
BENCBMARKING DATABASE SYSTEMS
A SYSTEMATIC APPROACH

Dina Bitton
David J. Dewitt

Carolyn Turbyfill

Computer Sciences Department
University of Wisconsin-Madison

ABSTRACT

This paper describes a customized database
and a comprehensive set of queries that can be
used for systematic benchmarking of relational
database systems. Designing this database and a
set of carefully tuned benchmarks represents a
first attempt in developing a scientific methodology
for performance evaluation of database manage-
ment systems. We have used this database to per-
form a comparative evaluation of the “university“
and “commercial” versions of the INGRES database
system, on one hand, and the IDM 500 database
machine, on the other hand. We present a subset of
our measurements (for the single user case only),
that constitute a preliminary performance evalua-
tion of these systems.

1. Introduction
During the past decade a large number of data-

base machines encompassing a wide variety of archi-
tectures and possessing a range of different charac-
teristics have been proposed to enhance the perfor-
mance of database management systems. Today, it is
not clear that specialized architectures offer any
signillcant performance advantages over general pur-
pose computers.’ This paper is a Arst attempt to pro-
vide an answer to this question by presenting the
results of benchmarks run on several conventional
database management systems and on one database
machine. More specifically we have measured and
compared the performance of the Britton-Lee IDM/SOO’
machine with and without a database accelerator

’ Eepeciallp in the face of limited I/O bandwidth. See [BORA83]
for a diecueeion of the impact of trends in meek3 etorage technology
on the future of highly parallel dntabaae machinea. ’

(DAC) [IDM500, EPSTBO, UBELBl] to the “commercial”
and “university” versions of the INGRES database sys-
tem [STON76, STON80].2

Since database machines have already been an
active field of research for an entire decade, and a few
machines have now been implemented, we feel that the
time has come for measuring the actual performance
enhancement that can be expected from using special
purpose hardware and software for database manage-
ment. When database machines designs such as
CASSM
DIRECT s

SU75]. RAP [OZKA75. OZKA77]. DBC [BANE76].
DEWI79] were proposed, the future of database

machines looked bright. It seemed that both success-
ful research efforts and advances in hardware technol-
ogy would lead to the widespread use of commercial
database machines. However, while most projects
appeared promising initially, it is only very recently
that the first of these special purpose computers are
becoming commercially available. The ICL CAFS
machine [MCGR76, BABB79] has been shipped in small
quantities. The Britton-Lee IDM (Intelligent Database
Machine) appears to be the first database machine to
reach the market place in large volumes.s Despite
these exceptions, the overwhelming evidence is that
the majority of the database machine designs pro-
posed will never be more than laboratory toys and, in
most cases, will never even leave their promising
paper status.

While the first database machines are being mark-
eted, better database management systems are now
being offered that do not rely on special hardware for
enhancing performance. For example, several years of
experience with the INGRES database management
system has led to the development of a commercial
version of this system on several general purpose com-
puters. This development, added to the apparent slow-
down of research on database machines has provided a
strong motivation for the experiments described in
this paper.

Previous performance evaluation studies of data-
base machines [HAWTEZ, DEW1811 have given us some
insight on the problems that various database machine
architectures face. These studies were, however,
based on simplified analytical models. We feel that it is

e Space limitatione prevented ue from including a prerntath 1
and rveluntion of the database machine DIRECT [DEWI?& BORA82]. A
oomplete verrion of this paper is available ae a technical report &om
the Computer Sciences Department.

s Ae of April 1939. approximately two hundred IDP 500 end IDld
200 database machines had been shipped.

8

necessary to extend them by empirical measurements.
These measurements, in addition to providing a com-
parison of the different systems available, will provide
a means of evaluating the accuracy of the perfor-
mance evaluation tools that we have been using to
compare alternative database machine architectures
[DEWING]. [HAWTBZ]. Our results also provide some
insight into to the extent to which a “conventional”
operating system “gets in the way of” a database
management system [STONB~] as the IDM 500 without
a database accelerator really represents the perfor-
mance of a database management system running on a
conventional processor (a ZILOG Z&3000) but WITHOUT a
general purpose operating system getting in the way.

In addition to looking at the relative performance
of a database machine and two versions of a conven-
tional database management system, this paper also
describes a customized database and a comprehensive
set of queries that can be used for systematic bench-
marking of relational database systems. Designing this
database and a set of carefully tuned benchmarks
represents a first attempt in developing a scientific
methodology for performance evaluation of database
management systems. In addition to providing a
mechanism for comparing the performance of
different systems, we feel that such a benchmark will
become a useful tool for database system implemen-
tors to use for evaluating new algorithms and query
optimizers.

The paper is organized as follows. In Section 2. we
provide a brief description of the four systems. The
hardware configuration is described in some detail for
each of the machines, and the basic software structure
is outlined. In Section 3, we explain how we designed
our experiments, and motivate the framework of our
benchmarks. In Section 4 we present and analyze the
results of our comparisons. Finally, in Section 5 we
summarize our conclusions and indicate how we plan
to extend the present study.

2. Description of the Three Systems Evaluated
In this section, we describe the basic architecture

and software structure of the three systems com-
pared: the INGRES database management system (in
two different configurations: the “university” version
on a VAX 11/750 running 4.1 Berkeley Unix and the
“commercial” version on a VAX 11/750 running the
VMS operating system) and an IDM 500 connected to a
PDP 11/70 host. Detailed descriptions of the design
and implementation stages for the research project
that led to the current version of INGRES can be found
in several published papers referenced throughout this
section. On the other hand, there is less writteu docu-
mentation on the development of the IDM 500 as it is a
relatively recent system that, from the start, was
intended to be a commercial product. However, in
Section 2.2 we have tried to present a complete
enough description of the design of the IDM 500 to pro-
vide the reader with enough background for comparing
this system with the other two.

The hardware configurations that we have used to
run our benchmarks have been made as fair as possi-
ble. In particular, each system was evaluated using
disk drives with similar characteristics, similar disk
controller interfaces, and, where possible, equivalent
amounts of buffer space for use by the database sys-
tem.

2.1. The lb INGFUSS Systems
The INGRES project began in 1973, at the Univer-

sity of California at Berkeley. INGRES was fhst imple-
mented on the top of the Unix operating system, and
since 1976 has been operational as a multiuser DBMS.
Sinoe the original version, the system has been
improved and enhanced in a number of ways to
improve usability and performance. Recently, a com-
mercial version of INGRES has been completed, which
is now reaching the market place.

In this section, we will shortly summarize the
main features of university-INGRES, and describe the
system configuration on which our benchmarks have
been run. We will then describe the enhancements
added to commercial-INGRES.

