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ABSTRACT 

In this paper we consider tabulated 

data or relations in a data base __I__-_ 
system which are constrained by func- 

tional dependencies. This implies 

that the data in certain columns of 

each table is determined by the data 

contained in some other columns. The 

problem we address is that of the 

computation of the size of projections 

of the data on a subset of the columns. 

This may be viewed as the projection 

of data in some k dimensional space 

into a smaller subspace. We thus extend 

results we had previously obtained 1 [I 
for relations without functional de- 

pendencies to the case with functional 

dependencies. 

RESUME 

Nous nous interessons au probleme du 

calcul de la taille des projections de 

relations dans une base de donnees re- 

lationnelle. Les resultats que nous 

avons prec6demment obtenus Cl1 pour le 

cas sans dependencesfonctionnelles sont 

rappeles : une nouvelle formule pour la 

taille moyenne d’une projection est 

donnee. Nous obtenons ensuite des 

formules pour la distribution et la 
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taille moyenne de projections de rela- 

tions en pr6sence d’une d6pendance fon- 

ctionnelle. 

1. Introduction 

Consider rk the k-dimentional space of 

vectors of the form 

t = (tl ,**dk) 

where each ti takes its value in a finite 

set Di. Thus rk = DlxD2x...xDk. 

We shall be interested in subsets of rk 

which may be viewed as tables of data 

points or as relations in a rational 

data base system. Let such a subset be 

T Rkcrk 

where lTRkl = R (i.e. TRk contains R 

vectors of rk). 

We will examine projections of 

TRk into subspaces of -ck. 

The projection 71. 
Il..& 

of a 

vector teak is the u-dimentional vector 

‘j, . . . ju (ItI = Ctjl,. . . ,tj 1 
U 
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where ji E (1, . . . ,k). Similarly, we 

define the projection of the table or 

relation T Rk as 

and expressed by “x implies y” where x 

and y are subvectors of the vector t: 

x = (t 
Xl 

(Tak> ="j 1 . . . j (t) ' t ' TRk' 
, * * - , 

txxj, txph,. . . ,t$ 

Tjl’-*L U 
Y = (t t 

Yl , * * * , YY 
I, tyj'Itl,...,td 

As in a previous paper Cll, we are 

interested in the size of projections. 

There are several reasons which motivate 

this interest. Several operations of 

interest in data base system often 

contain the computation of projections 

as one of their components. The time 

necessary for the execution of such 

operations will thus be determined in 

part by the size of the projections 

obtained D,31. In another application 

area, related to data analysis (statis- 

tical data, physics experiments, etc.) 

projections of the initial data are 

obtained in order to examine properties 

of interest. In other cases, if a gra- 

phics output is used, projections of the 

data into two or three dimensions will 

often be used in order to obtain a visu- 

ally meaningful presentation. In all of 

these cases, the number of data points 

contained in the projection will have an 

important influence on the storage neces- 

sary or on the run time of the processing 

algorithms used. 

Often the information contained in 

each of the columns of a given table or 

relation TRk will not be independent. 

One type of restriction common to data 

bases are the well known functional 

dependencies. 

A functional dependency will be 

denoted by 

x+,Y or f(x,y) 

We say that the T Rk satisfies x + y if 

and only if for all t,t’cTRk, 

rr 
Xl ,-**, xXCt) = “XI , . . . ,xxCt’) 

*IT 
y1 ““‘YY (t) 

= nyl ,...,yY (t’> 

A typical exemple would be the 

case of the data base of a government 

organisation’s employees in which the 

rank and seniority would determine the 

salary: (RANK,SENIORITY) + (SALARY) . 

In the general case we can assune 

that TRk satisfies a family F of func- 

tional dependencies 

F = Cf(x,y) : x,y,subvectors -oft) 

The problem we shall address in 

this paper is the following. 

