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ABSTRACT and correctness of dml programs can be proved. 

An axiomatic basis for defining the semantics of 
navigational data manipulation languages is 
presented. This basis consists of an abstraction 
of the network data model achieved by three 
abstract data types, an assertion language to 
express Properties of database states, and a DML 
to Program the transactions. The proof rules of 
the DML constructs and the axioms defined on the 
data types can be used to establish the 
correctness of transactions. Potential 
applications of the proposed formalism in 
language design, semantic definition of existing 
languages, and integrity management, are outlined 
via examples. 
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We start by treating the database as a collection 
of network structured objects, characterized by a 
few abstract data types [GUTT 781. We then define 
an assertion language for expressing properties 
of a database state in terms of functions and 
predicates defined on these abstract data types. 
We also propose a simple dml in which the 
transactions may be programmed. The dml 
statements are treated as assignments of network 
structured values to database objects. Therefore, 
their semantics can be given in the axiomatic 
style of Hoare [HOAR 741. Using the axioms of the 
dml statements and those of the abstract data 
types, we can prove that a dml program is 
correct: if the program is initiated in a 
database state characterized by a given 
assertion, we can show that upon completion of 
the program, the final database state satisfies 
another given assertion. 

1. INTRODUCTION 

Many extant database systems are based on the 
network data model [CODA 711. Users' transactions 
in such a system are formulated as navigational 
programs [BACH 731. Verifying that a given 
transaction preserves consistency is an important 
problem [BBC 801. A database state is consistent 
with respect to the real world if the stored data 
in that state satisfy the semantic integrity 
assertions. A transaction preserves consistency 
if its execution on a consistent database state 
results in a database state that is also 
consistent. 

Though our treatment in this paper may not 
include all the details of CODASYL DML, we 
believe that our axiomatic basis addresses two 
significant problems in the formal semant&,of 
network dmls. These problems, viz. navigational 
access and update of shared mutable objects, are -- 
explained below. 

Verification requires a precise definition of the 
data model and the semantics of the data 
manipulation language (dml) in which the 
transactions are programmed. Over the past 
decade, research in programming languages has 
developed techniques for specifying the Semantics 
of programs and for proving their correctness. In 
this paper, we present an approach that adapts 
and applies two of these techniques to provide an 
axiomatic basis on which formal semantics of 
network dmls permitting navigation can be built 

The existing network dmls allow sequential recod- 
at-a-time access based upon the concepts of 
currency pointers and ordering of the records. 
For example, in CODASYL DML, the effect of the 
FIND NEXT WITHIN SET operation is dependent upon 
the CURRENT OF SET and CURRENT OF RUN UNIT 
pointers as well as upon the order clause for the 
SET type in question. While implicit currency 
pointers, manipulable by side-effects, provide 
flexibility in programming, the presence of side- 
effects makes the semantics of individual DML 
statements more complex. For example, the 
semantics of FIND NEXT, as given in [BILL 761, 
interact with the semantics of DELETE, because 
both the statements have implicit effects on 
currency point+rs. Our aim is to identify 
primitives for. navigation that have simple proof 
rules, (since keeping'.the proof rules simple can 
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make verification easier). Hence, we do not use 
the FIND statements of CODASYL DML with their 
implicit effects on currency as our primitives. 
Instead, we make currency explicit by treating 
the members of an owner-coupled set as an ordered 
set: the positions of the members are mapped to a 
sequence of natural numbers. 
functions, 

We then provide two 
POS and its inverse, GET, to perform 

this mapping. The semantics of more complex 
statements can then be expressed in terms of 
these primitives. For example, the FIND NEXT 
operation of CODASYL DML can be formulated as: 
first find the positional number; then increment 
it; and finally use it to get the member at this 
incremented position. Such explicit manipulation 
of currency is also advocated in recent language 
proposals, which introduce cursor variables 
manipulable by application programs [DATE 801. 

The shared mutable object problem [LISK 771 is 
caused by the participation of a member record in 
more than one owner-coupled set. Updating the 
value of this shared record has to be visible to 
all these owner-coupled sets. In the literature 
of abstract data types, the specification of 
shared objects and verification of programs using 
them have been recognized as a problem [FLON 791. 
Traditionally, an object is treated as being 
indistinguishable from its value; a higher level 
object is treated as a collection of values of 
the objects it encompasses. An update operation 
on an object is then expressed as the assignment 
of a new value to the object, and is assumed to 
modify the object itself, where each assignment 
is assumed to affect only a single object. Thus 
updating a shared object requires arbitrarily 
many assignments (in parallel) of new values to 
all the higher level objects encompassing the 
shared object. We provide a practical solution 
to this problem by distinguishing between the 
identifier designating the object and the value 
of the object; a separate mechanism (c.f., 
REFCLASS in Section 2.1) to access the value of 
an object with a given identifier is then 
required. In our formulation, owner-coupled sets 
have as values only the identifiers of the member 
records. Thus an update on a shared record 
changes only the value of the record but not its 
identifier, and can be treated as a single 
assignment of the new value to this record. 
Subsequent navigational retrievals through all 
the owner-coupled sets in which this record is a 
member, can obtain the new value of the record. 

