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ABSTRACT 

This paper describes a customized database 
and a comprehensive set of queries that can be 
used for systematic benchmarking of relational 
database systems. Designing this database and a 
set of carefully tuned benchmarks represents a 
first attempt in developing a scientific methodology 
for performance evaluation of database manage- 
ment systems. We have used this database to per- 
form a comparative evaluation of the “university“ 
and “commercial” versions of the INGRES database 
system, on one hand, and the IDM 500 database 
machine, on the other hand. We present a subset of 
our measurements (for the single user case only), 
that constitute a preliminary performance evalua- 
tion of these systems. 

1. Introduction 
During the past decade a large number of data- 

base machines encompassing a wide variety of archi- 
tectures and possessing a range of different charac- 
teristics have been proposed to enhance the perfor- 
mance of database management systems. Today, it is 
not clear that specialized architectures offer any 
signillcant performance advantages over general pur- 
pose computers.’ This paper is a Arst attempt to pro- 
vide an answer to this question by presenting the 
results of benchmarks run on several conventional 
database management systems and on one database 
machine. More specifically we have measured and 
compared the performance of the Britton-Lee IDM/SOO’ 
machine with and without a database accelerator 

’ Eepeciallp in the face of limited I/O bandwidth. See [BORA83] 
for a diecueeion of the impact of trends in meek3 etorage technology 
on the future of highly parallel dntabaae machinea. ’ 

(DAC) [IDM500, EPSTBO, UBELBl] to the “commercial” 
and “university” versions of the INGRES database sys- 
tem [STON76, STON80].2 

Since database machines have already been an 
active field of research for an entire decade, and a few 
machines have now been implemented, we feel that the 
time has come for measuring the actual performance 
enhancement that can be expected from using special 
purpose hardware and software for database manage- 
ment. When database machines designs such as 
CASSM 
DIRECT s 

SU75]. RAP [OZKA75. OZKA77]. DBC [BANE76]. 
DEWI79] were proposed, the future of database 

machines looked bright. It seemed that both success- 
ful research efforts and advances in hardware technol- 
ogy would lead to the widespread use of commercial 
database machines. However, while most projects 
appeared promising initially, it is only very recently 
that the first of these special purpose computers are 
becoming commercially available. The ICL CAFS 
machine [MCGR76, BABB79] has been shipped in small 
quantities. The Britton-Lee IDM (Intelligent Database 
Machine) appears to be the first database machine to 
reach the market place in large volumes.s Despite 
these exceptions, the overwhelming evidence is that 
the majority of the database machine designs pro- 
posed will never be more than laboratory toys and, in 
most cases, will never even leave their promising 
paper status. 

While the first database machines are being mark- 
eted, better database management systems are now 
being offered that do not rely on special hardware for 
enhancing performance. For example, several years of 
experience with the INGRES database management 
system has led to the development of a commercial 
version of this system on several general purpose com- 
puters. This development, added to the apparent slow- 
down of research on database machines has provided a 
strong motivation for the experiments described in 
this paper. 

Previous performance evaluation studies of data- 
base machines [HAWTEZ, DEW1811 have given us some 
insight on the problems that various database machine 
architectures face. These studies were, however, 
based on simplified analytical models. We feel that it is 

e Space limitatione prevented ue from including a prerntath 1 
and rveluntion of the database machine DIRECT [DEWI?& BORA82]. A 
oomplete verrion of this paper is available ae a technical report &om 
the Computer Sciences Department. 

s Ae of April 1939. approximately two hundred IDP 500 end IDld 
200 database machines had been shipped. 
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necessary to extend them by empirical measurements. 
These measurements, in addition to providing a com- 
parison of the different systems available, will provide 
a means of evaluating the accuracy of the perfor- 
mance evaluation tools that we have been using to 
compare alternative database machine architectures 
[DEWING]. [HAWTBZ]. Our results also provide some 
insight into to the extent to which a “conventional” 
operating system “gets in the way of” a database 
management system [STONB~] as the IDM 500 without 
a database accelerator really represents the perfor- 
mance of a database management system running on a 
conventional processor (a ZILOG Z&3000) but WITHOUT a 
general purpose operating system getting in the way. 

In addition to looking at the relative performance 
of a database machine and two versions of a conven- 
tional database management system, this paper also 
describes a customized database and a comprehensive 
set of queries that can be used for systematic bench- 
marking of relational database systems. Designing this 
database and a set of carefully tuned benchmarks 
represents a first attempt in developing a scientific 
methodology for performance evaluation of database 
management systems. In addition to providing a 
mechanism for comparing the performance of 
different systems, we feel that such a benchmark will 
become a useful tool for database system implemen- 
tors to use for evaluating new algorithms and query 
optimizers. 

The paper is organized as follows. In Section 2. we 
provide a brief description of the four systems. The 
hardware configuration is described in some detail for 
each of the machines, and the basic software structure 
is outlined. In Section 3, we explain how we designed 
our experiments, and motivate the framework of our 
benchmarks. In Section 4 we present and analyze the 
results of our comparisons. Finally, in Section 5 we 
summarize our conclusions and indicate how we plan 
to extend the present study. 

2. Description of the Three Systems Evaluated 
In this section, we describe the basic architecture 

and software structure of the three systems com- 
pared: the INGRES database management system (in 
two different configurations: the “university” version 
on a VAX 11/750 running 4.1 Berkeley Unix and the 
“commercial” version on a VAX 11/750 running the 
VMS operating system) and an IDM 500 connected to a 
PDP 11/70 host. Detailed descriptions of the design 
and implementation stages for the research project 
that led to the current version of INGRES can be found 
in several published papers referenced throughout this 
section. On the other hand, there is less writteu docu- 
mentation on the development of the IDM 500 as it is a 
relatively recent system that, from the start, was 
intended to be a commercial product. However, in 
Section 2.2 we have tried to present a complete 
enough description of the design of the IDM 500 to pro- 
vide the reader with enough background for comparing 
this system with the other two. 

The hardware configurations that we have used to 
run our benchmarks have been made as fair as possi- 
ble. In particular, each system was evaluated using 
disk drives with similar characteristics, similar disk 
controller interfaces, and, where possible, equivalent 
amounts of buffer space for use by the database sys- 
tem. 

2.1. The lb INGFUSS Systems 
The INGRES project began in 1973, at the Univer- 

sity of California at Berkeley. INGRES was fhst imple- 
mented on the top of the Unix operating system, and 
since 1976 has been operational as a multiuser DBMS. 
Sinoe the original version, the system has been 
improved and enhanced in a number of ways to 
improve usability and performance. Recently, a com- 
mercial version of INGRES has been completed, which 
is now reaching the market place. 

In this section, we will shortly summarize the 
main features of university-INGRES, and describe the 
system configuration on which our benchmarks have 
been run. We will then describe the enhancements 
added to commercial-INGRES. 