Suppose that data tables of the 

form TRk are generated in some “random” 

manner. Then what is the probability 

distribution of the size of the projection. 
TIT 

Jl , - * * , j,(T k) given that R (the size 

of the table Tak) is known ? 

In Cl1 we solved this problem in 

the absence of functional dependencies, 

and we provided an efficient computational 

algorithm to obtain this probability 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

326 Mexico City, September, 1982 



distribution. The assumption made was 

that the tables TIlk are generated at 

“random” with a uniform distribution. 

Here we shall make a probabilistic 

assumption but consider the case where 

functional dependencies hold. 

In section 2 we shall recall 

the main result obtained in Cl]; we shall 

also give a new result providing a closed 

form expression for the average size of 

a proJection in the absence of functional 

dependencies. 

In section 3 we shall consider 

the simplest case of a single functional 

dependency. It will be analysed both for 

uniform and non-uniform distributions of 

attribute values on the domains.Again, 

formulae for the average size of the 

projection will be given together with 

the probability distribution. 

2.Results obtained for a system without 

functional dependencies 

In a previous paper Cl1 we had derived 

the probability distribution of the size 

of 

II. 
Jl’.‘.‘ju (Tak) 

which is the projection of the relation 

TRk on coordinates (jl,...,ju). 

We had also provided an efficient compu- 

tational algorithm allowing us to com- 

pute any particular value of this distri- 

bution in time s?,~. 

The basic assuption concerning 

this “probabilistic” analysis was that 

any TLk in ~~ is generated at random by 

choosing any R distinct vectors 

(t1,... ,t,) among the d = dl... dk 
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possibilities 1) with equal probability. 

Furthermore it was assumed that any one 

of the coordinates t. 1 is uniformly 

distributed over Di, and that the coor- 

dinates are independent. 

In this section we shall conserve 

the same assuptions. We first recall the 

main result in Cl] , and then provide a 

new formula for the average size of -- -I_---- __- 
projections. 

Throughout this section we assume 

that all the elements of any given 

domain D i are equally likely to occur in 

tuple t of a relation (uniform distri- 

bution assumption). We also assume that 

no functional dependency constrains the 

relations. 

Let the probability and average 

value be denoted by: 

i ,...,j 

P&1: 
U(r) = PIsize(JIj ll=rl . . 

1 

.j CT 
u ak 

E 
jl,...ju 

R,k 
= ECsize (IIj . . . j (T ) )I 

1 u Rk 

Then we have the following result proved 

in Cl]: 

RESULT 1. 

j! . ..j 

‘R,k 
Xr,~r(d/dj ***dj ) 

1 U 

where we define 

a 

X a,b(v) = & 
rI 

1 
,...,n a2O m=l 

nl+...+n a=b * 
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The following formula is new. It provides 
an efficient tool for computing the 
average size of a projection. 

RESULT 2. --I_ 

Let 6 = d. . ..d. , 6' = d/6. Then 
Jl JU 

j,-..ju 

E a,k 
= 6 Cl - 

= RCI- J- (R-l)! 
26 

for R << 6 << d (i.e. for'small" 
relations). 

Proof _- 

R 
jl.%l = c r j, . . Au 

ER,k * pR,k (r) 
r=l 

for r >l : Xr a-r(6'> 
, 

R-r 6' 
= c 

0 z=o 'z+l 
X r-1 ,!L-r-zc6') 

6-l 6’ +C ( 25r59, r-' )( ) z+l 
X r-l,P,-r-z(") 

0 cz <R-r 1 

Bv noting that: 

R j,...ju 

C '!?,k (s) 
S=l 

We obtain: 

R-z-l 6-l 
c 

s=l 0 

S'(S-1) 

s x s,e-z-l-s(6') = R z , 
( ) 

- - 

Then : 

Now, by applying the binominal formula 
to (l+X)d written as (l+X)6'. (l+X)d-6', 

we obtain for O<RI~: 

0 5 r c d-6' 

s+r=R 

For 6 2 R , we can write it as: 
Hence: 

+ => 
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Hence the result: 

The proof of the/approximate formula is 

then obtained as follows. 

