
Basic Timeetamp, Multiple Version Timestamp, and 
Tvo-Phase Locking 

Wen-Te A. Lin 
Jerry Nolte 

Computer Corporation of America 
Four Cambridge Center 

Cambridge, Massachusetts 02142 

Abstract 

Using simulation, we compare the perfor- 
mance of the Basic Timestamp, the Multiple Ver- 
sion Time&amp, and the Two-Phase Locking con- 
currency control algorithms. We find that in 
every system configuration ve have simulated the 
Multiple Version Timestamp algorithm performs 
only marginally better than the Basic Timestamp 
algorithm. In addition, we find that when the 
average transaction size is small, both time- 
stamp algorithms outperform the Two-Phase Lock- 
ing algorithm. But when the average transaction 
size is large, the Two-Phase Locking algorithm 
outperforms both timestamp algorithms. 

This research is eupported by the Rome Air 
Development Center (TSR) of the Department of 
the Air Force under Contract Number F3C602-81- 
C-0028. The views and conclusions contained in 
this document are those of the authors and 
shou Id not be interpreted as necessarily 
representing the official policies, either ex- 
pressed or implied, of the Rome Air Development 
Center of the Department of the Air Force or 
the U.S. Government. 

1. Introduction 

Many distributed concurrency control algo- 
rithms have been proposed (BadIll, BG[ll, CG[ll, 
~ll[ll, Gar[ll, GW[ll, KR[ll, Lin[31, Ros[ll, 
SKtll, SR[l], Stoilj, Tho[lll. But how well do 
they perform. 

A few researchers have attempted to compare 
the performance of different algorithms (Gar[ll, 
Gra[l], GS[ll, KP:ll, Lin[ll, LN[lI, LN[21, 
LN131, Wun[ll, PapIll, Rielll, Sev[ll, Tha[ll), 
and only one researcher has studied the perfor- 
mance of timeetamp algorithms (Lin[llJ. 

These performance studies are very diffi- 
cult to compare, and it is almost impossible to 
integrate their results. They not only compare 
different algorithms, but they also make dif- 
ferent assumptions about system and application 
environments, and they employ different measures 
for system performance. Therefore we began a 
major project that compared the principal dis- 
tinct distributed concurrency control and relia- 
bility algorithms, and we used the same model, 
assumptions, performance (output) parameters, 
and system and application (input) parameters. 
Some results of the project concerning the Two- 
Phase Locking algorithm have been reported in 
Lin[Zl, LN[ll, LNI21, LN[31, and LN[41. This 
paw reports some of the result8 of this pro- 
ject that concern time&amp algorithms and the 
comparison between the timeetamp algorithms and 
the Tvo-Phase Locking algorithm. 

In particular, this paper reports our find- 
ings about the performance of the Basic Time- 
stamp and the Multiple Version Time st amp algo- 
r ithms (~G[l1), and about the comparison of 
their performance with the performance of the 
Two-Phase Locking algorithm. We found that, 
contrary to our intuition, the Multiple Version 
Timeetamp algorithm did not significantly 

109 



increase the throughput of read-only tranaac- 
tions over the Basic Timestamp algorithm. Nei- 
ther did it improve the throughput of write 
transactions. We also found that both timestamp 
algorithms performed much better than the Iwo- 
Phase Locking algorithm when the average trane- 
action size was small. But when the average 
transaction size was large, the Two-Phase Lock- 
ing algorithm outperformed both timestamp algo- 
rithms. 

This paper is organized as follows. Sec- 
tion 2 describes the simulation model. Section 
3 compares the performance of the Basic Time- 
stamp with the Multiple Version Timeetemp algo- 
rithms. Section 4 discusses the simulation 
results of a modified model in which the ratio 
of read-only transactions to write transactions 
is fixed inside the system, instead of in the 
incoming transaction stream. Section 5 compares 
the performance of the Two-Phase Locking algo- 
rithm with that of the Basic Timestamp algo- 
rithm, and Section 6 concludes the study. Sec- 
tion 7 contains the references. 

2. the Simulation Model 

The simulation model has several input 
parameters. The first input parameter is the 
database size (DZ), which is the total number of 
data graxs Y in the database. We assume that 
every data granule has the same probability of 
being accessed by a request from a transaction, 
because in a previous study (LN[ll) we found 
that other database access patterns can be 
modeled by the random access pattern with a 
heavier system load. 

The second input parameter is the transac- 
tion size @I, 
data granules 

which is the average number of 
requested by each transaction. 

The transaction size for each transaction is 
randomly drawn from a geometric distribution 
that has a mean value equal to TZ. (A geometric 
distribution is the discrete version of an 
exponent ial distribution.) We simulate two 
kinds of transactions: read-only and undatq 
(write) transactions. We simulate each read- 
only transaction as a sequence of read-onlv 
reauests, each reading a data granule (each 
read-only transaction sequentially reads its 
data granules). We model each write transaction 
as a sequence of read reaueete, each reading a 
data granule, followed by a two-phase commit. 
Thus, each write transaction has a read nhasq 
and a commit (-1 phase. During the read 
phase a write transaction reads sequentially its 
data granules, but during the write phase it 
issues write requests (one request per data 
granule) to update in parallel u the data 
granules that it has read. 