2.1.1. University-INGRES
The version of university-INGRES tested was that

delivered on the Berkeley 4.1 distribution tape. This
version of INGRES runs as two Unix processes: a moni-
tor process for interacting with the user and a second
process which is responsible for performing all opera-
tions on the database. Query execution is done in an
interpretative fashion.

The VAX 11/750 on which university-INGRES was
tested has 2 megabytes of memory and four disk
drives connected to the VAX with a System Industries
9900 controller using a CM1 interface. The operating
system run was Berkeley 4.1 Unix which utilizes 1.024
byte data pages. The database was stored on a Fujistu
Eagle disk drive (474 Megabytes). Immediately before
the database was loaded, a new Unix Ale system was
constructed on this drive thus maximizing the proba-
bility that two logically adjacent blocks would be physi-
cally adjacent on the disk (an atypical situation for a
typically scrambled Unix Ale system).

University INGRES does no buffer management of
its own relying instead on the Unix operating system to
buffer database pages. As discussed in [STONES],
buffer management strategies that are good at manag-
ing virtual memory pages are frequently very poor at
choosing the “right” page to eject in a database
environment. In particular for repeated access to the
inner relation of a join, LRU is absolutely the worst
algorithm to use for selecting pages of the inner rela-
tion to eject. This is exactly the algorithm used by
Berkeley 4.1 Unix.

2.1.2. Commercial-INGRES
Commercial-INGRES also runs as two processes.

The VAX 11/750 on which Commercial-INGRES was
evaluated had 6 megabytes of memory, a RM80
attached to the processor with a mass-bus interface.
and a Fujistu Eagle drive connected to the processor
through the CM1 bus with an Emulex SC750 controller.
The INGRES software was stored on the RMElO drive and
the test database was stored on the Fujistu drive. The
operating system used was VMS release 3. VMS pro-
vides an extent based file system (i.e. logically adja-
cent blocks are almost always physically adjacent on
the disk). For our test l3OOK bytes of main memory
was allocated for buffer space and 200K bytes were
allocated for sort space. Buffer management was done
using a random replacement policy.

Version 2.0 of the commercial version of INGRES
under the VMS operating system includes a number of

9

performance enhancements not present in the univer-
sity version. While a number of routines have been
rewritten for improved performance, the major
changes have occurred in the following areas:

(1)

(2)
(3)

(4)

(5)

22.

new query optimizer - develops a complete query
execution plan before execution of the query is
initiated
sort-merge join strategies
2K byte data pages (versus 1K byte pagee in 4.1
Unix)
caching of query trees - permits repetitive queries
to be reexecuted without re-parsing
buffer management under the control of the data-
base system - permits implementation of replace-
ment strategies that are tuned to enhance data-
base operations and sharing of database pages by
multiple transactions

The IDWSOO Databame Machine
The Intelligent Database Machine appears to be

the first widely used commercial database machine. It
was developed by Britton-Lee. Inc., and the first
machines were marketed in 1961. The IDM hardware
consists of a very high-speed bus and 6 different board
types [UBELB~]:

(1)

(2)

(3)

(4)

(5)

(6)

The

!i%e Database Aocesso~, which is responsible for
controlling the other boards and implements most
of the system functionality. It uses a standard
l&bit microprocessor chip (Zilog Z6000). The
processor runs a special-purpose operating sys-
tem, that schedules disk accesses intelligently.
Unlike most operating systems, the IDM operating
system tunes process and I/O management to the
special needs of the database software.
The Database Accelerator (DAC), is a specially
designed ECL processor, that achieves very high
speed by having a few well defined tasks micro-
coded. The IDM mav be conflsured with or without
the Accelerator (dgpending zn the cost and per-
formance desired). When the Accelerator is not
physically available, it is emulated by the Data-
base Processor. .

A channel, consisting of a microprocessor,
memory and hardware to implement 8 serial
(rs232c) or one parallel (IEEE-466) interface. This
channel implements a communication protocol
with the host. It buffers commands coming from
the host to the IDM, or result data returning from
the IDM to the host.
A memory timing and control board. The memory
is accessed in two modes: a byte-mode for the
Database Processor and a faster word-mode for
the Accelerator and the disk controller.
A memory board, which provides for up to 8 mega-
bytes of disk buffers and additional space for user
processes (As a consequence of the 16 bit address
space limitation of the ZBOOO a maximum of 3
megabytes can be used for bufTer space.)
A disk controller, that can be expanded to inter-
face with up to 32 gigabytes of disk storage.
IDM 500 utilized for our benchmarks had two . _. __ _-.-

megabytes of memory, one disk controller, a 675
Mbyte CDC drive, a parallel channel interface to the
host processor (a PDP 11/70 running a variant of Unix

2.6), and a DAC that could be switched off and on
remotely. Release 25 of the IDM 500 software was used
for the benchmarks. One megabyte of memory was
allocated for use as bufIer space.

While the CDC disk drive has more tracks per
cylinder than the Fujistu Eagle (40 vs. 20). its track-
to-track seek time and transfer rate are slower than
that of the Eagle. We calculated that the time to read
a 10,000 tuple relation (162 bytes/tuple) would be 9.3
seconds on the CDC drive and 6.0 seconds on the
Fuji&u drive. Thus, the results presented in Section 4,
may be sliihtly biased against the IDM 500. It is impor-
tant to realize, however, that the degree of this bias is
highly dependent on the query type, the availability of
suitable indices, and whether the performance of the
IDM is CPU limited or I/O limited.

9. Benchmark Description
The starting point for our experiments was the

design of a database. This database had to be custom-
ized for extensive benchmarking. Previous efforts in
this area have generally been relatively unscientific.
In particular, the benchmarks that we are aware of
involve using an existing database system and run a
rather restricted set of queries. In some cases, the
database (e.g. the supplier-parts database that INGRKS
users are familiar with) would be so small that the
results of the benchmarks would not provide any
insight about “real world” database management sys-
tems. In other cases, although the size of the database
was large enough, the data values would not provide
the flexibility required for systematic benchmarking.
To be more specific. there would be no way to generate
a wide range of retrieval or update queries, and con-
tro1 the result of these queries. For example, the
existing data would not allow one to specify a selection
query that selects 10% or 50% of the source relation
tuples, or a query that retrieves precisely 1.000
tuples. For queries involving joins, it is even harder to
model selectivity factors and build queries that pro-
duce a result relation of a certain size.

An additional shortcoming of empirical data
(versus “synthetic” data) is that one has to deal with
very large amounts of data before it can be safely
assumed that the data values are randomly distri-
buted. By building our own database, we were able to
use random number generators to obtain uniformly
distributed attribute values, and yet keep the relation
sizes tractable.

