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ABSTRACT 

This paper presents a semi-formal denota- 
tional definition of the semantics of a version 
of domain relational calculus called DRC. A sin- 
gle basic design principle governs the semantic 
definition: each predicate (or formula) of DRC 
denotes a relation. 

The definition obtained is precise, short, 
and systematic. Generalizations of operations of 
the relational algebra are suggested, which 
correspond very directly with the semantics of 
DRC formulas. 

This work also suggests a more active role 
of semantic considerations in the design process 
of a query language, in order to simplify the 
specification of the language and, eventually , 
the language itself. 

1. INTRODUCTION 

A relatively recent development in the evo- 
lution of programming languages has been the use 
Of formal specifications of language semantics, 
in addition to the more classical formal specifi- 
cation of syntax. This formal specification of 
semantics has slowly begun to replace the usual 
informal description in English. Thus, for exam- 
ple, the classical disciplines of logic and 
linguistics have given rise to the denotational 
approach to 
[STOY771. 

programming language semantics 

In contrast to the programming language 
field, the field of database query languages does 
not have a tradition of precise (let alone for- 
mal) definition of semantics. This has created a 
number of problems. It is not uncommon, for 
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example, to see an initial language design based 
on an intuitively appealing idea, but with the 
semantics left intuitive as well. Then, when more 
advanced investigations reveal that the language 
is not powerful enough, the initial design is 
patched with new constructs. Such a design stra- 
tegy in successive stages leads to layered 
languages lacking conceptual unity. Other prob- 
lems are created when implementors are not pro- 
vided with completely precise specifications. It 
is not uncommon to see the limits of a query 
language actually defined by language processors 
rather than by a reference document. This situa- 
tion reduces portability and results in a more 
difficult learning process for users. 

There is no fundamental reason, however, for 
database query languages to be defined less pre- 
sisely than programming languages. Indeed, if 
anything, the converse could be true, since typi- 
cal query languages are simpler than typical pro- 
gramming languages. For example, the mathemati- 
cal foundations of the denotational definition of 
programming languages involve sophisticated 
mathematical concepts. Yet, precise definitions 
of high-level relational query languages can be 
produced with very little formalism. These 
definitions can be remarkably concise and easy to 
understand. 

This paper illustrates the latter point by 
presenting a semi-formal denotational definition 
of a version of domain relational calculus called 
DRC [LACR77, ULLM80, DATE811. For the clarity of 
this paper, we preferred a semi-formal definition 
to a formal one. It will be clear however that 
constructing’bne from the other is easy. 

A denotational definition of a language 
describes the semantics of language constructs as 
functions from syntactic structures to mathemati- 
cal objects, in such a way that the semantics or 
,“denotation” of a composite construct is 
expressed as a combination of primitive objects 
and of denotations of the immediate constituents 
of the construct. 

A single basic design principle governs the 
semantic definition of DRC given in this paper: 
each formula (or predicate) denotes 
bll the detaxs of 

a relation. 
the definition follow from 

that principle. 
“bottom-up,“: 

The semantics of DRC is strictly 
for each formula F of DRC, the 

structure and value of the relation denoted by E 
do not depend on the context in which F occura in 
a DRC query. In fact, the only formal structure 
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needed is the definition of relations as sets of 
tuples with selectors (or attributes). 

The rest of this paper is organized as fol- 
lows. Section 2 contains an informal definition 
of DRC. Section 3 is a formal definition of 
relations. Section 4 gives the precise semi- 
formal definition of DRC, consisting of a svntac- 
tic definition based on-a BNF gr&r, and-a set 
of semantic rules. Section 5 relates the seman- 
tic definition of DRC to a version of relational 
algebra. Section 6 summarizes the results of 
this paper, and advocates a more active role for 
semantic specifications 
design process. 

in the query language 

2. INFORMAL DEFINITION OF DRC 

DRC is a version of domain relational cal- 
culus [LACR77, ULLMSO, DATE811. It has the same 
power as the tuple relational calculus or the 
usual relational algebra [CODD72]. 

This section gives an intuitive definition 
of the semantics of DRC. The definition proceeds 
from the root to the leaves in the syntactic 
structure of queries. 
similar to a usual way 

The definition is very 
of understanding th’e 

structure of the predicate calculus, where quan- 
tifiers translate into coniunctions and disiunc- 
tions, and predicates h&e a truth value; The 
definition accounts for both .“list.” queries and 
“yes-no” queries. 

