
Semantic Integrity Dependencies and Delayed integrity Checking

Gilles M. E. Lafue

Computer Science Department
Rutaers University

New Brunswick N.J. 08903

Abstract
This paper’s approach to semantic integrity management is
that in order to maintain an integrity constraint, some
variables of the constraint may be operated on while others
may not This defines integrity dependencies between
vsiables. Various examples of integrity dependencies and
their meanings are discussed. In addition to corresponding
to real world practice, integrity dependencies can be used
to improve the efficiency of checking constraints. This is
achieved by delaying the checking (and maintenance) of data
which depends on, but does not affect, the data currently
operated on It also gives delayed checking and maintenance
a chance to be performed in parallel with applications.
Simulation results are presented to support the claim that
delayed checking is generally more efficient’

1. introduction
Once semantic integrity constraints have been expressed
about a database, managing the database’s semantic integrity
involves checking the constraints after database updates
which might violate them, and maintaining those which
have been found to be violated Given integrity constraints,
the DBMS can automatically check integrity. The DBMS’s
involvement in maintenance however, is much cruder. It
essentially consists either of (i) executing violation recovery
actions coded by the user for specific violations, or (ii)
rejecting database updates which lead to integrity violations,
or (iii) ignoring the violations.

The reason for crude automatic integrity maintenance is that
in general, there are many ways to maintain a violated
constraint For example, maintaining an instance of the
following constraint (expressed in relational tuple calculus)

EMPLOYEE(e)AEMPLOYEE(f)hf.POSlTlON=PRESlDENT
-e.SALARYI f.SALARY

consist of decreasing the
employee’s ZLy or increasing the president’s, It isccyc
the user, not the DBMS, to choose a solution.

Often however, some solutions are preferred to others,
regardless of the context in which they are applied, i.e., of
the current database state. In order to maintain the above
constraint for example, the enterprise’s policy may be to
always increase the president’s salary. Such preferences

1
This work has been partly supported by the National Science

F-ion, grmt no. MS-8 1 - 10 100.

can indicate the order in which maintenance solutions are to
be tried, or that some solutions must be discarded. In this
paper, we shall only consider the simpler case that in order
to maintain a given constraint, some solutions are possible
and others impossible, that is, some variables may be
operated on and others not This defines dependencies
between the constraint’s variables: If a variable cannot be
operated on to maintain the constraint, it is called an
independent variable of the constraint (its integrity is not
affected by the constraint). If a variable can be operated
on to maintain the constraint, it is called a dependent
variable of the constraint The existence and/or value of a
constraint’s dependent variables depend on the existence
and/or value of the constraint’s independent variables. Of
course, a variable may be dependent in a constraint and
independent in another. We shall call these dependencies
integrity dependencies.

Such dependencies are explicit in other areas of computer
science. In abstract data types for instance, one can include
in a type definition a constraint which involves an attribute
exported from another type, and this other type is
unaffected by its use in the constraint. Knowledge
representation systems in Artificial Intelligence often provide
this feature too, particularly with generalization hierarchies,
in which the attributes of a specialization can depend on
those of its generalization, but not vice versa.

If available, user coded violation recovery actions can
embed integrity dependencies. However, there are several
advantages in explicitly declaring integrity dependencies to
the DBMS

l Their declarations would enrich database
schemas, especially if they are straightforward
and integrity dependencies are context
independent This paper is not concerned with
the syntax of such declarations but assumes it
to be as simple as, say, specifying key
attributes of relations in relational DBMSs.

l Since integrity dependencies limit the
combinatorial explosion of maintenance
solutions, DBMSs could become more active
partners in integrity maintenance. For example,
they could automatically carry out solutions
which are unique, or present the user with
solutions and estimates of the extent of their
propagation through the database.
S eculations

e 81.
regarding this are presented in

Proceedings of the Eighth International Conference
on Very Large Data Bases 292 Mexico City, September, 1982

l The DBMS can take advantage of these
dependencies to improve the efficiency of
automatic integrity checking. This is the
emphasis of the paper.

and delayed checking. Section 6 presents the simulation
model, and section 7 interprets simulation results. The
conclusion assesses this approach for CAD databases.