Relatively little work has been done on proving 
correctness of dml programs [CASA 80, GARD 791. 
Though these efforts were similar to ours in 
spirit, they considered only relational dmls and 
did not have to deal with the two problems of 
navigational access and shared mutable objects, 
which are typical in non-relational dmls. Biller 
and Neuhold [BILL 761 developed denotational 
semantics for CODASYL DDL and DML. Our work 
differs from theirs in two respects: first, we 
use the technical machinery of abstract data 
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types and Hoare's axiomatics, which are more 
widely accepted in the programming methodology 
community than denotational semantics; second, 
their development aimed at providing a faithful 
specification of CODASYL DML by including the 
database i/o area in the language semantics. In 
contrast, we choose to treat the database i/o 
area as part of the program's address space, and 
advocate the explicit use of program variables in 
defining the semantics of individual DML 
statements. As is the case with making currency 
explicit, factoring out the specification of the 
database i/o area from the semantics of 
individual DML statements leads to simpler proof- 
rules, which makes program verification easier. 

The "clean" data model and simple primitives for 
navigational access that we define here have 
several potential uses. First, they can be 
embedded directly in a programming language to 
give a precisely-defined navigational DML. 
Second, they can serve to define precisely the 
semantics of existing navigational languages such 
as CODASYL DML [CODA 711 and UDL [DATE 801; this 
would facilitate uniform understanding of the 
language semantics by users and implementors 
alike, and also would make it possible to verify 
that programs written in them preserve 
consistency. In addition to program 
verification, precise semantics also lay the 
groundwork for program synthesis. This is 
important in multi-model database systems, in 
which a high-level query language is used as an 
intermediate language for mapping between models 

[ZANI 79, HD 81, SMIT 751. Queries in the 
map@g language have to be compiled 
automatically into equivalent DML programs. Doing 
this correctly requires a precise semantic 
definition of both the query language and the 
navigational DML. Finally, our data model and 
primitives can be used as the basis for designing 
new navigational DMLs; defining the semantics of 
a new DML in terms of these primitives would 
expose any semantic errors or inconsistencies in 
the design. In this paper we illustrate some of 
these points via examples. A complete treatment 
of these applications is a subject of future 
research. We see the semantics developed here as 
the starting point for that research. 

In Section 2, we develop the specification of the 
abstract data types in an object-oriented view of 
database. In Section 3, we formulate the 
assertion language and illustrate its use. In 
Section 4, we present the DML statements and 
their axiomatic semantics. We also illustrate the 
use of these axioms in verifying dml programs. 
In section 5, we briefly summarize the 
applications of our formalism. 
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2. OBJECT ORIENTED MODEL OF A NETWORK DATABASE 

A network schema describes two sets of types, 
viz., a set of record types, and a set of owner- 
coupled set (OCS) types. A network database 
stores occurrences of record types and OCS types. 
In this section, we develop an object-oriented 
model of a network database. We first describe 
what an object-oriented model is, in general, and 
then show how network schema8 and navigational 
access can be described in terms of this model. 

2.1. Object-oriented model 

An object-oriented system is 
typed objects. Each object is 
by an identifier. An object 
its type’ designates a set 

viewed as a set of 
uniquely identified 
holds a value, and 
of possible values 

that the object can hold. Given an object type S 
and a countable set I of object identifiers, 
there exists, at any instant, an evaluation 
function VALIIS: I --> S, which retrieves the 
value of the object identified by a given 
identifier. This evaluation function is, however, 
time dependent, because an update operation on an 
object will change its value. Also, the function 
as defined above is partial because objects can 
be created or deleted from the system and only 
the existing objects can have a value. If we 
assume undefined to be a special value in each 
type S and designate the value of a non-existing 
object to be this special value, the evaluation 
function can be redefined as a total function 
VAL#S : I --> s u {undefined}. In this 
formulation, the creation or deletion operation 
on an object i in I also changes VALES. - 

An object il of type Sl is said to refer to (or -- 
reference> another object 12 of type S2 if 
VAL#Sl(il)=i2. A navigational retrieval of the 
value of the referenced object 12 by following 
the reference from il is expressed as 
VAL#SZ(VAL#Sl(il)). As the update on a referenced 
object does not affect its identifier, a 
navigational retrieval following the update will 
result in the updated value of the referenced 
object. A special case of reference, called null 
reference, occurs when the referenced object has 
undefined as its value. 

We define a reference class to be a countable set 
of objects of a given type S, as in [LUCK 791. At 
any instant of time, the value D#S of a reference 
class is the set of pairs of object identifiers 

1 
Strictly speaking, a type designates a set of 
operations and axioms on these operations in 
addition to the set of possible values. 

and object values, i.e., is exactly the 
evaluation function VAL#S. As the update 
operations on the objects result in a new 
evaluation function, these operations result in a 
new value of the corresponding reference class. 