DRC variables are called domain variables: 
each variable ranges on the elements of a domain 
of elementary values of the database. The asso- 
ciation of a variable with a domain is specified 
by some form of explicit or implicit declaration. 

A ouerv in DRC has one of two possible 
forms: 

- an )bPen query (or list query) has the form 

{(xl ,...,xn) I P (xl,...,xn)J 

where P(xl,...,xn) is a formula of DRC with 
xl ,...,xn as free variables. Its value is the 
set of labeled tu les <xl:al,...,xn:an> such 
that P(al,...,an P is ,“trueJ’. For each i, ai 
is an element of the domain associated with 
xi. Note 
(xl 

that the target specification 
,...,xn ) in the prefix is redundant, if it 

is assumed that the target is specified by the 
set of free variables of P. 

- a closed auerv (or yes-no query) is simply a 
DRC formula without free variables. The value 
of the query is the truth value (or Boolean 
value) of the formula, “true” (or .“yes,“) or 
“false.” (or “no.“) . 

The atomic formulas (or atomic predicates) 
of DRC are of two kinds: 

- usual binarv comparison oredicates like =, f, 
<, >, etc., whose arguments are constants and 
domain variables. Constants are notations for 
doma in elements. For each comparison predi- 
cate, both arguments must be associated with 
the same domain. 

- 2”-1 relation Predicates are defined for each 
relation with n attributes. They have between 
1 and n arguments and correspond to all possi- 
ble ways of selecting a non-empty subset in 
the set of attributes of the relation. Each 
predicate is in fact a membership predicate 
for a projection of the relation and its argu- 
ments are constants or variables of DRC. 

The value of a predicate is .“true” if the 
tuple made of its 
associated relation 

arguments belonns to the 
ro jection. It i;l “false” 

otherwise. For a re ation R(Al:Dl.....An:Dn)‘. P 
the associated predicates are ‘written 
R(Ai:ai ,...,Aj:a*) where 
attributes of R 

i. 

of {Al ,...,An)) 
i.e., {Ai,. . . , t;r 

’ 0;; $ubt=; 

and ai,...,aj are the argu- 
ments of the predicate constants or 
variables). !‘name,” 

(i.e., 
The of the predicate can 

therefore be seen as ,“R(Ai: , . . .,Aj: )>‘I with 
the attributes Ai , . . . ,Aj unordered just as in 
the associated relation. The position or 
arguments for the predicate is indicated by 
blanks. Thus: 

R(Ai:ai ,...,Aj:aj) = “true,” <=> 

cAi:ai ,..., Aj:aj> 6 R[Ai ,..., Ajl 

The formulas of DRC are defined as follows: 

- Atomic formulas are formulas. 

- If A and B are formulas, so are (not A), (A or 
B) , (A and B), (A->B), and (A<->B). Instead 
of a fully parenthesized form, usual priori- 
ties can be used for the connectives. The 
meaning of these propositional formulas is 
computed from the meaning of A and B using the 
usual rules of Boolean algebra. 

- If x is a variable, then Yx and +x are quan- 
tif iers containing x. If P(x) is a formula 
that contains x but no 
X¶ then (Vx P(x)) and ( 9 

uantif ier containing 
x P(x)> are formulas. 

Their meaning is defined as follows: 

4x P(x) = P(a1) and . . . and P(an) 

+x P(x) z P(a1) or . . . or P(an) 

where al, . . . ,an are the elements of the domain 
associated with x. 

3. FORMAL DEFINITION OF RELATIONS 

A relational database comprises a collection 
of finite domains of elementary values and a col- 
lection of relations. 

A relation has a fixed name, a fixed struc- 
ture, and a time-varying value. 

The structure of a relation (sometimes 
called relation scheme) T:s specified by a set of 
attribute-domain pairs. All the attributes of a 
relation must be different. The domains refer- 
enced in a relation are not necessarily all dif- 
ferent. The collection of attribute-domain pairs 
of a relation is not ordered. 
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Formally, the structure of a relation is a 
functional mapping from the attributes of the 
relation to domains (more precisely, domain 
names). 
{(~l->~i) 

This mappin 
3 

is noted as a set of pairs 
,...,(Ai->Di . . ..(An->Dn)). where 

Ai's are the attribites 
the 

and the Di's are the 
domain names. 

A relation R with n attribute-domain pairs 
is denoted as R(Al:Dl,...,An:Dn). Sometimes, 
B(A:D) or R(A) will be used as a shorthand nota- 
tion. 

