
HOW DOES AN EXPERT SYSTEM GET ITS DATA? 
(Extended Abstract) 

Yannis Vassiliou, James Clifford, and Matthias Jarke 

Computer Application8 and Information Systems 
Graduate School of Business Administration 

New York University 

An Expert System (Es) is a problem-8olving 
computer - that system incorporates enough 
knowledge in Borne speciali2ed problem domain to 
reach a level of performance comparable to that 
of a human expert. In the heart of an expert 
system lie8 the program that "reasons" and make8 
deduction8 ("inference engine"). To reason, 
knowledge both of general rules (e.g. if a 
person work8 for a company then he/ehe zts 
employee benefits) and of swzic declarative 
fact8 (e.g. jOhn work8 for nyu) is needed. 

With few exceptione, little attention is 
given in Es8 to the handling of very large 
populations Of 8PeCifiC facts. Since early 
prototype BSs represented specific fact8 which 
were characterized by large variety and a very 
Sma11 population, the inefficiency of data 
handling was not an issue. As ES8 increase in 
sophistication and ambition, they deal with 
application8 requiring a very large population 
of facts, often in the form of existing 
databases manipulated by generalized DBMS. 

This short paper (see [Vassiliou et al 19831 
for more details) investigates the technical 
issue8 of enhancing expert systems with database 
management facilities in four stages, leading to 
the coupling of the ES with a large DBMS. Our 
vehicles are first-order logic (with Prolog) and 
relational databaae management. 

1 .'o BLBMNTARY DATABASE MANAGEMENT - STAGE 1 

Cm the simplest level, the whole population 
of facts can be represented directly in the 
knowledge base of the expert system. While this 
approach is feasible for any expert system, 
using Prolog can take us a step further. 

Relational databases can be represented 
directly in Prolog [l] a8 a listing of all 
instantiated predicate8 corresponding to 

relation tuples. In addition, 'Prolog can be 
used directly as a database query language since 
it ha8 a very powerful inference engine in place 
(theorem prover). A query for supplier8 of many 
parts may be defined as: 

supplies_many(Sno) :- supply(Sno,Pnol,Qtyl), 
8upply(sno,Pno2,QtYZ), 
not(Pnol=Pn02). 

This example illustrates both the query 
capabilities of Prolog, and the powerful 
mechanism for "generalized* views. Such views 
differ from the traditional DBMS views (database 
windows) in that with the use of variable8 they 
can accept parameters, essentially becoming 
*moving windows" over the database. 

There are two limitations to using Prolog 
directly a8 a database system: 
(a) Large Databases. Executing Prolog program8 
requires the assertions representing the 
database (instantiated predicates) to be in main 
memory. Even when the database can fit in main 
memory, and despite the fact that Prolog 
implementations are very efficient, there are 
indexing limitations. 
(b) Generality. Simple-minded use of Prolog can 
offer only elementary data management 
facilities. For instance, there are no data 
dictionary or directory and no generalized 
set-oriented relational operations. 

2.0 DBMS WITHIN EXPERT SYSTFMS - STAGE 2 

A further step toward8 integrating the 
deductive capabilities of Prolog with database 
management capabilities can be taken by 
implementing a general purpose DBMS directly in 
Prolog. This provides a means of adding 
flexible and general data acce8s mechanism8 to 
the inference engine. 

The feasibility of this has also been 
demonstrated by [Kunifuji and Yokotal in 
[Gallaire et al 19821. However, their 
implementation of relational operators requires 
the user to know the entire scheme of each 
relation and the order of the attributes in the 
scheme. Our approach, by contrast, provides a 
-------------.e.v 
[II For a clarification of Prolog's approach to 

relational database management, and in 
general for the use of logic in databases, 
[Gallaire and Minker 1978, Gallaire et 
al 1981, 19831 provide excellent references. 

70 



simple way to specify generalized operators 
acting on any relation and set of attributes 
[Vassiliou et al 19831. 

Large databases are a problem with this 
approach, but for specific applications, clever 
indexing schemes that guide decisions about 
which portions of external files should be read 
into the internal database can be devised. 
However, these strategies are not easily 
generalixable. 

The major limitation in this stage is that 
often an existing very large database may be 
needed in the expert system application. A 
generalized commercial DBMS will most probably 
be in place for this database. and it may be 
prohibitively costly to maintain a separate copy 
of the whole database for the Es. 
3.0 LOOSE COUPLING WITH EXTERNAL DBMS - STAGE 3 

Conceptually the simplest solution to the 
problem of using existing databases is to 
extract a snapshot of the required data from the 
DBMS when the FS begins to work on a set of 
related problems. The snapshot is stored in the 
internal database of the BS as described in the 
previous section. 

