
A TEMPORAL FRAMEWORK FOR DATABASE SPEC IF ICATIONS 

J.M.V. de Castilho 
M.A. Casanova 
A.L. Furtado 

Departamento de Informatica 
Pontificia Universidade Catolica do RJ 

22453, Rio de Janeiro, RJ - Brasil 

ABSTRACT 

A database description framework is introduced 
that accounts for static constraints, that is, 
constraints on what data can be stored,as well 
as transition constraints, that is, constraints 
on how data can be updated. Two levels of 
specification are considered. At the first 
level of specification, a database description 
Dl does not indicate how the database will be 
updated. Transition constraints are then 
specified with the help of a variant of Tem- 
poral Logic. By contrast, at the second level 
of specification, a database description D2 
includes a set of built-in update operations, 
which are described by their properties. The 
advantages accrued from this approach are two- 
fold: first-level specifications give a stable 
description of constraints, while second-level 
specifications suggest a strategy to enforce 
constraints. 

1. Introduction 

We address in this paper the question of 
specifying databases that contain static con- 
straints, that is, 

~ - 
constraints on what data can 

be stored, and transition constraints, that is, 
constraints on how data can be updated. Moreover. 
any constraint may involve time. -Examples of 
transition constraints are "salaries must never 
decrease" and "an employee that is currently 
assigned to a project cannot be fired" (i.e. he 
must first be disconnected from any project). 
Examples of constraints involving time are "an 
employee must receive a notice six weeks before 
being fired" and "no project can be inactive 
after January lSL, 1982". 

We propose a multi-level database specific- 
ation methodology, where levels differ essential- 

Ily on how specific they are about database update 
operations. (Hence, our multi-level specification 
is orthogonal to the ANSI/SPARC three-level 
proposal CANI). The first level of specification 
corresponds to the usual assumption that a data- 
base does not include any set of built-in update 

operations. Constraints on state transitions are 
described at this level with the help of a 
variant of Temporal Logic CRUI. For example, the 
constraint "salaries must never decrease" will 
be rephrased into a sentence whose intuitive 
meaning is "for any employee e, if e has now 
salary s, then in the future, if e is still an 
employee, he must have salary s', with s'&.". 
Notice that, in the last sentence, no verb such 
as "decrease", that suggests an operation, is 
used. Temporal circumstances are captured by 
timestamping the database or, putting it differ- 
ently, by having an independent variable that 
stands for the "clock". 

Temporal Logic has been successfully applied in 
a variety of problems, such as concurrentprogram 
verification CLa,Pn,MPl, network protocol 
specification, synthesis of communicating proces- 
ses [MwI, and information systems specification 
[Se] (the reference closest to our work). 

At the second level of specification, a data- 
base description follows the idea of encapsu- 
lation CLZI. That is, each database contains a 
predefined set of built-in update operations 
which, by convention, ' must be used by any update 
transaction. This strategy is advantageous 
because built-in updates can be designed so that 
no constraint is ever violated. Thus, users are 
relieved from worrying about consistency, be- 
cause transactions will automatically preserve 
all constraints. This approach in no way res- 
tricts queries, though. 

We do not assume, at this second level of 
specification, that built-in updates are des- 
cribed by actual programs. They are rather 
defined by their properties, which can take 
either the form of pre - and post- conditions 
[Ho,Br,Pal or the form of equations which allow 
us to establish whether two sequences of op- 
erations will yield the same result [EKW,LM,VCFl. 

Although we will discuss only the two levels 
sketched above, we can easily imagine a third 
level where built-in updates are indeed defined 
by programs. 

Let Dl, D2 and D3 be the first, second and 
third level specifications of the same database. 
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They establish a crescendo of abstraction in the 
sense that programs defined in D3 are replaced by 
operation properties in D2, which are in turn abs 
tracted into operation-independent constraints ix 

D1' 
This abstraction process must satisfy two 

properties, which embody a notion of refinement: 

(a) programs defining built-in updates in D3 must 
satisfy all properties listed in D2; 

(b) the set of built-in update properties listed 
in D2 must guarantee all constraints defined 
in D 1 (assuming that state transitions can 
only be brought about by the built-in updates 
defined in D2). 