The third input parameter is the multinro- 
grantming level (Mp), which is the number of 
transactions that run concurrently. There are 

always exactly MP transactions running in the 
eimlation system. A new transaction is ini- 
tiated as soon as an existing transaction com- 
pletes. However, when an existing transaction 
is aborted, a new transaction that has the same 
transaction size but that may access different 
data granules is started; this action is para- 
phrased as “aborted and restarted” in the rest 
of this paper. 

The fourth input parameter is the E/H 
x4&, which is the ratio of read-only to write 
transactions. Two different interpretations of 
R/W ratio are simulated. In the first interpre- 
tation, the R/W is fixed in the stream of incom- 
ing transactions (i.e., a newly initiated trans- 
action is designated as a read-only or write 
transaction, according to the R/W ratio using a 
random number generator). In the second 
interpretation, the R/W ratio is fixed within 
the simulation system. Within the MP con- 
currently running transactions, the ratio of 
read-only to write transactions is always fixed 
at R/W. Thus, a completed read-only (write> 
transaction is always replaced by a new read- 
only (write) transaction. 

The fifth input parameter is the communica- 
tion delay. Communication delay is drawn from a 
probabilistic distribution, which varies among 
different simulated runs. The distributions 
simulated include discrete versions of hypoex- 
ponential and hyperexponential distributions, 
each having a different standard deviation but 
the same mean value of one simulation time unit. 
To explain communication delay, we now describe 
our simulation model in more detail. In the 
model, unless specified otherwise, processing of 
data requests and transmission of messages incur 
no delay. 

There is a database manager (DJ) in the 
simulation model. All transaction requests for 
data granules (either read-only or write 
requests) are sent to the DM by their traneac- 
tione. When the DM receives a request, it 
delays a certain period of time before procees- 
ing the request. This delay is the communica- 
tion delay. After the communication delay, the 
DM then processes the request without incurring 
any more delay. Thus the communication delay 
encapsulates communication delay, cpu processing 
delay, and IO delay. The DM processes each 
request differently, depending on the con- 
currency control algorithm being simulated. 

In the timestamp based algorithms, each 
transaction is assigned a unique timestamp when 
the transaction is started. tireover, when the 
transaction is executed, the timestamp is 
attached to every data request of the transac- 
tion. If the transaction is aborted and 
restarted, it is assigned a new timestamp. In 
the case of the Basic Timestamp algorithm, the 
DM maintains a read timeetamr, and a write time- -- 

The read timestamp stamp for each data granule. 

110 



and write timertamp record the timestamps of the 
last transaction that reads and writes respec- 
tively the data granule. When the DM processes 
a read request from A write transaction, the DM 
compares the time&amp of the write transaction 
(which is attached to the request) with the read 
and write timestamps of the data granule 
requested. If the timestamp of the write trane- 
action is smaller than the read timestamp of the 
data granule, the write transaction is restarted 
immediately to avoid aborting it later when it 
tries to commit. If the timestamp of the write 
transaction is smaller than the write timestamp 
of the data granule, then the update transaction 
also is restarted immediately because it tries 
to read the data granule after A transaction 
that has a greater timestamp has updated the 
data granule. If the timestamp of the write 
transaction is larger than both the read and 
write trmestampe of the data granule, the former 
timestamp replaces both the latter timestamps 
and the request is granted by the DM. After the 
request is granted by the DM, the transaction 
immediately issues the next request. 

When the DM processes a write request from 
a write transaction, the DM again compares the 
timestamp of the write transaction with the read 
and write timestamps of the data granule 
requested. If the timestamp of the transaction 
is smaller than the read timestamp, the DM again 
immediately restarts the transaction. If the 
timestamp of the transaction is larger than the 
read timestamp, but smaller than the write time- 
stamp, the DM ignores the write request. If the 
timestamp of the write transaction is larger 
than both the read and write timestamps of the 
data granule, the former timestamp replaces the 
write timestamp of the data granule, and the 
request is granted. The write transaction com- 
mits only after all write requests (issued in 
parallel) are granted; otherwise it aborts. 

Let T(t) represents the timestamp of trans- 
action t, and R(x) and W(x) the read timestamp 
and write timestamp of data granule x. The 
above protocol used by the DM can be summarized 
as follows. During the read .phase of a write 
transaction t, 

for each x read by t, 

if T(t)<R(x) -4 restart t; 
if T(t)CW(x) -4 restart t; 
if T(t)>R(x) 6 T(t)>W(x) --> replace R by T, 

request is granted. 

