckets’ data structures (ree [Ore&Q. 

rllsmth and deluh of real*. 

These algorithms work as before with the 
following exceptions: 

Collect, like Distribute, is recursive. Consider a 
C~Uect of bucket b at level L and b’ = brother(b) at 
level L’ > L. (Since level(b’) > level(b), b ti not 
really have a brother but if it did, its address would be 
brother(b).) &fore the Collect can occur, b’ must be at 
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level L. To ensure this, b’ is co&ted mn though 
neither b’ or its brother (Zb) is sparse. (An example 
is given in section 5.1.) 

b’:=broth@b) 

(*Bringbandb’tothesameRvdby*) 
(.cou~thehighcrkvdbucket’) 
if kvel(b-) < level(b) 
then ~interchangebandb’*) 

b :=: b 

(’ place result in the left brother, b 9 
if b’ < b then b :=: b’ end 
JoinBuckets(b,b’) 
level(b) := level(b) - 1 

end Collect 

5.6 PROBLEMS WITH MLOPLB 

By eliminating sparse buckets, the problem of 
potentially poor performance for sequential accessing has 
been solved. For random gazer&g, MLOPLH is at 
least as good as the Btree. It can be expected to have 
better performance unlals the data is hiiy clustered. 

updates occcasionauy generate calls to Distribute or 
Cokct. For some distributions of records (character&d 
by clusters of records) these calls can generate a lot of 
work; every bucket is accessed in the worst cases. In 
this section, the problem is explained and a solution is 
propasad* 

5.1 ZIle protJlem 

Consider the situation of figure 9. A rash of 
deletions from bucket 0 have caused it to become 
space. It must be collected but its brother does not 
exist. If it did exist, it would be in bucket 1 which is 
currently at level 4. Bucket 1 must therefore be 
colleued. putting it at leve! 3. By the time that bucket 
1 reaches level 1, the contents of buckets 3, 5.7 and 9 
will have been moved to bucket 1. Half of the buckets 
have been affected. 

A simii problem plagues Distribute. &rmrahy, 
CMkcts and Distributes involving buckets at very low 
levek 0, 1, 2. etc. involve very large fractions of the 
file. 

Ihecostofmovingrecordsfromottebucketto 
another is a minor concern: theraxmbinbmth 
buckets b and b’ can be merged in time O(Iog(tt) + 
log@?) where n and II* are the number of records in b 
and b’ respe&ively, (the algorithm is in [OreatZD. lltis 
ispcasiblebecausealltherecordsinbarermalJerthan 
thoeinb’ (orviceversa)andonlythe”edga”ofthe 
Btrees have to be modified. T+Mting a Btree (required 
by the Distribute algorithm) costs o(log%) [oram]. 

The major concern is the number of buckets 
involved. For example, a&cting a bucket on level L 
may cfme as many 
aaxmd where N 
2msNQm+1 

as about NEtL bucketstobe 
is the number of buckets, 

5.2 mesohlrha 

Clearly, the solution involvea placing a lower 
bound on the level of a bucket. For example, if the 
lowest level permitted is 5, then a bucket being 
collected will be at least on level 6 and no more than 
l/26 = M4th of the buckets could be involved in any 
cukct. 

A consequence of this strategy is that some sparse 
buckets may exist. In general, if the lowest level 
permitted is L then there may be as many as ZL sparse 
buckets. 

A few modifications to MLOPLH are required to 
make this work: 
0 The file is initialized with 2L empty buckets, 
@stead of one empty bucket). 
l Sparse buckets must be kept track of. The address 
and level of each must be known. When a new sparse 
bucket is created, causing the number of sparse buckets 
to exceed 2L, the sparse bucket at the highest level is 
collected, (thii is probably the cheapest one to collect). 

It is intemsting that there is a tradeoff between 
the worst cas a&s of sequential acxdng and 
updating: an update may require acc&ng NnL buckets 
and there are up to 2L sparse buckets which can slow 
down sequential proWsing. 

6.0 PERPORMANCE 

MLOPLH is a complicated but potentially faster 
alternative to the Btree. We can make the following 
qualitative statements about the performance of 
MLOPLH relative to that of the Btree. 
l Random faxsing costs one disk B if the 

accusedbuckethasnotoverflowedandisnotsparse.In 
the case of overflow, a (probably small) Btree has to be 
searched.Incaseofsparseness,the rapiredbuckUcan 
be located in o(log210g2N) disk -. 
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l sesu=- Bcccl(iDg usually coas the same as for a 
Btn%. ‘IIke cost may be somewhat higher when a bucket 
baundaryisu0SKd.(Linksbuween amsecutive buckets 
can be used to avoid the incmsed cost.) 
l updatingwiuusuallybecompeuabletotheco6tfor 
the Btree but could be wm: i.e. when a Collect or 
Distribute accesra a fixed fmction of the buckets. This 
cannot happea very often. 
0 The worst case load factor of a Btra is 50% 
[Bayen]. The load factor of linear hashing is 
controllable but the use of Btreu will result in a lower 
load factor than the use of overflow chains. The 
important point is that the load factor of MLOPLH 
cannot get arbitrarily close to zero as is possible with 
some other triebased methods, (e.g. the &e). 