2.1.1. University-INGRES 
The version of university-INGRES tested was that 

delivered on the Berkeley 4.1 distribution tape. This 
version of INGRES runs as two Unix processes: a moni- 
tor process for interacting with the user and a second 
process which is responsible for performing all opera- 
tions on the database. Query execution is done in an 
interpretative fashion. 

The VAX 11/750 on which university-INGRES was 
tested has 2 megabytes of memory and four disk 
drives connected to the VAX with a System Industries 
9900 controller using a CM1 interface. The operating 
system run was Berkeley 4.1 Unix which utilizes 1.024 
byte data pages. The database was stored on a Fujistu 
Eagle disk drive (474 Megabytes). Immediately before 
the database was loaded, a new Unix Ale system was 
constructed on this drive thus maximizing the proba- 
bility that two logically adjacent blocks would be physi- 
cally adjacent on the disk (an atypical situation for a 
typically scrambled Unix Ale system). 

University INGRES does no buffer management of 
its own relying instead on the Unix operating system to 
buffer database pages. As discussed in [STONES], 
buffer management strategies that are good at manag- 
ing virtual memory pages are frequently very poor at 
choosing the “right” page to eject in a database 
environment. In particular for repeated access to the 
inner relation of a join, LRU is absolutely the worst 
algorithm to use for selecting pages of the inner rela- 
tion to eject. This is exactly the algorithm used by 
Berkeley 4.1 Unix. 

2.1.2. Commercial-INGRES 
Commercial-INGRES also runs as two processes. 

The VAX 11/750 on which Commercial-INGRES was 
evaluated had 6 megabytes of memory, a RM80 
attached to the processor with a mass-bus interface. 
and a Fujistu Eagle drive connected to the processor 
through the CM1 bus with an Emulex SC750 controller. 
The INGRES software was stored on the RMElO drive and 
the test database was stored on the Fujistu drive. The 
operating system used was VMS release 3. VMS pro- 
vides an extent based file system (i.e. logically adja- 
cent blocks are almost always physically adjacent on 
the disk). For our test l3OOK bytes of main memory 
was allocated for buffer space and 200K bytes were 
allocated for sort space. Buffer management was done 
using a random replacement policy. 

Version 2.0 of the commercial version of INGRES 
under the VMS operating system includes a number of 
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performance enhancements not present in the univer- 
sity version. While a number of routines have been 
rewritten for improved performance, the major 
changes have occurred in the following areas: 

(1) 

(2) 
(3) 

(4) 

(5) 

22. 

new query optimizer - develops a complete query 
execution plan before execution of the query is 
initiated 
sort-merge join strategies 
2K byte data pages (versus 1K byte pagee in 4.1 
Unix) 
caching of query trees - permits repetitive queries 
to be reexecuted without re-parsing 
buffer management under the control of the data- 
base system - permits implementation of replace- 
ment strategies that are tuned to enhance data- 
base operations and sharing of database pages by 
multiple transactions 

The IDWSOO Databame Machine 
The Intelligent Database Machine appears to be 

the first widely used commercial database machine. It 
was developed by Britton-Lee. Inc., and the first 
machines were marketed in 1961. The IDM hardware 
consists of a very high-speed bus and 6 different board 
types [UBELB~]: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

The 

!i%e Database Aocesso~, which is responsible for 
controlling the other boards and implements most 
of the system functionality. It uses a standard 
l&bit microprocessor chip (Zilog Z6000). The 
processor runs a special-purpose operating sys- 
tem, that schedules disk accesses intelligently. 
Unlike most operating systems, the IDM operating 
system tunes process and I/O management to the 
special needs of the database software. 
The Database Accelerator (DAC), is a specially 
designed ECL processor, that achieves very high 
speed by having a few well defined tasks micro- 
coded. The IDM mav be conflsured with or without 
the Accelerator (dgpending zn the cost and per- 
formance desired). When the Accelerator is not 
physically available, it is emulated by the Data- 
base Processor. . 

A channel, consisting of a microprocessor, 
memory and hardware to implement 8 serial 
(rs232c) or one parallel (IEEE-466) interface. This 
channel implements a communication protocol 
with the host. It buffers commands coming from 
the host to the IDM, or result data returning from 
the IDM to the host. 
A memory timing and control board. The memory 
is accessed in two modes: a byte-mode for the 
Database Processor and a faster word-mode for 
the Accelerator and the disk controller. 
A memory board, which provides for up to 8 mega- 
bytes of disk buffers and additional space for user 
processes (As a consequence of the 16 bit address 
space limitation of the ZBOOO a maximum of 3 
megabytes can be used for bufTer space.) 
A disk controller, that can be expanded to inter- 
face with up to 32 gigabytes of disk storage. 
IDM 500 utilized for our benchmarks had two . _. __ _-.- 

megabytes of memory, one disk controller, a 675 
Mbyte CDC drive, a parallel channel interface to the 
host processor (a PDP 11/70 running a variant of Unix 

2.6), and a DAC that could be switched off and on 
remotely. Release 25 of the IDM 500 software was used 
for the benchmarks. One megabyte of memory was 
allocated for use as bufIer space. 

While the CDC disk drive has more tracks per 
cylinder than the Fujistu Eagle (40 vs. 20). its track- 
to-track seek time and transfer rate are slower than 
that of the Eagle. We calculated that the time to read 
a 10,000 tuple relation (162 bytes/tuple) would be 9.3 
seconds on the CDC drive and 6.0 seconds on the 
Fuji&u drive. Thus, the results presented in Section 4, 
may be sliihtly biased against the IDM 500. It is impor- 
tant to realize, however, that the degree of this bias is 
highly dependent on the query type, the availability of 
suitable indices, and whether the performance of the 
IDM is CPU limited or I/O limited. 

9. Benchmark Description 
The starting point for our experiments was the 

design of a database. This database had to be custom- 
ized for extensive benchmarking. Previous efforts in 
this area have generally been relatively unscientific. 
In particular, the benchmarks that we are aware of 
involve using an existing database system and run a 
rather restricted set of queries. In some cases, the 
database (e.g. the supplier-parts database that INGRKS 
users are familiar with) would be so small that the 
results of the benchmarks would not provide any 
insight about “real world” database management sys- 
tems. In other cases, although the size of the database 
was large enough, the data values would not provide 
the flexibility required for systematic benchmarking. 
To be more specific. there would be no way to generate 
a wide range of retrieval or update queries, and con- 
tro1 the result of these queries. For example, the 
existing data would not allow one to specify a selection 
query that selects 10% or 50% of the source relation 
tuples, or a query that retrieves precisely 1.000 
tuples. For queries involving joins, it is even harder to 
model selectivity factors and build queries that pro- 
duce a result relation of a certain size. 

An additional shortcoming of empirical data 
(versus “synthetic” data) is that one has to deal with 
very large amounts of data before it can be safely 
assumed that the data values are randomly distri- 
buted. By building our own database, we were able to 
use random number generators to obtain uniformly 
distributed attribute values, and yet keep the relation 
sizes tractable. 