And during the write phase of a write 
transaction t, 

Moreover, we simulated only the Paultiple? 
Version Timestamp algorithm that had four ver- 
sions of each data granule, because the proba- 
bility of restart for read-only transactions is 
already small in the single version Basic Time- 
stamp algorithm, and because the number of ver- 
sions does not affect significantly the proba- 
bility of restart for update transactions. 

if T(t)<R(x) for any x updated by t -4 restart t; 
else for each x updated by t, Performance measures (output parameters) of 
if T(t)<W(x) --> update to x is ignored, the simulation model for the Basic Timestamp 
if T(t)>W(x) -4 replace W(x) by T(t), algorithm and Four Version Timestamp algorithm 

update to x is granted. include system throughput (number of requests 
completed per time unit), and the probability of 

We next describe how the DM processes a 
read-only transaction in the Basic Timestamp 
algorithm. When the DM processes A read-only 
request from a read-only transaction, the DM 
compares the timestamp of the read-only transec- 
tion with the write timestamp of the data 
granule requested. If the write timestamp of 
the data granule is larger than the transaction 
timestamp, the DM immediately restarts the 
read-only transaction; otherwise the DM approves 
the read-only request, and the timestamp of the 
read-only transaction replaces the read time- 
stamp of the data granule if the former time- 
stamp is greater than the latter. The read-only 
transaction issues the next request as soon as 
the previous request is approved. In sumsmry, 
if read-only transaction t requests data granule 
x, and if: 

T(t )<w(x> -4 restart t; 
T(t)>W(x) --> replace R(t) by T(t) if R(t)(T(t), 

request is approved. 

Notice that, as stated previously, all the 
proceseings by the DM incurs no delay in our 
simulation model, except for the communication 
delay discussed earlier. 

We next discuss how the DM processes trans- 
action requests for the Multiple Version Time- 
stamp Algorithm. The Multiple Version Timestamp 
model is very similar to the Basic Time&amp 
model. Conflicts between requests and data 
granule timestamps are dealt with in the same 
way. However, in the Multiple Version Timestamp 
model, we kept four read and four write time- 
stamps for each data granule; the first one is 
the smallest and the fourth one is the largest. 
Thus, a read-only transaction can access earlier 
versions of a data granule if the timestamp of 
the read-only transaction is smaller than the 
largest write timestamp of the data granule to 
be accessed. But because we require an update 
transaction to read first what it writes, an 
update transaction can read only the latest ver- 
sion; thus, if all transactions are write trane- 
actions, this model degenerates to the Basic 
Timestamp model. For this reason, we did not 
simulate the wltiple Version Timestamp algo- 
rithm that has R/W ratio equal to 0. 

111 



rertart of read-only requests and read requests 
of update transactions -- the number of aborted 
requests divided by the number of processed 
requests. Since a write transaction may pro- 
gress to the write phase and then conflict and 
abort, we also include the probability of res- 
tart of transactions (not requests) during the 
write phase. 

We next discuss how the DH processes trans- 
action requests for the Two-Phase Locking algo- 
rithm. When the DM receives a transaction 
request for a data granule, it delays a period 
of time before it processes the request. This 
delay is the communication delay discussed ear- 
lier which encapsulates communication delay, cpu 
delay, and IO delay. 

If the request is a read-only request from 
a read-only transaction the DM tries to set a 
read lock on the data granule requested. If the 
data granule is already locked by a write trans- 
action, the requesting transaction waits until 
it is unlocked; otherwise the DM grants the 
request, and the read-only transaction immedi- 
ately issues the next request. If the request 
is a read request from a write transaction, the 
DM attempts to set a write lock on the data 
granule requested. If the granule is already 
locked by another transaction (either read-only 
or write), the requesting transaction waits 
until the lock is released; otherwise the 
request is granted. Deadlocks can occur, and 
they are detected periodically. When a deadlock 
is detected, the transaction in the deadlock 
cycle that holds the least number of locks is 
aborted. A write transaction commits its 
updates in parallel after it successfully com- 
pletes its read phase. 

The output parameters (performance meas- 
ures> of the Two-Phase Locking model included in 
this report consist of only the system 
throughput s. The other output parameters and 
the details of the Two-Phase Locking model can 
be found in LN[Zl and LN[31. 

3. Basic Timestamn ye. Multiple Version 
Timestamn 

We compare the simulation results of both 
the Basic and the IUtiple Version Timestamp 
algorithms in this section. We simulate the 
communication delay by using different hypoex- 
ponential and hyperexponential distributions, 
but we report results only from one distribution 
that has a standard deviation of 0.528. Results 
for other distributions exhibit similar 
behavior, and they can be found in LN[41. 

We first examine the probability that a 
read request (both a read-only request and a 
read request of update transactions during the 
read phase) will conflict, resulting in the res- 
tart of its transaction. Figure 1 and Figure 2 

respectively show these probabilities for the 
Basic and the Multiple Version Timestamp algo- 
r ithms. We note that because read-only transac- 
tions never restarted in the Multiple Version 
Timestamp model, Figure 2 contains only data for 
update transactions during the read phase. We 
note also that, for some of the heavy load 
cases, the system thrashed and never stabilized; 
therefore the data are not reliable. However, 
they do qualitatively indicate what is happen- 
ing . Comparing these two figures, we find very 
little difference between the Basic Timestamp 
and the Multiple Version Timestamp algorithms in 
the probability of restart during the read 
phase. 

We next examine the probability of restart 
of update transactions during the write phase. 
Figure 3 and Figure 4 show the results for the 
Basic Timestamp and the Multiple Version Time- 
stamp algorithms, and the difference between the 
two figures is also very small. 