We close this discussion by briefly justifying 
our multi-level database specification methodolo- 
gy. The following points might be raised in favor 
of our approach: 

(4 

(b) 

cc> 

Since different repertoires of operations may 
span all (or part of the) valid states and 
valid transitions, first-level specifications 
tend to be more comprehensive and stable than 
second level specifications. We can often add 
or drop operations from a second level speci-i 
fication and yet stay within the bounds of 
the same first-level specification; 

Built-in operations are an effective way to 
enforce constraints, perhaps with the help 
of auxiliary structures. They can either be 
called by users'transactions or automatical 

- ly, if considered as triggers CEsl; 

Both levels of specification are useful: 
first level specifications give a direct 
description of constraints, whereas second 
level specifications suggest implementation 
strategies, following the idea of encapsu- 
lation, that guarantee consistency preservat- 
ion. 

This last remark deserves additional comments. 
Let D2 be a second level database description 
based on built-in operations. If we ask ourselves 
what set of database states D2 specifies, the 
answer is: whatever the given set of operations 
happens to generate. Therefore, an independent 
definition of the set of acceptable states and 
of the allowed state transitions, as contained 
in a first level specification Dl, sounds super- 
fluous. 

Strictly speaking the above remark is indeed 
correct, but we believe that constraints cannot 
be ignored (see the remarks by Christian,Smith 
and Balzer in [BZ]). When programming method- 
ologies are discussed, it is adequate to describe 
the behaviour of data, which are accessory ele- 
ments in a computation, by whatever the operations 
happen to do. However, data is fundamental for 
databases. Therefore, valid states and state 
transitions should be characterized independent- 
ly of the set of built-in operations. 

To further emphasize our point, consider the 

example, described in CVCFI, of an employment 
agency database. In this example, a person can 
be hired through the agency only if he is a 
candidate to a job; after being hired, he ceases 
to be a candidate; a person becomes a candidate 
when he applies to the agency or when he is fired 
from a job he obtained through the agency. Note 
that these sentences actually describe properties 
of the built-in operations hire 

_ _ 
T apply and fire. . 

While each of these properties is quite easy to 
understand, it may not be so obvious that, taken 
together, they are a way to enforce the simple 
constraint: "no person can simultaneously work 
on more than one company, if he obtains all his 
jobs through the agency". 

A short description of each section now follms. 
Section 2 informally describes the scenario that 
underlies our formal treatment. Section 3 in- 
troduces the formalism we will use throughout the 
paper, Section 4 discusses first level database 
specifications, which include static and transi- 
tion constraints. Section 5 addresses second- 
level database specifications (with built-in up- 
dates) and their relationship with first-level 
specifications. Finally, Section 6 contains con- 
clusions and directions for future research. 

2. Informal Discussion of Basic Concepts 

In this section we informally cover some basic 
concepts connected with database specifications. 
We begin by discussing the role of consistency 
criteria. We regard consistency criteria as des- 
cribing policies of the enterprise and as 
disciplining actions that produce or modify 
information about the enterprise. That is, an 
action is legal if and only if it preserves all 
consistency criteria. 

The disciplining role of consistency criteria 
is greatly reinforced if we assume that actions 
take place only through the database. For example, 

/we do not merely record that a person is hired 
by a company; a person is actually hired if and 
when the appropriate update is sucessfully 
executed in the database. Hence, no action that 
violates a consistency criterion can actually 
take place. 

This assumption cannot always hold in practice, 
however. There are external actions performed, 
say, by government agencies that affect the enter 

jprise. Thus, these actions will simply be record 
ed after notice is receyved that they took place. 
Examples are: tax cuts, price increases, etc... 

A consequence of this assumption concerns the 
role time plays in consistency criteria. An un- 
qualified reference to time would be ambiguous, 
since we would have real-world time and time as 
recorded by the internal clock of the system 
where the database is running. However, since we 
assumed that actions take place through the data 
base, it is the clock time that counts. Or - 
rather, the time of execution of an action is 
identified with the time when its results are 
recorded in the database. Hence, no "actuality 
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lag" [Bul exists. 

