
Building Usable Menu-Based Natural Language Interfaces To Databases

Craig W. Thompson, Kenneth M. Ross,
Harry R. Tennant and Richard M. Saenz

Central Research Laboratories
Texas Instruments Incorporated

Dallas, Texas

ABSTRACT. Natural language interfaces to data-
bases are not in couunon use today for two main
reasons: they are difficult to use and they are
expensive to build and maintain. This paper
presents a functional overview of a new kind of
natural language interface that goes far in
overcoming both of these problems. The
“ease-of-use” problem is solved by wedding a
menu-based interaction technique to a
traditional semantic graaauar-driven natural
language system. Using this approach, all user
queries are “understood” by the system. The
“creation and maintenance problem” is solved by
designing a core grannnar with parameters
supplied by the data dictionary and then
automatically generating semantic graumars
covering some selected subpart of the user’s
data. Automatically generated natural language
interfaces offer the user an attractive way to
group semantically related tables together, to
model a user’s access rights, and to model a
user's view of supported joins paths in a
database.

1.0 INTRODUCTION

One major goal of much work done in AI and
computational linguistics in the last 15 years
has been to make natural language interfaces tc
software that naive users could use. Naive’
users might be new users or occasional users or
users who don’t want to use a formal query
language. The motivation has been that people
know a natural language and won’t forget how to
ask questions in it. The assumption has been
that the burden is on the computer to
“understand” the user’s naturally phrased query

or command and take some appropriate action.
Most natural language interface work has
targetted on database systems. Yet, only a few
coox0ercial natural language interfaces are
available today, including the Intellect system
by Larry Harris of AI Corporation, Straight Talk
by Gary Hendrix of Symantec, and Pearl by Roger
Schank of Cognitive Systems. Two good reasons
explain why: first, existing systems are brittle
and users are often frustrated in using them;
and second, natural language interfaces are
expensive to build and maintain.

This remainder of this paper is structured as
follows : The rest of section 1.0 motivates and
describes the general approach we have taken to
solving the two problems with existing natural
language systems. Section 2.0 describes the
architecture of the implemented system at a
functional level. Section 3.0 discusses the
advantages and limitations of the approaches
taken here.

1.1 A SOLUTION TG THE ‘USABILITY’ PROBLEM

In one of the few evaluations of a natural
language interface system, Tennamt 1980 found
that a major problem with PLANES was that, even
after a training session where the capabilities
and limitations of the system were explained to
users, users quickly developed negative
expectations concerning what the linguistic and
semantic coverage of the system was. That is,
because PLANES had a one third error rate on
even simple queries, users did not ask more
complex queries, many of which could be handled
by PLANES. Tennant also found that users were
unable to distinguish between the limitations in
the system’s conceptual coverage and the
system’s linguistic coverage. Users did not
successfully adapt to the system’s limitations
after some amount of use beoause there was no
clear path that naive users could use to learn
these limits. Problems in using PLANES rendered
users unable to successfully solve many of the
problems they were assigned as part of the
evaluation of PLANES, even though these problems
had been specifically designed to correspond to
some relatively straightforward qudp,les *,that
PLANES could understand. These inferet!ces “lout

43

--

PLANES’ capabilities resulted in much user
frustration because of their very limited
assumptions about what PLANES could understand.
The coverage mismatch problem pointed out by
Tennant is a general problem that must be faced
by any natural language interface.

There are three traditional approaches to
solving the coverage mismatch problems mentioned
above. The first is a set of training sessions
to teach the user the syntax and ocnceptual
coverage of the system. Interestingly, users of
Harris’ INTELLECT system are told that certain
words (like LIST and CROUP BY) are keywords.
However, there are several ,problems with this
approach. First, it does not allow untrained
novices to use such a system. Second, it
assumes that infrequent users will remember what
they learn about the coverage of the system.
Third, training sessions oan only give the user
a partial idea of coverage. The second approach
to solving the coverage mismatch problem is to
extend the coverage of the system to the point
where practically all inputs are understood. By
doing this, most sentences that are input will
be understood and few negative expectations will
be created for the user. In natural language
interfaces, the design methodology has often
been to trap users’ queries that could not be
interpreted by the system, analyze them, and
then add capabilities to the system to cover the
input. Unfortunately, this methodology often
results in spotty coverage, so that a similar
input may not be covered and users have trouble
generalizing what is and what is not in the
scope of the language. So this approach can
actually contribute to the problem of allowing a
user to generalize about the coverage of the
system. The design goal of covering every user
input has the additional disadvantage of being
very open-ended. Large grallanars result and
there is no clear criteria to tell the system
implementer when he is done building the
interface. The third approaoh to solving the
coverage mismatch problem is to engage the user
in a %larification dialogue” whenever his query
is ambiguous, incomplete, or otherwise outside
of the bounds of the coverage of the system.
This approach was explored in Codd’s Rendezvous
Codd 1978 . Here too, there are problems.

Clarification dialogues require the user to read
restatements of their query and users have some
trouble comparing restatements with their
original phrasing.

In this paper, wa will apply a technique that
uses current technology (current grammar
formalisms, parsing techniques, etc. 1 to make
natural language interface systems meet the
criteria of usability by novice users. To do
this, user expectations nnz5t closely match
system performance. Thus, the interface System
must somehow make clear to the user what the
coverage of the system is.