We characterize the behaviour of the objects 
under the update operations by treating the 
values of reference classes as instances of a 
parameterized abstract data type REFCLASS[Sl, 
where S is the set of all object types defined 
for the system. The update operations on 
individual ’ 

~~~~~:~ns 
defined 

ttedata 
the 

constructor2 type REFCESS&l , 
because they construct new instances (values) of 
the associated reference class. The 
specifications of this abstract data type are 
given in figure 2-l. 

It may be noted that we ignore error conditions 
in our specification of abstract data types. For 
example, in axiom d4 of 2-1, we state that delete 
operation has no effect on an empty reference 
class, rather than specify an error condition. In 
general, we adhere to Guttag’s scheme of 
specifying error conditions in which a special 
error value is returned by a function when the 
function is “illegally” used [GIJTT 781. The 
meanings of the operations on REFCLASS are given 
below: 

EXTEND(DfS,i) : : 
adds an object with identifier i 
to D#S. 

ASSIGN(D#S,i,v):: 
assigns a value v to object i in 
D#S. It will be written as D#S[ 
i<-v I. 

VAL(D#S,i):: extracts the value of object i 
from reference class D#S. It will 
be written as D#S[i]. 

DEFINED(D#S,i):: 
This is true if object identifier 
i denotes an existing object in 
reference class D#S. 

2The set of functions defined over an abstract 
data type is partitioned into two classes: 
constructors and observers. A constructor 
function results in a new instance of the defined 
data type. An observer function results in a 
value of type other than the defined data type. 
For example, for data type stack, Push may be a 
constructor, and Isempty may be an observer. 
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type REFCLASS[S] (* instances written as D//S *) - 
requires 

5: set of object types 
ID: set of object identifiers 
OBJ: set of object values 
IDLIST: set of list-of-identfiers 

operations 
INIT: S --> Di/S 
EXTEND: D#S X ID --> D#S 
ASSIGN: D//S X ID X OBJ --> D#S 
DELETE: D//S X ID --> DbS 
VAL: D#S X ID --> OBJ 
FIND: D#S X QUAL --> IDLIST 
DEFINED: D//S X ID --> BOOLEAN 

axioms 
dl. VAL(INIT(S),i) = undefined 
d2. VAL(EXTENDS(D#S,il),i2) 

= if il=i2 
then undefined 
else VAL(D#S,i2) 

d3. VAL(ASSIGN(D#S,il,o),i2) 
= if il=i2 

then o 
else VAL(D#S,i2) 

d4. DELETE(INIT(S),i) = INIT 
d5. DELETE(EXTEND(D#S,il),i2) 

=if il=i2 
then D#S 
else EXTEND(DELETE(D#S,i2>,il) 

d6. DELETE(ASSIGN(D#S,il,o),i2) 
= if il=i2 

then D//S 
else ASSIGN(DELETE(D#S,i2),il,o) 

d7. FIND(INIT(S),q) = [I (* [I denotes an 
empty list *) 

d8. FIND(EXTEND(D#S,i),q) = FIND(D#S,q) 
d9. FIND(ASSIGN(D#S,i,o),q) 

= if q(i) 
then [i] ]I FIND(D#S,q) 

(* ]I denotes list 
concatenation *) 

else FIND(D#S,q) 
d10. DEFINED(INIT(S),i) = false 
dll. DEFINED(EXTEND(D#S,il),i2) 

= if il=i2 
then true 
else DEFINED(D#S,i2) 

d12. DEFINED(ASSIGN(D#S,il,ol),i2) 
= DEFINED(D#S,i2) 

d13. (* axiom of equality *> 
D#S = D//S 
iff (Vi)((DEFINED(D#S,i)=DEFINED(D#S',i) 

and (VAL(D#S,i) = VAL(D#S',i)) 

DELETE(D#S,i):: 
removes object i from reference 
class D//S. All references to this 
object become null references. 

FIND(D#S,q):: retrieves a set of object 
identifiers for the object values 
that satisfy qualification 
expression q. 

The FIND operation is the basis of value based ~- 
search in our model. The qualification expression 
parameter q is a single variable boolean 
expression where the variable denotes objects of 
type S (the target type of the search) and q 
involves functions and predicates defined over 
the values of type S. For example, in-a reference 
class of objects of type INTEGER, the 
qualification expression to find all objects with 
values less than 5 can be 

q <--> (VAR x: VALbINTEGER(x) < 5) 

2.2. Network Structured Values 

A traditional network schema 2 describes two sets 
of types, namely, the set of record types r, and 
the set of owner-coupled set (OCS) types L. A 
network database, which is an extension 07 2, 
stores occurrences of these record types and OCS 
types. In terms of our object-oriented model, a 
database is a set of objects, where the set of 
object types 2 is the union of,& and T. The set 
of objects in the database is partitioned by type 
into several reference classes, one for each 
object type. A database state is the set of 
values of the constituent reference classes. 

A record occurrence of type T in T is a record -- 
valued object (record) whose value is a k-tuple 
<al,a2, ..,ak>, where each ai in DOM(Fi), Fi is a 
field of record type T, and DOM(Fi) is the domain 
of values associated with field Fi. An OCS 
occurrence of type L in L is an OCS-valued (OCS) -- 
object whose value is a 2-tuple <t,m>, where t is 
the identifier of the owner record and m is an 
ordered set of identifiers of the member records. 
Thus, an OCS references both its owner record as 
well as the constituent member records. As a 
result, the effect of an in-place update of any 
referenced member record is visible on subsequent 
navigational retrievals via the referencing OCS. 

The record-values and OCS-values are treated as 