We now examplify what we mean by static and 
transition constraints, which may or may not in- 
volve time. Suppose that we have a database with 
three tables or relation schemes [Dal, 
WORKERCNAME 1, COMPANYCCNAME1 and 
WORKSFORCNAME, CNAMEI. By convention, WORKER(w) 
indicates that person w is a certified worker; 
COMPANY(c) indicates that company c is active; 
and WORKSFOR(w,c) means that worker w works for 
company c. In order to make our example quite 
explicit we assume that there is just one com- 
pany C and one worker W. Then, the database has 
eight possible states as shown in Figure 3.1 
(rows represent states and columns indicate the 
different values of each table). 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

COMPANY WORKSFOR 

Figure 3.1 

It seems reasonable to impose the following 
static constraint: 
s: "person p can work for company a only if p 

is a certified worker and e is an active 
company" 

Any state is valid iff it does not violate the 
static constraints. Hence, states 1, 2, 3, 5 and 
8 are valid (with respect to constraint s). 

Whenever the database changes, we say that a 
state transition occurs. In our simple example, 
the set of all possible transitions can be re- 
presented by a digraph G = (N,E) whose nodes 
correspond to the five valid states and whose 
edges represent all possible state transitions 
(the reason for including loops (i,i) will be 
given later). 

Figure 3.2 
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Consider now the following three transition 
constraints: 

tl: "company e cannot become inactive if some 
person p works for e"; 

t2: "if person p stops working for company e, 
then p can never work for e again"; 

t3: "if worker p is unemployed for more than m 
units of time, then p ceases to be a certi- 
fied worker (and, perhaps, becomes eligible 
to social security benefits)". 

A set of state transitions is valid iff it 
satisfies all transition 

-- 
constraints. 

Thus, constraint tl disallows transitions (8,l) 
and (8,2). However, from state 8, we can still 
reach a state where C becomes inactive, but only 
through a sequence of transitions, such as 
((8,5),(5,2)). Therefore, constraint tl imposes 
that the dismissal of W must be considered sep- 
arately from, and performed prior to, the de- 
activation of C. 

Constraint t2 disallows any sequence of tran- 
sitions leading from state 8 to a distinct state 
and then back to state 8. 

Constraint t3 says that transitions (2,l) or 
one of (5,l) and (5,3) become compulsory after 
the database has been evolving in or between 
states 2 and 5 for more than m units of time. 

Thus, temporal circumstances, already implicit 
in constraints tl and t2 through the use of the 
adverbs after and again, are brought to the fore- 
ground in constraint t3. Note that we implicitly 
associated the flow of time with state trans- 
itions. This can be explicitlydone by assuming 
that: 

(i) transitions are not instantaneous, that is, 
the value of the clock after a transition is 
strictly greater than the value of the clock 
before the transition; 

(ii)conversely, the flow of time is always as- 
sociated with some transition; if the data- 
base remains unchanged, then the trivial 
transition represented by a loop (i,i) is 
assumed (i.e. only the value of the clock 
changes). 

Using the terminology of the Introduction, a 
first-level specification of our database then 
consists of the three relation schemas, 
WORKERCNAMEI, COMPANYCCNAMEI and 
WORKSFOR[NAME,CNAMEl, the static constraint s 
and the transition constraints tl, :? and t3. 

In order to pass to a second-l? . specific- 
ation, we describe, via their prc,c,ties, a set 
of built-in operations. The set wt‘ consider con- 
sists of the operations certify, register, hire, 
fire and cancel. The intended behavior of these 
operationmndicated in Figure 3.3, where 
they are shown as edge labels. 
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a) cancel(W) 
b) certify(W) 
c> register(C) 
d) register(C) 

e> 
f> 
e) 
h) 

hire(W,C) -- 
fire(W) 
cancel(W) 
certify(W) 

We observe at this point that sometimes it 
may be necessary to enhance the original data- 
base structures in order to define built-in op- 
erations that guarantee consistency preservation. 
For example, to guarantee property h" above, it 
may be necessary to keep an extra table of former 
employees. At a more abstract level, we may as- 
sume that the database is ever-growing CSul in 
the sense that information about past states is 
always kept. 

Figure 3.3 

Note that the repertoire of operations chosen 
permits all valid states to be reached from the 
initial state 1, but it does not enable all valid 
transitions (e.g., there is no way to make C inac 
tive). A set of operations is complete CSFI when= 
ever any state is reachable from any other state 
through some sequence of updates. Hence, this 
property does not hold in our example and, in 
general, may or may not hold in a database ap- 
plication, 

We briefly discuss only the hire and cancel 
operations. The intended effect of hire-is, 
of course, that WORKSFOR(W,C) becomes true. 
Thus, the second-level specification of our data- 
base would include the following property of hire 

h: "after hire(p,e) is successfully executed, 
WORKSFOR(p,e) becomes true". 