In this section. we describe the guidelines along
which we have designed our benchmark. Our design
effort has resulted into a simple but carefully tuned
database and a comprehensive set of queries. In Sec-
tion 3.1. we describe the structure of the relations in
our database. Section 3.2 contains a description of the
queries that were run in our benchmarks. In both sec-
tions, we have made our descriptions as explicit as
possible, while explaining the design principles that
motivated the choice of a particular attribute value or
a specific query. In Section 3.3, we describe the exper-
iment itself: the environment in which the queries
were run and the performance parameters that were
measured.
3.1. The WISC Database

The database is designed so that a naive user can
quickly understand the structure of the relations and
the distribution of each attribute value. As a

10

consequence, the results of the queries that are run in
the benchmark are easy to understand and additional
queries are simple to design. The attributes of each
relation have distributions of values that can be used
for partitioning aggregates, controlling selectivity fac-
tors in selections and joins, and varying the number of
duplicate tuples created by a projection. It is also
straightforward to build an index (primary or secon-
dary) on some of the attributes, and to reorganize a
relation so that it is clustered with respect to an index.

There are four “basic” relations in the database.
We refer to them by the names of “thoustup”.
“twothoustup”, “flvethoustup”. and “tenthoustup” as
they respectively contain 1000, 2000. 5000 and 10000
tuples. A fragment of the thoustup relation is shown in
Figure 1 below. All the tuples are 162 bytes long, so
that the four relations occupy approximately 4 mega-
bytes of disk storage. However, in order to build
queries that. operate on more than one operand rela-
tions, we often generate two or more relations of the
same size. For example, the join queries described
below operate on two 10,000 tuple relations: “thous-
tupA” and “thoustupB”. The attributes are e’ither
integer numbers (between 0 and 9999) or character
strings (of length 52 characters). The first attribute
(“uniquel”) is always an integer number that assumes
unique values throughout the relation. We have made
the simplest possible choice for the values of
“unique 1”. For example, for the 1000 tuples relation
“thoustup” unique1 assumes the values 0, 1. . . . 999.
For the relations with 10,000 tuples, the values of
“uniquel” are O,l, 9999. The second attribute
“unique2 has the same range of values as “uniquel”.
Thus both “uniquel” and “unique2” are key attributes.
However, while we have used a random number genera-
tor to scramble the values of “uniquel” and “unique2”,
the attribute “unique2” is often used as a sort key.
When relations are sorted, they are sorted with respect
to this attribute. When we need to build a clustkred
index, again it is an index on “unique2”. For instance,
we may execute the following INGRES query to observe
the effect of a primary index on a selection that
retrieves 10% of the “twothoustup” relation:

range oft is twothoustup
retrieve (t.all) where t.unique2 < 200

After the “unique 1” and “unique2” attributes come a
set of integer-valued attributes that assume non-

A Fragment of the Thoustup Relation
(some attributes have also been omitted)

unique1 unique2 two ten hundred thousand
376 0 13 13 615
816
673
910

1 0 4 4
2 0 6 26

695
962
313

74
447
647
249
455
657

unique values. The main purpose of these attributes is
to provide a systematic way of modeling a wide range
of selectivity factors. Each attribute is named after
the range of values the attribute assumes. That is. the
“two”, “ten”. “twenty”, “hundred”,..., “tenthous” attri-
butes assume, respectively, values in the ranges (O,l),
(o.I,..., 9). (o.l,..., 19). (o.I...., 99>,(0,1,..., 9999). For
instance, each relation has a “hundred” attribute
which has a uniform distribution of the values 0
through 99. Depending on the number of tuples in a
relation, the attribute can be used to control the per-
centage of tuples that will be duplicates in a projection
or the percentage of tuples that will be selected in a
selection or join query. For example, in the
“twothoustup” relation, the “hundred“ attribute can be
used for projecting into a single attribute relation
where 95% of the tuples are duplicates (since only 100
values are distinct among the 2000 attribute values).
The INGRES format for this query would be:

range oft is twothoustup
retrieve (t.hundred)

The same “hundred” attribute can be used for creating
100 partitions in aggregate function queries. For
example, we may query for the minimum of an attri-
bute that assumes values randomly distributed
between 0 and 4999 (“Avethous”), with the relation par-
titioned into 100 partitions:

range oft is twothoustup
retrieve (minvalue = min(t.fivethous by t.hundred))

Finally, each of our relations has 3 string attri-
butes. Each string is 52 letters long, with three letters
(the fist. the middle and the last) being varied. and
two separating substrings that contain only the letter
x. The three significant letters are chosen in the range
(A,B ,..., V), to allow up to 10,646 (22 + 22 * 22) unique
string values. Thus all string attributes follow the pat-
tern:

txxxx . . . xxx$xxx . . . xxxs
125 x’s{ 124 x’s{

where “$” stands for one of the letters (AB,...,V).
Clearly, this basic pattern can be modified to provide
for a wider range of string values (by replacing some of
the x’s by significant letters). On the other hand, by
varying the position of the significant letters, the data-
base designer can also control the cpu time required
for string comparisons.

The flrst two attributes in this category are string
versions of the “uniquel” and “unique2” integer valued
attributes. That ii. “stringul” and “stringu2” may be
used as key attributes. and a primary index may be
built on “stringu2”. For example, in the thousand
tuple relation, “thoustup”, the stringu2 attribute
values are:

160
679
557
916

73
101

3 0 2 52
4 0 0 20
5 1 9 29
3 1 7 47
7 0 4 54
6 0 6 26
9 0 2 62

Figure 1

11

“AXXXX . . . xxxAxxx , . . XXXA”
“Bxxxx . . . xxxAxxx . . . xxxA”
“Cxxxx . . . xxxAxxx . . . xxxA”

“Vxxxx . . . xxxAxxx . . . xxxA”
“Axxxx . . . xxxBxxx . . . XXXA”

“Vxxxx . , . xxxBxxx . . . xxxA”
“Axxxx . . . xxxcxxx . . . xxxA”

“Vxxxx . . . xxxVxxx . . . xxxA”
“AXXXX . . . xxxAxxx . . . XXXB”

“Ixxxx . . . xxxBxxx . . . XXXC”
“Jxxxx . . . xxxBxxx . . . xxxC”

The following two queries illustrate how these string
attributes can be utilized. Each query has a selectivity
factor of 1%.

range of t is tenKtup1
retrieve (tall) where
t.stringuZD c “Axxxx . . . xxxExxx . . . xxxQ”

range oft is tenKtup2
retrieve (tall) where
(t.stringu2E > “Bxxxx . . . xxxGxxx . . . xxxE”)

(t.stringu2Eanp”Bxxxx . . . xxxhxxx . . . xxxA”)

The “stringu2” variables are initially loaded in the
database in the same order in which they were gen-
erated, shown above, which is not sort order. The
attribute “stringul” assumes exactly the same string
values as “stringu2” except that their position in the
relation is randomly determined. As can be seen in
the outline above, the leftmost significant letter varies
most frequently (from A to V) and the rightmost
significant letter varies least frequently (from A to C)
in the thou&up relation. Thus, these strings give any
special hardware or algorithms that can do short cir-
cuit comparison of strings ample opportunity to
demonstrate their efficacy.