The NLMENU System, described in this paper, is a

grammar-driven menu-based natural language
interface system. Eather than requiring the
user to type his input to the natural language
understanding system, he is presented with a
constellation of menus on the upper half of a
high resolution bit map display. Sample screens
for the NLMENU system are included at the end of
the paper. (See Figures l-3). Using an
interaction technique of his choice (a mouse,
speaker-dependent speech, keyboard coaxaands, or
typing), the user can choose the words and
phrases that make up his coaanand or query. The
user chooses items from “active menus”, which
are highlighted in the figures. As he chooses
items, they are inserted into the ‘sentence’
window on the lower half of the sareen. some
sample sentences follow:

Find the average weight of parts whose part
color is red or blue and which are supplied
by suppliers whose supplier status is
greater than 10.

Find course# and description of courses taught
by instructors named Thompson or Ross and
whose prerequisites are courses whose course
title is Structured Programming.

Delete parts whose part status is between 10
and 20.

As a sentence is constructed, the active menus
and items in them change to reflect only the
graarnatically legal choices, given the portion
of the sentence that has already been input. At
any point in the construction of a natural
language sentence, only those words or phrases
that could legally come next are displayed in an
active menu for the user to select. Thus,
sentences which cannot be processed by the
natural language system can never be input to
the system. By retaining both active and
inactive menus in the display, both the scope
and limitations of the system are made clear to
the user. Thus, the set of statable queries
exactly defines the linguistic and conceptual
coverage of the system. This approach solves
many of the problems having to do with
Wease-of-use” of natural language interfaces.

1.2 A SOLUTION TC ‘RIE ‘PORTABILITY’ PROBLm

This paper also contributes to the solution of
the second problem, of making natural language
interfaces easy to build and maintain, in the
very important special case of relational
databases and in the context of a
grammar-driven, menu-based interface driver. In
this context, this paper addresses the following
problems : existing natural language interfaces
to databases are seldom portable; most are
application-specific. They take from man-weeks
to man-years for a specialist to build. They
are not robust with regard to changes in the
data they are interfacing to. They are hard to
debug. And there is no established my to
guarantee that they cover the desired data or

44

the functionality of the target computer system.
So, using existing approaches, natural language
interfaces to databases will be built only for
important database applications. Applications
must justify the expense.

Section 2.2 describes an implemented system
which automatically generates natural language
interfaces to relational databases. The
interfaces are for use with an NLMENU
granrmar-driven, menu-based system. The basic
idea is that domain specific parameters are
elicited interactively from a user and then
substituted into a domain Independent natural
language core grammar and corresponding lexicon
and a semantic grammar and lexicon result.
Together, the semantic gratmuar and lexicon
define a natural language interface to some
semantically related set of database tables.

Interfaces that have been built with the
techniques described here indlude versions of
well-known experimental natural language
interfaces PLANES, LUNAR, LADDER, TQA ,
RENDEZVOUS, and INTELLECT/EMPLOYEES (original
data is only available for LADDER). In
addition, we have built NLMENU interfaces to
several TI Internal NLMaJU databases; some
personal databases like MY CONFERENCES and MY
CITATIONS; some toy databases like Date’s
SUPPLIER-PARTS database Date, 1981 , a JOBSHOP
database, a BASEBALL database and a UNIVERSITY
database; and the SYSTEM RELATIONS database.

In the past several years a number of
researchers have been interested in the
portability issue. Kaplan 1979 , Harris
1979 , Hendrix and Lewis 1981 , and Grosz et
al 1982 all provide insights into some aspects
of portability. Kaplan describes a portable
system in which an expert can port to a new
domain in a matter of hours. Harris’ Intellect
has been ported to a variety of applications.
It takes a system person a day to build a bare
bones interface and a month is needed to reach a
finished product. Both Hendrix and Grosz
describe a prototype system, first called Ted
and later Team, which allows a database expert
who is not necessarily a natural language expert
to build new Interface. They describe an
acquisition dialogue in which the designer
interactively specifies lexical information
(synonyms, antonyms, verb conjugations,
+-human), and also database structural
information (like what attributes are numeric).
This information provides parameters to a
DKMltBtiC warmnar. None of the papers above
giv, the reader any real ins1

f
ht in-to- how expert

a user had to be to build an nterface. how lonn
it took to build one, whether it was easier to
build some interfaces than others, and whether
the resulting interfaces were usable.

Our work differs from past work in two wys:
first, we concentrate on crafting a snail,
expressive, carefuly designed core graaxaar and

lexicon. We provide a guided path towards
expressing a query, but not a general
paraphrasing capability. The grammars and
lexicons produced by the “Build Interfaces”
interface (see below) are for use with an NLMENU
system and would be very Inadequate in
traditional systems. The principal reason is
that they are purposely engineered to provide
only a limited set of graaauatlcal and lexical
ways of expressing a statement. They are aimed
at taking advantage of a person’s ability to
understand a fragment of natural language
written in a limited language and at guiding him
to express himself in that limited language.
There is no intent to cover any more natural
language than a domain requires, so the problem
of building an interface is not open-ended.
Second, end-users can build interfaces in a
short period of time without needing to become
familiar with grammars and lexicons. The
interface specification dialogue itself is
NLMENU driven. It makes no use of linguistic
information but makes heavy use of the data
dictionary. In the simplest case,’ a user can
build a new interface simply by choosing from a
menu a set of tables that he wants the interface
to cover. Automatically generated interfaces
are quite usable: people who have never seen a
lisp machine before can formulate interesting
queries using automatically generated natural
language interfaces, as often happens in our
demos.