instances of two parameterized abstract data 
types, RECORD[T] and OCS[L], respectively. Such 
an object-value can be assigned to an object in 
the reference class for the object type in 
question. The definitions of these two abstract 
data types appear in figures 2-2 and 2-3. 

Figure 2-l: Definition of data type REFCLASS 
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type RECORD[Tl 
requires 

r: set of record types 
F: set of field types 
g: set of domains 

operations 
EMPTY: 2 --> RECORD 
WRITE: RECORD X E X g --> RECORD 
READ: RECORD X x --> 2 

axioms 
rl. READ(CREATE(T),F,d) = NULL 

(* each domain has 
the special value 
NULL *) 

r2. READ(WRITE(r,Fl,d),F2) 
= if Fl=F2 

then d 
else READ(r,F2) 

Figure 2-2: Definition of data type RECORD 

The meanings of the operations defined on data 
type RECORD[x] are given below: 

EMPTY(T):: creates an empty record-value with 
the value NULL for each of its 
fields. 

WRITE(r,F,v):: stores value v in field F in 
record-value r. 

READ(r,F):: extracts the value of field F from 
record-value r. 

The meanings of the operations defined on data 
type OCS[&] are given below: 

CREATE(L,r,T):: 
creates an empty OCS-value of type 
L, with record r of type T as its 
owner. 

ADD(s,r,T):: add record r as a member to OCS- 
value 6. 

HEAD(s):: retrieves the identifier of owner 
record from an OCS-value 6. 

owG(s,i):: is true if record i is a member of 
OCS-value s. 

POS(s,r,Q):: retrieves the position number of 
record r within the set of members 
in OCS-value s; the binary 
predicate Q(x,y) determines the 
ordering of the set of members. 

GET(s,n,Q):: retrieves the identifier of the 
member record which is in the nth 
position within the set of members 
in OCS-value s. The ordering is 
determined by binary predicate 
Q(x>Y). 

REMOVE(s,r,T):: 
removes a member record with 
identifier r from OCS-value s. The 
argument T denotes the type of 
member record. 

MEMBERS(s):: retrieves the set of identifiers 
of the member records from OCS- 
value s. 

type OCS&l (* written as s *> 
requires 

RID: set of record identifiers 
r: set of record types 

operations 
CREATE: L X RID X T --> OCS 
ADD: ,CS X RID x T --> ocs 
REMOVE: OCS X RID X-T --> ocs 
HEAD: ocs -->-RID 
OWNS : OCS X RID --> RID 
MEMBERS: OCS --> {RID} 
POS: OCS X RID X ORDER --> INTEGER 
GET: OCS X INTEGER X ORDER --> RID 

axioms 
01. HEAD(CREATE(L,r,T)) = r 
02. HEAD(ADD(s,r,T)) = HEAD(s) 
03. OWNS(CREATE(L,rl,T),r2) = false 
04. OWNS(ADD(s,rl,T),r2) 

= if rl=r2 then true 
else OWNS(s,rZ) 

05. POS(CREATE(L,rl,T),r2,Q) = 0 
06. POS(ADD(s,rl,T),r2,Q) 

= if Q(r2,rl) then POS(s,r2,Q) 
else 1 + POS(s,r2,Q) 

07. GET(CREATE(L,r,T),n,Q) = & 
08. GET(ADD(s,r,T),n,Q) 

= if n=POS(ADD(s,r,T),r,Q) 
then r 
else if n > POS(ADD(s,r,T),r,Q) 

then GET(s,n-l,Q) 
else GET(s,n,Q) 

09. MEMBERS(CREATE(L,r,T)) = t} 
010. MEMBERS(ADD(s,r,T)) = {r} U MEMBERS(s) 

011. REMOVE(CREATE(L,rl,Tl),r2,T2) 
= CREATE(L,rl,Tl) 

012. REMOVE(ADD(s,rl,Tl),r2,T2) 
= if rl=r2 

then s 
else ADD(REMOVE(s,r2,T2),rl,Tl) 

Figure 2-3: Definition of data type OCS 
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Navigational access within an OCS-value is 
supported by the two operations POS and GET. 
Based on the ordering predicate Q, function POS 
maps the identifiers of the member records to 
their ordinal numbers l,..,N. Function GET 
performs the inverse mapping. The ordering 
predicate Q is a binary predicate defining the 
ordering of the member records within an ocs. 
For example, if employee records (EMP) under an 
OCS DE are ordered in descending order of the 
salary field (SAL), the ordering predicate Q that 
relates two employee records'el and e2, is 

Q(el,e2) <--> D#EMP[el].SAL > D#EMPte21=SAL 

The different varieties of FIND statements In 
CODASYL DML can be expressed in terms of our 
functions FIND, POS, and GET. For example, FIND 
FIRST T WITHIN SET S, where the SET SELECTION 
CLAUSE for OCS type S is VIA OWNER, can be 
modelled by first using FIND(D#S,P) to retrieve 
identifier s of the selected OCS of type S; and 
then using GET(VAL(s),l,Q) to retrieve the 
identifier of the first member record. Note that 
the SET SELECTION CLAUSE is encoded In the 
qualification expression P, which is an argument 
of the FIND operation; the ordering clause 
defined over the OCS type S Is expressed by the 
ordering predicate Q, which is an argument of the 
GET operation. Similarly, FIND NEXT WITHIN can 
be modelled as GET(VAL(s),n+l,Q) where s is the 
identifier of the selected OCS and n is the 
ordinal number of the current member record. 
Thus ) the implicit side-effects on currency 
pointers in CODASYL DML are translated into 
explicit arithmetic operations on ordinal 
numbers. 

We believe that the definitions of these three 
data types REFCLASS, RECORD and OCS provide a 
simple abstraction of the structures and 
primitive operations of network databases. The 
features of the CODASYL DDL specifications [CODA 
711 not handled in our formulation are: 

- repeating groups 

- multiple member types for an OCS type 

- storage structure information. 

The various specifications of ordering, 
membership class, and primary keys (fields for 