For the Basic and the Multiple Version 
Timestamp algorithms, Figure 5 and Figure 6 show 
the system throughput, which is the number of 
completed (excluding those aborted) data 
requests per time unit. Notice that the average 
communication delay is always one and that there 
are always MP transactions running in the sys- 
tem; therefore if there is no transaction abor- 
tion, the throughput must equal MP, which is the 
maximum possible throughput. Combined read-only 
and update throughputs for system configurations 
that have average transaction size equal to 4 
are within 10x of the possible maximum. But 
combined throughput s of system configurations 
that have average transaction siee (TZ) larger 
than 16 are less than 3CE of the’ maximal 
throughput. 

These two figures show system thrashing 
when the average transaction size is large or 
when the system load is heavy. If the system is 
in equilibrium, write throughput should be very 
nearly l/3 of the read throughput, since incom- 
ing transactions occur in that ratio. However, 
this is not true for TZ=32, or for TZ=16, MP=32, 
and 64. In these cases, the system thrashed and 
was jammed with long update transactions that 
never finished. These observations show that 
both timestamp algorithms performed extremely 
poorly during long transactions or while bearing 
heavy loads. 

When we compare Figure 5 with Figure 6, we 
find little difference between these two algo- 
rithms in throughput except when the transaction 
size (TZ) or the system load (TZxMP/DZ) is 
large, in which case the throughput s are 
extremely low and the statistics are not reli- 
able anyway. 

From the observations made in this section, 
we can cone lude that both algorithms perform 
poorly when the average transaction size is 

112 



large or when the ryeten load is very heavy. In 
addition, there is no significant difference in 
performance between the Basic Tirssstsmp and the 
Multiple Version Timestamp algorithms. Addi- 
tional versions of data do not improve signifi- 
cantly the throughput of read-only transactions. 
When the load is light, the probability of COU- 
flict for read-only transactions is very -11; 
therefore additional versions of data do not 
increase the read-only transaction throughput. 
When the load is heavy, the system is jammed 
vith long update transactions that never finish, 
thus locking out read-only transactions; there- 
fore additional versions of data do not help in 
this case either. 

One may argue that if ve do not allow the 
system to be saturated with long update transac- 
tions, the Multiple Version Timestamp algorithm 
should perform better than the Basic Timestamp 
algorithm. We will test this argument in the 
next section. 

4. Results of g Modified Model 

In the last section, we concluded that 
there is no significant difference between basic 
timestamp and multiple-version timestamp proto- 
cols in performance, including the throughput of 
read-only transactions. One may argue that this 
conclusion is not valid because the simulation 
model should not have allowed update transac- 
tions to jam the system, thus locking-out read- 
only transactions. 

To test this argument, we impose the R/W 
ratio limitation inside the system, instead of 
in the incoming transaction stream: that is, the 
ratio of the number of running read-only trans- 
actions to the number of running update transac- 
tions is always fixed at R/W. All other parsme- 
ters of the model remain unchanged. The results 
are shown in Figures 7 and 8 for the basic and 
multiple-version timestamp protocols respec- 
tively. We include in the figures data from the 
previous model for comparison. These data are 
marked by *. 

Comparing the data of the modified model 
with the data of the previous model, we find 
that by fixing the R/W ratio inside the system, 
instead of in the incoming transaction stream, 
the throughput8 of read-only transactions 
increase tremendously when the average transac- 
tion size (TZ) is large. The reason is that 
when the R/W ratio is fixed inside the system, 
the system no longer can be saturated with long 
update transactions that never finish. But when 
the average transaction size is small, fixing 
the R/W ratio inside the system does not 
increase significantly the throughputs of read- 
only transactions. The reason is that the sys- 
tem is never saturated vith long update transac- 
tions in the first place. 

When we compare Figure 7 with Figure 8, we 
find no significant difference between the per- 
formance of the basic timestamp protocol and the 
multiple-version timestamp protocol. This con- 
tradicts the earlier argument that if the R/W is 
fixed inside the system instead of in the incom- 
ing transaction stream, the multiple-version 
timestamp protocol should have higher read-only 
transaction throughput8 than the basic timestamp 
protocol. 

The reason for this surprising result is 
that both timestamp protocols favor read-only 
transactions. Whenever there is a conflict 
between an active read-only transaction and an 
active update transaction, both protocols abort 
the update transaction. In both protocols, an 
active read-only transaction is aborted only if 
it conflicts with a completed update transaction 
that has a later timestamp, and this occurs 
rarely because update transactions take much 
longer to complete. Since read-only transac- 
tions rarely get aborted in the basic timestamp 
protocol, more versions of data make little 
difference in read-only transaction throughput. 

5. Timestamp 2. Locking 

In this section we compare the performance 
of the basic timestamp protocol with the perfor- 
mance of the two-phase locking protocol. 

We show part of the simulation results, 
specifically the throughput, in Figure 9; the 
rest can be found in LN[21 and ~11131. The 
throughput is the number of requests completed 
per time unit, excluding requests aborted. 