This paper bases its approach to automatic integrity

checking on integrity dependencies as follows. A constraint
need not be checked immediately after operations on
instances of its independent variables, if the corresponding
instances of its dependent variables are of no interest to
the current user/applications. Instead, this checking can be
delayed until the dependent instances become of interest,
i.e., are accessed, since they are the only instances to be
affected by this constraint This approach, which was
described in [71, is called delayed integrity checking land
update propagation). as opposed to the more traditional
immediate integrity checking land update propagation).

For example, suppose a constraint in a database for building
architecture that every horizontal pipe must be supported
by a beam, and that the pipe’s location is constrained by
the beam’s, and not the opposite (i.e., the pipe is the
dependent variable). When a structural engineer wants to
move or delete a beam, he doesn’t care about the pipes
that the beam may support, and wouldn’t want to be
stopped just because some pipes may violate integrity as a
result, especially if the mechanical engineer in charge of
piping is not currently active. This integrity violation
becomes important only when the pipes, or other things
depending on them, are accessed, at which point the
effects of the beam update must be checked.

2. Examples of Semantic Integrity Dependencies
The following example is borrowed from [91 and [81. It
shows a CAD database used by an Expert System for
understanding and modifying digital circuits. The data not
only represents the components and connections which
make up a circuit, but also the reasons why these
components and connections are there, i.e., their roles in
the circuit The role of a component is to (partly)
implement a specification. In turn, that specification may
implement another higher-level specification. The whole
database is therefore a hierarchy (not necessarily a tree) of
modules, in which a module implements the module(s) above
it, and is implemented by the module(s) underneath it This is
often called a design for implementationl hierarchy.

16
Delayed integrity checking makes sense only if integrity
dependencies can be defined. It also assumes (i) that cycles
of dependencies are localized in the database and (ii) that
the history of data values is not important It is based on
integrity dependencies defined on static constraints (i.e..
which regulate states of the database) rather than on
dynamic constraints (i.e., which regulate transitions between
states).

LWch 741751

Figure 2-l: Design hierarchy for the CG

Due to the above assumptions, delayed checking fits some
databases better than others, and as we shall see,
Computer-Aided Design (CAD) databases are prime
candidates. A CAD database is a database which supports
the design of a complex artifact (e.g., a building, an aircraft,
a complex digital circuit,...), that is, an evolving model of this
artifact, from high level specifications down to low level
implementation details. Integrity management is particularly
crucial to CAD databases due to their frequent updates [41.
The examples in this paper come from simple design
situations.

Figure 2- 1 shows four levels of specification-
implementation modules for the Character Generator (CGI of
a computer video terminal. The CG is the circuit which
converts input ASCII codes into the dot matrices to display
on the screen For each ASCII character and matrix row, it
outputs a string of bits Its specification defines its
interface with the rest of the circuit That is, (i) it is a
function from a set of <character, row index> pairs to a
set of bit strings (i.e., the font function), (ii) output bit
strings are to be encoded serially, and (iii) the input
characters and row indexes are held for at least 50
nanoseconds.

In addition to corresponding to real world practice, e.g., in
CAD, delayed integrity checking can significantly improve
checking efficiency. This paper shows simulation results
which support this claim. Efficiency is measured in terms of
numbers of accesses to the database on secondary
memory. Such accesses are commonly assumed to be by
and large the major cost of database integrity management
Much research has aimed at im roving checking efficiency

[121, [51, [lOI, [31, Cl], [2!? [Sl. Delayed checking is
orthogonal to these approaches in that it can be combined
with them.

The CG is implemented with a Read Only Memory (ROfVT)
whose contents represents the font function, and a shift
register (SIR) to transform the parallel output of the ROM
into a serial bit string. Then, a particular ROM (no. 6574)
and a Particular SR (no: 74 166) are chosen, and a latch is
inserted to hold the ROM 6574 input The latch is
implemented with a latch 74175.

The data of a module represents what is known about the
module. For instance, the CG module contains Its
specification, and the ROM module contains a description of
what is common to all ROM’s, e.g., that its output is
parallel encoded

The next section develops examples, and section 3 expands What enables the implementation of modules is a set of
on the notion of delayed integrity checking. Section 4 rules which are called implementation rules and represent
outlines possible implementations for supporting delayed general knowledge about circuit design. For example, figure
checking. Section 5 is a general comparison of immediate 2-2 shows the (simplified) rules used in figure 2- 1.

Proceedings of the Eighth International Conference
on Very Large Data Bases Mexico City, September, 1982

1. If the specification is a function that alters
data values & use a ROM whose contents is
the table definition of the function c a
network of random logic.