The value of a relation R(Al:Dl,...,An:Dn) 
(sometime7 -- called state of relation, or simply, 
relation) is a set of n-tuples cdl ,...,dn> of 
elementary values, where di belongs to Di for all 
i such that l<i<n. More exactly, the value of R 
is a set of ?zbeled n-tunles" (Al:dl.....An:dn> 
of values. The order of vilues is not signifi- 
cant, since each value is associated with an 
attribute of R. 

Formally, the value of a relation 
R(Al:Dl ,...,An:Dn) is a subset of the generalized 
Cartesian nroduct of its domains D = {Dl,...,Dn) 
indexed by-its attributes A = {Al,...,An)-defined 
as: 

A1:Dl x . . . x An:Dn = 

{t:A -> Dl U . . . U Dn 1 t is total and 

t(Ai) 6 Di for 1 2 i L n) 

The indexed Cartesian product will also be 
noted X(Al:Dl ,...,An:Dn) or, for brevity, X(A:D). 

The indexed Cartesian product generalizes 
the ordinary Cartesian product in that the com- 
ponent sets are unordered in the product and each 
set is distinguished from the others by a unique 
index. Thus, each relation tuple t of a relation 
R with attributes A is described formally as a 
total function on the set of attributes, having 
values in the associated domains. 

The operations of the relational algebra 
[CODD72] can be defined precisely with this for- 
mal description of relation values [PIR0821. For 
example, projection and Cartesian product, which 
are used in this paper, are defined as follows. 

The ro'ection of a tuple t on its B attri- 
butes is written t Brand F is the tuple t.:: 

t,':B->DB such that YbGB t:(b) = t(b) 

Similarly, the proiection R[Bl of a relation 
R(A), with B LA, on its B attributes-is the set 
of all such tuples: 

R[BI = {t[Bl 1 t6R) 

= {t:.:B->DB 1 +t6R YbBB t'(b) = t(b)) 

The Cartesian roduct of two relations 
Rl(A:DA) and R2(B:DB v with A and Disjoint is a 
relation whose value is: 

{t:A U B -> DA U DB 1 t[Al 6 Rl and t[Bl 6 R2) 

The formal description of relation values 
introduced in this section is similar to what 
would be a description in terms of the 
tional sets" of [BARD~~]. 

"posi- 

4. DENOTATIONAL SEMANTICS OF DRC 

A denotational definition of a language 
essentially consists of a definition of the syn- 
tax of the language, and of the definition of 
functions which map syntactic constructions to 
mathematical objects representing the objects 
actually manipulated by the language. 

4.1 Syntax of DRC 

Denotational definitions start from an 
"abstract" svntactic definition. similar to 
descriptions with classical context:free (or BNF) 
grammars. The abstract syntax of a semantic 
definition is not necessaril 
syntactic analysis. The a stract i3 

the syntax used for 
syntax simply 

provides a way of manipulating the syntactically 
analyzed programs. It may well be ambiguous, if 
all the syntactic analyses of a program lead to 
the same semantic interpretation. 

An abstract syntax for DRC is shown in Fig- 
ure 1. 

The syntactic categories (or nonterminals) 
are: V (variables or, more precisely, variable 
symbols), R (names of database relations used as 
predicate svmbols). C (constants), Q (queries), F 
!f ormulas),-T (terms), OP (operators like =, -#, 

, >, etc.). V. 
specified. 

R, C, and OP are not further 
They essentially behave like terminal 

symbols of usual BNF grammars. Rules 1, 3, 7, 8, 
and 9 are rule schemas for n 1. 1. Indexed 
occurrences of nonterminal symbols are used to 
represent distinct instances of the corresponding 
class of objects. 

An abstract syntax is not necessarily a com- 
plete syntactic specification of a language. 
Thus, in the case of DRC, acceptable queries must 
also verify the following additional syntax 
rules, where numbers refer to rules in Figure 1: 

2;’ ,...,Vn) 1 F) 

R (~l:~l,..., An:Tn) 
not F 
Fl and F2 
Fl or F2 
v Vl ,...,Vn F 

3: :: 
,...,Vn Fl -> F2 
,...,Vn F 

(F) 
V OP T 

cv 

Figure 1. Syntax of DRC 
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(1) the free T;;iables of F rn;f: be exactly the 
variables ,...,Vn); varrables 
(Vl ,...,Vn) must be distinct; there must be :F 
least one variable in (Vl,...,Vn); 

(2) F may not have free variables; 

(3) each variable or constant used as an argument 
in a relation predicate must be associated with 
the same domain as the domain associated with its 
position as an argument in the predicate; 

(5,6) either Fl and F2 have no free variables or 
both have free variables; 

(7,9) the variables in (Vl,...,Vn) must all be 
distinct; they must all appear as free variables 
of F; there must be at least one variable in 
(Vl ,...,Vn); 

(8) the variables in (Vl ,...,Vn) must all be dis- 
tinct; each must appear as a free variable of Fl, 
F2 or both; there must be at least one variable 
in (Vl ,...,Vn); 

(11) V and T must be associated with the same 
domain; the oneration OP must be defined for the 
domainWassociated with V and T. 