However, the intended effect of hire must be 
disciplined so that no constraint isviolated. 
Thus, to preserve the static constraint s, 
hire(p,e) should fail on any state where either -- 
WORKER(p) or COMPANY(e) are false. This is 
captured by including the following property of 
hire in our second-level specification: -- 
h': "if WORKER(p) or COMPANY(e) are false, then 

hire(p,e) must fail without modifying the 
database". 

Consider now constraint t.2: "if person p stops 
working for company e, then p can never work for 
e again". Any sequence of operations of the form 

. . . hire(p,e);... fire(p);... hire(p,e);... 

violates t2. Hence, an additional property of 
hire must be included in our second-level specif- 7. 
rcatron: 
h' t . . "if WORKSFOR(p,e) was true in the past, then 

hire(p,e) must fail without modifying the 
database". 

Since hire does not affect constraints tl and 
t3, propxes h, h' and h" suffice to charac- 
terize hire and guarantee that no constraint is 
ever vized. 

We now discuss the operation cancel. We begin 
by observing that the validity of constraints 
that involve time may not depend only on the way 
data is manipulated. Within this category, we 
find constraint t3: "if worker p is unemployed 
for more than m units of time, then p ceases to 
be a certified worker". In order to enforce such 
constraint, we introduce a special kind of 
built-in operation, cancel, called a trigger C~sl. 
The operation cancel will automatically delete 
any person p from WORKER as soon as p stops work- 
ing for any company for more than m units of time 
Thus, cancel will be activated independently of 
user'sactions, unlike all other operations, 
which are called as part of the execution of a 
transaction. (Databases that can initiate action 
have been referred to as active databases in 
other contexts CMRI). -- 

This concludes our remarks about constraints, 
built-in operations and multi-level specifica- 
tions. The next sections formalize the concepts 
introduced here. 

3. Basic Formalism 

In this section we define a family of formal 
languages, cdlled temporal languages, which are 
appropriate to describe both constraints on data 
and constraints on data transitions. We start by 
reviewing some basic concepts of first-order 
predicate calculus. 

3.1 - First-Order Languages 

We assume that the reader is familiar withthe 
basic concepts of first-order predicate calculus 
[En,Sh]. So, we review very briefly only the con- 
cepts of many-sorted language, structure and 
first-order theory, mostly to set up some basic 
notation. 

A many-sorted first-order language 1 
[En,pp 2771 is defined quite similarly to a 
first-order language, except that: 

1 has a non-empty set S of sorts; 
each variable belongs to a specific sort; 

(iii) each n-ary predicate symbol p has an 
associated sort (il,...,in), which is a 
sequence in S; 

(iv> each n-ary function symbol f also has an 
associated sort (il,...,in;in+l); 

(VI the formation rules of L respect sorts in 
the usual sense. 

A structure I of 1 assigns to each sort i. in 
J 
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S a domain Di., 
J 

to each n-ary predicate symbol r 

of sort (il,..., in) a relation I(r)cDilX...XDi,, 

and to each n-cry function symbol of sort 
(i 

. . 
l""'ln; ln+l) a n-ary function 

I(f): Di1X".XDi, + Di,+l. In particular, I 

assigns to each constant c of sort ij an element 
I(C) & Di.. 

J 

If a wff P of L is valid in a structure I of 
L, we write I=IP . If PFalid in all structures 
of L, we write I= P. 

A first-order theory is a pair o = (L,P) where 
L is a first-order language and P is a set of 
formulas of L, the non-logical axioms of o. A 
model of o is a structure of L where<11 formu- 
min P are valid. 

3.2 Temporal Languages 

We set un in this section a family of formal 
languages, called temporal languages; that per- 
mit expressing transition constraints such as 
"salaries never decrease" or "an employee can- 
not receive a raise during his first six months 
in the company". These transition constraints are 
interesting because they involve comparing data 
from different states (e.g., new salaries against 
old salaries). Examples of transition constraints 
formulated in temporal languages will be given in 
Sections 4.1 and 5.1. 

Intuitively, a temporal language has objects 
of three types or sorts: (i) i&, that corresponds 
to data elements; (ii)state that correspondsto 
database states; and (iii)og corresponding to 
programs. 