In this section. we describe the guidelines along 
which we have designed our benchmark. Our design 
effort has resulted into a simple but carefully tuned 
database and a comprehensive set of queries. In Sec- 
tion 3.1. we describe the structure of the relations in 
our database. Section 3.2 contains a description of the 
queries that were run in our benchmarks. In both sec- 
tions, we have made our descriptions as explicit as 
possible, while explaining the design principles that 
motivated the choice of a particular attribute value or 
a specific query. In Section 3.3, we describe the exper- 
iment itself: the environment in which the queries 
were run and the performance parameters that were 
measured. 
3.1. The WISC Database 

The database is designed so that a naive user can 
quickly understand the structure of the relations and 
the distribution of each attribute value. As a 
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consequence, the results of the queries that are run in 
the benchmark are easy to understand and additional 
queries are simple to design. The attributes of each 
relation have distributions of values that can be used 
for partitioning aggregates, controlling selectivity fac- 
tors in selections and joins, and varying the number of 
duplicate tuples created by a projection. It is also 
straightforward to build an index (primary or secon- 
dary) on some of the attributes, and to reorganize a 
relation so that it is clustered with respect to an index. 

There are four “basic” relations in the database. 
We refer to them by the names of “thoustup”. 
“twothoustup”, “flvethoustup”. and “tenthoustup” as 
they respectively contain 1000, 2000. 5000 and 10000 
tuples. A fragment of the thoustup relation is shown in 
Figure 1 below. All the tuples are 162 bytes long, so 
that the four relations occupy approximately 4 mega- 
bytes of disk storage. However, in order to build 
queries that. operate on more than one operand rela- 
tions, we often generate two or more relations of the 
same size. For example, the join queries described 
below operate on two 10,000 tuple relations: “thous- 
tupA” and “thoustupB”. The attributes are e’ither 
integer numbers (between 0 and 9999) or character 
strings (of length 52 characters). The first attribute 
(“uniquel”) is always an integer number that assumes 
unique values throughout the relation. We have made 
the simplest possible choice for the values of 
“unique 1”. For example, for the 1000 tuples relation 
“thoustup” unique1 assumes the values 0, 1. . . . 999. 
For the relations with 10,000 tuples, the values of 
“uniquel” are O,l, . . . . 9999. The second attribute 
“unique2 has the same range of values as “uniquel”. 
Thus both “uniquel” and “unique2” are key attributes. 
However, while we have used a random number genera- 
tor to scramble the values of “uniquel” and “unique2”, 
the attribute “unique2” is often used as a sort key. 
When relations are sorted, they are sorted with respect 
to this attribute. When we need to build a clustkred 
index, again it is an index on “unique2”. For instance, 
we may execute the following INGRES query to observe 
the effect of a primary index on a selection that 
retrieves 10% of the “twothoustup” relation: 

range oft is twothoustup 
retrieve (t.all) where t.unique2 < 200 

After the “unique 1” and “unique2” attributes come a 
set of integer-valued attributes that assume non- 

A Fragment of the Thoustup Relation 
(some attributes have also been omitted) 

unique1 unique2 two ten hundred thousand 
376 0 13 13 615 
816 
673 
910 

1 0 4 4 
2 0 6 26 

695 
962 
313 

74 
447 
647 
249 
455 
657 

unique values. The main purpose of these attributes is 
to provide a systematic way of modeling a wide range 
of selectivity factors. Each attribute is named after 
the range of values the attribute assumes. That is. the 
“two”, “ten”. “twenty”, “hundred”,..., “tenthous” attri- 
butes assume, respectively, values in the ranges (O,l), 
(o.I,..., 9). (o.l,..., 19). (o.I...., 99>, . . . .(0,1,..., 9999). For 
instance, each relation has a “hundred” attribute 
which has a uniform distribution of the values 0 
through 99. Depending on the number of tuples in a 
relation, the attribute can be used to control the per- 
centage of tuples that will be duplicates in a projection 
or the percentage of tuples that will be selected in a 
selection or join query. For example, in the 
“twothoustup” relation, the “hundred“ attribute can be 
used for projecting into a single attribute relation 
where 95% of the tuples are duplicates (since only 100 
values are distinct among the 2000 attribute values). 
The INGRES format for this query would be: 

range oft is twothoustup 
retrieve (t.hundred) 

The same “hundred” attribute can be used for creating 
100 partitions in aggregate function queries. For 
example, we may query for the minimum of an attri- 
bute that assumes values randomly distributed 
between 0 and 4999 (“Avethous”), with the relation par- 
titioned into 100 partitions: 

range oft is twothoustup 
retrieve (minvalue = min(t.fivethous by t.hundred )) 

Finally, each of our relations has 3 string attri- 
butes. Each string is 52 letters long, with three letters 
(the fist. the middle and the last) being varied. and 
two separating substrings that contain only the letter 
x. The three significant letters are chosen in the range 
(A,B ,..., V), to allow up to 10,646 ( 22 + 22 * 22 ) unique 
string values. Thus all string attributes follow the pat- 
tern: 

txxxx . . . xxx$xxx . . . xxxs 
125 x’s{ 124 x’s{ 

where “$” stands for one of the letters (AB,...,V). 
Clearly, this basic pattern can be modified to provide 
for a wider range of string values (by replacing some of 
the x’s by significant letters). On the other hand, by 
varying the position of the significant letters, the data- 
base designer can also control the cpu time required 
for string comparisons. 

The flrst two attributes in this category are string 
versions of the “uniquel” and “unique2” integer valued 
attributes. That ii. “stringul” and “stringu2” may be 
used as key attributes. and a primary index may be 
built on “stringu2”. For example, in the thousand 
tuple relation, “thoustup”, the stringu2 attribute 
values are: 

160 
679 
557 
916 

73 
101 

3 0 2 52 
4 0 0 20 
5 1 9 29 
3 1 7 47 
7 0 4 54 
6 0 6 26 
9 0 2 62 

Figure 1 
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“AXXXX . . . xxxAxxx , . . XXXA” 
“Bxxxx . . . xxxAxxx . . . xxxA” 
“Cxxxx . . . xxxAxxx . . . xxxA” 

“Vxxxx . . . xxxAxxx . . . xxxA” 
“Axxxx . . . xxxBxxx . . . XXXA” 

“Vxxxx . , . xxxBxxx . . . xxxA” 
“Axxxx . . . xxxcxxx . . . xxxA” 

“Vxxxx . . . xxxVxxx . . . xxxA” 
“AXXXX . . . xxxAxxx . . . XXXB” 

“Ixxxx . . . xxxBxxx . . . XXXC” 
“Jxxxx . . . xxxBxxx . . . xxxC” 

The following two queries illustrate how these string 
attributes can be utilized. Each query has a selectivity 
factor of 1%. 

range of t is tenKtup1 
retrieve (tall) where 
t.stringuZD c “Axxxx . . . xxxExxx . . . xxxQ” 

range oft is tenKtup2 
retrieve (tall) where 
(t.stringu2E > “Bxxxx . . . xxxGxxx . . . xxxE”) 

(t.stringu2Eanp”Bxxxx . . . xxxhxxx . . . xxxA”) 

The “stringu2” variables are initially loaded in the 
database in the same order in which they were gen- 
erated, shown above, which is not sort order. The 
attribute “stringul” assumes exactly the same string 
values as “stringu2” except that their position in the 
relation is randomly determined. As can be seen in 
the outline above, the leftmost significant letter varies 
most frequently (from A to V) and the rightmost 
significant letter varies least frequently (from A to C) 
in the thou&up relation. Thus, these strings give any 
special hardware or algorithms that can do short cir- 
cuit comparison of strings ample opportunity to 
demonstrate their efficacy. 