2.0 SYSTEM ARCHITECTURE

The system described in this paper was
prototyped on LMI lisp machines. The prototype
served as a specification for a coPlnercia1
product, written in C, which will be available
on the 8088-based TI Professional Computer and
which interfaces the menu-driven natural
language interface technology to Oracle’s SQL.
The prototype I&MENU system is implemented in
Lisp Machine Lisp and consists of the following
software components: a window management system,
a target lisp machine relational dbms, a parser,
an NLMENU driver, a General Sessioner and a set
of NLMENU driven interfaces including various
natural language interfaces, a GUIDED SQL
interface, and a BUILD INTERFACE interface.
Each NLMENU-driven interface consists of a
grammar, a lexicon, a set of experts, and
possibly a target software system. This section
describes each of the components in turn. The
significance of the more important components is
discussed in section 3.0.

2.1 THE BASIC NLMENU SYSTpl ARCHITECTURE

The WINDOW SYSIPI, including the menu subsystem,
is fully described in documentation from Lisp
Machines Incorporated. It is based on
“flavors”, an object-oriented, hierarchical data
structure with message-passing that is available
in newer Lisps. The window system contains

45

primitives for building various kinds of menus
and for building constraint frames of menus and
windows like the ones in NLMENU screens.

Two target R!E.,ATIONAL DBMS's have been
interfaced to in the prototype NLMENU system:
Oracle's implementation of SQL and a prototype
relational dbms on the lisp machines, which uses
a relational algebra.

The PARSER is a wmodifiedn left-corner, bottom
up, all paths, attributed grammar parser Ross
1983 . The modifications enable the parser to
parse a menu item (word or phrase) at a time and
to predict the set of next possible words in a
sentence, given the input that has come before.
The grammars employed in the NLMENU system are
semantic grammars Burton, 1976 written in a
context-free graanaar formalism. Translation of
the sentence is done as the sentence is parsed,
using lambda conversion. Translations are
associated with each of the words and phrases in
the lexicon. Associated with each context-free
rule is a semantic rule indicating the order in
which the translations of the nodes to the right
of the arrow are to be combined.

The NLMENU DRIVER is an input loop which accepts
user's input (in the form of a menu choice). If
the menu choice comes from the %nmnandsn menu,
one of the following actions is taken:

RE-START--reinitialize the screen for another
wry

RUBOUT--rubout the last menu choice from the
end of the current sentence being composed

SIiOW QUERY--when a completed sentence has been
entered, the translation of the query or
command into the database query language is
displayed In the output window (see Fig 2)

EXECUTE--the query is executed and the result
displayed in the output window (see Fig 3)

EDIT ITEM--a mode In which the owner of an
Interface can rephrase awkwardly phrased
automatically generated menu Items

EXIT--exit the driver, leaving it in the
current state, in case the user later
returns to the interface

SAVE Q, RETRIEVE Q, D&FZ'E Q, PLAY Q--queries
can be saved, recalled (or deleted1 from a
menu of saved queries, or a set of queries
can be "played" automatically for demo
purposes.

If the menu choice Is one of the active menu
items, the driver parses that choice and then
predicts the set of next legal grawar
terminals. It then refreshes a display of next
legal choices and the user chooses one.

The NLMENU system does not store the words that
correspond to data items in the lexicon as many
other natural language systems do. Instead, a
meta category called an EXPERT is stored in the
lexicon. As an example, when a user's sentence
is "Find parts whose part color is . ..P. a

PART COLOR-EXPERT pops up a menu of legal part
colors. An expert is an arbitrary procedure
which the user may supply but which defaults to
some system supplied procedure. Three default
procedures that are particularly useful are:
present the user with a menu of data items
chosen from a closed semantic domain, or go
directly to the database and populate a menu
from the projection of an attribute, or simply
allow the user to type in a value and use the
data dictionary to validate the value the user
types. This last sort of expert is PartiCUlarlY

useful when the database is remote and it is
undesirable to execute sub-queries while the
sentence is being built. Experts may be much
more exotic: In our example above, on a color
monitor, an expert could pop up a color chart
and let the user choose a color from it. When
interfacing to our spatial database, we
implemented an expert that allowed a user to
pick a latitude/longitude rectangle off of a map
to specify an area.

Many systems allow ELLIPSIS to permit the user
to, in effect, ask a parameterized query. For
example, in Ladder, a query like "Find ships
whose speed is greater than 50 knots and which
are in the Mediteranneanw might be followed by
typing "30 knots*, which has the effect of
re-running the query with the new parameter. In
our system, we handle ellipsis in a more
immediate way, by structure editing. To change
a "parameter", we simply move the mouse to a
phrase generated by an expert and select that
item. The expert which originally produced that
item is then called, allowing the user to change
that item to something else. Our approach gets
around problems of elliptical ambiguity as in
"Find ships whose status is 10 and whose speed
is over 30" followed by "20".

Since the natural language semantic grammar is
technically unrestrictedly context free and a
subset of English, ambiguous sentences can be
created. In the NLMENU system, by design,
lexical ambiguity (where one lexical item from a
given syntactic category has two or more
translations) does not occur. But structural
ambiguity can occur. In our system, if a user
tries to execute an ambiguous query, the system
offers him a menu of possible interpretations.
The interpretations are distinguished by
indentation and numbering, as in:

"Find courses which are prerequisites of
courses (1) whose course department is

Computer Science
and (2) whose course credits is 3."

"Find courses (1) which are prerequisites of
courses whose course
department is Computer Science

and (2) whose course credits is 3.”

This simple approach contrasts with the standard
solution of natural language systems which is to

46

paraphrase a user(s ambiguous query. That
approach requires a paraphraser module and also
requires a user to look at multiple paraphrases,
and people often have trouble choosing the
interpretation they mnt.