A third string attribute, “string4”, assumes only
four unique values:

‘Axxxx . . . xxxAxxx . . . xxxA”
“Hxxxx . . . xxxHxxx . . . xxxH”
“OXXXX . . . xxxoxxx . . . xXx0”
‘Yxxxx . . . xxxvxxx . . . XXXV”

“String4 can be used to selebt with different sblec-
tivity factors and for partitioning (like the integer
attribute “four”).

3.2. The Wisconsh Benchmark
We have developed a standard set of queries which

measure the cost of different relational operations:
(1) Selection with different selectivity factors.

12

(2) Projection with different percentages of duplicate
attributes.

(3) Single and multiple joins.
(4) Simple aggregates and aggregate functions.
(5) Updates: append, delete, modify.
In addition, for most queries, we have designed two
variations: one that can take advantage of a primary
index, and one that can only use a secondary index.
Typically, these two variations were obtained by using
the “unique2 attribute in one case, and the “uniquel”
attribute in the other. When no indices are available
the queries are the same.

3.3. Measurements
After the database and the queries had been built,

we had to decide how to actually measure the time and
resources consumed by each run. Our first decision
was to start with an extensive sequence of stand-alone
runs. We made sure that, when our benchmarks were
run, our systems were in single user mode. Then, we
built a mechanism to set up runs where the queries
were run one at a time, in a strictly sequential pattern.
This way, all the measurements that we obtained indi-
cated the performance of each query, as a separate,
stand-alone program. The impact of system overhead
(e.g. the “open database” command) was diminished
by running several similar queries in sequence and
taking the average time.

While each system evaluated provided facilities for
gathering detailed statistics on the resources (ie. CPU,
disk transfers) consumed by a query, after thorough
consideration,. we decided to use elapsed time as the
main performance measure. For the DIM 500, this
time was taken as the elapsed time on the host
machine4.

3.4. EiTe&s of Dntabane and BufTer Size
In our fist benchmark tests, the queries pri-

marily referenced one 2000 tuple relation. Since this
relation is approximately 320.000 bytes long, when a
million bytes of buffer space are available, the active
portion of the database fits into memory. While the
results of these tests were interesting, they did not At
most users’ view of reality. Therefore, we modified the
queries to reference the 10.000 tuple relations (each of
which is approximately. 1.8 megabytes in size). In
addition, in order to minimize the effect of the buffer
size when running repeated queries, each query was
run ten times alternating between the two 10.000 tuple
relations. When this strategy is combined with 1 mega-
byte of buffer space (the most allocated to any of the
systems tested), query i will leave almost nothing in
the buffer pool that is of use to query i+t.

4. The Benchmark Measurement and Analysis
In this section, we present a subset of our bench-

mark measurements, and analyze the results. We have
divided this section into five subsections. There is one
subsection for each of the relational operations (selec-
tion, projection, join), one for aggregates, and one for
updates (delete, append, modify). For each type of
query, we flrst describe the main criteria that were
used to compare the different systems and the effects

4 The commend “time” was used on Unix. On VMS, “date” wee
used.

that we were attempting to measure. Determining
some of these criteria, however, was not always
straightforward. Over the period of time that we were
running the benchmarks, preliminary results forced us
to change certain queries in order to gain more insight
into the impact of a particular parameter.

For example, it was only after a long series of
benchmarks that we first realized that the cost of
duplicate record elimination was a factor that made
many of our comparisons meaningless. There are two
alternative ways of measuring the time required for a
query. One is to retrieve the selected tuples into a
relation (that is writing them to disk). The other was to
display them on a user’s terminal. Unfortunately, both
alternatives have drawbacks. Producing a result rela-
tion (by an INGRES “retrieve into” statement), has the
side effect of checking for and removing duplicate
tuples from the result relation. Thus, the tie
obtained for a retrieval query includes the time to per-
form duplicate elimination. The other alternative was
to retrieve result tuples to the screen. In this case,
however, times for queries that retrieve a large
number of tuples would have mainly measured the
time to transfer a large amount of data to a terminal
(rather than the time required by the database
management to execute the query).

The principal solution we choose was to place the
result tuples in a relation but to do so without elim-
inating duplicate tuples (by using the “-rheap” option
of INGRES, we discovered that duplicate elimination
can be turned off). However, we also wanted to exam-
ine the impact of the communications channel
between the IDM 500 and the host. Thus, for some
selected queries, we also “retrieved” the results to the
screens

Another problem that we faced was Altering the
meaningful results from the vast quantities of raw data
produced by the original benchmark runs (which con-
tained over 100 queries). Rather than showing an
impressive but overwhelming collection of numbers, we
decided to choose a representative sample of results
for each query type. The sample had to be small
enough to be presented in this paper, without omitting
the information necessary to support our conclusions.
These choices resulted in a number of tables that show
the elapsed time in seconds for the representative
queries in the 5 classes. Our analysis in each of the 5
subsections then concentrates on the numbers shown
in these tables.