which duplicates are not allowed) will be treated 
in our formulation as Integrity assertions. We 
give some examples of how these assertions can be 
expressed in section 3. 

3. DATABASE ASSERTION LANGUAGE 

Any database state can be constructed by repeated 
application of the constructor operations of 
types REPCLASS, RECORD and OCS. Similarly 

properties of a database state can be observed by 
applying a sequence of observer operations of 
these data types. Integrity assertions are 
examples of properties of database states. In 
this section, we define an assertion language to 
express such properties of database states by 
extending the many-sorted first order predicate 
calculus [ENDE 721 with terms involving database 
objects. These new terms, called database terms, 
are: 

1. all symbols denoting object types, 
fields, object identifiers, object 
values and reference classes; 

2. all symbols denoting list-of-object- 
identifiers; 

3. all functions and predicates defined 
on data types REFCLASS, RECORD and 
ocs; 

4. all terms obtained from 1,2 and 3 by 
function composltion. 

Apart from the database terms, we assume the 
existence of the following operators on type LIST 
: NULL, FIRST, REST and COUNT. We also assume 
the existence of comparison predicates for 
equality, etc., defined over the domains 
associated with the field types. 

An Example Database 

We now introduce a simple example that 
illustrates the ability of our assertion language 
to express properties of database states. 
Consider the database schema shown in figure 3-l. 
Order clauses and membership class clauses are 
missing from the schema. We express these, 
instead, as integrity assertions. 

SCHEMA PERSONNEL 
TYPE STRING = PACKED ARRAY[1..12] OF CHAR; 
TYPE DEPT = RECORD (* DEPARTMENT *) 

DNAME: STRING; 
BUDGET: REAL 

END; 
EMP = RECORD (* EMPLOYEE *) 

SSNO: STRING; 
DNAME: STRING; 
SALARY: REAL 

END; 
DE = OCS (* DEPARTMENT'S EMPLOYEES *) 

OWNER: DEPT; 
MEMBER: EMP 

END; 
MGR - ocs (* MANAGER'S SUBORDINATES *) 

OWNER: EMP; 
MBMBER:EMP 

END; 
END PERSONNEL 

Figure 3-l: gxample Database Schema 
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Example l.,Automatic Membership 
In OCS type DE the members are automatic. 
This is expressed as: 

(Cl):: (%eEMP)(3deBDE): OWNS(D#DE[de],e) 

Here e and de are variables of type object 
identifier bound to the object types EMP and 
DE. Note that D#DE[de] is our notation for 
VAL(D#DE,de) and is required for the type 
conversion fromobject identifier to Its value. 

Example 2. Ordering of members 
The member records in OCSs of type DE are in 
descending order by SALARY. This is 
expressed as: 

(C2):: (fdeeDE)(fel,e2gEMP): Q(el,eZ) 
--> (POS(D#DE[de],el,Q) < POS(D#DE[de],eZ,Q)) 

where the orderin predicate 
Q(el,e2) <-> (D#EMPLel].SALLi 

> D#EMP[e2].SALARY). 
Note that D#EMP[el].SALARY is shorthand for 
RRAD(D#EMP[el],SALARY). 

Example 3. Structural Constraint 
Subordinate employees must be in the same 
department as their manager. 

(C3):: (VmSMGR)(fegEMP): 
(OWNS(D#MGR[m],e) --> 

(D#lW[READ(D#MGR[m] )l-DNm 
= D#EMP[e].DNAME)) 

It may be noted that both "recursive sets' 
(e.g., OCS type MGR) and structural 
constraints are proposed in CODASYL 78 [MANC 
783. 

Example 4. Duplicates Not Allowed constraint 
The SSNO field in EMP records Is a prlmaq 
key. 

(C4):: (VegEMP): 
(C~U~(FIN~(DXEMP,(~~~R X: D#E~[x] .&NO = 

D&MP[e].SSNO))) 
= 1) 

Note that in Example 4 we have used the 
cardinality function COUNT defined over the 
data type LIST. 

Example 5. General Integrity Constraint 
No employee can earn more than his manager. 

(C5):: (VmgMGR)(feSEMP): 
(OWNS(D#MGR[m],e) -> 

(D#RMP[e].SALARY 
<- D#EMP[RRAD(D#MGR~m])].SALARY)) 

Note that in CODASYL DDL, one has to use a 
trigger procedure to check this constraint. 
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From a pragmatic viewpoint, this assertion 
language has the advantage that we can express a 
large class of integrity assertions non- 
procedurally. In contrast, CODASYL DDL provides 
special constructs for some of these constraints; 
all other constraints must be coded as trigger 
procedures. A more important point is that this 
assertion language is backed by a proof theory of 
first order calculus augmented by the axioms of 
the data types REFCLASS, RECORD and OCS. The 
proof theory allows us 

- to, prove that some properties of a 
database are valid over all database 
states 

- to detect inconsistencies in integrity 
specifications during the database 
design phase 

- to detect redundant specifications of 
integrity assertions, thereby 
minimizing the number of integrity 
assertions to be maintained. 

4. DATA MANIPULATION LANGUAGE AND PROOF RULES 

In this section, we design a simple data 
manipulation language over the primitive 
operations of the three abstract data types by 
integrating the data types with the control 
structures of PASCAL. 

The integration is achieved by including the 
database objects in the execution enviroment of 
the programming language, so that a dml program 
can directly access the database objects. One 
consequence of this Integration Is that the 
programmer can use the control structures for 