We allow any function or predicate symbol over 
individuals. They will represent data structures 
or ordinary functions and predicates, such as 
'5'. However, function or predicate symbols of 
other sorts are restricted as follows. We will 
have one oredicate svmbol. after.of sort . 
(-9 state, state). The'iaed interpretation 
of aftec,j)that there is a computation of 
b that starts on state i and terminates on state 
j. We allow any n-ary function symbol f of sort 
(prog, '. *, prog.; prog) that creates a new pro- 
gram f(bl,...,b ) out of n programs bl,...,b,. 
An example is tile familiar program composition 
operation, We also allow any n-ary function sym- 
bol g of sort (i&,...,si prog). The intended 
interpretation of after(g(x)x) is that there 
is a computation-of procedure g , when called 
with parameters x, that starts on state i and 
terminate; on state j. 

To relate objects of sort state to formulas, -- 
we add a new type of formula, R;(P), to the 
machinery of first-order logic. The intended in- 
terpretation of Ri(P) is that the wff P holds on 
state i. We will also have a special symbol, cs, 
whose intended interpretation is that cs denotes 
the "current state". It will become clear that cs 
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is neither a constant nor a variable. Hence, it 
constitutes a special characteristic of temporal 
languages. Both Ri(P) and cs are taken, with 
minor modifications, from Temporal Logic CRUI. 

A few examples might help fix ideas at this 
point: 

(1) 

(2) 

(3) 

Vi Vj (R;(P) A after (b,i,j) * Rj(Q)) 

expresses that, if b starts on a state i 
satisfying P and terminates on a state j, 
then j satisfies Q; 

Vi 3j (R;(P) * after (b,i,j)) 
says that, if thxtial state satisfies P, 
then b always halts; 

3i (after (b,cs,i) A R;(P)) 
indicates that there is a computation of b 
that takes the current state into some state 
i where P is true. 

More precisely, a temporal language TL is a 
typed language with three sorts: the individual 
sort (abbreviated ind), the state sort and the 
program sort (abbreviated pr=TLhas the 
followingsymbols: 

loeical svmbols: 

connectives and parentheses: -, , A , (,) 
variables: x,y,z,... of sort ind and 

i,j,k,... of sort state 
equality symbols: = of sort mind) and 

=s of sort (state,state) 
quantifiers: V of sort ind and Vs of sort state 
special symbols: cs, the current state, and 

R, the Realization operator 

non-logical symbols: 

predicate symbols: for each n>O, there is a set 
ossibly empty) of n-place predicate 

lkbols of sort (ind ind)* . . ..- , 
special predicate symbol: aternary predicate - 

symbol, after, of sort 
(prog,state,state); 

function svmbols: for each nZ0. there is a set - --__I -. 
(possibly empty) of n-place function 
symbols of sort (il,...,in; in+l), 
where i l,...,in+l are either all of 
sort ind or all of sort prog, or 

7 
il,...,in are all sort indnd - 
i n+l is of sort prog. 

note: for simplicity, we write = and V instead 
of =s and V 

S’ 

We note at this point that we imposed restric- 
tions on temporal languages that seem unnecessary. 
For example, there is no predicate symbol involv 
ing different sorts, except after, and no 
variables over programs (i.e., we cannot quantify 
over programs). These restrictions are justified 
by the scenario of this paper and could be 
relaxed in other situations. 

The individual language induced by TL is the 
first-order language L whose symbols are those 
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of TL, except the state variables, the symbols =s, 
v s9 cs and R, the special predicate symbol after 
and all function symbols of sort (il,...,i,;prog), 
where i. can be either ind or prog (11jSn). L is -- 
then thi language used to talk about data. 

The state language induced by Tl is the first- 
order language T whose symbols are those of TL, 
except the special symbols cs and R and the sym- 
bols of L. T is then the language used to talk 
about states and programs. Indeed, TL can be 
viewed as combining T and L via the realization 
operator R and the current state cs. 

The set of terms of TL is defined induc- 
tively as follows: 

(1) any variable is a term; 
(2) the special symbol cs is a term of sort state; 
(3) if f is an n-ary function symbol of sort 

(i 
. . 

1,' *"ln; In+1 ) and tl ,...,t, are terms of 
sort il,...,i,, respectively, then 
fctl,..., tn> is a term of sort i n+l' 

note: the only terms of sort state are then the 
state variables themselves and the current 
state cs, since no function symbol in- 
volves the sort state. 