2. !f the specification is a parallel encoded bit
string and the current bit string is serial then
use a SR whose input bus size is equal tothe
input string length ancJ has the appropriate load
input and clock input

3. If the specification is a sequence of bit
strings such that each string lasts until the
next string 8ncJ the strings of the current
sequence do not last this long t@~ use a latch
whose input bus size is equal to the sequence
length d has the appropriate clock input

4. c the specification is a ROM m use a ROM
6574 or a EPROM 27 16 or . . .

5. fi the specification is a SR w use a SR
74166 or a SR 74165 x . . .

6. If the specification is a latch then use a latch
74175 g a latch 74171 or . . .

- Figure 2-2: Implementation rules for the CG -

At any point in the database development, the application
(or checking) of an implementation rule may reveal its
violation, i.e., that its condition is satisfied, but not its
consequence. For instance, the insertion of the CG
specifications and of the ROM satisfy the condition of rule
2. If checking the rule reveals the lack of a SR satisfying
its condition, then maintenance consists of inserting the
appropriate SR.

Implementation rules can therefore be seen as integrity
constraints In addition to these rules which relate modules
of different levels, there can also be integrity constraints
which apply to modules of the same level. For example, it
may be stated that no component output can be connected
to more than 10 other component inputs.

Edges in figure 2- 1 represent instantiations of
implementation rules, as identified by the edge labels which
refer to the rules of figure 2-2. A rule can be instantiated
by several edges if it involves more than two modules, e.g.,
rules 2 and 3.

Ed9e directions represent integrity dependencies between
modules For example, the edge from the CG to the ROM
module indicates that in rule 1, the ROM depends on the
function specification (here, the one specified in the CGI.
The edges for rule 2 indicate that the independent variable
in that rule is the desired serial bit string (here, the one
specified in the CG), and the dependent ones are the
current parallel bit string (here, the one ouput by the ROM)
and the SR. This means that neither the ROM nor the SR
has priority over the other as implementation of the CG If
the current parallel bit string was independent, the edge
between the ROM and the SR module would go only from
the former to the latter, indicating the priority of the ROM.

Thus, in general, integrity dependencies cannot be implied
from the logical structures of constraints, but are defined
“on top” of constraints. The meanings of integrity

dependencies depend on the meanings of the constraints to
which they apply. Consider again the example constraint
about beams supporting pipes. Declaring the pipe variable
dependent and the beam variable independent means that
beams cannot be moved or created in order to support
pipes (they have another purpose). This is usual in housing
architecture where the building structure determines the
piping. Now, if the beam variable is declared dependent and
the pipe variable independent, then a beam can be created
or updated especially for supporting a pipe. This would
indicate a dominant piping system, as in chemical process
plants for instanceq

Figure 2-l illustrates a major reason why CAD databases
are good candidates for delayed checking. The graph of
integrity dependencies is a hierarchy (the design hierarchy),
i.e., cycles of dependencies are confined within layers, thus
satisfying the assumption about localized cycles of
dependencies.

3. Delayed Integrity Checking
The following terminology will be used in the rest of the
paper. We shall refer to a record as data which
corresponds to an instance of a constraint variable and is
swapped as a unit between core and secondary memory
(e.g., a tuple in relational databases). If A is a record which
constrains another record B because A is an instance of a
constraint’s independent variable and B is an instance of
one of the constraint’s dependent variables, then A is
called B’s parent in this constraint, and B is called A’s
child. Parents and children are linked by directed integrity
dependencies. Instances of dependent variables related in
the instantiation of a constraint are called siblings. Siblings
depend on each other and are linked by undirected integrity
dependencies3 .

The general principle of delayed integrity checking is that
the integrity of a record is checked only when the record
is in core, the current focus of attention of some
application(s). In other words, integrity is checked only when
strictly necessary. A given record update, insertion or
deletion is not immediately propagated to the record’s
children since these children do not affect the record
Therefore, this operation must be recorded somewhere so
that when the children are accessed, they can be notified‘
This is done by sending to a bulletin board a message
consisting of a description of the record, the nature of the
operation and a timestamp. In addition, the effects of
operations on parents can be propagated to children in
parallel with applications execution.