manipulating the database in the same way as he 
uses them to manipulate the usual program 
variables. This advantage has been recognized in 
a number of recent database language proposals 

[DATE 801,. [WASS 791, [SCRM 771. The other 
consequence is that the user w* area and 
currency pointers are eliminated from the 
description of the semantics of the dml 
statements. This makes the semantics of the dm.l 
statements “cleaner”, thereby improving the 
understanding of programs, and more Importantly, 
simplifying the proof-rules necessary for program 
verification. (The reader may contrast our 
formulation with that by Biller and Neuhold [BILL 
761, which included the specification of- the 
database I/O area in the language semantics). 

4.1. Data Manipulation Lanuage 

We extend the type declaration facilities of 
PASCAL by including the schema definitions Of 
RECORD and OCS. The variables introduced are 
object variables and J& variables. A list 



variable can have as its value a list of object 
identifiers. An object variable (analogous to a 
tuple variable in relational languages) can have 
as its value an object identifier. 

The dml statements for updating the database are 
as follows: 

Ml. CREATE R(r) 
This statement creates a record object 
of type R. The variable r denotes this 
stored record. 

M2. CREATE d(l) WITH R(r) 
This creates an OCS object of type L, 
with the record denoted by r (of type 
R) as its owner. The variable 1 
denotes this OCS. 

M3. CONNECT R(r) TO L(1) 
This connects the record denoted by r 
to the GCS denoted by s. 

M4. STORE v IN R(r).F 
This stores the value v in the field F 
of the record denoted by r. 

MS. DISCONNECT R(r) FROM L(1) 
This di$connects the record denoted by 
r from the OCS denoted by 1. 

M6. DELETE S(s) 
This deletes the object denoted by 
s. The object type is denoted by S. 

The retrieval statement In our dml has the form: 

M7. ASSIGN x WITH e 
The target variable x Is either an 
object variable, a list variable or a 
usual PASCAL variable. The source 
expression e is a retrieval expression 
as defined below. 

A retrieval expression Is a term formed by 
fuiiction compostion of only the observer 
functions defined on the data types REFCLASS, 
RECORD and OCS. A retrieval expression can be 
used .to form boolean expressions used for 
controlling WHILE statements or IF-THEN-ELSE 
statements. 

The dml statements Ml-My can be used in 
conjunction with all PASCAL statements. However, 
we introduce a specific form of FOR-statement 

[HOAR1 721, which is useful for sequential 
processing of database objects. This statement is 
shown below: 
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M0. FOREACH x IN X DO M 
Here X is a list variable (or a type 
name) and x is an element of the list 
(or object variable of given type). 
The statement M is repeatedly executed 
for each element in the list X. The 
statement M is not allowed to change 
either x or X. 

An example program, based on the schema in figure 
3-1, is shown in figure 4-l. This program is 
intended to give a 10% raise to all employees of 
the department that is the owner of an OCS object 
with identifier de. 

VARe: RECORD EMP; 
M: LIST OF MGR; de: OCS DE; 
s: REAL; 

BEGIN 
(* assume the object variable de has the 

identifier of the selected OCS object 
of type DE *) 

ASSIGN E WITH (MHMBERS(D#DE~del)); 
FOBEACH e IN E DO 
BEGIN (* process this employee e *) 

ASSIGN 8 WITH (D#EMP[el.SALARy); 
IF 8 <- 80K 
THEN 

STORE (s * 1.1) IN EMP(e).SALARY 
END 

END. 

Figure 4-l: Example program to update member 
records selectively 

4.2. Proof Rules 

The formal semantics of the dml statements Ml-M8 
can now be given in Hoare's axiomatic style. In 
this approach, the semantics of a programming 
language statement M are given by two assertions, 
called the precondition and the postcondition. 
Precondition P describes the Initial state of the 
system before M is executed and postcondition Q 
describes the final state after M's execution. 
For example, the semantics of the PASCAL 
assignment statement x:-e are given as: 

Q[e/xl {x:=el Q 

The symbol Q[e/xl stands for the assertion 
obtained by replacing all the free occurrences of 
symbol x in assertion Q by expression e. 
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As all the dml statements, Ml-M5, are assignments 
to the respective reference classes, we give 
their axiomatic semantics as follows: 

Al. 
(not defined(D#R,r) --> Q)[D#R'/D#R]{Ml]Q 
where 
DIR' = extend(DbR,r)[r <- EMPTY(R)]. 

The axiom states that if the object r 
did not exist before, then statement 
Ml will extend the reference class 
with object r and assign to it the 
record value EMPTY(R). 

A2. 
(not defined(D#L,l) -> Q)[D#L'/D#L]{M2] Q 
where 
D#L' z extend(D#L,l)[l<-Create(L,r,R)] 

A3. Q[DtL'/Dh] (M3) Q 
where D#L' = D#L[ 1<-add(D#L[l],r,R)] 

A4. Q[DtR'/DtR] (M4) Q 
where 
D#R' = D#R[r<-write(D#R[r],F,v)]. 

A5. Q[D#L'/D#L] {MS} Q 
where 
D#L' z D#L[ s <-- remove(D#L[s],r,R)] 

A6. Q[D#S'/D#S] (M6) Q 
where D#S' = delete(D#S,s) 

A7. Q[e/Xl {M7] Q 

A80 (X = XllI[x]llX2),I(X1) {M] I(XllI[x]) 
--> I([11 (~8) I(x) 
where [] denotes the empty list, and 