4.2 Semantic Functions 

4.2.1 Relations Denoted by Formulas 

DRC is typed. Each . -. domain of the database - . 
dekmes a type for varrables and constants. Sub- 
types are not supported and domains are supposed 
to be disjoint. Each variable is associated with 
one domain. Several mechanisms are possible to 
specify the association (such as an explicit pre- 
fixed declaration); they are equivalent for what 
concerns the semantic structure of the language, 
and, therefore, they are not discussed in this 
paper. 

The central design principle of the semantic 
definition is to re resent the value of each for- 

F 1n the syn-xEaxa= mula or predicate +----- 
ttributes are the free variables of 

the formula. a f 0rmuiK 
a relation). Thus, if a formula F has 

free variables Vl , . . . ,Vk with types corresponding 
respectively to domains Dl,...,Dk, then the deno- 
tation of F will be a relation which is a subset 
of the indexed Cartesian product 

Vl:Dl x . . . x Vk:Dk 

also noted X({Vl,...,Vk):D). That relation 
depends on F alone and not on the context in 
which F occurs in a query. 

The same holds for “open,” or “list” queries, 
whose value can be described as a relation. 

Section 4.2.3 shows that the same formalism 
extends to the description of the value of 
“closed” or “yes-no” queries (and formulas) 
without free variables, vhich denote a truth 
value. 

4.2.2 Semantics of DRC 

The meaning of a query Q addressed to a 
database schema is a function from database 
instances of the schema to relations whose attri- 
butes are the target variables of the query: 

X(V:D) 
=gQ : DB -> 2 

where V is the set of target variables of Q if Q 
is an open query, 
closed query, 

and the empty set if Q is a 
and D is the collection of do ins 

defining the types of the variables in V. “ft 2 is 
the power set of X, that is, the set of all sub- 
sets of x. DB is the set of possible database 
instances of a database schema. Formallv. if the 
schema has n relations Rl 
attributes Al 

,...,Rn with-sets of 

the form: 
, . . ..An respectively, then DB has 

X(A1: D) X(An:D) 
2 x . . . x 2 

form: 
A generic meaning function has the following 

m : Q -> (DB -> Relations) 

or more precisely 

X(V:D) 
m : Q -> (DB -> 2 1 

To each query Q, it associates a function (mngQ 
with the notation above) from database instances 
to relations. 

An equivalent function has the form: 

m’ 
X(V:D) 

: DB -> (Q -> 2 1 

To each database DB, it associates a function, 
that we will call mng, from queries to relations. 
The latter function is described in Figure 2. 
Thus, mng in Figure 
database. 

2 is defined for-a given 
This particular form of definition is 

chosen to simplify the notations. Making explicit 
the dependency on the database DB is immediate 
but complicates the notations. The database is 
referenced only through “rel(R)“, which is the 
relation value of the database relation R (in 
rule 31, and through the domains D. 

Numbers in Figure 2 refer to syntax rules in 
Figure 1. Rules 1 and 2 are in a sense superflu- 
ous : they define a special function mng’ that 
presents the meaning of a list query as a rela- 
tion and the meaning of a yes-no query as either 
“yes” or “no.“. 
function. 

Rules 3 to 11 describe the mng 
Only rules 3, 5, and 8 will be dis- 

cussed in some detail. Rules 1 and 10 are obvi- 
ous. Rule 2 is, covered in section 4.2.3, which 
deals with truth-valued formulas. Rules-4 and 6 
are similar to rule 5: rule 4 expresses negation 
as a set difference between an indexed Cartesian 
product of domains and the relation denoted by 
the formula on which negation bears; rule 6 
expresses disjunction as ,“bordered” union. Rule 7 
is a case 
than rule 8; 

of universal uantif ication simpler 
“Wx,” in “Vx F x>.” ? means “for all 

values in the domain associated with variable x”. 
Rule 9 expresses the usual eauivalence between 
existential quantification ani projection. Rule 
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11 describes the value of a comparison as a sub- 
set of an indexed domain, or of an indexed Carte- 
sian product of two domains. 