Comparing Figure 9 with Figure 5, we find 
that when the average transaction size (TZ) is 
small, the basic timestamp protocol outperforms 
the two-phase locking protocol. But when the 
average transaction size is relatively large (TZ 
larger than 16) the two-phase locking outper- 
forms the basic timestamp protocol. 

To learn why the timestamp protocol outper- 
forms the two-phase locking when the average 
transaction size is small, we examined our pre- 
vious simulation results on the two-phase lock- 
ing protocol ( lLin21, INLll , [NLZl 1. We found 
that when the average transaction size is small, 
the probability is very small in both algorithms 
that two transactions will conflict with each 
other. However, when a conflict does occur, a 
transaction is more likely to conflict with a 
long transaction than with a short transaction. 
Thus, if blocking is used to resolve the con- 
flict, as is done in the two-phase locking algo- 
rithm, the blocked transaction tends to have a 
long wait because long transactions take long 
periods of time to complete. On the other hand, 
a basic timestamp algorithm resolves the con- 
flict by aborting one of the conflicting trans- 
actions which is likely to be short. Thus, when 

113 



the average transaction size is small, reetart- 
ing transactions by the basic timestamp protocol 
is better than blocking transactions by the 
tvo-phase locking protocol. 

Bovever, when the average transaction size 
is large, the tvo-phase locking algorithm per- 
forms better than a basic timestamp algorithm. 
Because the probability of two transactions con- 
flicting with each other is high in this 
environment, conflict resolution using transac- 
tion abortion causes many transactions to be 
constantly aborted and restarted. Thus in this 
environment it is better to wait then to abort. 
However, we must emphasise that both algorithms 
perform badly, even though the two-phase locking 
algorithm is preferable. 

We must caution that this result must be 
taken in the context of our simulation model 
assumption. In our model, we do not simulate 
queueing for CPU, IO devices, and communication 
lines. Queueing for these devices is captured 
in a single model parameter, the communication 
delay, which has an erlangian distribution. To 
validate the conclusions in a more realistic 
model, we are currently modeling explicit queue- 
ing for these devices. Our preliminary results 
from this model seem to reaffirm our cone lu- 
sions. 

Also notice that our results differ 
slightly from the results of GraIlI. The vari- 
ance is due to the difference in models. In 
Grafll, all transactions have the same size and 
all transactions have the same probability of 
conflict and deadlock. Our simulation results 
show that longer transactions have higher proba- 
bility of conflict and deadlock 1LN41. In addi- 
tion, -in Gra[l1 it is assumed that the number of 
locks outstanding is equal to 50X of the com- 
bined size of transactions running in the sys- 
tem. Our simulation results show that the aver- 
age number of locks outstanding decreases sub- 
stantially below 50% of that size as the average 
transaction size gets larger [LN41. Moreover, 
the basic timestamp algorithm is not studied in 
Gra[ll. 

6. Conclusions 

We come to three major conclusions concern- 
ing the performance of timestamp and two-phase 
locking concurrency control algorithms. 

First, over a wide range of system condi- 
tions, the multiple version timestamp method 
performs only marginally better than the basic 
timestamp method. 

Second, when the average transaction size 
(TZ) is small, the basic timestamp protocol out- 
performs two-phase locking protocol. Hovever ) 
when the average transaction size is relatively 
large, the two-phase locking protocol 

outperforms the basic timestamp protocol. 

Third, when the average transaction size is 
small, fixing the ratio of read-only transaction 
to update transactions inside the system does 
not improve system performance. But when the 
average transaction size is relatively large, 
fixing the R/W ratio inside the system signifi- 
cantly improves the throughput of the system, 
because this prevents the system from being 
saturated by long update transactions. 

But we caution that these conclusions be 
taken in the context of the simulation model 
assumptions. Currently we are altering some of 
the assumptions to see whether these conclusions 
remain true. In particular, we are simulating 
the communication delay in mDre detail. We are 
breaking down the communication delay into IO 
processing delay, CPU processing delay, message 
communication delay, and data communication 
delay. Preliminary results from the detailed 
model seem to indicate that these conclusions 
remain true. 

Bad 

BG[ 

7. Bef erences 

11 Badal, D.Z., et al., “A proposal for Dis- 
tributed Concurrency Control for Partially 
Redundant Distributed Database System,” 3rd 
Berkelev Workshop m Distributed Data 
Management & Computer Networks, 1978. 

1 Bernstein, P., N. Goodman, “Concurrency 
Control in Distributed Database Systems,” 
ACM Comnutinn Survey, Vol. 13, No. 2, June 
1981. 

CO[l1 Ceri, Stefano, d Susan Owicki, “On the Use 
of Optimistic Methods for Concurrency Con- 
trol in Distributed Databases,” 6th Berke- 
&y Workshon go Distributed I&& Management 
& Commuter Network, Feb. 16-19, 1982, Asi- 
lomar, CA. 

Ell[11 Ellis, C.A., “A Robust Algorithm for 
Updating Duplicate Databases,” 2nd Berkeley 
Workshov ,n Distributed Data Mananement end 
Commuter Netvorks, May 1977. 