Clearly 

= (d-6’-R +l)...(d-6’) 

(d- ~+l). . .d 

= (l- dy 
(’ -d-&f L). . . (l-fi ) 

(l- $...(l- kq$ 

2 (l- f+ !ql) (l- iy(,+$)(,+Jy) 
26 

where we have used the assumption 

R << 6 << d. The approximate formula then 

follows directly. 

3. The case of a single functional 

dependency 

In this section we shall consider a 

relation T Rk satisfying a single func- 

tional dependency x + y. Without loss 

of generality we assume that x and y 

are disjoint. We shall examine both 

the case of uniform and non-uniform 

distributions of the values of the 

attributes on the domains. 
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The problem of computing the size of the 

projection nxy(TRk) on the set of the 

columns (x,y) is identical to the case 

without functional dependencies; this is 

in fact the case for any projection of 

the form II xyz (Tkk) ’ 

Thus in this section we shall 

concentrate on the size of II~(II xy (T &k) ) . 
Using the formula for conditional 

probabilities we have 

P#y(nxy(Tkk) )I = rl 

= ~~lfly(~xy(T,k)) =r/lIIxy(Tkk) I=j] 

-PC/~xy(Tgk) /=j 1 

where the second term on the right hand 

side is available from RESULT 1. Thus 

it suffices to compute the conditional 

probability. The formulae derived in this 

section provide this conditional pro- 

bability inthe case of uniform and non- 

uniform distributions of attribute 

values over the domains. 

Indeed, we notice that if TQk 

satisfies x + y, then the size of 

TIxy(Tlk) is the same as that of IIx(TQk). 

Therefore it suffices to replace 

(nxy(TRk) 1 = j by Inx(TRk)l= j in the 

above formula. 

The probability 

is then simply computed by setting 

x = (t. 
‘1 

, . . . tj > 9 r=j 3 in RESULT 1. 
u 

Mexico City, September, 1982 



3.1. Uniform distributions 

In this section we assume that all 
attribute values are equally likely 
(uniform distributions). 

RESULT 3. - 

The number of distinct tables of size 
m on columns (ti,tj) satisfying ti + tj, 
whose projection on the j-th is of size 
n is 

cl ij= 

00 

dj cl. c m 
1 

mn n n m,,...,mn2 1 m,!...mn! 

C:mi= n 

fd.\ 
Proof : There are ~- \/ 

nJ possible choices 
of the column on (tj). 
Once this is done we can choose any m 
distinct elements among the di: t e 
number of distinct choices is d. 

We will then have to associate (I) 
1. m 

m, 2 1 of these to the first element of the (tj) 
column ,...,m, t 1 to the n-th element of the (tj) 
col~mrn. Clearly we must have m 

1 
+,..+ m,=l m and 

the number of distinct possibilities is simply for 

a fixed choice of m 1' . . ..m . -.__- n 

hence the result. 

COROLLARY 4. 

the TRk are eq.ua 

probability that 
lly likely to occur, the 

IIy(Tak) is of size r is: 

J r 

R! 
1- m,!...m,! 

Cmi= 9, 
1 

(where d = II 
Y tiE Y 

di,dx= II di! 
tic x 

Proof: This is in fact the consequence 
of RESULT 3 since there are 

0 dX 

R 
WY)’ 

distinct such tables TRk. Therefore 

PY 
XY 

Ilk cr) =dar 

0 R 
x (dyi' 

RESULT 5 Elk the average size of 

Ry(Tek) if x LI y=t, x n y= fl, and the 

TRk is a relation on t, is 

2 

Let x,y be subvectors of t such that 
x " y=t, x n y= !J. 
Let TRk be a relation (on t) satisfying 
x + y. Assuming that, for a given R, all 