Semantics of rule 3: f : := R (~l:~l....,~n:~n) 

R is the name of a database relation, and 
rel(R) is its value in the database. {Al 
is a 

,...,An) 
subset of the attributes of rel(R). 

{Tl ,...,Tn) is a set of terms, that is, of vari- 
ables or constants. V is the set of variables in 
{Tl ,...,Tn). Variables serve as attributes of the 
value (a relation) of the formula. Constants 
denote elements of database domains. A function 
from constants to the union of domains is 
assumed. Here, to simplify, we have done as if 
constants were domain elements. 

In algebraic terms, 
R(A1: Tl ,...,An:Tn) 

the relation denoted by 
is obtained by (1) a restric- 

tion of rel(R) corresponding to the constants in 
{Tl ,...,Tn), followed by (2) a projection on the 
-------------------------------,,,--------- 

(1) mng.’ ({(Vl,...,Vn):F}) = mng (F) 

(2) mlg’ (F) = “no” if mng (F) = 0 
“yes,” z mng (F) = (6). 

m : F +x(1:&) 

(3) mng (R(Al:Tl,...,An:Tn)) = 
{t 6 X(V:F$(iiTtl B.rel(R).vi such that l&iln 

= Ti If Ti is a constant 
tl(Ai) = t(Ti) if Ti is a variable } 

(4) mng (not F) = X(fr(F):D) - mng (F) 

(5) mng (Fl and F2) = 
mng (Fl) x X((fr(F)-fr(Fl)):D) n 
mng (F2) x X((fr(F)-fr(F2)) :D) 

(6) mng (Fl or F2) = 
mng (Fl) x X((fr(F)-fr(Fl)):D) U 
mng (F2) x X((fr(F)-fr(F2)):D) 

(7) mng (rJVl,...,Vn F) = 
(t 6 X((fr(F)-{Vl,...,Vn)):D) 1 

{tl x X({Vl ,...,Vn):D) Cmng (F)). 

(8) mng (4Vl ,...,Vn Fl->F2) = 
{t~61~~~fr(F1)Ufr(F2)-{Vl,...,Vn)):D) 1 

S ,...,Vn)l 1 8 6 mng(F1) 
and s[fr(Fl)-{Vl,...,Vn)] 

& {r[{Vl 
= t[fr(Fl)-{Vl,...,Vn)1) 

,...,Vn)l 1 r 6 mng(F2) 
and r[fr(F2)-{Vl,...,Vn)l 

= t[fr(F2)-{Vl,...,Vn)l)) 

(9) mng (+Vl,...,Vn F) = 
mng(F)[fr(F)-{Vl,...,Vn)l 

(10) mng ( (F) ) = mng (F) 

(11) mn 
‘i 

(V OP T) = 
t 6 X(V:D) 

{t 6 X({V,T) 

1 t(V) OP T) if T 
is a constant 

:D) I t(V) OP t(T)) if T 
is a variable 

Figure 2. Denotational Semantics of DRC 

attributes associated with the variables V in 
{Tl ,...,Tn), followed by (3) a renaming of attri- 
butes, where each remainin attribute Ai is 
replaced by the variable Ti In V) with which it $* 
is associated. 

In Figure 2, when a term Ti is a constant, 
the denotation of F involves a restriction of 
rel(R) to those tuples (formally: functions) 
where the value of attribute Ai equals Ti. 

When Ti is a variable, say Vi, the denota- 
tion of F involves a renaming of Ai to Vi, which 
thus becomes an attribute of the relation meaning 
of F. When two (or possibly more) attributes Ai 
and Aj are associated with the same variable Vk, 
the operation is 
attributes. 

no longer a mere renaming of 

restriction” 
Instead, it becomes an “equi- 
of rel(R) to those tuples that have 

the same value for attributes Ai and Aj. 

Semantics of rule 5: F ::= Fl and F2 

Let fr(F) be the set of variables occurring 
free in F. The attributes of the meaning of F 
are the variables in 

fr(F) = fr(F1) U fr(F2). 

It would be interesting that, as usual, con- 
junct ion correspond to set intersection. HOW- 

ever, mng(F1) and mng(F2) cannot be intersected 
directly, since in general fr(F1) # fr(F2) and 
the intersection is empty. What is- needed is an 
interpretation of both Fl and F2 as sets of 
tuples in X(fr(F) :D) . Since Fl, for example, 
does not constrain variables in fr(F)-fr(Fl), the 
interpretation of Fl as a subset of X(fr(F):D) is 
obtained by completing or ,“bordering.” each tuple 
of mng(F1) by ali 

P 
ossible values for the attri- 

butes fr(F)-fr(F1 . Thus. this intervretation 
amounts to interpreting both Fl and F2,*. in the 
context of the conjunction, as formulas with free 
variables fr(F). 