I I denotes the list concatenation 
operator. 

The proof-rules for the usual PASCAL statements 
are those given by Hoare and are shown in figure 
4-2. 

A9. Q[e/x] tx:=elQ 
AlQ. P{S}R, (R-->Q) -> P{S]Q 
All. (P-->R), R{S}Q --> P{S]Q 
A12. P{Sl}R, R(S2)Q --> P{Sl;S2]Q 
A13. (P and B{M}Q), (P and not B{M']Q) 

--> P{IF B THEN M ELSE M'}Q 
A14. (P and B{M}P) 

--> P{WHILE B DO M}(P and not B) 

Figure 4-2: Proof-rules for PASCAL 
control structures 
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4.3. Proof Technique 

We now discuss the use of these axioms in proving 
the correctness of dml programs. A program S is 
proved correct by showing that if an initial 
assertion P holds before the program, then a 
final assertion Q holds on completion of the 
program. That is, we have to prove a formula 
P{S}Q, written in Hoare's pseudological notation. 
Each of the axioms Al-Al4 is of the form 
Hl and II2 and . . . and Hn --> P{S}Q. Hence, to 
show P{S]Q one has to establish the truth of each 
antecedent Hi. For example, consider axiom A13: 
in order to show P{if B then M else M'}Q, we 
have to show the antecedents (P and B){M)Q and 
(P and not B){M')Q. Also, note that axioms A10 
and All require us to prove sufficiency 
conditions, e.g., P -->R in axiom All. Since these 
sufficiency conditions are formulas in our 
assertion language, they can be proved using the, 
proof theory of our assertion language (i.e., the 
axioms of the data types together with the proof 
rules of first order calculus). 

5. APPLICATIONS 

In sections 2,3, and 4, we presented axiomatic 
semantics of network database operations. Based 
on the definitions of three abstract data types, 
we developed a framework for formulating 
integrity assertions, characterizing database 
structures, and verifying dml programs. Our 
formulation of the semantics is a starting point 
for research on a number of problems in network 
database technology. First, the formulation can 
serve as a basis for providing interpretive 
semantics of other navigational languages for the 
network data model; such interpretive semantics 
provide a precise definition of the language. 
Second, the proof system developed in this paper 
makes it possible to verify dml programs. A third 
application of our formalism is to language 
design. Inconsistencies in language design 
usually arise out of interactions between 
different components of a language, even when 
each component by itself is seemingly well 
understood. We shall illustrate the application 
of our formalism to each of these problems. 

5.1. Interpretive Semantics of Existing Languages 

Throughout the paper, we have presented examples 
of how CODASYL DML constructs can be defined in 
our model. Here we present some examples of 
interpreting constructs from a recent language 
proposal, UDL [DATE 801. 

Example 1. Setting cursor varible 
An employee record under a given department 
may be retrieved in UDL by the statement: 



FIND FIRST EWE' 
UNDER UNIQUE DEPT VIA DE 
WHERE DEPT.DNAME = 'research' SET (e) 

Here the UNDER clause specifies a fanset 
(OCS) from which the first member record is 
to be selected. In our formulation, we shall 
encode this specification in a qualification 
expression as: 

P:: (VAR x: D#DEPT[HEAD(D#DE[x])].DNAME 
= 'research') 

The semantics of the UDL statement Is then 
given as: 

ASSIGN de wmi (PIRST(FIND(D#DE,P))); (C6):: (VeeEMP): (e in MEMBERS(D#DE[de]) 
ASSIGN e WITH (GET(D#DE[de],l,Q)) --> D&MP[e].SALARY <= 88K) 

where Q is the ordering predicate for the 
OCS DE. Note that the cursor variable e of 
the UDL statement is represented by a 
corresponding record variable in our DML. 
Bowever, a cursor variable is implemented in 
UDL as having pointers to the selected 
record as well as to the selected ordered 
set. In our formulation, the cursor 
variable e must thus be represented by the 
pair <e,de>. 

This assertion states that the employees within 
the selected department can earn at most 88K as 
their salaries. In order to show that the 
program preserves integrity assertion C6, we have 
to prove the formula C6{Program)CL. 

We postulate an invariant I(S) 
I(S):: (E 2 MEMBERS(DfDE[de])) 

and ((Vi) (i in S --> D#BMP[i].SALARY<=88K)) 
and ((Vj) (j in (E - S) 

--> D#ENP[i].SALAKY<-88K)) 
Let M denote the body of the FOREACH statement. 
Define 

P <-> if D#EMPIe].SALARY <= 80K 
then (Vi) ((I In (El II [el)) 

--> D#EMP[i].SALARY<-88K) 
and WI (j in (E - (El I I IelI> 

-->D#EMP[j].SALARY<-88K) 
else I(E1 II [el) 

Example 2. Relative retrieval using cursor 
Suppose the FIND statement in the example 
above has been used to set the cursor 
variable e. One can then use the following 
statement in UDL to select the next member 
record within the same OCS : 

FIND UNIQUE @IMP AFTER e) SET (e) 

This statement is Interpreted in our model 
as: 

ASSIGN e WITH (GET(D#DE[de], 
(POS(D#DE[de],e,Q)+l), 
Q) 

where Q is the ordering predicate defined 
over the members of the OCS DE. Note again 
that we use ordinal numbers of the member 
records for navigating within one OCS. 

5.2. Verification of DML Programs 

The verifiability of programs can play an 