One interesting note about our grammar is worth
mentioning. In English, there is no really
algorithmic way to decide what the user means
when he uses con junction and disjunction
together. Possible implementations might
include left-to-right parsing with AND and OR of
equal precedence, some AND/OR precedence rule,
some heuristic approach or a hybrid. If more
than one approach is taken, rampant ambiguity
results. One can always find contradictions to
a heuristic approach. We finally settled on the
AND/OR precedence approach found in =w
programming languages (we even allow parenthesis
to override precedence), because progratmner/
users are already familiar with the idea’ and it
is not hard to learn. We performed a human
factors experiment to verify that this approach
was reasonable and the results bore out our
conjecture that people can easily learn to use
the feature. In addition, we found it desirable
to include a reference to the thing modified in
modifying phrases (as in “whose CUIRSE
department is”). Although stilted, the English
is readily understood and ambiguities like
deciding whether “whose department is” modifies
INSTRUCTORS or CUJRSES can be avoided.

In addition to the above software modules, a
HELP SYSTEM is available for users. At any
point in a query, a user can get help on a menu
item or a menu itself; he can use mouse buttons
or the keyboard to make his request. For
automatically generated interfaces, the “help
message” can be automatically generated. A
message about an attribute may include its
documentation, its range if restricted, its
units if any, its format if any, etc. Help cm
active menu items also displays the set of
active items that would be available if the item
were chosen. As with menu items themselves,
automatically generated help messages may be
edited by the user.

The GENERAL SESSIONER module (see Figure 4) is a
top-level driver that checks a users password,
and then presents him with a menu which gives
him choices between system commands, user-owned
natural language interfaces (those that the user
created), interfaces granted to the user, and
interfaces granted to the PUBLIC. Naturally,
different users see different menus according to
their access rights to various NLMENU
interfaces. Two system-owned relations:

NLMENU-INTERFACES(owner, interface-name,
target-dbms, portable-spec, grammar, leXICtll,
window-description)

NLMENU-GRARTS(owner, interface-name, user)

govern which interfaces users own and which
Interfaces users have been granted access rights
to.

The GUIDED SQL choice on the general SeSSiMer
menu allows a user to use the NLMEWU driver with
a formal SQL grammar. Such a grammar is not a
semantic grammar in the sense of the naturfil
language grammars--that is, ccnstraints
governing what relations and attributes can fill.
identifier roles are not necessarily satisfied
as they are in the natural language NLMENU
grammars. But, by using the GUIDED SQL
interface, users can be guaranteed of making no
syntactic errors in specifying database queries
or requests. This Interface is just
representative of a menu-based grammar-driven
interface to any formal language, by no means
restricted to database query languages.

2.2 AUTOMATICALLY GENERATING A NATURAL LANGUAGE
INTERFACE

This section discusses how an end-user can build
his (xsn natural language interface to data that
he owns or has been granted access to. The user
needs no knowledge of grammars, lexicons, the
target query language, etc., but only an
elementary knowledge of tables, keys and joins.
So a large class of users can build their own
interfaces. First, the BUILD INTERFACES
interface is discussed and operations on
interfaces are described. Then, the CREATE and
MODIFY operations are described as a means of
eliciting domain-dependent customization and
coverage parameters from the user. These
parameters are stored in a data structure called
a “portable spec”. Finally, the method whereby
a semantic grammar and lexicon are generated
from a core grammar and a portable spew is
discussed.

The BUILD INTERFACES module (see Figure 5) is an
NLMENU driven interface consisting of a graonaar,
lexicon, window description, and an underlying
semantics which defines the following
operations:

TUTORIAL--an on-line tutorial on the BUILD
INTERFACES interface

LIST INTERFACES--1lst interfaces owned or
granted to the user

CREATE INTERFACB--create a new NLMENU
interface covering a set of tables

MODIFY INTERFACE--modify an existing owned
NLMEWU interface

COMBINE INTERFACES--merge two interfaces
GRANT INTERFACE--grant owned interface(s) to

other user (s)
REVOKE INTERFACE--revoke a granted interface
DROP INTERFACB--drop owned interfaces

Each of the commands has a simple English-like
syntax. An effort was made to make the keyword
phrasing of the conanands compatible with SQL,

our usual target query language.

The CREATE INTERFACE and MODIFY INTERFACE
commands are the heart of BUILD INTERFACES.
Both commands operate on a (new or existing)
domain specific data structure called a PORTABLE
SPEC and interactively allow a user to fill in
slots in the structure. A portable spec
consists of a list of categories. The
categories are as follows: the COVERED TABLES
list specifies all relations or views that the
interface will cover. The retrieval, insertion,
deletion and modification relations specify
ACCESS RIGHTS on selected covered tables.
Non-numeric attributes, numeric attributes and
computable attributes CLASSIFY ATTRIBUTES
according to type. Computable attributes are
numeric attributes that are averageable,
sunxnable, etc. A user may also choose not to
cover some attributes in an interface.
IDENTIFYING ATTRIBUTES are attributes that can
be used to identify the rows. Typically,
identifying attributes will include the key
attributes, but may include other attributes if
they better identify tuples (rows) or may even
not include a full key if one seeks to identify
sets of rows together. TWO TABLE JOINS specify
supported join paths between tables. THREE
TABLE JOINS specify supported 9elationships"
(in the entity-relationship data model sense)
where one relation relates 2 others. The TABLE,
ATTRIBUTE and INSERTION EXPERTS define user
supplied expert definitions to replace system
defaults. EDITED ITEMS provides a list of old
and new phrasings of menu items. And the EDITED
HELP provides a way for users to add to, modify,
or replace automatically generated help
messages.