F2.” 
In algebraic terms, the meaning of “Fl and 
is thus the “bordered intersection” [PIRO~~I 

of the meanings of Fl and F2. This operation has 
a number of special cases. It reduces to ordi- 
nary intersection if Fl and F2 have all their 
free variables in common. If Fl and F2 have no 
free variables in common, then the meaning of “Fl 
and F2.” is equivalent to-the Cartesian product of 
the meanings of Fl and F2. If Fl and F2 have 
some but not all of their free variables in com- 
mon, then the meaning of .“Fl and F2,” is 
equivalent to the natural ioin of the meanings of 
Fi and F2. If Fl and F2 do not have free vari- 
ables, then “Fl and F2” is the Boolean coniunc- 
tion of truth values represented by (6) (irue) 
and 6 (false). 

Because of a well-formedness rule, either 
neither Fl nor F2 has free variables or both Fl 
and F2 have free variables. 

Semantics of rule 8: F ::= VVl.....Vn Fl -> F2 

Vl 
Rule 8 is a special case of rule 7 (u 

. . . ..Vn Fl -> F2 is eauivalent to 4 
v1- ,.i.;Vn (not Fl or F2)), and its semantics can 
be deduced from the semantics of rule 7. The spe- 
cial form of quantification described by rule 8 
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is made available in DRC because it corresponds 
to the most frequent use of universal quantifica- 
tion. 

If fr(F1) and fr(F2) are the free variables 
of Fl and F2 respectively, then the formula 
denotes a relation with attributes 

fr(F1) U fr(F2) - {Vl,...,Vn) 

that is, in general, a relation whose tuples are 
constructed from values of the relations denoted 
by both Fl and F2. 

If fr(Fl), fr(F2), and {Vl,...,Vn) each 
reduce to a single variable, then an example of 
quantification described by rule 8 is: 

Yx Fl(x,y) -> FZ(x,z) 

In a set notation, the value denoted by that for- 
mula is the set of pairs (2-tuples): 

The usual division of [CODD721 describes the 
relation values of a special case of universal 
quantification, where fr(Fl)G{Vl,...,Vn). In that 
case, if the relation denoted by Fl is not empty, 
then the relation denoted by the formula is made 
of projections of some tuples of F2, without con- 
tributions from Fl. 

This suggests a generalization of division, 
which corresponds to the form of universal quan- 
tif ication defined by rule 8. This new division 
operation contains the usual division of [CODD721 
as a special case. It is def.ined in tPIRO821. 

4.2.3 Boolean-valued Formulas 

DRC can express both list queries, which 
denote a relation, and yes-no queries, whose 
value is a truth value. The informal definition 
of section 2 describes both Rinds of queries. The 
same is true for the semantic equations of the 
preceding section, if degenerate relation values 
without attributes are interpreted as denoting 
truth values. 

For an empty collection of domains and an 
empty set of attributes 0, the definition of sec- 
tion 3 of the Cartesian product of the domains 
indexed by the attributes becomes: 

X(0:A) ={t :0->lJA> 
9 y,: 0 -> 0) 

In effect, {t : 0 -> 0) is the set of func- 
tions from 0 to 0. There is only one such func- 
tion, the empty function (the empty set of pairs 
of values, if functions are viewed as sets of 
pairs). 

Thus, there are two degenerate relation 
values of structure (@:A): 

Q = “0” 

(6) = “1” 

which we interpret respectively as ,“false,” and 
,“true”. 

Applying the definition of section 3 for the 
Cartesian product of two relations, we obtain: 

For the projection of a relation on an empty set 
of attributes : 

RibI = 0 if R is the empty set of n-tuples 

= (6) if R is not empty 

Similarly, the set-theoretic union, intersection, 
and difference of degenerate relations express 
respectively the Boolean disjunction, 
tion, and negation. 

conjunc- 

This is sufficient to cover all the cases of 
truth-valued formulas in DRC. Those cases are as 
follows: (1) relation predicates can 

P 
reduce a 

truth value from an ordinary relation; 2) so can 
universal and existential quantifications; (3) 
conjunction, disjunction, and negation in DRC do 
not produce truth values from ordinary relations: 
instead, when their operands are degenerate rela- 
tions, their effect is to apply the usual Boolean 
operations with the same name on the truth values 
represented by the degenerate relations. 