Deleting a record first requires accessing the record. Then,
it is checked whether this record can be deleted without
violating a constraint in which it is dependent A successful

2
Future work includes extending the notion of dependency to

resource protection. In this paper, integrity dependencies are expressed
in terms of constraint vriables. However, to be more realistic. they
should also take into account the users or applications that operate. or
can operate, on the varihles. This is best illustrated in the case of
existentially quntified dependent variables. Suppose that in the above
example constraint. the pipe has been declared independent and the beam
dependent A pipe can be created or updated regardless of whether
there is a beam to support it, and maintenance consists of creating or
moving beans. The responsibility for creating beams or choosing which
existing beams to move is more meningful if it applies to the users
authorized to perform such actions rather than to the current hem
records.

3 From the viewpoint of integrity checking, one can also COnSidW
records involved in a cycle of directed dependencies as siblings of each
others Jthough they may appear in different constraints. since each one
depends on the others. however indirectly.

Proceedings of the Eighth International Conference
on Very Large Data Bases

294
Mexico City, September, 1982

deletion results in sending a message which identifies the
deleted record as a (current) parent.

When a record is inserted, its parents and siblings are
identified in the database and its initial value is checked
against these parents and siblings. When the checking is
positive, the record is inserted into the database, and a
message is sent which identifies the new record as a
(potential) parent.

For simplification, a record update will be modelled as one
deletion followed by one insertion. This paper will ignore
the transaction issue that the intermediate checking after the
deletion can be useless due to the fact that the insertion
follows.

When a record is accessed from the database, messages
sent more recently than the record’s last access, and
indicating the deletion of current parents or the insertion of
potential parents, are looked for in the bulletin board. If
such an insertion message is found, the parent identified by
the message is accessed to check whether its value affects
the accessed record. Thus, accesses can be triggered
recursively. If an inserted or deleted parent implies deleting
or updating the accessed record, the application is
prompted to do so. Records carry the timestamp of their
last access.

Records can be accessed either by applications or by a
special DBMS component which accesses records precisely
to check their integrity with respect to recent operations
on their parents. This DBMS component is called the
f/usher because it flushes messages from the bulletin
board. The flusher executes in parallel with applications. In
general, it accesses records with lower priority than
applications. Under certain circumstances however, it may
gain higher priority; for instance, if an application wants to
check the consequences of an update4. A message is
deleted when it has been “seen” by all the children of its
record which existed at the time of its insertion5.

4. The messages and the bulletin board
Although the main purpose of this paper is not the
implementation of delayed integrity checking, the outline of
implementation strategies for the bulletin board presented in
this section may help the reader get a clearer appreciation
of the approach and of the simulation results shown later
on.

The bulletin board can be implemented as a structure
distinct from the database itself. To the extent that

imessages represent database updates, this resembles a
differential file cl 11 which is dynamically cleared by the

’ flusher.

4
If requested immediately after the update, thts is equivalent to

immediate propagation, which therefore, can be implemented as a special
case of delayed checking.

5
If tn some implementatiins. it is significantly cheaper to compute the

number of such children than to access them (e.g.. by maintaining
redundant cardinality data), then a counter could be associated with each
message and initialized to the appropriate number of children. Then, for
every child which “sees” the message, whether it is accessed by
applications or by the flusher, the counter is decremented. and the
message is automaticafly deleted when the counter reaches zero.

An alternative is to intermingle the bulletin board and the
database implementation. Consider for instance, a relational
database implemented as tables or files (one per relation)
with indexes for some attributes. Every relation has three
additional attributes, each indexed on: insertion !ime (In,
deletion time (DT), and access time (AT). The bulletln board
now consists of the IT and DT indexes and possibly.
indexes for some other attributes. Suppose for example the
following relational schema:

BEAM (END-PT 1, END-PT2, X-SECTION)
PIPE (END-PT 1, END-PTZ, DIAMETER)

Suppose further that (horizontal) pipes must be supported
by beams and depend on the beams which support them.
When a pipe p, is accessed, recently deleted beam tuples
are checked to see whether they used to support p,.
These beam tuples are identified as:

(b 1 BEAM(b) A b.DT>p , .ATj

An important question concerns the choice of attributes to
include in a message, that is, in the second implementation
alternative, the attributes to index for integrity checking
purpose. This question is illustrated here using the second
implementation alternative, because of its impact on
checking efficiency as discussed later in the simulation
model. In the above example, the deleted beams to consider
can be further selected as those which were close enough

to possibly support it. This requires an
::det:s;p:orp END-PT 1:

Ib)BEAMb) A b.DT>p .AT A
distance(b.END-PT j ,p , .END-PT 1 I< 100)

The trade-off is between an earlier selection (i.e., in the
bulletin board, or indexes) but more indexes to maintain,
versus a later selection (i.e. in the database).