Popup expert menus guarantee that the user will
choose only from legal choices when selecting
parameter values. Categories COVERED TABLES,
ACCESS RIGHTS, CLASSIFY ATTRIBUTES, IDENTIFYING
ATTRIBUTES, and TABLE JOINS all involve
consulting the database data dictionary and then
popping up various kinds of menus in which a
user selects from legal options. Unspecified
options are defaulted.

Some of the categories in the portable spec are
best specified after the interface builder has
created the interface. At that time, he can
replace menu items or help messages with
customized paraphrases. All such changes are
recorded in the portable spec in case the
interface is later modified. An interface
resulting from a BUILD INTERFACE session is
guaranteed to be valid in a sense described
below.

2.2.1 AUTOMATICALLY GENERATING A NATURAL
LANGUAGE INTERFACE FROM A PORTABLE SPEC

The function MAKE-PORTABLE-INTERFACE takes as
input a portable speo, uses it to instantiate a

domain independent core grammar and lexicon, and
returns a semantic gratmnar and a semantic
lexicon pair, which defines an NLMENU interface.

A portable spec data structure is the input to
both a MAKE-SEMANTIC-GRAMMAR and a
MAKE-SEMANTIC-LEXICON routine to be described.
These routines do not verify the integrity of
specs though they could easily be modified to do
so. Instead, it is assumed that the component
that provides the parameters has done this
validation. This is guaranteed to be the case
when a portable spec is specified using the
BUILD INTERFACES interaction.

The function MAKE-SEMANTIC-GRAMMAR is defined as
follows:

MAKE-SEMANTIC-GRAMMAR(portable-spec) --)
semantic-grammar.

Grammar rules have two parts: a context free
rule part and an interpretation part telling how
to combine translations associated with the
elements on the right hand side of the grammar
rule to make a translation to associate with the
element on the left hand side of the grammar
rule. The basic operation of the
MAKE-SEMANTIC-GRAMMAR function is identifier
substitution. Generally this occurs in a
context of looping through one of the portable
spec categories, say non-numeric-attributes, and
substituting every relation and attribute pair
into a given rule template. So given the rule
template:

(rel)-mod --) whose-Q-e+(attr)-is
(rel)-{attr}-expert ((1 2)),

if non-numeric-attributes =
((PART city color name part%)
(SUPPLIER city name supplier#)
(SHIPMENT partC supplier#))

then 9 grammar PuleS will result. The first
will be:

PART-mod --) whose-PART-CITY-is
PART-CITY-expert ((1 2))

Function MAKE-SEMANTIC-LEXICON works analogously:

MAKE-SEMANTIC-LEXICON(portable-spec) --)
semantic-lexicon.

Here each form being substituted into results in
a LEXICAL ENTRY consisting of a 5-tuple with
fields translati~~afm30w, menu-item,

help-text).
menu-window,

The category
corresponds'to a terminal element in the grammar
(that is, it appears on the right hand side, but
not on the left hand side, of one or more
grammar rules). The menu-item is a string (word
or phrase or whatever) to display as an item in
some menu-window. The menu-window identifies in
which pane a menu-item will appear. The

48

translation lists a fragan9nt of oode written in
the target software system. Whenever
interfacing to a new target database system,
only this portion need be re-written. At
present we have translations which map natural
language to our lisp machine relational dbm and
to IBM’S SQL. An example o? an instantiated
lexical rule for cur example is:

(w~os+PART-CIT~I~
“whose part city is”
modifiers
(LAMBDA Y ($5 (REIRIEVE ‘PART

WHERE (MEMDER CITY ‘Y))))
“The CITY attribute of relation PART has the
following documentation:

the city a part is in at the moment
and comes from the SUPPLIER-CITIES semantic
domain, which is sn ordered set of
. ‘Paris’, ‘London’, ‘Rome’, ‘New York’ “1

The core grammar and lexicon can be small (On
the order of 25 grammar rules and 40 1eXlCal
entries), but the size of the resulting semantic
gramars and lexicons will depend cn the
portable spec. (72 semantic grammar rules and
84 lexical entries result from Instantiating the
cars grammar and lexicon with the portable spec
that describes the 3 relations in the
supplier-parts database from Date, 1982 :

SUPPLIER(supplier# name city status)
PART(part# name city color weight)
SHIPMENT(supplier# pa&# quantity)

Since substitution is uniform, no rules can be
oarelessly excluded. So all the tables and
their attributes will be covered. The next
section describes sn algorithm that checks the
well-formedness of genera ted grammars and
lexicons.

2.2.2 WELL-FORMEDNESS TESTING AND VALIDATION.

The function
WILL-FORMEDNESS-TEST nlmenu-granmar

nlmenu-lexicon)
invokes a static collection of tests to find
bugs in either an automatically generated NLMENU
granxnar and lexicon pair or a manually-generated
one. The function finds the following problems:

o unreachable gralrmar non-terminals
o items that ape both ncn-terminals and

lexical categories.
o unused lexical items: these are in the

lexicon but ars not grammar leaves.
o undefined lexical items: these appear as

leaves in the grammar but are not in the
lexicon.

This test is clearly useful for manually
generated NLMRNU Interfaces, but it is also
useful for testing and debugging changes and
additions made to core grammars and lexlccns.