A third string attribute, “string4”, assumes only 
four unique values: 

‘Axxxx . . . xxxAxxx . . . xxxA” 
“Hxxxx . . . xxxHxxx . . . xxxH” 
“OXXXX . . . xxxoxxx . . . xXx0” 
‘Yxxxx . . . xxxvxxx . . . XXXV” 

“String4 can be used to selebt with different sblec- 
tivity factors and for partitioning (like the integer 
attribute “four”). 

3.2. The Wisconsh Benchmark 
We have developed a standard set of queries which 

measure the cost of different relational operations: 
(1) Selection with different selectivity factors. 
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(2) Projection with different percentages of duplicate 
attributes. 

(3) Single and multiple joins. 
(4) Simple aggregates and aggregate functions. 
(5) Updates: append, delete, modify. 
In addition, for most queries, we have designed two 
variations: one that can take advantage of a primary 
index, and one that can only use a secondary index. 
Typically, these two variations were obtained by using 
the “unique2 attribute in one case, and the “uniquel” 
attribute in the other. When no indices are available 
the queries are the same. 

3.3. Measurements 
After the database and the queries had been built, 

we had to decide how to actually measure the time and 
resources consumed by each run. Our first decision 
was to start with an extensive sequence of stand-alone 
runs. We made sure that, when our benchmarks were 
run, our systems were in single user mode. Then, we 
built a mechanism to set up runs where the queries 
were run one at a time, in a strictly sequential pattern. 
This way, all the measurements that we obtained indi- 
cated the performance of each query, as a separate, 
stand-alone program. The impact of system overhead 
(e.g. the “open database” command) was diminished 
by running several similar queries in sequence and 
taking the average time. 

While each system evaluated provided facilities for 
gathering detailed statistics on the resources (ie. CPU, 
disk transfers) consumed by a query, after thorough 
consideration,. we decided to use elapsed time as the 
main performance measure. For the DIM 500, this 
time was taken as the elapsed time on the host 
machine4. 

3.4. EiTe&s of Dntabane and BufTer Size 
In our fist benchmark tests, the queries pri- 

marily referenced one 2000 tuple relation. Since this 
relation is approximately 320.000 bytes long, when a 
million bytes of buffer space are available, the active 
portion of the database fits into memory. While the 
results of these tests were interesting, they did not At 
most users’ view of reality. Therefore, we modified the 
queries to reference the 10.000 tuple relations (each of 
which is approximately. 1.8 megabytes in size). In 
addition, in order to minimize the effect of the buffer 
size when running repeated queries, each query was 
run ten times alternating between the two 10.000 tuple 
relations. When this strategy is combined with 1 mega- 
byte of buffer space (the most allocated to any of the 
systems tested), query i will leave almost nothing in 
the buffer pool that is of use to query i+t. 

4. The Benchmark Measurement and Analysis 
In this section, we present a subset of our bench- 

mark measurements, and analyze the results. We have 
divided this section into five subsections. There is one 
subsection for each of the relational operations (selec- 
tion, projection, join), one for aggregates, and one for 
updates (delete, append, modify). For each type of 
query, we flrst describe the main criteria that were 
used to compare the different systems and the effects 

4 The commend “time” was used on Unix. On VMS, “date” wee 
used. 



that we were attempting to measure. Determining 
some of these criteria, however, was not always 
straightforward. Over the period of time that we were 
running the benchmarks, preliminary results forced us 
to change certain queries in order to gain more insight 
into the impact of a particular parameter. 

For example, it was only after a long series of 
benchmarks that we first realized that the cost of 
duplicate record elimination was a factor that made 
many of our comparisons meaningless. There are two 
alternative ways of measuring the time required for a 
query. One is to retrieve the selected tuples into a 
relation (that is writing them to disk). The other was to 
display them on a user’s terminal. Unfortunately, both 
alternatives have drawbacks. Producing a result rela- 
tion (by an INGRES “retrieve into” statement), has the 
side effect of checking for and removing duplicate 
tuples from the result relation. Thus, the tie 
obtained for a retrieval query includes the time to per- 
form duplicate elimination. The other alternative was 
to retrieve result tuples to the screen. In this case, 
however, times for queries that retrieve a large 
number of tuples would have mainly measured the 
time to transfer a large amount of data to a terminal 
(rather than the time required by the database 
management to execute the query). 

The principal solution we choose was to place the 
result tuples in a relation but to do so without elim- 
inating duplicate tuples (by using the “-rheap” option 
of INGRES, we discovered that duplicate elimination 
can be turned off). However, we also wanted to exam- 
ine the impact of the communications channel 
between the IDM 500 and the host. Thus, for some 
selected queries, we also “retrieved” the results to the 
screens 

Another problem that we faced was Altering the 
meaningful results from the vast quantities of raw data 
produced by the original benchmark runs (which con- 
tained over 100 queries). Rather than showing an 
impressive but overwhelming collection of numbers, we 
decided to choose a representative sample of results 
for each query type. The sample had to be small 
enough to be presented in this paper, without omitting 
the information necessary to support our conclusions. 
These choices resulted in a number of tables that show 
the elapsed time in seconds for the representative 
queries in the 5 classes. Our analysis in each of the 5 
subsections then concentrates on the numbers shown 
in these tables. 

4.1. Selection Queries 
The speed at which a database system or machine 

can process a selection operation depends on a 
number of different factors including: 

(1) storage organization of the relation 
(2) impact of the selectivity factor (how many result 

tuples are produced by the query) 
(3) impact of specialized hardware 
(4) cost of sending the result tuples to the screen 

(compared to the cost of storing them in a new 

5 Actually, the result tuples were sent to “/dev/null” (the Unix 
equivalent of a black hole) to make sure that the actually printing 
speed of the different terminals would not have an effect. 

relation)s 
Our benchmark investigated the impact of each of 

these factors. In determining the impact of the 
storage organization on the performance of the query, 
we evaluated four different storage organizations: 

(1) 

(2) 

(3) 