4.1. Selection Queries
The speed at which a database system or machine

can process a selection operation depends on a
number of different factors including:

(1) storage organization of the relation
(2) impact of the selectivity factor (how many result

tuples are produced by the query)
(3) impact of specialized hardware
(4) cost of sending the result tuples to the screen

(compared to the cost of storing them in a new

5 Actually, the result tuples were sent to “/dev/null” (the Unix
equivalent of a black hole) to make sure that the actually printing
speed of the different terminals would not have an effect.

relation)s
Our benchmark investigated the impact of each of

these factors. In determining the impact of the
storage organization on the performance of the query,
we evaluated four different storage organizations:

(1)

(2)

(3)

(4)

heap o~ganisation - this is an unstructured
storage organization in which the tuple order
corresponds to the order in which the tuples were
loaded into the relation. This organization has no
suitable secondary storage structures for enhanc-
ing performance. We evaluated this organization
for two reasons. First, it provides information as
to how fast a system can process an arbitrary ad-
hoc query. While we understand that in most real
systems, there will generally be an appropriate
index, one of the “nice” features of a relational
system is that users can ‘pose arbitrary (and
unanticipated) queries to the database system. In
addition, by measuring the response time for the
heap organization. when the same query is run in
the presence of a suitable index, we are better
able to understand the performance improvement
that can be obtained by having the appropriate
index available.
isrdez on key attribute - in this case the relation is
sorted (clustered) on the same attribute on which
an index has been constructed. Both the univer-
sity and commercial versions of INGRES use an
ISAM organization for this case. The IDM 500 first
sorts the Ale on the key attribute and then con-
structs a B-tree on the key attribute.
hash on key attribute - in this case tuple place-
ment is randomized by applying a hashing func-
tion to the key attribute. This access mechanism
was available only with INGRES. It was used only
for those queries that returned a single tuple (see
Table 3).
indez on non-key atbributa - in this case the rela-
tion is sorted on a different attribute from the one
on which the index has been constructed. For
both versions of INGRES. we used a hashed, dense
secondary index to obtain this storage structure.
Dense implies one index entry per attribute value:
hashed means that after the secondary index is
constructed, the index entries are hashed on the
index attribute value. This permits one to take an
attribute value and in one disk access find the
index page containing the appropriate index entry
and in ancther disk access locate the data page
containing the tuple with the desired value. The
IDM 500 uses a B-tree mechanism to support this
type of index.
To determine how the selectivity factor of a query

influences performance, for each storage structure
(and each system) we varied the selection criteria to
produce result relations with a range of different sizes.
The selectivity factors considered were l%, 10%. 20%.
50%. and 100%. In addition, we also measured the time
to retrieve a unique tuple (Table 3). Examination of
the results of these tests revealed that the queries
with selectivity factors of 1 tuple. 1% and 10% were

o Althowh the cost of formatting tuples for screen display could
alao have been measured in the context of queries &her than selec-
tion queries, ve found it easier to isolate it from other cost factors in
this context.

13

representative of the relative performance of the vari-
ous systems.

The impact of specialized hardware was evaluated
by running the same queries both with and without
indices on the same IDM 500 with and without the data-
base accelerator (DAC) turned on.

The results of our experiments are shown in
Tables 1. 2 and 3 below. The response times presented
represent an average time based on a test set of ten
different queries (each, however, with the same selec-
tivity factor).

One can draw a number of conclusions from these
results. Both IDM and Commercial INCRBS perform
selection faster than University INGRES. However, the
improvement is not dramatic. When a clustered index
is available (the most common situation, probably), C-
INCRES and IDMnodac outperform U-INGRES by factors
of 2 and 3 respectively. On most selection queries, the I
IDMdac is about twice faster than C-INGRES. In one :
case, however, when a non-clustered index exists for
the source relation, and only 100 tuples (out of 10,000)
are retrieved, the IDY (with or without dac) is
extremely fast, and outperforms C-INGRES by a factor
of 15. This situation demonstrates clearly the
superiority of the B-tree mechanism for supporting a

Table 1
Selection Queries wlthout Indices

Integer Attributes
Result Tuples Inserted into Relation

Total Elapsed Time in Seconds

System

U-INGRES 53.2 64.4
C-INGRES 36.4 53.0
IDMnodac 31.7 33.4
IDMdac 21.6 23.6

Table 2
Selection Queries with Indices

Result Tuples Inserted into Relation
Integer Attributes

Total Elapsed Tie in Seconds

System

Number of Tuples Selected
from 10,000 Tuple Relation

Clustered Index NorrCluatered Index

100 1000 l 100 1000

U-INCRES 7.7 27.8 50.2 76.0
C-INGRES 3.9 16.0 51.2 60.6
IDMnodac 2.0 0.0 3.0 27.8
IDMdac 1.5 8.7 3.3 23.7

Table 3
Selection Queries with Clustered Indices

Integer Attributes
Result Tuplei Displayed on Screen

Total Elapsed Time in Seconds

Number of Tuples Selected
from 10,000 Tuple Relation

System 1

U-INGRES 3.6 6.0
CLINGRES 0.0 5.0
IDMnodac 0.6 2.0
IDMdac 0.7 2.7

non-key index.
When estimating the speedup obtained by the

database accelerator (by comparing the IDMdac and
IDMnodac numbers), we were somehow surprised to
find out that it was at most 1.47 (in Table 1) and as low
as 1.07 for selection on an indexed attribute (in Table
3).

One interesting result illustrated by Tables 1 and
2 is that for C-INGRES, the selections with a non-key
index are actually slower than with the heap organiza-
tion (the same anomaly is observed for U-INGRES, but
the discrepancy is within the margin of error). The
most plausible explanation is that when the non-key
(and hence non-clustered) index is used, a number of
pages are accessed multiple times. With 2.046 byte
pages the source relation occupies approximately 900
data pages. Scanning the relation in a heap fashion
requires 909 page accesses. On the other hand select-
ing 1000 tuples (10X selectivity factor), through a
non-key index may require more than 1000 page
accesses. The main conclusion to be drawn is that the
query optimizer failed to recognize that the index
should not be used to process the query.

In Table 3. we have included selected measure-
ments that provide a clear estimate for the cost of for-
matting result tuples for display on the screen. Only
the index case is shown, as the differences for the
non-index would hidden by the long retrieval time.
Also, we only show very low selectivity factors (a single
tuple, or 1X). since it is unlikely that a user would look
at a table of a 1000 tuples on the screen. By comparing
the INGRES and the IDM numbers in Table 3. we con-
clude that the performance of a backend database
machine is only marginally affected by the cost of
transferring result tuples to the host computer.
Another conclusion that we may draw by comparing
Table 2 and Table 3, is that for all systems the cost of
formatting results for screen display is relatively high
(and it is about the same for all systems). Note that
when retrieving into a relation, our measurements
account for the cost of writing the result relation to
the disk, without eliminating duplicate records.’ Thus
when comparing Tables 2 and 3. we are truly compar-
ing the cost of writing results to the disk, to the cost of
formatting and displaying tuples on the screen. While
measuring the cost of duplicate elimination is also
important, it was not possible to isolate it from other

14

cost components in the selection queries. For this rea-
son, we chose to do this measurement in the context of
projection queries (Section 4.3, below).