In addition to finding bws, the teat can be
used at grammar-lexicon writing time: One of
the values returned by WELL-FORMEDNESS-T
(c-6 nil) is a list 0r all lexioal
oategories that the grasxear writer must write
lexical entries for. The WELL-FORmNESS-TEST
was used in the development ,of a GUIDED SQL
interface as us11 as in debugging several core
natural language grammar and lexicon pairs.

The funotlon (VALIDATE spec) cheeks to make sure
that a portable spec data structure is
well-formed and reflects an existing data
dictionary state. The categories of the spec
ars verified against the data dictionary where
the definitions of tables are stored. VALIDATE
checks that specified relations and views really
are tables in the database and that the user has
the access rights reflected in the categories
RETRIEVAL RIGHTS, INSERTION RIGHTS, etc., checks.
to make sure the attributes are classified
correctly according to types non-numeric or
numerlo, checks that at least a candidate key of
the relation is a (possibly proper) subset of

,the identifying attributes, and checks the join
fields to make sure they are of the same (or
comparable) semantic data type. For rich data
dictionaries, all this can be supported. For
more impoverished ones, like SQL’s, less
checking can be provided. For instance, since
the only data types supported (until recently)
are CIiAR and NUM there can be no guarantees
provided by the system that joins are over
semantically compatible domains. In our
Implementation, the validate function is
replaced by an interactive component which
elicits only valid information refleating the
current database data dictionary stats.

An interface is provably correct If the spec is
valid and the core grammar and lexicon are
correct. The proof that core granvnar and
lexicon covers a target underlying software
system requires arguing along the following
lines: functionality in the target language is
Identified and then natural language
constructions are identified that translate to
those identified target functions. After
verifying coverage, the well-formedness test can
be applied to show that the core gramar and
lexicon are well-formed. No proof of
naturalness of an interface language is
possible; the naturalness of the Interface
language can only be ascertained by human
factors testing or by reference to known results
of human factors tests.

3.0 ADVANTAGES AND LIMITATIONS

The menu approach to natural language Input has
many advantages over the traditional typing
approach. Most importantly, every sentence that
is input is understood. The fact that the,
menu-based nature1 language understanding
systems guide the user to the input he desires

49

is beneficial for two other reasons. First,
confused users who don’t know how to formulate
their input need not compose their input in a
vacuum. They only need to recognize their input
by looking at the menus. Second, the extent of
the system’s conceptual coverage will be
apparent. The user will immediately know what
the system knows about and what it does not know
about.

Some advantages accrue because the granxnars
required can be small. First, implementation
time is greatly decreased. Generally, writing a
thorough graavnar for an application of a natural
language understanding system consumes most of
the development time. Second, it has also
proved to be feasible to put the NLBENU System
on a microcomputer. Third, parse time is small,
since parse time is a function of granxnar size.

Several questions arise with respect to a
menu-based approach to building natural language
interfaces. First, can users successfully use
an NLMENU interface in which they have only one
way to state their query? We have run a series
of pilot studies using Tennant’s methodology for
evaluating natural language understanding
systems. All subjects were successfully able to
solve all of their problems. Convnents from
subjects indicated that although the phrasing of
a query is at times stilted, subjects were not
bothered by this and could find the alternative
phrasing without any difficulty.

A second question arises: Since the size of the
lexicon determines the number of items that need
to be displayed on an NLMENU screen, is menu
size a problem? Menus must not become too big or
the user will be swamped with choices and will
be unable to find the right one. For most of
the interfaces we have generated, this has not
been a problem, since choices earlier in a
sentence tend to restrict later choices to a
manageable few. Only for interfaces with a
large number of relations (over 10, say) or with
relations with a large number of attributes
(over 20, say) do ‘recognition problems, start
to occur. All our menus are scrollable. Other
interaction techniques can be used to put off
the problem. But eventually, menu size does
limit the sort of interfaces cne can use the
NLMENU approach for.

The BUILD INTERFACES natural language interface
generator described here en joys several
practical and theoretical advantages:

1) END-USERS can construct natural language
interfaces to their own date in minutes, not
weeks or years, and without the aid of a grammar
specialist.

2) The interface builder oan control coverage.
He can decide to make an interface that covers
only a semantically related subset of his
tables. He can choose to include some

attributes and hide other attributes so that
they cannot be mentioned. He can choose to
support various kinds of joins with natural
language phrases. He can mirror the acuess
rights of a user in his interface, so that the
interface will allow him to insert, delete, and
modify as well as just retrieve and only from
those tables that he has the specified
privileges on. Thus, interfaces are highly
tunable and the term vsemantic coverage,, can be
given precise definition.

3) Automatically generated natural language
interfaces are robust with respeat to database
changes; Interfaces are easy to change if the
user adds or deletes tables or changes table
descriptions. One need only modify the portable
spec to reflect the changes and regenerate the
interface.

4) Automatically generated NLMENU interfaces are
guaranteed to be correct (bug-free). The BUILD
INTERFACES interface (see section 2.21, in which
users specify the parameters defining an
interface, insures that parameters are valid
(correspond to real tables, attributes, and
domains). A well-formedness test detects bugs
in semantic gralrmars and lexicons, so a core
grarauar and lexicon can be debugged easily.
Once debugged, a core grammar and a valid spec
can be combined and the resulting interface will
be correct.