(4) 

heap o~ganisation - this is an unstructured 
storage organization in which the tuple order 
corresponds to the order in which the tuples were 
loaded into the relation. This organization has no 
suitable secondary storage structures for enhanc- 
ing performance. We evaluated this organization 
for two reasons. First, it provides information as 
to how fast a system can process an arbitrary ad- 
hoc query. While we understand that in most real 
systems, there will generally be an appropriate 
index, one of the “nice” features of a relational 
system is that users can ‘pose arbitrary (and 
unanticipated) queries to the database system. In 
addition, by measuring the response time for the 
heap organization. when the same query is run in 
the presence of a suitable index, we are better 
able to understand the performance improvement 
that can be obtained by having the appropriate 
index available. 
isrdez on key attribute - in this case the relation is 
sorted (clustered) on the same attribute on which 
an index has been constructed. Both the univer- 
sity and commercial versions of INGRES use an 
ISAM organization for this case. The IDM 500 first 
sorts the Ale on the key attribute and then con- 
structs a B-tree on the key attribute. 
hash on key attribute - in this case tuple place- 
ment is randomized by applying a hashing func- 
tion to the key attribute. This access mechanism 
was available only with INGRES. It was used only 
for those queries that returned a single tuple (see 
Table 3). 
indez on non-key atbributa - in this case the rela- 
tion is sorted on a different attribute from the one 
on which the index has been constructed. For 
both versions of INGRES. we used a hashed, dense 
secondary index to obtain this storage structure. 
Dense implies one index entry per attribute value: 
hashed means that after the secondary index is 
constructed, the index entries are hashed on the 
index attribute value. This permits one to take an 
attribute value and in one disk access find the 
index page containing the appropriate index entry 
and in ancther disk access locate the data page 
containing the tuple with the desired value. The 
IDM 500 uses a B-tree mechanism to support this 
type of index. 
To determine how the selectivity factor of a query 

influences performance, for each storage structure 
(and each system) we varied the selection criteria to 
produce result relations with a range of different sizes. 
The selectivity factors considered were l%, 10%. 20%. 
50%. and 100%. In addition, we also measured the time 
to retrieve a unique tuple (Table 3). Examination of 
the results of these tests revealed that the queries 
with selectivity factors of 1 tuple. 1% and 10% were 

o Althowh the cost of formatting tuples for screen display could 
alao have been measured in the context of queries &her than selec- 
tion queries, ve found it easier to isolate it from other cost factors in 
this context. 
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representative of the relative performance of the vari- 
ous systems. 

The impact of specialized hardware was evaluated 
by running the same queries both with and without 
indices on the same IDM 500 with and without the data- 
base accelerator (DAC) turned on. 

The results of our experiments are shown in 
Tables 1. 2 and 3 below. The response times presented 
represent an average time based on a test set of ten 
different queries (each, however, with the same selec- 
tivity factor). 

One can draw a number of conclusions from these 
results. Both IDM and Commercial INCRBS perform 
selection faster than University INGRES. However, the 
improvement is not dramatic. When a clustered index 
is available (the most common situation, probably), C- 
INCRES and IDMnodac outperform U-INGRES by factors 
of 2 and 3 respectively. On most selection queries, the I 
IDMdac is about twice faster than C-INGRES. In one : 
case, however, when a non-clustered index exists for 
the source relation, and only 100 tuples (out of 10,000) 
are retrieved, the IDY (with or without dac) is 
extremely fast, and outperforms C-INGRES by a factor 
of 15. This situation demonstrates clearly the 
superiority of the B-tree mechanism for supporting a 

Table 1 
Selection Queries wlthout Indices 

Integer Attributes 
Result Tuples Inserted into Relation 

Total Elapsed Time in Seconds 

System 

U-INGRES 53.2 64.4 
C-INGRES 36.4 53.0 
IDMnodac 31.7 33.4 
IDMdac 21.6 23.6 

Table 2 
Selection Queries with Indices 

Result Tuples Inserted into Relation 
Integer Attributes 

Total Elapsed Tie in Seconds 

System 

Number of Tuples Selected 
from 10,000 Tuple Relation 

Clustered Index NorrCluatered Index 

100 1000 l 100 1000 

U-INCRES 7.7 27.8 50.2 76.0 
C-INGRES 3.9 16.0 51.2 60.6 
IDMnodac 2.0 0.0 3.0 27.8 
IDMdac 1.5 8.7 3.3 23.7 

Table 3 
Selection Queries with Clustered Indices 

Integer Attributes 
Result Tuplei Displayed on Screen 

Total Elapsed Time in Seconds 

Number of Tuples Selected 
from 10,000 Tuple Relation 

System 1 

U-INGRES 3.6 6.0 
CLINGRES 0.0 5.0 
IDMnodac 0.6 2.0 
IDMdac 0.7 2.7 

non-key index. 
When estimating the speedup obtained by the 

database accelerator (by comparing the IDMdac and 
IDMnodac numbers), we were somehow surprised to 
find out that it was at most 1.47 (in Table 1) and as low 
as 1.07 for selection on an indexed attribute (in Table 
3). 

One interesting result illustrated by Tables 1 and 
2 is that for C-INGRES, the selections with a non-key 
index are actually slower than with the heap organiza- 
tion (the same anomaly is observed for U-INGRES, but 
the discrepancy is within the margin of error). The 
most plausible explanation is that when the non-key 
(and hence non-clustered) index is used, a number of 
pages are accessed multiple times. With 2.046 byte 
pages the source relation occupies approximately 900 
data pages. Scanning the relation in a heap fashion 
requires 909 page accesses. On the other hand select- 
ing 1000 tuples (10X selectivity factor), through a 
non-key index may require more than 1000 page 
accesses. The main conclusion to be drawn is that the 
query optimizer failed to recognize that the index 
should not be used to process the query. 

In Table 3. we have included selected measure- 
ments that provide a clear estimate for the cost of for- 
matting result tuples for display on the screen. Only 
the index case is shown, as the differences for the 
non-index would hidden by the long retrieval time. 
Also, we only show very low selectivity factors (a single 
tuple, or 1X). since it is unlikely that a user would look 
at a table of a 1000 tuples on the screen. By comparing 
the INGRES and the IDM numbers in Table 3. we con- 
clude that the performance of a backend database 
machine is only marginally affected by the cost of 
transferring result tuples to the host computer. 
Another conclusion that we may draw by comparing 
Table 2 and Table 3, is that for all systems the cost of 
formatting results for screen display is relatively high 
(and it is about the same for all systems). Note that 
when retrieving into a relation, our measurements 
account for the cost of writing the result relation to 
the disk, without eliminating duplicate records.’ Thus 
when comparing Tables 2 and 3. we are truly compar- 
ing the cost of writing results to the disk, to the cost of 
formatting and displaying tuples on the screen. While 
measuring the cost of duplicate elimination is also 
important, it was not possible to isolate it from other 
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cost components in the selection queries. For this rea- 
son, we chose to do this measurement in the context of 
projection queries (Section 4.3, below). 

4.2. Join Queries 
In looking at join queries we were interested in 

investigating a number of different issues. First, we 
were interested in how query complexity affected the 
relative performance of the different systems. Thus, 
we considered a range of queries, with different 
degrees of complexity. Second, we were curious about 
the different join algorithms the systems used. Run- 
ning join queries on a stand-alone basis would make it 
possible to verify how efficiently the buffer manage- 
ment strategy of each system supported these algo- 
rithms (since the join algorithm determines the page 
reference string). We knew, a priori, that: 

(1) 

(2) 

(3) 

Without Indices, university INGRES used a nested 
loops join in which the storage structure of a copy 
of the inner relation is converted to a hashed 
organization before the join is initiated 
Commercial INGRES used primarily sort-merge 
join techniques. 