Gal111 Galler, B.I., Ph.D. Thesis, University of 
Toronto, 1982. 

Gar[l1 Garcia-Molina, II., “Performance of Update 
Algorithms For Replicated Data in a Distri- 
buted Database,” Ph.D. Thesis, Dept. of 
Computer Science, Stanford University, June 
1979. 

GS[11 Gelembe, E., 6 K. Sevcik, “Analysis of 
Update Synchronization for Multiple Copy 
Databases,” 3rd Berkeley Workshop go Die- 
tributed Databases 6 Comeuter Network, 
1978. 

114 



GW[ll, Garcia-Molina. Ii., 6 Gio Wiederhold, 
‘Read-Only Transactions in a Distributed 
Database ,I’ ACM TODS, Vol. 7, No. 2, June, 
1982. 

Gra[l] Gray, Jim, Pete Homan, Ron Obermarck, 
Hank Korth, “A Straw Man Analysis of Proba- 
bility of Waiting and Deadlock,” Jp& 
Research Beoort, RJ3066 (38112), San Jose, 
CA, 1981. 

KR[lI Kung, H.T., 6 John T. Robinson, “On 
Optimistic Methods for Concurrency Con- 
trol,” ACM TODS, Vol. 6, No. 2, June 1981. 

KP[l] Rung, H.T., 6 C.H. Papadimitriou, “An 
Optimality Theory of Database Concurrency 
Control,” Proc., a SIGMUD Conference, 
1979. 

Lin[ll Lin, W.K., “Performance Evaluation of Two 
Concurrency Controls Mechanism9 in a Die- 
tributed Database System,” Siamod-81 Inter- 
national Conference 8~ Management of Data, 
Ann Arbor, MI, 1981. 

Lin[Zl Lin, W.K., et al., “Distributed Database 
Control 6 Allocation: Semi-Annual Report ,‘I 
Technical Report, Computer Corporation of 
America, Cambridge, MA, January 8, 1982. 

Lin[31 Lin, W.K., “Concurrency Control In a Mul- 
tiple Copy Distributed Databare System,” 
4th Berkeley Workehon 8~ Distributed Daea 
Management & Cornouter Networks Aug. 1979. 

LN[ll Lin, W.K., J. Nolte, “Performance of Two- 
Phase Locking, ” 6rh Berkeley Workshop 9~ 
Distribute Data Management and Computer 
Networks, Feb. 16-19, 1982, Pxfic Grove, 
CA. 

LN[21 Lin, W.K., J. Nolte, “Read Only Traneac- 
tiona and Two-Phase Locking,” 2nd Svmpoeium 
a Reliability & Distributed Software & 
Database Svetems, Pittsburgh, PA. 1982. 

LN[3] Lin, W.K., J. Nolte, “Communication Delay 
and Two-Phase Locking,” 3rd International 
Conference z Distributed Cornouting Sve- 
m, Fort Lauderdale, FL, 1982. 

LN[4] Lin, W.K., J. Nolte, “Distributed Database 
Control and Allocation Project -- Third 
Semi-annual Technical Report,” Computer 
Corp. of America, Cambridge, MA, 1982. 

Pap[ll Papadimitriou, C.H., “On the Power of 
Locking, ” Proc . of 1981 ACM SIGMOD Confer- 
-. 

Rie[ll Rice, D., “The Effect of Concurrency Con- 
trol on Database Management System Perfor- 
mance, ” Ph.D. Thesis, Electronics Reeearch 
Lab, Univ. of Cal., Berkeley, 1979. 

Ror[ll Roeenkrantz, D.J., et al., “System Level 
Concurrency Control for Distributed Data- 
base Syetems,” ACM Trans. m Database e 
&R, Vol 3, No. 2, June 1978. 

SevIll Sevcik, K.C., “Database System Pertor- 
mance Prediction Ueing an Analytical 
Model,” 7th Conference on Very Large Data 
Bases, Cannes, France, 1981. 

SKI11 Silberechatr, A., 6 Z.H. Kedem, “A Family 
. .- ..of Locking Protocols for. Database Systems 

that Are Modeled by Directed Graphs,” IEEE 
Trans. 9~ Software Engineering, Vol. SE-8, 
NO. 6, November, 1982. 

SR[ll Sterna, R.E., D.J. Rosenkrantt, 
“Distributed Database Concurrency 
Using Before-Values,” Sigmod-81 
tional Conference pR Mananement 
Ann Arbor, MI, 1981. 

et al., 
Controls 
Interna- 
of Data, 

Sto[ll Stonebraker, M., et al., “Concurrency 
Control and Consistency of mltiple Copies 
of Data in Distributed INGRES,” IEEE Trans. 
9~ Software Engineering, Vol SE-S, No. 3 
May, 1979. 

Tha[ll Thanos, C., et al., “Performance Evalua- 
tion of Two Concurrency Control Mechanisms 
in a Distributed Database System,” Lecture 
Notes in Computer Science, Ed. G. Gooe 6 J. 
Eartmaze , Springer-Verlag, NT, 1981. 