4.2. Join Queries
In looking at join queries we were interested in

investigating a number of different issues. First, we
were interested in how query complexity affected the
relative performance of the different systems. Thus,
we considered a range of queries, with different
degrees of complexity. Second, we were curious about
the different join algorithms the systems used. Run-
ning join queries on a stand-alone basis would make it
possible to verify how efficiently the buffer manage-
ment strategy of each system supported these algo-
rithms (since the join algorithm determines the page
reference string). We knew, a priori, that:

(1)

(2)

(3)

Without Indices, university INGRES used a nested
loops join in which the storage structure of a copy
of the inner relation is converted to a hashed
organization before the join is initiated
Commercial INGRES used primarily sort-merge
join techniques.

Table 5
Join Queries with Indices

Integer Attributes
Total Elapsed Time in Seconds

Primary (clustered) Index on Join Attribute

Query
The IDM 500 with and witput the DAC used a slm-
ple nested loops join (O(n)) algorithm.

System joinAselB joinABprime joinCselAselB

Third, we were interested in how the different systems
took advantage of secondary indices on joining attri-
butes, when these were available. Finally. we wanted
to see how the database accelerator impacted join
times.

With the above criteria in mind, we built a set of
ten representative join queries. The source relations
were always the ten thousand tuple relations. How-
ever, when a selection was performed before the join,
the size of the operand relation was reduced by a fac-
tor of ten. Ten thousand tuples of length 182 bytes in
each source relation were enough to cause substantial
I/O activity, and make visible the effect of varying
input parameters (such as query complexity and join
selectivity factors).

Query complexity was modeled by performing
before the join zero. one or two selection operations
(e.g. joinAselB selects on relation B, and joins the
selected relation with A, while joinselAselB selects on
both A and B before the join). A more complex join
query involves two selections, followed by two joins
(see “joinCseIAselB”, below).

After a preliminary analysis, we have again
decided to Alter the results of our measurements, and
to present timings for a smaller set of join queries.
These appear in Tables 4. 5 and 6. The names of the
queries describe their contents. However, the reader
may wish to refer to Appendix I, where the join queries
have been explicitly listed.

Our first observation is that, for joins, more than
for any other type of queries, each system’s perfor-
mance varies widely with the kind of assumptions that
are made (e.g. indices versus no indices, special
hardware versus no special hardware, complex versus
simple join, etc). However, our measurements clearly
show that for joins without indices commercial INGRES
is the only system to always provide acceptable

Table 4
Join Queries Without Indices

Integer Attributes
Total Elapsed Time in Seconds

Query

System joinAselB joinABprime joinCsalAselB
-

U-INGRES 611 sets. 561 sets. 563 sets.
C-INGRES 109 sets. 156 sets.
IDMnodac > 5 hours > 5 hours

, 127 sets.
> 5 hours

IDMdac > 5 hours > 5 hours > 5 hours

U-INGRES 126.5 99.5 544.5
C-INGRES 54.0 103.0 84.0
IDMnodac 31.0 35.5 44.5
IDMdac 23.5 27.5 35.0

Table 6
Join Queries with Indices

Total Elapsed Time in Seconds
Secondary (nonclustered) Index on Join Attribute

System

Query

sjoinAselB sjoinABprime sjoinCselAselB

U-INGRES 269.5 191.0 633.0
C-INGRES 116.0 106.0 144.5
IDMnodac 64.5 40.5 106.5
IDMdac 71.5 35.5 00.0

performance. The dramatic improvement over univer-
sity INGRES is due to the use of a sort-merge algo-
rithm. The IDM, on the other hand, still uses a slow
nested-loops algorithm. In previous experiments
(whose results are not presented here), we found out
that the DAC could achieve a reasonable level of per-
formance for joins without indices when the relations
were smaller, and thus mostly At in memory. On the
other hand, with the 10.000 tuple relations and no suit-
able indices, the IDM performance (with or without the
DAC) is unacceptable. However, by building an index
“on-the-fly”, the IDM user (or a smarter query optim-
izer), can obtain excellent performance. ‘For example,
consider the query joinAselB in which B is first res-
tricted to form B’ and then B’ is joined with A to pro-
duce the result relation. If instead of writing this query

15

as one IDL command. the user Arst forms B’ (without
the help of any permanent indices), then constructs an
index on the join attribute of B’, and final performs the
join, we observed that the execution time for the query
could be reduced from over 5 hours to 105 seconds!

When the appropriate indices exist, the IDM
achieves an excellent level of performance on join
operations. However, the DAC only adds to this perfor-
mance a epeedup of 1.3. Another interesting result is
that the performance of commercial INGRES gets
closer to the IDMdac for complex joins (joinCselAselB
runs only 1.8 times faster on IDMdao than on commer-
cial INCRES, compared to 3.7 ties faster &or
joinABprime). The query optimizer in commercial
INCRES appears to be very efficient in the case of com-
plex join queries. Note- that the query joinCselAselB
performs two selections on 10,000 tuple relations, fol-
lowed by two joins on 1.000 tuple relations (see Fiiure
2).

join

1,000

A

1,000

C join

1,000

/\

1,000

select A select B

10,000

Figure 2: joinCselAselB
However, the cost of this query is only slightly higher
than the cost of the two selections (127 sets compared
to 107.5 sets when there are no indices).

One curious anomaly is the fact that joinAselB (a
selection followed by a join) ran faster than
joinABprime (the same join without selection) on com-
mercial INGRES. One possible explanation could be
that the query optimizer allocated more memory for
executing joinAselB than for joinABprime because the
operand relation B is larger than Bprlme.

4.3. Projection Querie8
Implementation of the projection operation is nor-

mally done in two phases. First a pass is made through
the source relation to discard unwanted attributes. A
second phase is necessary in order to eliminate any
duplicate tuples that may have been introduced as a
side effect of the first phase (i.e. elimination of an
attribute which is the key or some part of the key).
The flrst phase requires a complete scan of the rela-
tion. The second phase is normally performed ln two
steps. First, the relation is sorted to bring duplicate
tuples together. Next, a sequential pass is made
through the sorted relation. comparing neighboring
tuples to see if they are identical. Secondary storage
structures such as indices are not useful in performing
this operation.

While our initial benchmark contained other
queries which projected on different attributes and
thus produced result relations of a variety of sizes,
the following two queries are indicative of the results
observed. The Arst query projects the 10,000 tuple
relation with a projectivity factor of 1%. Thus, it elim-
inates 99X duplicate records and produces 100 tuples.
The second query is a projection of the 1,000 tuple
relation, with a 10052; projectivity factor. In this case,
although no duplicate tuples are produced by the pro-
jection, the result relation was still sorted and
scanned. Thus, this particular query provides us with
an estimate for the cost of duplicate elimination
involved in any retrieval “into” a result relation (see
Section 4.1). In order to make this estimate as accu-
rate as possible, it was desirable to minimize the time
of getting the relation off the disk. This effect was
achieved by actually running in sequence 10 dopies of
the same query, and dividing the total run time by 10.