5. General comparison of immediate and delayed
checking

A major argument in favor of delayed integrity checking is
that it often corresponds to real world practice. For
example, by decoupling the treatment of specifications and
of their depending implementations, designers can
concentrate on the former with no immediate concern for
the latter. Purposes of multi-purpose objects can be
similarly decoupled, as illustrated by the example of beams
used primarily for structural purpose, and secondarily for
supporting pipes.

Delayed checking assumes tolerance of temporary integrity
violations. The integrity of a record may be violated by
operations on its parents, and left unchecked until the
record is accessed. Another case of undetected violations
may occur due to the fact that records are directly
sensitive to changes in their parents only, not in their
further ancestors. For example, suppose beams depend on
the columns which support them. Suppose further that a
column is deleted, and then .a pipe supported by a beam
which is itself supported by that column, is accessed
before the beam The pipe does not know that its

supporting beam is no longer supported. Special provisions
for sensitivity to changes in ancestors must be offered if
specifically requested They are related to flushing activities,
but no solution will be outlined here.

Delayed checking redistributes part of the cost of integrity
checking incurred by applications from update time to

Proceedings of the Eighth International Conference
on Very Large Data Bases 295

Mexico City, September, 1982

access time. In addition, it can save applications some
checking at access time if this checking has been
performed in parallel with them by the flusher. In the best
case of delayed checking, children checking is all done in
parallel, and in the worst case, it is all done serially with
applications.

Now, consider the expected numbers of database (and
bulletin board) accesses for integrity management,
regardless of when these accesses take place. A
disadvantage of immediate checking is that a record can be
accessed and modified several times, due to several
modifications in its ancestors, before any application is
interested in it All but the last modifications will be
ignored, and are therefore useless (unless history is a
concern, of course). On the other hand, delayed checking
requires as many accesses to an updated record as this
record has children. Furthermore, it incurs the cost of
accessing and inserting messages. Neither alternative appears
superior a priori.

are uniformly distributed over the database, as if many
different applications interacted with the database
simultaneously.

Two cases are considered regarding parallel checking with
delayed checking. In the best case, messages from parents
are searched for at access time, but none is found which
has not been checked. In the worst case, all the parents
which have been updated since the last access to the
current record, must be accessed.

6.2. Modelling databases
Databases are abstracted as graphs where nodes are
records and edges integrity dependencies. A database is,
the superposition of a directed graph of parent-child
dependencies, the digraph, and of undirected graphs which
connect siblings, the sibling graphs. The digraph is a
hierarchy, i.e., an acyclic digraph in which layers are
distinguished. It can be for instance, a design hierarchy.

6. Simulation of delayed and immediate checking
This section presents the simulation model used to compare
the efficiency of delayed and of immediate integrity
checking in terms of numbers of database accesses.

There are as many sibling graphs as there are parents. A
layer graph is an undirected graph made of all the sibling
graphs of the same layer. Graphs in the simulation are
static, i.e., they do not grow or shrink, which is consistent
with the modelling of database UDdates as record updates.
Simulation was conducted on graphs made of several
hundred nodes and five or six layers.

6.1. Modelling the database operations
For the sake of simplicity, the results reported here
concern only record accesses and updates. Equivalently, this
consists of modelling all database updates as record
updates. Record updates have been chosen because they
we the costliest database updates (again, they can be seen
as pairs of record deletions and insertions).

It is assumed that integrity checking is left entirely to the
DBMS, and that applications maintain integrity as they are
notified of violations by the DBMS. Accordingly, two sorts
of database operations are distinguished Spontaneous
operations are performed by applications regardless of
integrity, and infegrify operations are performed for
integrity management Integrity database accesses are
performed by the DBMS, and integrity database updates by
applications.