5) Natural language interfaces are constructed
from semantically related tables that the user
owns or has been granted and they reflect his
access privileges (retrieval, insertion, etc) .
By extension, natural language interfaces become
database objects in their own right. They are
sharable (grantable and revokable) in a
controlled way. A user can have several such
NLMENU interfaces. Each gives him a user-view
of a semantically related set of data. This
notion of a view is like the notion of a
database schema found in network and
hierarchical but not relational systems. In
relational systems, there is no convenient way
for grouping tables together that are
semantically related. Furthermore, an NLMENU
interface can be treated as an object and can be
GRANTed to other users, so a user acting as a
database adminis tra tar can make NLIMENU
interfaces for classes of users too naive to
build them themselves (like executives).
Furthermore, Interfaces csn be combined by
merging portable specs and so user’s can combine
different, related user-views if they wish. The
ability to combine interfaces is also useful for
incrementally building up a larger interface
from a set of component interfaces.

6) Since an interface covers exactly and only
the data and operations that the user chooses,
It can be considered to be a “model of the user”
in that it provide a well-bounded language that
reflects a semantically related view of the

50

user’s data and operations. Similarly, one can
easily Imagine a complicated language (like SQL)
partitioned into a “ten statement SQL” core for
novice users and a oolleation of add-on modules
(for GRANTing or making INDExesI.

7) The last advantage is that even if an
automatically generated interfaoe is for some
reason not quite what is needed for some
application, it is muoh easier to first generate
an interface this way and then modify it to suit
specific needs than It is to build the entire
Interface by hand.

Taken together, the advantages listed above pave
the wdy for low cost, maintainable, easy-to-use
interfaces to relational database systems (and
to a wide variety of other kinds of software as
well). Many of the advantages are novel when
considered with respeot to past work. The
significance of this work Is that it makes it
possible for a MUCH broader class of users and
applications to use menu-based, natural language
interfaces to databases.

Much work remains to be dcne. At present, we
are beginning another round of human factors
testing. And wa are beginning to explore a
number of features from traditional natural
language approaches in the context of the NLMWU
paradigm.

BIBLIOGRAPHY

Burton, Richard. wSemantic Gralnaar: An
Engineering Technique for Constructing Natural
Language Understanding Systems”. PhD Thesis,
BBN Report #3453, BBN, Cambridge, MA, December,
1976.

Codd, E F, R S Arnold, J M Cadiou, C L Chang,
and N Roussopoulos. wRENDEVOUS Version 1: An
Experimental English Language Query Formulation
System for Casual Users of Relational
Databases”. RJ2144 (29’+07), IBM San Jose,
January 1978.

Date, C. J. An Introduction to Database
Systems. (second edition, vol 81)
Addison-Wesley, 198 1.

Grosz, Barbara, Doug Appelt, Alex Archbold, Bob
Morre, Gary Hendrix, Jerry Hobbs, Paul Martin,
Jane Robinson, Daniel Sagalowicz, and Paul
Warren. “TEAM: A Transportable Natural
Language System”. Technical Note 263, SRI
International, Menlo Park, ‘CA, April, 1982.

Harris, Larry. “Experience with ROBOT in 12
Commercial Natural Language Database Query
Applications”. Proceedings of the Sixth
International Joint Conference on Artificial
Intelligence, Tokyo, Japan, August, 1979.

Hendrlx, Gary and William Lewis. “Transportable
Natural Language Interfaoes to Database@.
Proceedings of the 19th Assoola tion for
Computatfonal Linguistics, Stanford, June, 1981.

Kaplan, S Jerrold. WCooperative Responses from
a Portable Natural Language Query System”. PhD
Thesis, University of Pennsylvania, July 1979.

Roes, Kenneth. “An Improved Left-Corner Parsing
Algorithm”.
333-338.

Prooeedlngs of COLING 82, 1982, pp

Tennant, Harry R. wEvaluatlon of Natural
Language Procesaoraw. PhD Thesis, Department of
Computer Soience, University of Illinois, 1980.

.Tennant, H. R.,
W.

K. M. Ross, R. M. Saenz, and C.
Thompson. “Menu-Based Natural

Understandlngw.
Language

21st Annual Meeting of the
Association for Computational Linguistics, MIT,
June 15-17, 1983.

51

whoso section depWWmtnt ir
whoso ccctiont b

<~p~ciflc stut-hourr~ woso stut-hour b
<rpcCifiC end-hours> whoso end-hour b

<specific rooms> whoseroomb
<specific instructors> whose &bstructor is

<specific instructor n.amos> whose name is
<spodfic spouses> whose spouso b

<specific instructor rank8> whose rank b
<specific campus rddrcsses> whose campus addrosS b

<specific oxtensions> whose extension b
<specific faculty>

cwnpus l ddmss
<sQM.ific intcrestr>

--
Re-start Rubout SllOW query Execute Exit system
Refresh Save Q Retrieve Q Dlt. Q’s Play Q

--
ind instructors uho offer courses ullose course kpartnent i zi CS ar1t1 ul~o:ic:
curve t i t le is DflTII DflSE MlNflGENENT SYSTEHG ur I\RTIFICIRL INTELJJGENCE

-

Figure 1: A University Interface

-

52

+sten connands

Re-start
Refresh Save Q Retrieve Q Dlt. Q’s Play Q

ind parts uhlch are supplied by suppliers vhose supplier status IS ICSS
han 1888 and uhose cot or I s red. green, or bl uc

lype GAZED to flush additional output at ttjHOR6*** pronptl

tccvting . . .

lLATION PRRT-l--(cardinalIty 5)

__---------------_--_______c____________------

‘ART # I NRflE 1 COLOR IWEIGHTICITV I
___-_---

%I lnut 1 red 12lLondon
‘82 [bolt 1 green I 17JParis i
‘83 1 scf eu

I% I
17lRone

‘84 1 screw 14lLondon
‘15 (tail Iblue I 12IParis I ________--------------------------------------

necut i on cowl l ted.