Our first observation from this table is the rela-
tively high cost of projection compared to selection.
For commercial INGRES and IDM (dac and nodac). it
takes more than 3 times longer to project on 1% of the
tuples in the 10.000 tuple relation than to select 1% of
the tuples of the same relation. This discrepancy is
due to the sort phase in the projection. Sorting 10.000
tuples - even if duplicates are gradually eliminated
[BITT521 - requires a long time. compared to the cost
of scanning the relation once only (as required by the
selection).

Another striking result is the speedup achieved by
the dac in the case of a hiih projectivity factor. While
the dac only improved selection by a factor of 1.3, the
speedup observed here is 1.5.

4.4. Aggregate Queries
We have considered both simple aggregate opera-

tions (e.g. minimum value of an attribute) and com-
plex aggregate functions in which the tuples of a rela-
tion are first partitioned into non-overlapping subsets.
After partitioning, an aggregate operation such as MIN
is computed for each partition. For the complex
aggregate functions, we have repeated our experi-
ments for a wide range of partition sizes (by selecting,
as the partitioning attribute, attributes with diierent
selectivity factors).

In the following tables, we have retained only the
results for three of the most representative queries: a
minimum on a key attribute and two aggregate

Table 7
Projection Queries

(Duplicate Tuples are Removed)
Total Elapsed Time in Seconds

Query Type

System 100/10;000 1000/1000

U-INGRES 64.6 236.6
C-INGRES 26.4 132.0
IDMnodac 29.3 122.2
IDMdac 22.3 66.1

16

functions: each with 100 partitions. One objective of
these three queries was to examine whether any of the
query optimizers would attempt to use the indices
available to reduce the execution time of the queries.
For the minlcey query, a very smart query optimizer
would recognize that the query could be executed by
using the index alone. For the two aggregate function
queries, we had anticipated that any attempt to use
the secondary, non-clustered index on the partitioning
attribute would actually slow the query down as a scan
of the complete relation through such an index will
generally result in each data page being accessed
several times. One alternative algorithm is to ignore
the index, sort on the partitioning attribute, and then
make a final pass collecting the results. Another algo-
rithm which works very well if the number of partitions
is not too large is to make a single pass through the
relation hashing on the partitioning attribute.

We got very mixed results from these tests. First,
we were puzzled by what changes were made to the
aggregate function algorithms in commercial INGRES
that caused it to run slower than university INGRES
(especially considering that the page size used by
commercial INGRES is twice that of university
INGRES). As for the use of indices, it appears that for
both university INGRES and IDM the query optimizer
chose to ignore the index in all cases. While this deci-
sion leaves both systems with a slow scalar aggregate
operation, it is a better alternative for the execution of
aggregate functions.

Table 9 Table 10
Aggregate Queries Without Indices

Total elapsed time in seconds
Update Queries Without Indices
Total elapsed time in seconds

System PIN Scalar MIN Aggregate SUM Aggregate
Aggregate Fuuction FUtlCtiOIl

100 Partitione 100 Partitione

U-INGRES 40.2 170.7 174.2
C-INGRES 34.0 495.0 484.8
IDHnodac 32.0 65.0 07.5
IDMdac 21.2 38.2 38.2

Table 9
Aggregate Queries With Indices
Total elapsed time in seconds

Quev Tppe

System MIN Scalar MIN Aggregate SUM Aggregate

Agiwgate Ffmction Function
100 Partitions 100 Partitions

Finally, while the DAC reduces the time for the
scalar aggregate in a proportion similar to the selec-
tion queries (the speedup observed is 1.27). it
improves more significantly the performance on aggre-
gate functions (speedup of 1.7).

4.5. Update Queries
The numbers presented in the tables below were

obtained for stand-alone updates (delete, append, and
modify). The principal objective of these queries was
to look at the impact of the presence of both clustered
and non clustered indices on the cost of updating.
appending or deleting a tuple. A more realistic evalua-
tion of update queries would require running these
benchmarks in a multiprogramming environment, so
that the effects of concurrency control and deadlocks
could be measured.

These results are basically what we expected to
see. First, for all systems, the advantage of having an
index to help locate the tuple to be modified oversha-
dows the cost of updating the index. The numbers
obtained for the “delete 1 tuple” and “modify 1 tuple”
queries (in Tables 10 and 11) support this claim very
strongly. However, it should be noted that not enough
updates were performed to cause a significant reor-
ganization of the index pages. Also the reader should
be aware of the fact that three indices had been built

Query Type

System Append Delete Modify
1 Tuple 1 Tuple 1 Tuple

(Key Attr)

U-INGRES 5.9 37.6 37.7
C-INGRES 1.4 32.3 32.8
IDMnodac 0.9 22.8 29.5
IDMdac 0.7 20.8 20.9

Table 11
Update Queries With Indices

Total elapsed time in seconds

Query Tppe

System Append Delete Modify Modiiy
1 Tuple 1 Tuple 1 Tuple 1 Tuple

(Key Attr) (Non-Key Attr)

U-INGRES 41.2 188.5 182.2
C-INGRES 37.2 242.2 254.0
IDMnodac 27.0 65.0 66.8
IDMdac 21.2 36.0 36.0

U-INGRRS 9.4 6.8 7.2 9.1
CINGRES 2.1 0.5 1.6 I.6
IDMnodac 03 0.4 0.6 0.5
IDYdac 0.a 0.4 0.5 0.5

17

on the updated relation (one clustered index and two
secondary indices), in order to account for the cost of
updating indices in a signticant way.

Another observation, that surprised us at first. is
the low cost of the append compared to the cost of the
delete, in the no-index case. The explanation for this
discrepancy is that all the systems append new tuples
without checking if they were not already present in
the relation. Thus, appending a tuple only involves
writing a new tuple, while deleting a tuple requires
scanning the entire relation first. On the other hand,
when a clustered index is available, deleting is faster
than appending a tuple. apparently because the index
is modified but the tuple is not physically deleted.
Finally, the performance of all systems on the “modify
non-key” (that is modify a tuple identifled by a
qualification on a non-key attribute) demonstrates a
very efficient use of a secondary index to locate the
tuple. However, one could again argue that the right
algorithm for this query would require verifying that
the modifled tuple does not introduce an inconsistency
by duplicating an existing tuple.

5. Concluslont~ and Future Reseerch
In this paper, we have presented and interpreted

a set of measurements performed on several database
management systems. Originally, we had intended to
compare the relative performance of database
machines that use special purpose hardware and con-
ventional database management systems that run on
general purpose computers. However, in the early
stages of our benchmark design, we realized that we
had to limit the scope of our measurements in order to
reach any valid conclusions. The main limitation of the
present study is that it addresses only the single user
case. At this point, we must therefore admit that our
benchmark is neither an exhaustive comparison of
different systems, nor a realistic approximation of
what measurements in a multiuser environment will be
lie.