The set of well-formed formulas (wffs) of TL ~-- 
is defined inductively as follows: 

(1) if p is an n-ary predicate symbol of sort 
(il,...,i,), 
and tl,..., 

with ijE(ind,state,prog)(l<j<n), 
t, are terms ofXF..,i,, 

respectively, then p(tl,..."t,) is a wff; 

(2) if tl, t2 are terms of the individual sort 
(state sort), then tl = t2 (tl =s t,) is a 
wff: 

(3) if P and Q are wffs, x is an individual va- 
riable and i is a state variable, then 
-p, PAQ, flxP, V,iP are wffs; 

(4) if P is a wff and u is a term of sort state, 
then Ru(P) is a wff. 

We also add to TL, by definition, the existen- 
cial quantifier 3 and the boolean connectives 
v , * , -9 in the usual way. 

Examples of wffs of TL are CRUI: 

(1) Ri(-P) F -Ri(P) 

(2) Ri(P'Q) ' R;(P) ' Ri (Q> 

(3) Ri(VxP) : VxR;(P) 

(4) Ri(ffsjP) : Vsj(Ri(P)) , i and j distinct 

(5) Rcs(P) s P 

(6) Ri(Rj (P>> f Rj (P) 

(7) Ri(cs =s j) z i =s j 

(8) Ri(j =s k) E j zs k 

(9) Vsj P * PCcs/jl , j does not occur within 
the scope of an R opera- 
tor. 
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note: PCcs/jl indicates the result of replacing 
every free occurrence of j in P by cs. 

The semantics of TL will be such that the wffs 
(1) through (9) are always true. Formulas (5), 
(6) and (9) deserve some comment. Formula (5) 

the fact that cs is the current state. 
(6) indicates that the result of Rj(P) 
change when reevaluated in state 1 (for 

captures 
Formula 
will not 
mula (6) 
Ri (Rc s 'J' 
mula (9) 
state j, 

. - 
should be contrasted with 

)) E R;(P), which is implied by (5)).Fo~ 
indicates that. if P is true in everv , 
then P is, in particular, true now (i.e. 

in the current state). 

We now turn to the semantics of TL. A struc- 
ture of TL is a quintuple A = (7,S,P,A,B) where: 

(a) 7 is a non-emotv set of individuals . the 

(b) 
individual domain of 
S is a non-empty set 
domain of A: 

A; 
of states, the state 

I 

(c) P non-empty set of programs, the program 
domain of A; 

(d) A is a function assigning to each a E -9 , a 
structure A, of L, the individual language 
induced by 71, such that all structures have 
the same domain, which is I; 

(e) B is a function assigning to after a relation 
B(after) 5 P XSX S, and to each n-ary func- 
tion'-s;pbol f of sort (prog,...,prog;m), 
nt0, an n-ary function B(f) : P" + P, and to 
each m-ary function symbol g of sort 
(&I,...,=; prog), mZ0, an m-ary function 
B(g):7"-t. 

Hence, associated with each state a E S,there 
is a structure A giving meaning to the symbols 
of the individua? language L induced by TL. The 
function B can also be viewed as a structure for 
the state language T induced by TL. Note then 
that the meaning of the symbols of T is fixed in 
A, whereas those of 1 have variable meaning. 

We assign meaning to the wffs of TL as follckJs 
Let v be a function that assigns to each individ 
ual variable x, an individual VEX and to each 
state variable i, a state v(i)ES. Given a&S, we 
then define a function v,, the extension of v in 
A, that assigns to each term t of sort s an el- 
ement of the domain of A of sort s. The function 
v, is defined inductively as follows: 

(1) Va(U) = V(U), if u is a state or individual 
variable; 

(2) va(cs) = a; 
(3) va(f(tl,...,tn)) = F(va(tl),...,va(tn)) 

where F is the function associated with f by 
A a, or by B, if f is of sort (il,...,in;prog). 