SC that the relative reduction in size 
is, on the average 

* 9,- Eik)z t.-& forJ?.<< d 
Y Y 
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Proof: This formula can be derived 
somewhat laboriously directly from 
COROLLARY 4: in fact this is exactly 
how we have initially discovered it. 
We shall give a simple indirect proof, 
however. Let D denote the domain of y, 
and let ey be iny one of its elements. 
Clearly we may write 

Ey R,k = c E (1 (ey 6 ny (TLk) ) ) 
ED 

eY Y 

where E(.) denotes the expectation 
operator, and l(.) is the characteristic 
function taking the value 1 if its 
argument is true and 0 otherwise. 

If TRk satisfies x + y we know 
that all of the elements of its x- 
column must be distinct: otherwise if 
any two elements were the same, the 
corresponding y-column elements would 
have to be the same and TRk would con- 
tain two identical rows which is im- 
possible. On the other hand there may 
be an arbitrary number of repetitions 
in the y-column. 

Thus the y-column of Tllk is 
obtained simply by drawing R elements 

eY 
from D 

Y 
with repetitions allowed. 

We know that 

ey k ny(‘ak) <=> ey f [y- column of TRQ 

so that the probability of these two 
events is the same. Hence 

P [ ey $! ny(Tak)l = (I- 2%’ 
Y 
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which is the probability that e will 
Y 

not be drawn in the R trials, since 
l/dy is the probability of drawing 

eY' 
But we then have 

= 1 - PCeyi IIy(TRk)l=l -(l- -&)" 
Y 

Hence 

Ey R,k = c 
ED 

Cl- (l- -&)"I 

eY Y Y 

= dyll- (l-&jL] 
Y 

since IDyi = dy. The approximate formula 
for R << dy follows from a second 

order expansion. 

3.2. Non-uniform distributions 

In many cases of interest uniform 
distributions over all the tuples are 
not justified. Take for instance the 
case of T Rk with x + y, x u y =t, 

XfiY = B. We can think of x as being 
a key or numbering, while y can represerrt: 
a content. In this case a uniform 
distribution on D is difficult to 

Y 
justify. 

Here we shall generalize the 
results of Section 3.1 to the case where 
we are given an arbitrary distribution 
on the elements of D : 

Y 

p(e,l, ey E Dy 
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We have an innnediate generalization 

of COROLLARY 4; the proof is very similar. 

RESULT 7 

E y 
a,k = 

c 
E D 

eY Y 

Cl- u-p(ey))kl 

The probability distribution of 

the size of II (T 
Y Rk 

) can also be obtained: 

RESULT 8 

pi,k(r) 
r 

= 
(e 

lC 
R! 

,...e') 
c 

ni 2 1 nl!"'nr! 
fl (p(elN ni 

i=l 
r 

E (Dy) r Clni = R 

where (0,)’ = D 
Y 

x.. .x Dy r times and (e’ ,...,er) 

is any vector of r distinct elements of D . 
Y 

Notice that this reduces to RESULT 3 when 

p(ei) = l/dy . 

Proof: Py $k(r) is the probability that 

ny(Tak) contains exactly any I elements 

of Dy where r E R . The probability that 

it contains n. replicates of a given 
i 1 

e E D 
Y’ 

1 c i 5 r, is 

. 
( P p(er> r 

r 
We must have ni 2 1, C , ni = R. Hence the result 
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4. Conclusions 

Further results on the size of 

projections are necessary in the case of 

more complex systems of functional 

dependencies. 

We think that such results can 

be obtained. However the price to be 

paid will reside in some further assump- 

tions concerning the manner in which 

information is presented in the relar 

tions. The recent work of N. SPYRATOS 

I41 toward the formal representation of 

data base views provides a promising 

approach which should be explored. 

Another problem which we shall 

examine in subsequent work is the com- 

putation of projections from a dynamic 

representation of the relation’s evo- 

lution under the effect of updates. 
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