However, .we have found that limiting our experi-
ments to stand-alone queries was the only systematic
way to isolate the effects of specific hardware
configurations. operating system features, or query
execution algorithms. For this reason, the single user
case constitutes a necessary baseline measure which
we will use in the interpretation of multiuser bench-
mark results.

Finally, we would like to emphasize that designing
the WISC database. and the set of aueries that PO with
it, represents a first attempt at intrbducing a sc:entiflc
approach to database benchmarking. We will continue
retiing the single user benchmark while we also start
work on multiuser benchmarks.

8. Acknowledgments
A large number of people deserve thanks for mak-

ing this paper possible. First, Rakesh Agrawal helped
in the design of the relations and queries used in our
benchmark. Second we would like to thank Britton-Lee
Inccrporated and Relational Technology Incorporated
for their support in the benchmarking process.
Although only a handful of database accelerators were
running when we began the benchmarking process,
Britton-Lee generously made a DAC available for us.
We especially wish to thank Mike Ubell of Britton-Lee
for helping us run our benchmarks remotely. We also

wish to thank Derek Frankforth, Bob Kooi. Trudi Quinn,
and Larry Rowe at RTI for their help in bringing up the
benchmark on VMS. We also wish to thank Haran Boral
for his suggestions on the earlier drafts of this paper.

Finally we would like to acknowledge the support
for this research provided bv the National Science
Foundation under grant MCS&01870 and the Depart-
ment of Energy under contract DE-AC02-81ER10920.

7. References

[BABB79] Babb, E. “Implementing a Relational Data-
base by Means of Specialized Hardware,” ACM
TODS. Vol. 4. No. 1. March 1979.

[BANE751 Banerjee J., R.I. Baum, and D.K. Hsiao, “Con-
cepts and Capabilities of a Database Computer,”
ACM TODS. Vol. 3, NO. 4. Dec. 1978.

[BI’ITB2] Bitton. D. and D.J. Dewitt. “Duplicate Record
Elimination in Large Datafiles,” to appear ACM Tran-
sactions on Database Systems.

[BORAB2] Boral. H., Dewitt, D.J.. Friedland. D., Jarrell.
N., and W. K. Wilkinson, “Implementation of the
Database Machine DIRECT,” IEEE Transactions on
Software Engineering, November, 1982.

fBORA53] Boral H. and D. J. Dewitt, “Database
Machines: An Idea Whose Time is Past? A Critique
of the Future of Database Machines,” Technical
Report, Computer Sciences Department, University
of Wisconsin, April 1983.

[DEW1791 Dewitt, D.J., “DIRECT - A Multiprocessor
Organization for Supporting Relational Database
Management Systems,” IEEE Transactions on Com-
puters, June 1979. pp. 395-408.

[DEWIB~] Dewitt. D. J., and P. Hawthorn, “Performance
Evaluation of Database Machine Architectures,”
Invited Paper, 1981 Very Large Datahase Confer-
ence, September, 1981.

[EPSTBO] Epstein, R. and P. Hawthorn, “Design Deci-
sions for the Intelligent Database Machine,”
Proceedings of the 1980 National Computer Confer-
ence, pp. 237-241.

[HAWTfiZ] Hawthorn P. and D.J. Dewitt. “Performance
Evaluation of Database Machines,” IEEE Transac-
tions on Software Engineering, March 1982.

[IDMSOO] IDM 500 Reference Manual, Britton-Lee Inc.,
Los Gatos, California.

[MCGR78] McGregor, D.R., Thomson, R.G., and W.N.
Dawson, “High Performance Hardware for Database
Systems,” in SWdWn.9 for Large Databases. North
Holland, 1976.

[OZKA75] Ozkarahan, E.A.. S.A. Schuster, and K.C.
Smith. “RAP - Associative Processor for Database
Management,” AFIPS Conference Proceedings, Vol.
44, 1975, pp, 379 - 358.

[OZKA77] Ozkarahan. E.A., Schuster, S.A. and Sevcik.

18

K.C., “Performance Evaluation of a Relational Asso-
ciative Processor,” ACM Transactions on Database
Systems, Vol. 2. No.2. June 1977.

[STON76] Stonebraker, M.R. , E. Wong. and P. Kreps,
“The Design and Implementation of INCRES,” ACM
TODS 1. 3. (September 1976).

[STONBO] Stonebraker. M. R “Retrospection on a Data-
base System,” ACM TODS 5, 2. (June 1980).

[STONBl] Stonebraker, M.. “Operating System Support
for Database Management.” Communications of the
ACM. Vo. 24. No. 7. July 1981. pp. 412-418.

[SD751 Su. Stanley Y. W., and G. Jack Lipovski, “CASSM:
A Cellular System for Very Large Data Bases”,
Proceedings of the VLDB Conference, 1975. pages
456 - 472.

[UBEL51] Ubell, M.. “The Intelliient Database Machine,”
Database Engineering, Vol. 4, No. 2, Dec. 1981, pp.
28-30.

Appendix I
List of Join Queries in INGRES Format

joinAselB

range of t is tenthoustup
range of w is tenthoustup2
retrieve into tempsell(t.all,w.all) where
(t.unique2 = w.twounique2) and w.twounique2 < 1000

sjoinAselB

range oft is tenthoustup
range of w is tenthoustup2
retrieve into tempsell(t.all.w.all) where
(tuniquel = w.twouniquel) and w.twouniquel < 1000

joinABprime

range oft is tenthoustup
range of b is tempBprime
retrieve into tempjoinABpr (t.all,b.all)
where t.unique2 = b.twounique2

sjoinABprime

range oft is tenthoustup
range of b is tempBprime
retrieve into tempjoinABpr (t.all.b.all)
where t.uniquel = b.twouniquel

joinCselAselB

and (t.unique2 = o.oneunique2)

sjoinCseIAselB

range of o is thoustup
range oft is tenthoustup
range of w is tenthoustup2
retrieve into ntmpsel3(t.all.r.all)
where (t.uniquel = w.twouniquel)

w.twouniquel < 1000) and (t.uniquel < 1000)
= o.oneuniquel)

range of o is thoustup
range oft is tenthoustup
range of w is tenthoustup2
retrieve into tempsel3(t.all,w.all)
where (t.unique2 = w.twounique2) and
(w.twounique2 < 1000) and (t.unique2 < 1000)

19