In summary, the semantic rules of Figure 4.2 
extend to queries and formulas without free vari- 
ables by interpreting the empty set 0 as “false” 
and (6) as ,“true,“. This result increases our con- 
fidence in the adequacy of the semantic objects 
and operations chosen to define DRC. We do not 
suggest however that truth-valued formulas be 
presented to users as denoting degenerate rela- 
tions. 

5. DRC, RELATIONAL ALGEBRA AND LOGIC 

tion 
The definition of DRC in the preceding sec- 

establishes the following connections 
between logical connectives and a version of 
algebraic operations: 

negation : complement 
conjunction : bordered intersection 
disjunction : bordered union 
universal quantification : division 

with implication 
existential quantification : projection 
predicate : projection, 

equi-restriction 

The denotational form of the definitions 
suggests interesting generalizations of some 
algebraic operations. Thus operations called 
“bordered union”, Ibordered intersection,“, and 
also a generalization of division have been 
defined. A complete definition of a relational 
algebra with- the new operations 
[~1~0821. 

is given in 
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Bordered intersection contains as special 
cases natural join, ordinary intersection and 
Cartesian product, 
lCODD721. 

as they are defined e.g., in 
Bordered union and the generalized 

division contain respectively ordinary union and 
division, but they are more general. For example, 
all cases of universal quantification of the cal- 
culus can be expressed as a generalized division. 

The generalized intersection and generalized 
union of [HALL751 are similar the corresponding 
bordered operations. 

The version of algebraic operations sketched 
in this section (and defined in [PIR082]) and the 
definition of DRC in the preceding section show 
in a striking manner the fundamental unity of 
relational algebra and calculus. In that 
respect, the present work has similarities with 
that described in [MERR78]. 

DRC has the same syntax as the first order 
predicate logic, and the semantics have a similar 
structure. Many equivalence rules from logic are 
preserved in DRC. For example: 

mng(F1 and F2) = mng(not((not Fl) or (not F2))) 

or 

mIlg(cTv1 ,...,Vn F) = mng(not ()Vl,...,Vn (not F))) 

However, it is not true in general that if 
ionic allows to deduce Fl<->F2 for formulas Fl 
a& F2, then mng(Fl)wg(FZ) in DRC. For exam- 
ple, in logic 

Fl or (Fl and F2) <-> Fl 

but, in DRC 

mng(F1 or (Fl and F2)) # mng(F1) 

if fr(F1) # fr(F2). 

6. SUMMARY AND CONCLUSIONS 

6.1 Language Description 

The work reported in this paper is an exper- 
iment with a precise (nearly formal) method for 
specifying the semantics of relational query 
languages. The language chosen, DRC, is a ver- 
sion of domain relational calculus. It has the 
same power of expression as the relational alge- 
bra, This experiment produced several interesting 
technical results. 

First, we gave a purely “bottom-up,” denota- 
tional specification of the semantics of DRC, 
based on the single principle that every formula 
(or predicate) of DRC denotes a relation. This 
is an interesting result in itself, as it was not 
obvious initially that such a definition was pos- 
sible. The definition is precise, short, and sys- 
tematic. 

Second, the denotational definition of DRC 
formulas involving logical connectives suggested 
interesting generalizations of operations of the 

relational algebra. The main result of this paper 
is to exhibit a version of relational calculus 
and a version of relational algebra which 
correspond very directly to one another. 

Third, a formal definition is given for 
relations with unordered attributes where domains 
determine the comparability of elementary values. 
Algebraic operations operate on and produce rela- 
tions thus defined. The denotational definition 
of the semantics of DRC is such that the same 
syntactic and semantic rules describe the meaning 
of both “list queries”, whose value is a rela: 
tion, and of “yes-no” queries, whose value is a 
truth value. 

A precise semantic definition enables fine 
analyses of the structure of query languages. 
Thus, several continuations of the present work 
have been or are being investigated. One of them 
investigates denotational definitions of other 
query languages. For example, we have already 
established that the application to relations of 
a fairly general version of aggregate functions 
can be described with basically the-same formal- 
ism as the one used in this paver. This will be 
reported in another paper. Another continuation 
of this work consists in further theoretical 
investigations of the relational algebra sug- 
gested by DRC, and of the relationships of DRC 
with predicate logic. An interesting result will 
be to characterize precisely the equivalence 
rules of the predicate calculus that are not 
preserved in DRC. Another interesting subject 
has been the characterization in query languages 
of anomalies linked to the unrestricted use of 
negation, universal quantification, 
tion (see e.e. 

or dis junc- 
[DEM082. PIR076. ULLM801). The 

association of-types with-the variables -of DRC 
automatically solve5 the most serious problems 
linked to negation and quantification in 
languages without types. In addition, the regular 
semantic structure of DRC enables a fine analysis 
of “sensible” uses of negation, disjunction, and 
conjunction. Results will be reported elsewhere. 