Clearly, a lot of work is II- before 
MLOPLH can be recommended as the nuxusor of the 
Btrce. This work falls into four areas: 
1) Fine tuning: selecting valueJ5 for parameters (e.g. 
threshhold for sparseness, number of sparne buckets 
permitted). 
2) Studying various strategies for administrative details 
such as when to split and when to join. 
3) Performing experiments to compare MLOPLH and 
the Btree. 
4) Finding a clever and melodious name to repiace 
“MLOPLH”. ni!3 is essential before widespread 
acceptanceofthedatastruaun is possible. 

ACkQOW&fJgClUUlt 

I am grateful to Prof. Tii MelTett for his 
comments on earlier drafts of this paper. 

Referalcu 

Bay&? R. Bayer, E. M&eight. 
organization and maintenance of large 
ordered illdexes. 
Acta Informatica 1. 3 (l!V2), 175189. 

Burk83 WA. Burkhard. 
Interpolatioa-based index main-. 
Proc. 2nd ACM SIGACX-SIGMOD Symposium on 
Principle3 of Database Systems, (1983). 7685. 

Fagi R. Fagin et al. 
Extakiible nashii - a fast access method 
for dynamic files. 
ACM TODS 4.3 (1979), 315344. 

Fred60 ER. Fredkin. 
Trie mcmoxy. 
CACM 3, 9 (X%0), 490499. 

Knut73 D.E. Knuth. 
The Art of Computer Programming, vol. 3: 
Sorting and Searching. 
Addison-Wesley, Mass., (1973). 

LitwSO W. Litwin. 
Linear ha&ii: A new tool for file 
and table addressing. 
Proc. VLDB6. (l!XQ 212-223. 

Litw81 W. Litwin. 
Trie ha&ing. 
Proc. ACM SIGMOD, (1981), 19-29. 

Oren J.A. Orenstein. 
Algorithms and data structures for the implementation 
of a relational database system. 
Ph.D. thesis, McGill university, (1982). 
Also available as Ta%ical Report SOC%2-17. 

Oren JA. Orenst& 
On the efficient sear&ii of MLOPLH. 
Manuscript, (1983), COINS Depertment, 
University of Massachusetts, Amherst. 

ouks83 M. ouksel, P. ScheuermaM. 
Storage mappings for multidimensional iinau 
dynamic ha&ii. 
Proc. 2nd ACM SIGACT-SXGMOD Symposium on 
Principles of Database systems, (1983). 9&10!5. 

Stan80 TA. Standish. 
Data Saucture Techniques. 
Addiaon-Wesley, Reading, Mm., (1980). 

Tammlla M. Tamminen. 
Order pmerving extendible hashii and bucket tries. 
BIT 21, 4 (1981) 419-435. 

TammSlb M. Tamminen. 
Expected performance of some cell based organization 
schemes. 
Report HTKK-TKCkB28, (1981). 
Hdsinkii University of Technology. 

138 



Bucket 0 1 2 3 4 5 6 7 8 9 

Suffix 0000 0001 010 011 100 101 110 111 1000 1001 

Level 4 3 4 

m=3 
n=2 

Figure 1. Linear hashing 

Bucket Bucket 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 0 9 9 

Prefix Prefix 0000 0000 1000 1000 010 010 110 110 001 001 101 101 011 011 111 111 0001 0001 1001 1001 

Level Level 4 4 3 3 4 4 

m=3 
n=2 

Figure 2. Order-preserving linear hashing 

Bucket 0 1 2 3 4 5 6 7 0 9 

N14 2 615 6 5 04 

Level 4 3 4 

Figure 3. OPLH with sparse buckets. (A bucket 
is sparse if it contains 0 or 1 
records.) 
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Bucket 0 1 2 3 4 5 6 7 8 9 

N 2 4 2 6 - 5 6 5 - 4 

Level 2 4 3 3 - 3 3 3 - 4 

Normal leve 1 4 3 4 

Figure 4. Multi-level OPLH: sparse buckets 
have been eliminated. 

Bucket 0 1 2 3 4 5 6 7 8 9 10 

N2 4 2 6 - 5 6 5 - 4 - 

Leve’L 2 4 3 3 - 3 3 3 - 4 - 

Norma I leve L 4 3 4 

Figure 5. Bucket 2 has undergone a degenerate solit. 

Bucket 0 1 2 3 4 5 6 7 8 9 

N2 4 7 6 - 5 - 5 - 4 

Level 2 4 2 3 - 3 - 3 - 4 
1 

Normal Level 4 3 4 
Figure 6. Buckets 2 and 6 have been joined. 
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f3ucket 0 1 2 3 4 5 6 ‘7 0 9 
f 

N 24= 3 - 4 - 3 - 2 - 3 

Level 1 4 - 3 - 3 - 3 - 4 

Normal level 4 3 4 

* 00: 24 
01: 0 

Figure 7. A large cluster of records in bucket 0. 

/OO\ 
000 001 

A 
0000 0001 

Figure 8. Distribution of the bucket 0 records. 

Bucket 0 1 2 3 4 5 6 7 0 9 
1 

N 1 7 - 8 - -7 - 8 - 0 

Level 1 4 - 3 - 3 - 3 - 4 

Normal level 4 3 4 
Figure 9. Half of all the buckets are Involved 

when bucket 0 is collected. 

141 