Table 5 
Join Queries with Indices 

Integer Attributes 
Total Elapsed Time in Seconds 

Primary (clustered) Index on Join Attribute 

Query 
The IDM 500 with and witput the DAC used a slm- 
ple nested loops join (O(n )) algorithm. 

System joinAselB joinABprime joinCselAselB 

Third, we were interested in how the different systems 
took advantage of secondary indices on joining attri- 
butes, when these were available. Finally. we wanted 
to see how the database accelerator impacted join 
times. 

With the above criteria in mind, we built a set of 
ten representative join queries. The source relations 
were always the ten thousand tuple relations. How- 
ever, when a selection was performed before the join, 
the size of the operand relation was reduced by a fac- 
tor of ten. Ten thousand tuples of length 182 bytes in 
each source relation were enough to cause substantial 
I/O activity, and make visible the effect of varying 
input parameters (such as query complexity and join 
selectivity factors). 

Query complexity was modeled by performing 
before the join zero. one or two selection operations 
(e.g. joinAselB selects on relation B, and joins the 
selected relation with A, while joinselAselB selects on 
both A and B before the join). A more complex join 
query involves two selections, followed by two joins 
(see “joinCseIAselB”, below). 

After a preliminary analysis, we have again 
decided to Alter the results of our measurements, and 
to present timings for a smaller set of join queries. 
These appear in Tables 4. 5 and 6. The names of the 
queries describe their contents. However, the reader 
may wish to refer to Appendix I, where the join queries 
have been explicitly listed. 

Our first observation is that, for joins, more than 
for any other type of queries, each system’s perfor- 
mance varies widely with the kind of assumptions that 
are made (e.g. indices versus no indices, special 
hardware versus no special hardware, complex versus 
simple join, etc). However, our measurements clearly 
show that for joins without indices commercial INGRES 
is the only system to always provide acceptable 

Table 4 
Join Queries Without Indices 

Integer Attributes 
Total Elapsed Time in Seconds 

Query 

System joinAselB joinABprime joinCsalAselB 
- 

U-INGRES 611 sets. 561 sets. 563 sets. 
C-INGRES 109 sets. 156 sets. 
IDMnodac > 5 hours > 5 hours 

, 127 sets. 
> 5 hours 

IDMdac > 5 hours > 5 hours > 5 hours 

U-INGRES 126.5 99.5 544.5 
C-INGRES 54.0 103.0 84.0 
IDMnodac 31.0 35.5 44.5 
IDMdac 23.5 27.5 35.0 

Table 6 
Join Queries with Indices 

Total Elapsed Time in Seconds 
Secondary (nonclustered) Index on Join Attribute 

System 

Query 

sjoinAselB sjoinABprime sjoinCselAselB 

U-INGRES 269.5 191.0 633.0 
C-INGRES 116.0 106.0 144.5 
IDMnodac 64.5 40.5 106.5 
IDMdac 71.5 35.5 00.0 

performance. The dramatic improvement over univer- 
sity INGRES is due to the use of a sort-merge algo- 
rithm. The IDM, on the other hand, still uses a slow 
nested-loops algorithm. In previous experiments 
(whose results are not presented here), we found out 
that the DAC could achieve a reasonable level of per- 
formance for joins without indices when the relations 
were smaller, and thus mostly At in memory. On the 
other hand, with the 10.000 tuple relations and no suit- 
able indices, the IDM performance (with or without the 
DAC) is unacceptable. However, by building an index 
“on-the-fly”, the IDM user (or a smarter query optim- 
izer), can obtain excellent performance. ‘For example, 
consider the query joinAselB in which B is first res- 
tricted to form B’ and then B’ is joined with A to pro- 
duce the result relation. If instead of writing this query 
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as one IDL command. the user Arst forms B’ (without 
the help of any permanent indices), then constructs an 
index on the join attribute of B’, and final performs the 
join, we observed that the execution time for the query 
could be reduced from over 5 hours to 105 seconds! 

When the appropriate indices exist, the IDM 
achieves an excellent level of performance on join 
operations. However, the DAC only adds to this perfor- 
mance a epeedup of 1.3. Another interesting result is 
that the performance of commercial INGRES gets 
closer to the IDMdac for complex joins (joinCselAselB 
runs only 1.8 times faster on IDMdao than on commer- 
cial INCRES, compared to 3.7 ties faster &or 
joinABprime). The query optimizer in commercial 
INCRES appears to be very efficient in the case of com- 
plex join queries. Note- that the query joinCselAselB 
performs two selections on 10,000 tuple relations, fol- 
lowed by two joins on 1.000 tuple relations (see Fiiure 
2). 

join 

1,000 

A 

1,000 

C join 

1,000 

/\ 

1,000 

select A select B 

10,000 

Figure 2: joinCselAselB 
However, the cost of this query is only slightly higher 
than the cost of the two selections (127 sets compared 
to 107.5 sets when there are no indices). 

One curious anomaly is the fact that joinAselB (a 
selection followed by a join) ran faster than 
joinABprime (the same join without selection) on com- 
mercial INGRES. One possible explanation could be 
that the query optimizer allocated more memory for 
executing joinAselB than for joinABprime because the 
operand relation B is larger than Bprlme. 

4.3. Projection Querie8 
Implementation of the projection operation is nor- 

mally done in two phases. First a pass is made through 
the source relation to discard unwanted attributes. A 
second phase is necessary in order to eliminate any 
duplicate tuples that may have been introduced as a 
side effect of the first phase (i.e. elimination of an 
attribute which is the key or some part of the key). 
The flrst phase requires a complete scan of the rela- 
tion. The second phase is normally performed ln two 
steps. First, the relation is sorted to bring duplicate 
tuples together. Next, a sequential pass is made 
through the sorted relation. comparing neighboring 
tuples to see if they are identical. Secondary storage 
structures such as indices are not useful in performing 
this operation. 

While our initial benchmark contained other 
queries which projected on different attributes and 
thus produced result relations of a variety of sizes, 
the following two queries are indicative of the results 
observed. The Arst query projects the 10,000 tuple 
relation with a projectivity factor of 1%. Thus, it elim- 
inates 99X duplicate records and produces 100 tuples. 
The second query is a projection of the 1,000 tuple 
relation, with a 10052; projectivity factor. In this case, 
although no duplicate tuples are produced by the pro- 
jection, the result relation was still sorted and 
scanned. Thus, this particular query provides us with 
an estimate for the cost of duplicate elimination 
involved in any retrieval “into” a result relation (see 
Section 4.1). In order to make this estimate as accu- 
rate as possible, it was desirable to minimize the time 
of getting the relation off the disk. This effect was 
achieved by actually running in sequence 10 dopies of 
the same query, and dividing the total run time by 10. 