Tho[ll Thomas, R.H., “A Majority Coneensus 
Approach to Concurrency Control for Multi- 
ple Copy Database,” ACM Transaction 3 
Database System, Vol 4, No. 2, June 1979. 

115 



Read-Only Transaction Read-Only Transaction 
DZ = 4096. R W = 3 1 DZ = 8192. R/W = 3/l 

I TZ I TZ 
MPI 4 16 32 W I 4 16 32 
16 .0016 .0031 .0013 16 .OOll .0015 .0014 
32 .0030 .0026 .0017 32 .0015 .0021 .OOll 
64 .0049 .0027 .0024 64 .0029 .0021 

Update Transaction 
DZ = 4096. R W = 3 1 

I Tz 

Update Transaction 
DZ = 8192. R W = 3 1 

I TZ 
MPI 4 16 32 MFI 4 16 32 
16 .0063 .0236 .0244 16 .0033 .0165 .0177 
32 .0117 .0329 .0339 32 .0067 .0244 .0254 
64 .0239 .0452 .0456 64 .0121 .0337 

Update Transaction 
DZ = 4096, R W = 0 

I TZ 
MPI 4 16 32 
16 .0065 .0238 .0248 
32 .0127 .0333 .0342 
64 .0227 .0455 .0458 

Figure 1 
Average Probability of Restart at Read Phase 

(Basic TS) 
Standard Deviation of Processing Delay - 0.528 

Update Transaction Update Transaction 
DZ = 4096, R W = 3 1 DZ = 8192. R W = 3 1 

I TZ I TZ 
MPI 4 16 32 MPl4 16 32 
16 .0063 .0240 .0247 16 .0040 .0165 .0179 
32 .0121 .0339 .0343 32 .0077 .0242 .0255 
64 .0232 .0453 .0459 64 .0126 .0338 .0346 

Update Transaction 
DZ = 4096, R/W = 0 
I TZ 

MPI 4 16 32 
16 .0065 .0238 .0248 
32 .0127 .0333 .0342 
64 .0227 .0455 .0458 

Update Tramaction Update Transaction 
DZ - 4096. B/W - 311 DZ - 8192. %/W - 3/l 

I TZ I TZ 
HP i - 4 16 32 MP 1 4 16 32 

16 .033 .270 .578 16 .016 .190 .4702 
32 .050 A59 .785 32 .027 .138 .6149 
64 .079 .672 .886 64 .049 .476 

Average Probability of Bertart at Write Phase 
(Basic TS) 

Standard Deviation of Processing Delay = 0.528 

Update Tranraction 
D2 - 4096. %/W - 0 
I TZ 

WI 4 16 32 
16 .031 .296 .64 
32 .049 .462 .91 
64 .083 .834 .94 

Figure 3 

Update Transaction Update Transaction 
DZ - 4096. R/W = 311 DZ - 8192. %/W = 311 

I TZ I TZ 
MPI 4 16 32 MP 1 4 16 32 
16 .029 .267 .476 16 ,014 .165 .433 
32 .048 .510 .695 32 .031 .310 .629 
64 .080 .684 .873 64 .048 .523 .768 

Update Transaction 
DZ - 4096. R W - 0 

I TZ 
MP i 4 16 32 
16 .031 .296 .64 
32 .049 ,462 .91 
64 .083 ,834 .94 

Figure 4 
Average Probability of Bestart at Write Phase 

(Multiple Version TS) 
Standard Deviation of Ccmmunications Delay = 0.528 

Figure 2 
Average Probability of Restart at Read Phase 

(Multiple version TS) 
Standard Deviation of Communications Delay = 0.528 

116 



Read-Only Transaction 
Dz = 4096. R/W = 3/l 

I TZ 
MPI 4 8 16 32 
16 11.60 7.30 3.67 0.90 
32 23.21 11.80 3.29 0.43 
64 42.82 14.90 1.61 0.15 

Update Transaction Update Transaction 
DZ = 4096. R W = 3 1 DZ = 8192. R/W = 311 

I TZ I TZ 
MPI 4 8 16 32 MPI 4 8 16 32 
16 3.72 2.34 1.25 0.23 16 3.96 2.88 1.98 0.44 
32 7.57 3.85 0.93 0.10 32 7.64 4.78 1.96 0.29 
64 13.80 4.80 0.42 0.03 64 15.29 8.23 1.50 - 

Read-Only Transaction 
DZ = 8192. R/W = 311 

I TZ 
MPI 4 8 16 32 
16 11.84 8.6 5.89 1.65 
32 23.04 14.4 6.17 1.06 
64 45.50 24.5 5.12 - 

Update Transaction 
DZ = 4096, R W = 0 
I TZ 

Mel 4 16 32 
16 14.15 1.14 0.13 
32 26.24 0.97 0.03 
64 44.19 0.09 0.01 

Figure 5 
Through-put in Requests per Time Unit 

(Basic TS) 
Standard Deviation of Proceseing Delay = 0.528 

Read-Only Transaction Read-Only Transaction 
DZ = 4096, R W = 3 1 DZ = 8192. R W = 3 1 