important role in integrity management. In 
particular, when a fixed set of preanalyzable 
transactions is to be designed for a closed DBMS 
(such as an airline reservation system), one can 
verify once (at design time) that each 
transaction preserves the integrity assertions as 
invariants. Alternatively, the proof system may 

be used to derive run-time tests for Integrity 
maintainence that are less expensive than the 
original integrity assertions. This technique has 
been proposed for the relational model in [BBC 
801, [BB 821. (Our proof system is limited to a 
serial execution of programs. We have not 
addressed the problems of inconsistency arising 
out of concurrent execution.) 

To illustrate the application of the proof 
system, we consider the dml program shown in 
figure 4-l and integrity assertion C6 shown 
below: 

It can be mechanically verified that 
P{MlI(El II iel). 

This can be done by using axioms Al3 and A4 to 
produce a sufficiency condition. By using axiom 
r2 of data type RECORD this sufficiency condition 
can be reduced to 
(y + 80K) -> ((y * 1.1) <= 88~) 
which is true. 

We must next prove the tedious but trivial lemma: 

(E - El II [e] II E2) and I(E1) -> P 

and this gives us by axiom All : 

((E - El I I [el II E2) and I(El)){M]I(El II [el) 

The proof rule A8 for the FORBACH statement 
enables us to conclude 

I([]){FOREACE e IN E DO M}I(E) 

Thus we have shown that 
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I([11 :: (E c MEMBERS(D#DE[de])) 
and ((4 j) (j in E 

--> D#EMP[j].SALARY <= 88K)) 

Now by axioms A7 and All, we generate another 
sufficiency condition 

C6 -> (4 j) (j in MEMBERS(D#DE[de]) 
--> D#EMP[j].SALARY <= 88K), 

which is also true. 

This concludes the proof of the formula 
C6{program}C6. 

5.3. Language Design 

When plain English text is used to describe the 
semantics of language, 
inconsistencies may 'be overlooked. 

potential 
We motivate 

this point by an example. 

Consider the semantics of the CODASYL statements 
FIND RECORD WITHIN SET USING IDS, and FIND NEXT 
DUPLICATE WITHIN SET USING IDS. In these 
statements, two different access methods viz., 
navigational retrieval and value based search 
interact. The normal use of these statements is 
to use the former once and then to repeatedly use 
the latter. The semantics of the second statement 
(we quote from [OLLE 781, p.156) are: 

The DBCS begins its search for the 
Identified record at the current record 
of the set type and proceeds to search in 
the order defined by the set ordering 
criteria of that type. 

Obviously, if the items of the USING clause are 
order keys, the above semantics are appropriate. 
But when the items are search keys, the above 
semantics would not make sense because the search 
key order may be different from the set order 
(I.e., the order imposed by the set ordering 
criterion). 

In our model, we would give an interpretive 
semantics as follows: 

FIND NEKT DUPLICATE EMP RECORD 
WITEIN DE SET USING SALARY = 20K 

<-> 
FIND (D#EMP, (VAR x: (D#EMP[x].SALARY = 20K) 

and (POS(D#DE[de],x,Q) 
= 1 + POS(D#DE[de],e,Q)))) 

where e and de refer to the current EMP record 
and current DE OCS respectively and Q is the 
ordering predicate. Since the ordering predicate 
Q As specified explicitly as argument to POS in 
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the retrieval expression, there is no ambiguity. 
Using the approapriate ordering predicate 
determines whether the records are retrieved in 
the search key order or set order. 

It is difficult to detect inconsistencies, such 
as the above, if the semantics of the language 
are Informally described. We argue, therefore, 
that formal semantic specification should go hand 
in hand with language design. 

6. CONCLUSION 

The primary objective of this work was to provide 
a clean semantics of navigational dmls for 
network databases. Our goal was to identify 
language primitives for which we could develop 
simple proof rules. We found that to meet this 
g-1, we had to make explicit all the effects of 
dml statements; e.g., their effects on currency 
and their interactions with the program 
workspace. 

The technical machinery used in this work 
consisted of two well-known techniques from 
programming methodology, viz. abstract data types 
and Hoare's axiomatice. We adapted and applied 
these techniques to develop a coherent framework 
for network database languages and integrity 
management. 

To completely characterize data semantics, we 
must specify the effects of operations on the. 
data. The applicability of abstract data types 
is, therefore, being investigated by a number of 
researchers In the area of database design [BROD 
801, [PING 801. The object-oriented approach, 
presented in this paper, should contribute 
towards this investigation. In particular, the 
problem of shared mutable objects can arise also 
in conceptual schema design, because an object 
type may be encompassed by more than one higher 
level object type along the generalization 
hierarchy [SMIT2 771. The object-oriented 
approach developed in this paper can be used to 
deal with,.this problem. 
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