Our first observation from this table is the rela- 
tively high cost of projection compared to selection. 
For commercial INGRES and IDM (dac and nodac). it 
takes more than 3 times longer to project on 1% of the 
tuples in the 10.000 tuple relation than to select 1% of 
the tuples of the same relation. This discrepancy is 
due to the sort phase in the projection. Sorting 10.000 
tuples - even if duplicates are gradually eliminated 
[BITT521 - requires a long time. compared to the cost 
of scanning the relation once only (as required by the 
selection). 

Another striking result is the speedup achieved by 
the dac in the case of a hiih projectivity factor. While 
the dac only improved selection by a factor of 1.3, the 
speedup observed here is 1.5. 

4.4. Aggregate Queries 
We have considered both simple aggregate opera- 

tions (e.g. minimum value of an attribute) and com- 
plex aggregate functions in which the tuples of a rela- 
tion are first partitioned into non-overlapping subsets. 
After partitioning, an aggregate operation such as MIN 
is computed for each partition. For the complex 
aggregate functions, we have repeated our experi- 
ments for a wide range of partition sizes (by selecting, 
as the partitioning attribute, attributes with diierent 
selectivity factors). 

In the following tables, we have retained only the 
results for three of the most representative queries: a 
minimum on a key attribute and two aggregate 

Table 7 
Projection Queries 

(Duplicate Tuples are Removed) 
Total Elapsed Time in Seconds 

Query Type 

System 100/10;000 1000/1000 

U-INGRES 64.6 236.6 
C-INGRES 26.4 132.0 
IDMnodac 29.3 122.2 
IDMdac 22.3 66.1 
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functions: each with 100 partitions. One objective of 
these three queries was to examine whether any of the 
query optimizers would attempt to use the indices 
available to reduce the execution time of the queries. 
For the minlcey query, a very smart query optimizer 
would recognize that the query could be executed by 
using the index alone. For the two aggregate function 
queries, we had anticipated that any attempt to use 
the secondary, non-clustered index on the partitioning 
attribute would actually slow the query down as a scan 
of the complete relation through such an index will 
generally result in each data page being accessed 
several times. One alternative algorithm is to ignore 
the index, sort on the partitioning attribute, and then 
make a final pass collecting the results. Another algo- 
rithm which works very well if the number of partitions 
is not too large is to make a single pass through the 
relation hashing on the partitioning attribute. 

We got very mixed results from these tests. First, 
we were puzzled by what changes were made to the 
aggregate function algorithms in commercial INGRES 
that caused it to run slower than university INGRES 
(especially considering that the page size used by 
commercial INGRES is twice that of university 
INGRES). As for the use of indices, it appears that for 
both university INGRES and IDM the query optimizer 
chose to ignore the index in all cases. While this deci- 
sion leaves both systems with a slow scalar aggregate 
operation, it is a better alternative for the execution of 
aggregate functions. 

Table 9 Table 10 
Aggregate Queries Without Indices 

Total elapsed time in seconds 
Update Queries Without Indices 
Total elapsed time in seconds 

System PIN Scalar MIN Aggregate SUM Aggregate 
Aggregate Fuuction FUtlCtiOIl 

100 Partitione 100 Partitione 

U-INGRES 40.2 170.7 174.2 
C-INGRES 34.0 495.0 484.8 
IDHnodac 32.0 65.0 07.5 
IDMdac 21.2 38.2 38.2 

Table 9 
Aggregate Queries With Indices 
Total elapsed time in seconds 

Quev Tppe 

System MIN Scalar MIN Aggregate SUM Aggregate 

Agiwgate Ffmction Function 
100 Partitions 100 Partitions 

Finally, while the DAC reduces the time for the 
scalar aggregate in a proportion similar to the selec- 
tion queries (the speedup observed is 1.27). it 
improves more significantly the performance on aggre- 
gate functions (speedup of 1.7). 

4.5. Update Queries 
The numbers presented in the tables below were 

obtained for stand-alone updates (delete, append, and 
modify). The principal objective of these queries was 
to look at the impact of the presence of both clustered 
and non clustered indices on the cost of updating. 
appending or deleting a tuple. A more realistic evalua- 
tion of update queries would require running these 
benchmarks in a multiprogramming environment, so 
that the effects of concurrency control and deadlocks 
could be measured. 

These results are basically what we expected to 
see. First, for all systems, the advantage of having an 
index to help locate the tuple to be modified oversha- 
dows the cost of updating the index. The numbers 
obtained for the “delete 1 tuple” and “modify 1 tuple” 
queries (in Tables 10 and 11) support this claim very 
strongly. However, it should be noted that not enough 
updates were performed to cause a significant reor- 
ganization of the index pages. Also the reader should 
be aware of the fact that three indices had been built 

Query Type 

System Append Delete Modify 
1 Tuple 1 Tuple 1 Tuple 

(Key Attr) 

U-INGRES 5.9 37.6 37.7 
C-INGRES 1.4 32.3 32.8 
IDMnodac 0.9 22.8 29.5 
IDMdac 0.7 20.8 20.9 

Table 11 
Update Queries With Indices 

Total elapsed time in seconds 

Query Tppe 

System Append Delete Modify Modiiy 
1 Tuple 1 Tuple 1 Tuple 1 Tuple 

(Key Attr) (Non-Key Attr) 

U-INGRES 41.2 188.5 182.2 
C-INGRES 37.2 242.2 254.0 
IDMnodac 27.0 65.0 66.8 
IDMdac 21.2 36.0 36.0 

U-INGRRS 9.4 6.8 7.2 9.1 
CINGRES 2.1 0.5 1.6 I.6 
IDMnodac 03 0.4 0.6 0.5 
IDYdac 0.a 0.4 0.5 0.5 
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on the updated relation (one clustered index and two 
secondary indices), in order to account for the cost of 
updating indices in a signticant way. 

Another observation, that surprised us at first. is 
the low cost of the append compared to the cost of the 
delete, in the no-index case. The explanation for this 
discrepancy is that all the systems append new tuples 
without checking if they were not already present in 
the relation. Thus, appending a tuple only involves 
writing a new tuple, while deleting a tuple requires 
scanning the entire relation first. On the other hand, 
when a clustered index is available, deleting is faster 
than appending a tuple. apparently because the index 
is modified but the tuple is not physically deleted. 
Finally, the performance of all systems on the “modify 
non-key” (that is modify a tuple identifled by a 
qualification on a non-key attribute) demonstrates a 
very efficient use of a secondary index to locate the 
tuple. However, one could again argue that the right 
algorithm for this query would require verifying that 
the modifled tuple does not introduce an inconsistency 
by duplicating an existing tuple. 