We now extend v to the wffs of TL as follows 
(the value of va(P") will be true or false); -- 

(1) v,(p(tl,...,t,)) = true 

iff (va(tl),...,vaCtn))Eh 

where h is the relation associated with p by 
A a, or by B, if p is the special predicate 
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symbol after; 

(2) va(t 1 - = t2)=true if va(tl) = va(t2) 

false otherwise 

(3) v,(t 1 =s t2) = true if va(tl) = va(t2) 

taise otherwise 

CL> v,w = true if v,(P) = false 

4. First Level Database Specifications 

We discuss in this section how to describe 
databases at the first level of abstraction.That 
is, the descriptions will include constraints on 
state transitions, but they will not be based on 
any set of built-in update operations. Descrip- 
tions of this sort will use a class of temporal 
languages, called basic temporal languages. 

false otherwise 

(5) v,(PAQ) = true if v,(P) = v,(Q) = true 

false otherwise 

(6) va(vxP) = true if vb(P) = true, for every 
function vb that agrees with 
V a on all symbols, except on x 

false otherwise 

(7) va(VsiP) = true (same as in (6), except that 
i replaces x) 

false otherwise 

(8) va(Bu(P)) = true if vb(P) = true , where _-_ 
b = v,(u) 

false otherwise 

Finally, we say that a wff P of TL is valid 
(written I= P) iff. for every struct&e 
A = (I,S,+,A,B) of -TL, for every assignment 
v of values (from 1 and S) to the variables of 
TL, and for every aES, v,(P) = true. 

We conclude our list of basic definitions by 
saying that a structure A = (I,S,P,A,B) of Tl 
is standard iff P is a set of binary relations 
over S and, for any a E P and any ;,j E S, 
(a,i,j) E B(after) iff (i,j) E a. We may con- 
sider, from now on, only standard structures of 
TL because the following lemma holds. 

Lemma 3.1: 

For any- structure A = (I,S,P,A,B) with dis- 
joint domains, there is a homomorphism h of A in- 
to a standard structure A' = (I,S,P’,A,B’) such 

4.1 - Basic Temporal Languages 

A basic temporal language TL is a temporal 
language whose induced state language contains 
just two constants of sort prog, p and p*, and 
no other function symbol. TKntended inter- 
pretation of after(p,i,j) is that j is obtained 
by applying some (unspecified) built-in op- 
eration to i. That is, j is an immediate suc- 
cessor of i, considering built-in operations as 
indivisible. The intended internretation of 
after(p*, i,j) is that j is obtained by applying 
zero or more (unspecified) built-in operations 
to i. This is captured in part by defining a 
basic standard structure of TL as a standard 
structure A = (I,S,P,A,B) of TL such that 
B(p*) is the reflexive and transitive closure of 
B(p) (recall that, since A is a standard struc- 
ture, B(p) and B(p*) are both binary relations). 

Basic Temporal Languages give us a flexible 
and general mechanism to define tense operators -_ 
or modalities, which increase the readability of 
formulas. Table 4.1, at the end of this section 
contains a list of modalities we have found use- 
ful. 

We now give a few examples that help as- 
sess the expressive power of basic temporal lan- 
guages. Assume that TL has two binary predicate 
symbols, EMP and ASSIGN; the intended inter- 
pretation of EMP(n,s) is that employee n has 
salary s, and of ASSIGN(n,p) is that employee 
n is assigned to project p. 

Using modalities, the sentence l'salaries never 
decrease" could be formalised as: 

that (1) Vn Bs Vs' (EMP(n,s) * @(EMP(n,s') * sIs')) 
ldividual domain 1 and on T. . . 'eresting to rephr (a) h is one-to-one on il 

the state domain S; 
(b) for any assignment v of values to the varia- 

bles of TL (fmom d and S), for every a E S , 
and every wff P of TL, 

v,(P) = true iff vi(P) = true -- 
where v v' are the 
and A' &p&tively. 0 

extensions of v in A 

without loss of 
onsider a program b 

as represenrea oy a ulnary relation a such that 
(i,j)&a iff there is a computation of b that 
starts on state i and terminates in state j . 

This concludes the description of our basic 
formalism. The next sections discuss how it can 

Lemma 3.1 tells us that, 
generality, we can always c 
^_ ee^---_--L-> 1--- - CT--..-- 

Lr 1s int -ase (1) in English 
again, since it says that: for any employee n,if 
n now has salary s, then henceforth if n has 
salary s', then s<s'. Thus, according to (l), if 
an employee is fired and hired again, his second 
salary must be greater than or equal to his first 
salary. That is, nowhere in (1) we expressed that 
the person must be continuously hired in order 
for the rule to apply. 