I rn” I WV 

WI 4 16 32 KP 1 4 16 32 
16 11.8 3.6 1.3 16 11.6 5.7 l-6 -.v 

32 23.2 1.8 0.4 32 23.2 2; 1.2 
64 43.5 1.6 0.3 64 46.0 1.0 

Update Transaction Update Transaction 
DZ = 4096, R W = 3 1 DZ = 8192. R W = 3 1 

I TZ I TZ 
WI 4 16 32 MP I 4 16 32 
16 4.0 1.14 0.33 16 4.0 1.93 0.53 
32 7.8 0.56 0.08 32 7.5 2.19 &ii 
64 14.4 0.39 0.07 64 15.2 1.28 0.21 

Update Transaction 
DZ = 4096, R/W = 0 
I TZ 

UP 4 16 32 
16 14.15 1.14 0.13 
32 26.24 0.97 0.03 
64 44.19 0.09 0.01 

Figure 6 
Through-put in Requests per Time Unit 

(Multiple Version TS) 
Standard Deviation of Communicatione Delay = 0.528 

117 



Through-Put (Read-Only) 
DZ=8192. R/W=3/1 
I TZ 

HP14 16 32 
16 10.7 10.3 x 

(11.8) ( 5.9) 
32 x X 22.9 

( 1.1) 

64 47.0 x x (45.5) 

Through-Put (Update) 
DZ-8192. R/W=311 
I TZ 

MPI 4 16 32 
16 

(44::) (::i, 
X 

32 x X .044 
t.2901 

64 13.3 X X 

(15.3) 

Through-Put (Read-Only) 
DZ=8192. R/W-3/1 

I TZ 
WI4 16 32 
16 10.9 10.9 x 

(11.6, ( 5.7) 
32 x X 22.9 

( 1.2) 
64 46.6 X X 

(46.0) 

Through-Put (Update) 
DZ-8192. R/W=311 

I TZ 
MPI 4 16 32 
16 

(260) 29") 
X 

32 X X 1.69 
(0.31) 

64 13.4 x X 

(15.2) 

Probability of Restart Probability of Restart 
(Read-Only) (Update in Read Phase) 

Probability of Restart Probability of Restart 

DZ=8192. R/W-3/1 DZ=8192. R/W=311 
(Read-Only) (Update in Read Phase) 

I TZ I 
DZ=8192. R/W-3/1 DZ=8192. R/W-3/1 

TZ I TZ I TZ 

MP; 4 16 32 W I 4 16 32 Mpi 4 -i6 32 MP i 4 -i6 32 
D8 x 16 .0040 .038 x 16 0 0 xlh snn4 .015 x 

.- ' ..--0) C.013) 
X .025 32 x x 0 12 I x .02c1 

16 .0007 .OOl 
(.0011)(.0015) (.0033)(.017) to, (0 ) -- -- (:nil 

32 X X .OOOl 32 x -- -- -- __ -- ---. 
C.0011) c.025) (o) C.026) 

64 .0021 X X 64 .0147 x X 64 X X 64 .013 x x 
C.0029) C.0123) C.013) 

Probability of Restart 
(Update in Write Phase) 

DZ=8192, R/W=311 
I TZ 

MPI 4 16 32 
16 .016 .19 x 

C.016) C.19) 
32 x x-. .81 

C.61) 
64 .049 x X 

C.049) 

Probability of Restart 
(Update in Write Phase) 

DZ-8192. R/W=311 
I TZ 

MPI 4 16 32 
16 ,015 .19 X 

t.0141 C.17) 
32 x X .54 

C.63) 
64 ,049 x X 

C.048) 

Figure 7 
Basic Timestamp Node1 with 

Figure 8 

R/W Fixed Inside the System 
Multiple Version Timestamp 

with R/W Fixed Inside the System 

(Figures within parenthesis are results of the 
model having the R/W ratio fixed in the input 

stream. "x" means not available.) 

(Figures within parenthesis are results of the 
model having the R/W ratio fixed in the input 

stream. "x" means not available.) 

118 



Read-Only Through-Put Read-Only Through-Put 
DZ=4096, R/W-3/1 DZ=8192. R/W-3/1 
I TZ I TZ 

MP i 4 16 32 kfp 1 4 16 32 
16 8.90 5.01 3.04 16 9.46 8.04 4.29 
32 16.18 5.18 2.04 32 17.67 9.26 3.56 
64 26.50 3.62 1.35 64 33.18 6.64 2.45 

Update Through-Put Update Through-Put 
DZ-4096 n R/W=311 DZ-8192. R/W-3/1 
I TZ I TZ 

IQ i 4 16 32 Mp i 4 16 32 
16 2.89 1.73 0.92 16 3.04 2.65 1.43 
32 5.34 1.71 0.63 32 5.80 3.05 1.19 
64 8.82 1.23 0.48 64 11.02 2.13 0.87 

Update Through-Put 
DZ=8192, R/W=0 

I Tz 
MP 1 4 16 32 
16 11.79 7.07 3.61 
32 21.51 6.69 2.98 
64 36.30 5.14 2.04 

Figure 9 
Through-Put of Two Phase Locking 

119 