spl sy ui ndou

Figure 2: A Supplier-Parts Interface

53

connands nouns estperts nodiflers
rind buut <specific Mighborhood war&> whosa neighborhood wud b

urlete m <spaci!k -rood blocks whose neighborhood block b

attrlbutes <J now pal-cat> <specific neighborhood nalnos whae ndgtdmiiood name b

116~0~ l ssasstnent i ta ww nc&bwhood> <spadfk neighborhood assock whoca nelyhborhood arsodatim is

~f100I l ssessrnant i
<qacitk neighborhood census whoso mighborhood Colfs~ VaCt b

JSSl?SSd vrtw in s
cspedfk pwctd wards> whose parcel ward b

0 of stories tspdfk parcel blocks> whcm parcel block b

I of dwelling l&S <spacifk pucol descriptbn> wtmeo psrcel descri@on b

of parking spaces Cspocifk owners) wfmse parcel owners is

height <rpocific parcel planning areas whom parcol planning aroa is

,os~$~ zz, s conpar I sons
<specifk parcel subplaninng ar whose parcel subplanning area la

<specific aUdresscs> whoso a,ddrars is

round floloor JPW ill between <specific zulles> wfmse parcel LUW is

lot arca h Sq ft greator than <specific parcel Ior> whose lot is

cxemptiow less than <specific parcel yrroelt> whose parcel+ is

ward greater than or equal to tspoclfic parcel account#> whose parcel accarJnt# is

block kos than or equal to whose parcel land USC code is

n.arne equal to whose parcel stat0 property code is

association not equal to whose sewer ass0ssfncnt in $ is

cwsus tract ur whuse school asscs3nunt in $ is

description whose arrosrcd valun in $ is

OWIICI-S whose X uf stories is

*
whose X of dwclliq rmits is

zn comarads
. . .I-fp-‘--

..-----
He-.start Rtibout

---_-

Execute Esii system

i nd parcr?l s uhose area in
em..

sq ft is I ess than liJ(.3ld and ohose II of stories
5 greater than or equal to 8

l~her of mrser: 1

lect * fron NRCEL uhere (R4EA~IN~SQ~FT t lma and NUN-UF-STORIES)= 3);

_. lsplay window
---- .---- -7--.-

Figure 3: A TQA-like Interface

54

hoose an riLntnu Inrcrrace:

System Commands:
Tutorial
Build Interfaces
Gurdcd SUL -- Oracle 3.8
Execute Saved Oucrie~
Report blrlter

EXIT NLHENU SVSTEH

User-owned Interfaces:
Congrcssnen Toy Dcno THOflPSON (A-11-2) 81-08-83 14:49:95

+ Courses THOllPSOtl (A-11-2) 12-28-82 15:22:19
Courses THOIlPSON (A-11-1) 12-28-82 13:29:23
courses THOllPSON
EG deno

;;-;I$’ 12-20-82 14:22:34
THOflPSON - 12-28-82 14:00:98

OS1 Packages THOUPSOII (A-11-2) 12-28-82 14:38:88
Suppl i cr.-Ports THOUPSON (a-TI-2) 12-16-82 13:18:45
Supplier-Parts THOIIPSOII (A-TI-1) 12-16-82 1@:55:28
Supplier-Parts TllOflPSON (A-SOL) 12-16-82 18:56:38
TI DBHS Survey THOUPSOII (fl-TI-2) 12-28-82 14:30:83
Upcon i ng Conferences THOHPSON (fl-TI-2) 81-14-83 19:22:56
Dlue File THOUPSOH (A-71-2) 08-14-83 89:51:36
TOA THOWPSON (fl-TI-2) 03-03-83 12:36:16

+ TOA THOtlPSOH (n-SOL) (13-03-83 12:36:16

Interfaces Granted to the user:
Suppl i et--Parts SAENZ (II) 12-16-82 89:45:32

Public Interfaces:
Jobshop deno DtlUIS (ll-TI-1) 12-25-82 16:27:32
Jobshur~ dano DAVIS (A-TI-2) 12-25-82 17:10:26
Jot~sl~op deno DAVIS (A-SOL) 12-28-82 i4:00:80
Uasehall deno ROSS (I+TI-1) 12-18-82 12:40:23
Boscl~l I den0 ROSS (n-11-2) 12-25-82 13:37:01
Basrbal I denu ROSS (H-SUL) 12-18-82 12:23:24

+ = Lnzded Interface
w = ilanually Generated, FI = flutomatically Generated
TI = Lisp Machine translations, SOL = SUL translations

TEXRS INSTRUllEWTS, INC

Figure 4: The General Sessioner Menu

)peret Ions on lntcrfaces p jpecificatlon Categories
Tutor&l

j-1
et lntwtacas <covEREo TABLES>

MadMy interface <ACCESS RlDHTS>
Comblno lnttwfrccs <CLASSlfV ATTRWTES>

amp lntortwo(8) sbw pcrtrbk epc(#) cryNTlFWN0 ATTNWTES>
orant lntorfwo(s) Rcvcke intertwo <TAME JOINS>

Cammlt

J.
E :Icpcrts C)perators

GNW htortaw nuna>
<exkthg o&nod hterrrca name>

<exldng owned htorface(r)>
<sxktlng dmppbla htarfmo(s)>

+$4

to
<oxkthg bItrtace(s)> to be

<exktlng granted hterfwo(s)> trcm
<->

Qrantod usor#>

'Connands

; Re-start
6 Rubout

Figure 5: The BUILD INTERFACES Interface

Exit system

5s