The simulation aims at estimating the average number of
database and bulletin board accesses for integrity
management per spontaneous access and update. A record
access costs one database access, and so does a record
update (for the record’s re-insertion). Similarly, a message
lookup or insertion costs one bulletin board access. If
database and bulletin board accesses concern sets of
records rather than individual records, then the cost of
accesses is assumed to be proportional to the size of their
sets, In order to avoid core size as a modelling parameter.
it is assumed that a record is accessed from the database
at most once, and (re-jinserted at most once, due to a
spontaneous access. The same assumption holds for
message lookups and insertions. See figure 9-9 for the
simulation recursive model of delayed checking operations.

One parameter of the simulation, called RSU, is the rate of
spontaneous updates, i.e., the proportion of spontaneous
record accesses to be followed by an spontaneous update,
(RSUI_l). These spontaneous updates take place whether
or not the records are found to violate integrity at access
time with delayed checking. Spontaneous accesses and
updates are performed independently of each other, and

Proceedings of the Eighth International Conference
on Very Large Data Bases 296

The graphs of a database are characterized by the
following parameters (which are not all independent):

ADD: gvg. in-degree of the 9igraph nodes.
ADS: gvg. degree of the sibling graph nodes.
ADL: 3vg. degree of the jayer graph nodes.
ECL: sdge connectivity of the layer graphs.
PUP: probability of update propagation from

a parent to a child or between 2 siblings.
PUP is the same for all edges.

ADD is the average number of parents, or of children, per
record, i.e., for delayed checking, it is the average number
of messages looked for at access time. In the simulation
runs, the sibling graphs were either non-existent (ADS=O),
or rings, in which case every child is linked to exactly two
of its siblings if it has at least two siblings (ADS=2), or
cliques, in which case every child is linked to all its siblings
(ADS approaches ADD- 1). Both ADL and ECL depend on
ADD and ADS. If ADDLl, the sibling graphs do not
intersect, and ADL=ADS. If ADD21 and ADS1_2, the
sibling graphs intersect, the layer graphs become connected,
i.e., ECLL2, and ADL>ADS.

7. Simulation results
Some simulation results are plotted in figures 9- 1 to 9-B
They show the average costs of delayed checking as
percentages of the corresponding average costs of
immediate checking. Theses costs are averaged per
spontaneous event, i.e., spontaneous access or update. That
is, they are computed as (x+(y*RSU)V(l +RSU), where x is
the average number of database (or bulletin board) accesses
per spontaneous access, and y is this average number per
spontaneous update. Both the best and the worst case of
delayed checking are represented. The heavy lines
represent database accesses, and the lighter lines bulletin
board accesses. The bulletin board accesses are added to
the database accesses.

Mexico City, September, 1982

A bulletin board access is considered as expensive as a
database access, and all database accesses are considered
equally expensive. These two simplifications are generally
more detrimental to delayed checking than to immediate
checking. Firstly, if the bulletin board is a distinct structure
from the database, it is likely to be smaller than the
database, since a message is at most as long as the record
it represents (neglecting the timestamp), and there are at
most as many messages as there are, or have recently
been, records. It is generally assumed that the expected
time to access a (paged) structure is proportional to the
size of this structure. Now, if the bulletin board is part of
the database access structure (see section 41, then the cost
of accessing the bulletin board is included within the cost
of accessing the database. Plotting cheaper bulletin board
accesses would result in pushing the light lines down
towards their corresponding heavy lines. Secondly, if the
bulletin board and the database share their access structure,
databases accesses of delayed checking which are
prompted by a bulletin board search are faster than others,
since most of the job was done for accessing the bulletin
board.

The plots show sensitivity to the five parameters which
describe the databases and the way they are manipulated:
ADD, ADL, ECL. PUP and RSU. The amount of integrity to
manage grows with the value of each of these parameters.
For each parameter, first is considered the case where the
layer graphs are not connected, and then the case where
they are.

The only way ADL and ECL can keep constant while ADD
varies is if ADS=0 (figure 9-l). As the number of parents
per record grows, the increase in useless checks and
updates of descendants for immediate checking is faster
than the increase in repeated accesses to updated Parents
for delayed checking, but about as fast as the increase in
messages for the worst case of delayed checking.

In order to help interpret the plots in which the digraph is
a tree and ADS’>2 (figures 9-2, 9-3 and g-41, consider
the maximum subgraph which can be accessed following a
spontaneous access or update to a given node. For delayed
checking, it is made of the siblings hanging on the path
from that node to the root. Its size is NC*A, where NC is
the number of children of the nodes which have children,
and A is the number of layers from this node to the rozt
For immediate checking, the maximum subgraph size is I,__,
NC’, where D is the number of layers from this node to
the leaves.