6.2 Language Design 

This work also suggests that judicious 
semantic decisions made early in the design pro- 
cess of a query language can simplify the specif- 
ication of the language, and eventually, the 
language itself. 

We clearly realized in writing the denota- 
tional definition of this paper that the central 
idea in the original design of DRC [LACR77] was 
more than anything else a decision about a uni- 
form semantics-for its constructs. The terse and 
precise definition produced for DRC can be rela- 
tively easily translated into ordinary language, 
while essentially preserving its terseness and 
precision. 

More generally, this work suggests a 
“semantics-directed ’ method of language design 
instead of what seems to be the typical 
directed” 

“syntax- 
strategies of conventional query 

language design. Thus, for example, the history 
of the design of the SQUARE, SEQUEL and SQL 
languages [CHAM76] could be summarized as inves- 
tigations of how much functionality can be 
expressed with the basic syntax of the “select 
block”. The successive versions of the languages 
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describe attempts to accommodate the limitations 
of that syntax, for example, the fact that only a 
few patterns of universal quantification or of 
calls to aggregate functions fit in a straight- 
forward way into that syntax mold. Similar1 
the successive versions of 1’ Query-By-Examp e 
[ZLOO751 describe how much can be done width the 
basic syntactic idea of filling in examples in a 
table. For the simplest patterns of 
(equivalent I say, to projection and restri%% 
in the algebra), that syntax nicely expresses the 
intended semantics. But, this is much less true 
when quantifiers or negation are involved, and 
not at all when a “condition box” must be 
introduced to express comparisons of values. 

We find it interesting that no precise 
definition of the semantics of SQL or Querv-Bv- 
Example exists, which would be short and would 
somehow reflect the impression of user- 
friendliness that an initial contact with those 
languages communicates. We conjecture that a 
semantic definition with a few primitive opera- 
tions like that of this paper is not possible for 
SQL or Query-By-Example. We believe that precise 
definitions would be large and complex, and that 
they would probably suggest a redesign of parts 
of those languages. 

By contrast, a semantics-directed method of 
language design specifies the basic semantics and 
the exact limits of validity and of legal utili- 
zation of a construct before (or, at least, at 
the same time as) its syntactic appearance in 
queries. This strategy has the advantage that, 
whatever design decisions are made eventually, it 
guarantees that a precise definition of the syn- 
tax and semantics of the language is manageable, 
that is, that it is of reasonable size and 
involves semantic objects and operations chosen 
by the language designers and manageable, at 
least for them. 

In other words, we believe that if the 
designers of a language give a precise (maybe 
formal) semantic definition of their language, 
then the chances of having a “good” design are 
increased, where precise semantic specifications 
are not hopelessly complex, and match intuitive 
perceptions of language constructs by users. 
This is to be contrasted with situations where a 
precise semantic definition is done, by implemen- 
tors or formal language specialists, after the 
“design” phase, It is interesting to note that 
some programming language designers reached simi- 
lar conclusions and expressed similar recommenda- 
tions [ASHC82,LOND781. 

As an example of semantics-directed design, 
the design of aggregate function calls could be 
integrated in the definition of DRC of this paper 
as follows. First, the decision is made that a 
new construct is made available to express f unc- 
tion application. It expresses the application of 
a function to a relation, and the repetition of 
function applications to classes of a horizontal 

P artition oi-a relation. It returns a relation 
Possibly reduced to a value) as a result. Then, 

a- choice-is made of the particular functions that 
are to be made available, and a precise semantic 
definition is specified for calls to each of 
them, including computation of the result, dupli- 
cate control, repeated applications, etc. Then 
only, syntactic decisions have to be made, in the 

best case on the basis of human factor studies, 
about the exact form or forms of the new opera- 
tion. 

Note that we do not advocate semantic for- 
malisms for the sake of using formalisms. We 
believe that any formal definition is not 
automatically interesting, and that simplicity 
and economy of concepts (although we don’t - 
gest that they are easily measurable) are equ%y 
important. 
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