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1. Introduction 

The theory of serializability for concurrency 
control of databases has been extensively studied 
I: ESWA-76, STEA-76, BERN-79, PAPA-79, SETH-8 11. 
In this paper, we introduce a unifying concept in 
the theory, called disjoint-interval topological 
sort (DITS, for short), -- and discuss its applica- 
tions, including a number of new results. 

We prove that the existence of a DITS for the 
transaction IO graph (Section 3) associated with 
a schdule is a necessary and sufficient condition 
for serializability. The notion of DITS captures 
the essence of serializability and most known 
results on the characterization of serializable 
schedules follow directly from this main theorem. 

The most important contributions of the DITS 
are its appeal to intuition and its wide applica- 
bility. It is not only useful as an analysis 
tool, as we demonstrate in this paper, but it 
also provides a useful aid to a scheduler [KATO- 
831. The concept of DITS can be easily extended 
to the multi-version case [STEA-76, 
MURO-81, BERN-8--82, IBAR-831. 

REED-791 

We demonstrate a class of schedules, called 
WR+RW (see Section 51, which is the largest class 
of serializable schedules currently known that is 
polynomially recognizable. We also state some 
NP-completeness results. 

2. Database System Model and Schedule -- 

A database system consists of a set D of data 
items and a set T = {To, Tl. T2, . . . , Tn. Tf? of 
transactions. The steps of a transaction are a 
partially ordered set of read and write opera- 
tions [BERN-823. A read operation Ri[Xl of tran- 
saction Ti returns a value of data item X. and 

write operation Wi[Xl creates a new value for X. 
To and Tf are fictitious transactions, called the 
initial transaction and final transaction [PAPA- 
791, respectively, To is a write-only transac- 
tion which “writes” the initial value of each 
data item, and Tf is a read-only transaction 
which “reads” the final value of each data item 
after all other transactions have completed. 
Each data item is accessed by at most one read 
and at most one write operation of each transac- 
tion. 

Let OP(T) denote the set of all read and write 
operations of a set T of transactions. A 
schedule [ESWA-761 s over T is a pair 
(OP(T), <s), where <s is a total order on OP(T) 
consistent with the partial order among the 
operations of each transaction. 

In order to represent the total order <s, we 
simply write operations from left to right in the 
order of <s (see [PAPA-791). 

If Wj[Xl is the last write operation on X 
preceding Ri[Xl in a schedule s, we say that Ti 
reads X from Tj in s. Two schedules s and s1 are -- 
equivalent, written s = s’, if for each X, i and 
j, Ti reads X from Tj rn s iff Ti reads X from Tj 
in 5’. 

A schedule s is said to be serializable if 
there is a serial schedule s’ such that s = s’ 
[ESWA-76, BERN-79, PAPA-791. SR denotes the set 
of all serializable schedules. 

3. Transaction e/Output Graph 

Definition 3.1. Let 9 = (OP(T1, <s) be a 
schedule over-a-set T of transactions. The tran- 
saction IO graph, denoted by TIO(s). is a labeled 
zaph with the node set TIJT’ and the arc 
set Al -If Tj reads X from Ti,-there is an arc 
(Ti, Tj) C A labeled by X (denoted by 
(Ti, Tj):X). If Ti writes on a data item Y and 
if no other transaction reads it from Ti. then we 
introduce a distinct dumny node T’i C T’ together 
with a dummy arc (Ti,m:rThere are no other 
nodes or arcsin TIO(s). U 

The version graph ISTEA- and transaction dag 
TSETH-All are similar to the TIO araph defined _~~ __ 
above, except for the dunxny nodes and arcs. The 
TIO graph for the following schedule is shown in 
Fig. 1. 
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We define an Interval to be a set of all arcs 
that have the same label and originate from the 
same node. 

Definition 4.1 - -* Let (Th, Ti):X and (Tj. Tk):X 
be any two arcs labeled by X in TIO(s), where 
h i j. A total order << on the set of nodes of 
TIO(s) is a disjoint-interval topological sort 
(DITS, for short), if It satisfies the folmng 
three conditions: 
a) if Ti<<Tj then there is no path from Tj to Ti 

in TIO(s), 
b) if Th<<Tj then Ti<<Tj. and 
c) if Ti<<Tk then Ti<<Tj. 1 

Intuitively, TIO(s) has a DITS if the nodes can 
be linearly arranged horizontally in such a way 
that all arcs are directed from left to right and 
no two intervals “overlap”. One of the virtues 
of the DITS is that it provides a uniform tool 
for dealing with many problems in the serializa- 
bility theory. 

4 .J. Theorem A schedule s is serializable iff 
TIO(s) has a DITS which orders To first and Tf 
last. 

TIO(b) of Fig. 1 has two DITS’s satisfying 
Theorem 4.1. They are 

To<<T’o<(T3<<T’3<<T1<<T2<<T4<<T5<<Tf and 
To<<T10<<T1<<T2<<T4<<T3<<T’3<<T5<<Tf. 
It follows easily from Theorem 4.1 that a 

schedule is not serializable if it contains two 
transactions Tl and T2 such that Tl (T2) reads a 
data item X (Y) from the same transaction and 
writes a new value of Y (X1 (even If X = Y). 
This becomes clear if TIO(s) Is drawn and 
Thoerem 4.1 is applied to it. Theorem 8 of 
[PAPA-791 follows easily from this observation. 

As expected from the NP-completeness of serlal- 
ixability test [PAPA-781. testing the existence 
of a DITS for a transaction IO graph is in gen- 
eral NP-complete [IBAR-821. 

5. Inclusion Relationship Among WW, E, RJ, etc - 

Since the membership test in SR is in general 
NP-complete, we impose some constraints on seri- 
alization order and want to test if the schedule 
is serializable under these additional con- 
straints. 