An increase in ADL means an increase in NC, and immediate
checking is generally more sensitive to that than delayed
checking (figure 9-2). If delayed checking costs do not
decrease more sharply, it is because as NC increases, the
average number of ancestor layers per node slowly
increases while the average number of descendant layers
per node slowly decreases. As PUP increases (figure g-31,
more of the maximum subgraphs is likely to be accessed.
As RSU increases (figure 9-41, immediate checking accesses
the subgraphs more often.

Basically, immediate checking is more sensitive to parameter
increases, and the cost of delayed checking is the closest
to that of immediate checking for low parameter values,
that is, when integrity is cheap to manage anyway.

Proceedings of the Eighth International Conference
on Very Large Data Bases 297

Connected layer graphs make things more complicated
because of the dependence of ADL and ECL on ADD. The
essential novelty is that the maximum subgraphs are now
made of entire layers. As a result, delayed checking
immediately propagates updates to more records at each
layer, and the difference with immediate checking weakens.
Thus. the two alternatives are more similarly sensitive to
parameter increases, as can be seen from figures 9-5, 9-6
and 9-0.

Figure 9-7 which shows delayed checking generally cheaper
than immediate checking except when PUP tends to 0 or 1,
can be explained as follows. When PUP tends to 0, updates
hardly propagate and the two alternatives are hardly
different. When PUP tends to 1, delayed checking tends to
propagate integrity checks and updates throughout the
whole graph from the spontaneously updated records up,
and immediate checking throughout the whole graph from
the spontaneously updated records down.

8. Conclusion
Specifying integrity dependencies between the variables of
integrity constraints can improve checking efficiency by
delaying some of the checking and giving it a chance to be
performed in parallel with applications. Delayed checking is
cheaper than immediate checking in database accesses, and
often cheaper even when the number of bulletin board
accesses is added to the number of database accesses.
This is especially encouraging as several aspects of delayed
checking have been considered under the worst light Again,
the cost of a bulletin board access could be reduced to a
fraction of the database access cost, and the average
database access is cheaper for delayed checking if the
bulletin board and the database share their access structure.

The simulation can help characterize the databases which
are good candidates for delayed checking. The higher their
update rate, the better. Their average probability of update
propagation, i.e., the “tightness” of their integrity constraints,
should be high enough to make integrity management
significant, but not to the *point that everything completely
determines everything else. Also, it seems that delayed
checking applies particularly to trees of directed integrity
dependencies, although it performs comparatively well for
other acyclic digraphs too.

CAD databases match closely these characteristics. They
are frequently updated, since their purpose is primarily tc
be built, as opposed to more static databases which are
primarily consulted. The elements of a complex design are
often tightly related, but not completely determined by each
other (otherwise design would not be needed). Finally. trfm
usually make life easier for designers. They allow reasoning
at various levels of abstraction (i.e., specification) and top-
down design, because the role of every design element as
a specification implementor is known, and its implementation
is not affected by another. In reality of course, the role of
elements is not always known or expressed, and
optimization sometimes consists of making elements
implement several specifications.

9. Acrknowledgements
The author is grateful to Alex Borgida and Tom Mitchell for
many fruitful discussions and useful comments about this
paper, and to the VLDB referees for their suggestions.

Mexico City, September, 1982

Roforonces

1. Bernstein P., Blaustein B., Clarke E. Fast Maintenance of
Semantic Integrity Assertions Using Redundant Aggregate
Data Sixth International Conference on Very Large Data
Bases, , 1980.

2. Blaustein B. Enforcing Database Assertions: Techniques
and Applications. Ph.D. Th., Aiken Computation Laboratory,
Harvard University, 198 1.

6. Buneman O.P., Clemons E.K “Efficiently Monitoring
Relational Databases.” ACM Transactions on Database
Systems 4, 3 (Sept 1979).

4. Eastman C., Lafue G. Semantic Integrity Transactions in
Design Databases. Working Conference on CAD Databases,
IFIP, 1981.

5. Hammer M., Sarin S. Efficient Monitoring of Database
Assertions. International Conference On Management of
Data, ACMISIGMOD, 1978.