This stage still may not be general enough. 
Since decisions for extraction must be made 
statically, loose coupling is not suitable if 
the portion of the database to be extracted is 
not known in advance. 
4.0 TIGHT COUPLING WITH EXTERNAL DBMS - STAGE 4 

An online communication channel between the 
ES and the DBMS is assumed at this stage. 
Queries can be generated and transmitted to the 
DBMS dynamically, and answers can be received 
and transformed into the internal ES knowledge 
representation. Thus in tight coupling the ES 
must know when and how to consult the DBMS, and - - 
must be able to understand the answers. 

The naive use of the communication channel 
assumes the redirection of all ES queries, on 
predicates representing relations, to the DBMS 
for stored database relations. Any such 
approach faces at least two major difficulties: 
A.- Number of Database Calls 
Sincx<normally operates with one piece of 
information at a time (tuple), there may be a 
large number of calls to a database for each ES 
goal. This approach will generate a 
particularly inefficient version of a "nested 
iteration* query evaluation algorithm and will 
not make use of query optimization procedures of 
the DBMS to reduce the number of secondary 
storage accesses. 
B.-mtv of Database ~uerien 
Prolag goals considerea as queries can be 
substantially more complex than queries 
expressed in a database query language such as 
SQL (i.e. contains generalized views and 
recursion). 

These difficulties can be overcome by 
collecting and jointly executing database calls 
rather than executing them separately whenever 
required by the ES. In practice, we use an 

amalgamation of the ES language with its own 
meta-language. This allows for a deferred 
evaluation of predicates requiring database 
calls, while at the same time the inference 
engine (theorem prover) of the BS is working. 
Since all inferences are performed at the 
mea-level (simulation of object-level proofs), 
we are able to bring the complex ES queries to a 
form where some optimization and direct 
.translation to a set of DBMS queries is 
feasible. 

The queries are directed to the DBMS, 
answers are obtained and transformed to the 
format accepted by the BS for internal 
databases. The Es can then continue its 
reasoning at the object-level. Bach invocation 
of predicates corresponding to database 
relations will now amount to an internal Es 
database goal, rather than a'call to an external 
DBMS. 

This implementation is based on the high 
level description of the DL(MO predicate 
presented in [Bowen and Kowalski 19821, and is 
similar to that of [Kunifuji and Yokotal in 
.[Gallaire et al 19821. Our work extends the 
above approaches by providing a more general 
treatment of evaluable predicates (e.g., finite 
negation (not) and disjunction (or) are treated 
with no restrictions). .In addition, we also 
address the issue of of the general ES-DBMS 
coupling mechanism. The full implementation, 
together with examples, is given in [Vassiliou 
et al 19831. 

We now describe the overall mechanism 
(Figure 1) that allows for deferred database 
calls. Linking Prolog and meta-Prolog is 
accomplished with the introduction of a binary 
predicate called "meta". The reflect program 
produces "meta" predicates from a set of Prolog 
statements. It also groups the meta predicates 
by providing a unique name for the program. The 
reflect function is invoked once before the 
start of a session. In the heart of the 
mechanism is the proof of 
metaevaluate(Pgm,Meta Goals,Ctrl,New_Goals) in 
the meta-language, where Pgm and Meta Goals are 
the meta-language names of object a&umptions, 
goals, respectively. Ctrl is a parameter which 
specifies either a bound in the proof of 
metaevaluate or an action to be taken later 
(e.g. optimization, translation to relational 
algebra or SQL). The result, New-Goals, is. a 
series of Prolog predicates in a deferred 
evaluation state (a series of dbcalls and other 
non-evaluable predicates). The generate program 
is activated by metaevaluate and creates an 
internal (Prolog) database relation. In doing 
so, it uses and controls the execution of the 
sub-programs "optimize", "sql translate", 
"sql call", and "format-db". - Optimize performs 
some optimization to the goals generated in 
metaevaluate. One optimization is the removal 
of redundant goals. Another optimization 
identifies cases where a series of DBMS queries 
is required (e.g., in recursion). By imposing 
an ordering on the goals, "optimize" makes it 

71 



possible that a query result can be used for 
answering the next query more efficiently. 
Sql-translate generates SQL queries from 
optimized goals. First, the procedure 
identifies the database relations involved from 
the predicate names in Dptimised_Goals and its 
knowledge about the database schema (SQL's FROM 
clause). Next, it identifies target attributes 
(SQL's SELECT clause) from the universally 
quantified variables of the original goals, and 
ignores all other variables in the goals unless 
they serve as join fields (e.g., rell.fieldl = 
rel2.field2). All consi& values are 
translated to restrictions on field values 
(e,g., fieldname = constant): Finally, sql-call 
invokes the existing DBMS by sending an SQL 
query, with the result formatted to an internal 
Prolog database by format-database. 