Definition 5.1. Let s= (OP(T), <s) be a 
schedule over-a-set T of transactions. 
(a) [ww-constraints] If WltXl<sWjtX) for some 

data item X, then Tl must be serialized 
afore Tj. 

(b) !: 
tiGn?GiiG 

wr-constraints] If Wi(Xl<sRj(X) for some X. 
t serialized before Tj. 

(cl [rw-constraints] If Ri(X)<sWj(X) for some X, 
tEn Ti must be serialized before Tj. 

(d) It-r-constraints1 If RI(X)<sRj(Xl for some X, 
t& Ti must be serialized before Tj. 

A schedule s belongs to the sets WW. WR, RW and 
RR, if s is serializable under conditions (a). 
(b). (c) and (dl, respectively. 0 

In order to test if s C WW, for example, we 
indicate in TIO(s) each m-constraint by a dotted 
arc, called a ww-arc, from node Ti to node Tj. -- 
If the resulting graph is to have DITS with these 
constraints, then some additional constraints may 
be implied by them. 

Definition 5.2. The conditions b) and c) of 
Definition 4.7 are refered to as the exclusion 
rule. Let (Th, Ti):X and (Tj, Tk):X be as 
defined in Definition 4.1. If there is a path in 
TIO(s) from Th to Tj, from Th to Tk. or from Ti 
to Tk, we introduce an unlabeled exclusion arc 

- (Tl. Tj) Induced by the exclusion rule. 8 

The term *exclusion rule” was used in [SETH-811 
in a slightly different context, pertaining to 
individual operations instead of transactions. 
Suppose we add all ww-arcs to TIO(s). Then we 
repeatedly introduce exclusion arcs induced by 
the exclusion rule until the rule is no longer 
applicable. The resulting graph is said to be 
exclusion closed [SETH-811 and will be denoted by 
TIOCwwl(s). 

Theorem 5.1. --- Let c be any set of constraints 
that we have introduced above (ww, wr, etc .) and 
let C stand for the set of serializable schedules 
satisfying the constraints in c. A schedule s 
belongs to C if and only if TIOlcl(s) has a DITS. 

It can be proved CIBAR-821 that TIO(s) has a 
DITS satisfying the ww-constraints iff TIO!wwl(s) 
is acyclic. However, the existence of a DITS 
under the constraints wr or rw cannot be tested 
by the acycliclty of TIOCwrl(s) or TIOCrwl(s). 

We use the notation, WR+RW, for example, to 
denote the set of serializable schedules satlsfy- 
ing both the wr- and rw-constraints. Note that 
WR+RW$WRnRW. To see this, refer to schedule b 
of Fig. 1 again. If TIO(b) is augmented by the 
wr-arcs (T3, T4), (To, T2) and (To, T4), it still 
has a DITS. and therefore b C WR. Similarly, If 
TIO(b) is augmented by the rw-arcs. (T2. T3) and 
(T4. T51, then it has a DITS and therefore b C 
RW. It follows that b C WRnRW. Howaver, 

TIO(b) has no DITS if all these constraints are 
to be satisfied. We thus conclude that b $ 
WR+RW. 

The membership in WR+RW can be tested in poly- 
nomial time (Section 6). However, the tests of 
membership in WR, WR+RR, RW, RW+RR, RR are all 
NP-complete, even for the “two-step” model 
[IBAR-823. 

It turns out that WW = WW+WR+RW [IBAR-821. In 
the two-step model, the set WW+WR+RW is called 
DSR [PAPA-791 or CPSR [BERN-791. 

Finally, the inclusion relationship among all 
the classes defined above is surmnarixed in 

. 
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Fig. 2, where serializability of concurrent database updates, 

a = ~~o[X.YlR1[XJR2[XlW2~X,YlR3~XlWl[YlW3~YlRf~X,Yl, 
JACM 26. 4 (Oct. 1979). 631-653. -- 

IPAPA-821 Papadimitriou. C.H. and Kanellakis. 
b E wo[XlWl~XJR2~XlW3[XlW2[XlR4~XlW5~XlRf~Xl, 
c = Wo[XlR2~XlRl[XlW2~XlRf[Xl, 
d I Wo~XlR3[XlW1~XlR2CXlW3cx3W2~XlRf~Xl, 
e E Wo[X,YlR2[YlR1[XIW2[XlWl~XlR3~XlW4[XlRf~X,Yl, 
f = (To)d*(Tl)e*(Tf), and 
g = (To)d*(Tl)e*(T2)c*(Tf). 

In schedules f and g, Tl and T2 read and write 
all data items. The notation d*, for example, 
denotes the schedule obtained from d by stripping 
off the operations of its initial and final tran- 
sactions, i.e., Wo[Xl and Rf[Xl. 

6. Polynomial Membership Test in WW and WR+RW ------ 

Lemma 6.1. Let c be a set of constraints and 
let C stand for the set of serializable schedules 
satisfying the constraints in c. We have s 6 C 
if and only if TIO[cl(s) is acyclic, provided the 
following condition P holds. 

Condition P: For each data item X and a pair 
Ti, Tj of transactions that write X. there is a 
path in TIOlcl(s) either from Ti to Tj or from Tj 
to Ti, unless Wi[Xl and Wj[Xl are both useless 
writes, in which case such a path need not exist. 

Theorem 6.1. Membership in WW and also in 
WR+RW can be tested in polynomial time. 

It turns out that the TIO[wwl(s) has a cycle 
iff the TIO(s) augmented by the ww--, wr- and rw- 
arcs has a cycle. 
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Fig. 1. TIO graph for b = Wo~XlWl~XlR2lXl 
W3[XlW2[XlR4CXlW5CXlRfcx3. 
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Fig. 2. Inclusion relationship. 
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