6. Koenig S., Paige R A Transformational Framework for
the Automatic Control of Virtual Data Seventh International
Conference on Very Large Data Bases, , 198 1.

7. Lafue G. An Approach to Automatic Maintenance of
Semantic Integrity in Large Design Databases. National
Computer Conference, AFIPS, 1979.

8. Lafue G.M.E., Mitchell T.M. Data Base Management
Systems and Expert Systems for CAD. Working
Conference on CAD Systems Frameworks, IFIP WG 5.2,
1982.

9. Mitchell T. et al. Representations for Reasoning about
Digital Circuits. Seventh International Joint Conference on
Artificial Intelligence, 198 1.

10. Nicolas J.M. Logic for Improving Integrity checking in
Relational Data Bases. ONERA-CERT. Toulouse, France, Feb.,
1979.

11. Severance D., Lohman G. “Differential Files: Their
Application to the Maintenance of Large Databases.” ACM
Transactions on Database Systems 1 (Sept 1976).

12. Stonebraker M. Implementation of Integrity Constraints
and Views by Query Modification. International Conference
On Management of Data, ACMISIGMOD, 1975.

Proceedings of the Eighth International Conference
on Very Large Data Bases 298 Mexico City, September, 1982

Figure 9-1:

Figure 9-2:

tzy?n
140

I

PUP : 0.5

130 /f-Y
R.su: 0.33

1 2 3 4 5 ADD

1301 \

ADD: 1
ECL:O
PUP: 05
Rsu 0.33

\\.

120

110

100

90

80
I

70

60

w

40

30

20

10

01 .
1 2 3 4 5ADL

ADD. 1

g’:;o’
RSU: 0.33

‘00:
.l 2 .3 .4 .I .6 .7 .9 .9 1 PUP

‘4 \
1201 \

ADD, 1
ADL: 2
ECL.0
PUP. 0.5

,I)
.l 2 .3 .4 .5 .6 .7 .a .s 1 RSU

Figure 9-4:
SOP IYYIDIAR
cmrlNacos7

\
loo I

\ I. :,w, -

.l 2 .3 .4 .5 .5 7 a 9 1 PUP
x Q I-*~
aso(lm CM g<::

A ECL:?
150 PUP: 0.5

146

130

120

110

80

*o-
30

20

10

0 L
,l 2 .3 .4 .I .5 .7 .I .s 1 RSU

Durecnocl~-vsRsulwl-urar

Figure 9-8:

x0? l-R c-auMcosT is%
I

Rsu: 0.33
150

140

130 I w

120

110

so

80
.I

;

:: L

10

0, 4 4 3 3 2 2 2 2 2 ECL,
1 2 3 4 5 ADD

Da*rmcnrcxucacos~vrADDucECL~llmmcwuvas

XOP IYOUR
-corn

ADC.Ol~,126,123,1.16,1.16

. RSU: 0.33
150

:: -

120

110

30

20

10

0 1* 6 7 9 11 E
4 5 6 7 A%

Darve aec~wo cosrs vz. ADL uo ECL m C(*WKTQ uvus

Figure 9-5: Figure 9-6:

Figure 9-7: mva, MCXIW CC&SSVtPUPr01-~=-

access(r)= if a(r) 2 tc and u(r) 1. t
then (for every parentir 9 do

(if m(parent(r)) 2 tc then (m(parent(r)):=t;
b:=b+ 1 1.

if u(parentM s air, then (access(parenW; .
if random C PUP then update(r))

a(r):=t:=t+ 1);

update(r)= if u(r) I tc
then (u(r):=t=t+ 1:

for every parent(r) do access(parentW
for everv sibling(r) do
(access(sibling(rH;

if random 5 PUP then update(siblingH) 1;
b:=b+ 1);

spontaneous access to record r: tc:=t; access(r);
spontaneous update of record r: update(r);

where:
t is lime. It is incremented for each record access or update.
tc is the time at which the current spontaneous access has started.
b is the number of bulletin board accesses.
a(r) is the time of last access to record r.
u(r) is the time of last update of record r.
m(r) is the time of last lookup for the message representing record r.
random generates random numbers between 0 and 1.

After a certain number of spontaneous accesses and updates. the number of database
accesses is t, and the number of bulletin board accesses is b.

Figure 9-9: Recursive model of record access and update for delayed check@

Proceedings of the Eighth International Conference
on Very Large Data Bases 299 Mexico City, September, 1982