5. Concluslont~ and Future Reseerch 
In this paper, we have presented and interpreted 

a set of measurements performed on several database 
management systems. Originally, we had intended to 
compare the relative performance of database 
machines that use special purpose hardware and con- 
ventional database management systems that run on 
general purpose computers. However, in the early 
stages of our benchmark design, we realized that we 
had to limit the scope of our measurements in order to 
reach any valid conclusions. The main limitation of the 
present study is that it addresses only the single user 
case. At this point, we must therefore admit that our 
benchmark is neither an exhaustive comparison of 
different systems, nor a realistic approximation of 
what measurements in a multiuser environment will be 
lie. 

However, .we have found that limiting our experi- 
ments to stand-alone queries was the only systematic 
way to isolate the effects of specific hardware 
configurations. operating system features, or query 
execution algorithms. For this reason, the single user 
case constitutes a necessary baseline measure which 
we will use in the interpretation of multiuser bench- 
mark results. 

Finally, we would like to emphasize that designing 
the WISC database. and the set of aueries that PO with 
it, represents a first attempt at intrbducing a sc:entiflc 
approach to database benchmarking. We will continue 
retiing the single user benchmark while we also start 
work on multiuser benchmarks. 

8. Acknowledgments 
A large number of people deserve thanks for mak- 

ing this paper possible. First, Rakesh Agrawal helped 
in the design of the relations and queries used in our 
benchmark. Second we would like to thank Britton-Lee 
Inccrporated and Relational Technology Incorporated 
for their support in the benchmarking process. 
Although only a handful of database accelerators were 
running when we began the benchmarking process, 
Britton-Lee generously made a DAC available for us. 
We especially wish to thank Mike Ubell of Britton-Lee 
for helping us run our benchmarks remotely. We also 

wish to thank Derek Frankforth, Bob Kooi. Trudi Quinn, 
and Larry Rowe at RTI for their help in bringing up the 
benchmark on VMS. We also wish to thank Haran Boral 
for his suggestions on the earlier drafts of this paper. 

Finally we would like to acknowledge the support 
for this research provided bv the National Science 
Foundation under grant MCS&01870 and the Depart- 
ment of Energy under contract DE-AC02-81ER10920. 

7. References 

[BABB79] Babb, E. “Implementing a Relational Data- 
base by Means of Specialized Hardware,” ACM 
TODS. Vol. 4. No. 1. March 1979. 

[BANE751 Banerjee J., R.I. Baum, and D.K. Hsiao, “Con- 
cepts and Capabilities of a Database Computer,” 
ACM TODS. Vol. 3, NO. 4. Dec. 1978. 

[BI’ITB2] Bitton. D. and D.J. Dewitt. “Duplicate Record 
Elimination in Large Datafiles,” to appear ACM Tran- 
sactions on Database Systems. 

[BORAB2] Boral. H., Dewitt, D.J.. Friedland. D., Jarrell. 
N., and W. K. Wilkinson, “Implementation of the 
Database Machine DIRECT,” IEEE Transactions on 
Software Engineering, November, 1982. 

fBORA53] Boral H. and D. J. Dewitt, “Database 
Machines: An Idea Whose Time is Past? A Critique 
of the Future of Database Machines,” Technical 
Report, Computer Sciences Department, University 
of Wisconsin, April 1983. 

[DEW1791 Dewitt, D.J., “DIRECT - A Multiprocessor 
Organization for Supporting Relational Database 
Management Systems,” IEEE Transactions on Com- 
puters, June 1979. pp. 395-408. 

[DEWIB~] Dewitt. D. J., and P. Hawthorn, “Performance 
Evaluation of Database Machine Architectures,” 
Invited Paper, 1981 Very Large Datahase Confer- 
ence, September, 1981. 

[EPSTBO] Epstein, R. and P. Hawthorn, “Design Deci- 
sions for the Intelligent Database Machine,” 
Proceedings of the 1980 National Computer Confer- 
ence, pp. 237-241. 

[HAWTfiZ] Hawthorn P. and D.J. Dewitt. “Performance 
Evaluation of Database Machines,” IEEE Transac- 
tions on Software Engineering, March 1982. 

[IDMSOO] IDM 500 Reference Manual, Britton-Lee Inc., 
Los Gatos, California. 

[MCGR78] McGregor, D.R., Thomson, R.G., and W.N. 
Dawson, “High Performance Hardware for Database 
Systems,” in SWdWn.9 for Large Databases. North 
Holland, 1976. 

[OZKA75] Ozkarahan, E.A.. S.A. Schuster, and K.C. 
Smith. “RAP - Associative Processor for Database 
Management,” AFIPS Conference Proceedings, Vol. 
44, 1975, pp, 379 - 358. 

[OZKA77] Ozkarahan. E.A., Schuster, S.A. and Sevcik. 

18 



K.C., “Performance Evaluation of a Relational Asso- 
ciative Processor,” ACM Transactions on Database 
Systems, Vol. 2. No.2. June 1977. 

[STON76] Stonebraker, M.R. , E. Wong. and P. Kreps, 
“The Design and Implementation of INCRES,” ACM 
TODS 1. 3. (September 1976). 

[STONBO] Stonebraker. M. R “Retrospection on a Data- 
base System,” ACM TODS 5, 2. (June 1980). 

[STONBl] Stonebraker, M.. “Operating System Support 
for Database Management.” Communications of the 
ACM. Vo. 24. No. 7. July 1981. pp. 412-418. 

[SD751 Su. Stanley Y. W., and G. Jack Lipovski, “CASSM: 
A Cellular System for Very Large Data Bases”, 
Proceedings of the VLDB Conference, 1975. pages 
456 - 472. 

[UBEL51] Ubell, M.. “The Intelliient Database Machine,” 
Database Engineering, Vol. 4, No. 2, Dec. 1981, pp. 
28-30. 

Appendix I 
List of Join Queries in INGRES Format 

joinAselB 

range of t is tenthoustup 
range of w is tenthoustup2 
retrieve into tempsell(t.all,w.all) where 
(t.unique2 = w.twounique2) and w.twounique2 < 1000 

sjoinAselB 

range oft is tenthoustup 
range of w is tenthoustup2 
retrieve into tempsell(t.all.w.all) where 
(tuniquel = w.twouniquel) and w.twouniquel < 1000 

joinABprime 

range oft is tenthoustup 
range of b is tempBprime 
retrieve into tempjoinABpr (t.all,b.all) 
where t.unique2 = b.twounique2 

sjoinABprime 

range oft is tenthoustup 
range of b is tempBprime 
retrieve into tempjoinABpr (t.all.b.all) 
where t.uniquel = b.twouniquel 

joinCselAselB 

and (t.unique2 = o.oneunique2) 

sjoinCseIAselB 

range of o is thoustup 
range oft is tenthoustup 
range of w is tenthoustup2 
retrieve into ntmpsel3(t.all.r.all) 
where (t.uniquel = w.twouniquel) 

w.twouniquel < 1000) and (t.uniquel < 1000) 
= o.oneuniquel) 

range of o is thoustup 
range oft is tenthoustup 
range of w is tenthoustup2 
retrieve into tempsel3(t.all,w.all) 
where (t.unique2 = w.twounique2) and 
(w.twounique2 < 1000) and (t.unique2 < 1000) 
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