_-_- 
I 

EXPERT SYSTEM DATAEASE SYSTEM 

)b'ect Level Meta Level -A-,--- -- 

j reflect ,. 
L goal whose proof 
requires external metaevaluate 
lata 

?I 
generate 

optimize 

sql-translate 

sql-call 

DBMS 
Query 

Evaluation 

I"""' 

'format-database 

: 

Figure 1: Program Execution in ES - - 

As an illustration of the process outlined 
above, assume a statement in a hypothetical 
expert system involving "good-supplier", which 
is defined with the Prolog statements (supply, 
supplier are the relations in the database): 
good-supplier(Sno,Pno) :- north_european(Sno), 

major-supplier(Sno,Pno). 
north-european(Sn0) :- 

or(supplier(Sno,N,St,london), 
supplier(Sno,N,St,paris)). 

major supplier(Sno,Pno) :- supply(Sno,Pno,Qty), - 
greater(Qty, 300). 

Since an instantiation of "good supplier" would 
require database calls, we use "zetaevaluate" as 
the first subgoal: 

metaevaluatetprl, 
[good_eupplier(v_Sno,v_Pno)l,5, NG) 

An intermediate result from "metaevaluate" is : 
NG = [or(dbcall(supplier,v Sno,v N,v St,london), 

dbcall(supplier,v~Sno,v~N,v~St,paris)), 
dbcall(supply,v Sno,v_Pno,v-Qty), 
dbcall(greater,y-Qty,300)1 

Given the specific value for the Control 
parameter of "metaevaluate*, the progr- 
*generate" is invoked. First, its sub-programs 
UoptimizeH and "sql-translate" transforms the 
new goals to the SQL-query: 

SELECT Sno, Pno 
FROM supplier, supply 
WHERN ((supplier.City = 'london') OR 

(supplier.City = 'paris')) 
AND (supply.Qty > 300) 
AND (supply.Sno = supplier.Sno); 

The call is made to the external DBMS 

(sql-call), and the answer retrieved from 
Answer location (format db). Finally, a new 
internal database is- generated with the 
description: 

good_supplier(sno, pno) 
After this process, the next statements in the 
expert system clause can use "good-supplier". 
No additional database calls are needed. 

5.0 CONCLUDING RB(ARKS - FIJRTHERRESEARCH 

In this paper we have outlined a number of 
strategies for establishing a cooperative 
communication between the deductive and data 
components of an expert system. We have shown 
that the spectrum of possible mechanisms to link 
these two components is effectively a continuum 
from, at one extreme, a single logic-based 
system that implements both components, to, at 
the other extreme, two--Zmpletely separate 
systems with a strong channel of communication. 

Finally, a research question of particular 
interest to the database community is the use of 
an ES as a DBMS "interface" [Jarke and 
Vassiliou 19831. Could an ES be used as a 
sophisticated access mechanism (e.g. high-level 
optimization, understanding of user intent)? 
How could ES technology be used for integrity 
checking and improved locking mechanisms? Such 
a "DBMS-expert" may require a tight-coupling 
mechanism like the one described in this paper. 

1. Bowen, K.A., and Kowalski, R.A., 
"Amalgamating Language and Metalanguage in Logic 
Programming", Logic Programming, K. Clark and 
S.A. Tarnlund, eds., Academic Press, 1982. 

2. Gallaire, H., and Minker, Jet - - Logic and 
Databases, Plenum, 1978. 
3. Gallaire, H., Minker, J., and Nicolas, J., 
Advances in Database Theory, Vol.1, Plenum 
Press, 1981, 
4. Gallaire, H., Minker, J., and Nicolas, J., 
Proc. Workshop of Logical Bases for Databases, 
Toulouse, December1 982. - - 

5. Jarke, M., and Vassiliou, y., "Coupling 
Expert Systems with Database Management 
Systems*, NYU Symposium on Artificial 
Intelligence Applications for Business, New 
York, 1983. 
6. Vassiliou, Y., Clifford, J., and Jarke, M. I 
*How does an Expert System get its Data?", CAIS 
Working Paper Series, no.50, GBA,83-26(CR), New 
York University, 1983. 

72 