If we understand "salaries never decrease" as 
saying that "during the lifetime of the same 
contract, the salary of an employee cannot de- 
crease", then we would have: 

(2) Vn Bs (EMP(n,s) * (Vs'(EMP(n,s')* ~5s') 
whilehenceforth 3s"EMP(n,s"))) 

be used to describe databases. The need for two constants of sort prog, p ard 
p*, with their intended interpretations, arose 
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because we came across sentences that imposed res 
trictions on single state transitions, as opposed 
to restrictions on sequences of state transitions. 
For example, consider the sentence "employees 
that are assigned to a project cannot be fired". 
It could be formalized as: 

(3)Yn (jp ASSIGN(n,p)A3s EMP(n,s)*G*(3s'EME'(ns'))) 

A closer inspection of (3) reveals that its 
meaning is "if employee n is now assigned to some 
project p, then henceforth n will always be an 
employee", which is too restrictive. A better 
formalization is: 

(4)Vn (3s EMP(n,s)r\3pASSIGN(n,p)*G(3dEMP(n,s'))) 

that restricts, under the intended interpretation, 
what built-in operations can do (i.e., no single 
application of one built-in operation can at the 
same time disconnect an employee from all his 
tasks and fire him). 

To talk about timestamps, such as the date an 
employee was hired, we assume that TL has an 
individual constant T whose value in state i is 
intended to be the time state i was created.Then, 
the sentence 'an employee cannot receive a raise 
until he has been working for the company for A 
units of time" is formalized as: 

(5)Vn Vs Vt(EMP(n,s)Aff (-jsEMP(n,s')) A r = t * 
(( T 2 t + A *EMP(n,s)) 

whilehenceforth As"EMP(n,s"))) -- 
The antecedent of (5) expresses that employee 

n was hired at time t with salary s; the con- 
sequent of (5) says that the salary of n must be 
s at any time r<t+A, if n has been continuously 
employed by the company. 

Table 4.1 

A List of Modalities ----.--- 
classical unary modalities for p 

(1) 

(2) 

(3) 

(4) 

F(P) - 3i ( after(p,cs,i) A R;(P)) -- 
"eventually P after" (i.e., "eventually P 
holds after executing some built-in operatioq 
starting on the current state) 

P(P) Z di(after(p,i,cs) A R;(P)) -I 
"eventually P before" 

G(P) z - F(- P) 
"always P after" 

H(P) E - P(- P) 
"always P before" 

classical binary modalities for p* 

(5) (P since Q) Z ji(after(p*,i,cs) A Ri(Q) A 

vj(after(p*,i,j)A after(p*,j,cs)*Rj(P))) --- 
"P has been true up to now since Q was trueM 

(6) (P until Q) Z qi(after(p*,cs,i) A Ri(Q) A 

Vj(after(p*,cs,j) A after(p*,j,i) * Rj(P))) 

"',,;il,l always be true from now on until Q is 

c 
(7) F*(P) f (true until P) 

"eventual- ine futuretl 

(8) P*(P) G (true since P) 
"eventual~ine past" 

(9) G*(P) : - F*(- P) 
"henceforth always P" 

(10) ff"(P) - - P"(- P) 
"heretofore always P" 

non-standard binary modalities for p* 

(11) (Q whileheretofore P) Z - (P since - Q) 
"necessarily Q will be true while hereto- 

fore P was always true" 
-- 

(12) (Q whilehenceforth P) Z - (P until - Q) 
"necessarily Q will be true wmhence- 

forth P will always be true". --- 

4.2 First Level Relational Schemas 

We now use the concepts developed in Section 
4.1 to formalize the notion of first level 
relational database schema and related notions, - 
such as consistent database state. Schemas at 
this stage will include constraints on state 
transitions, but they will not be based on any 
set of built-in update operations. 

Before defining what we mean by a schema, it 
is worth noting that we classify all symbols of 
a schema into two sets. The first set contains 
all symbols, such as '=I, whose intended inter- 
pretation is fixed. The second set includes all 
symbols whose meaning varies over time, which 
will be the relation names in the case of the 
relational model. Their meaning at a given point 
in time t comprises what is called the database 
state at t (however, for simplicity, our defini- 
sof database state also includes the meaning 
of all other symbols). 

(a) A triple u = (TL,P,?_) is a first level 
relational schema iff 

(i> 

(ii) 

(iii) 

TL is a basic temporal language with a 
distinguished set of predicate symbols 
P'{ rl,...,rnl, ri of arity ki(l<i~n), 
the relation names of 0; (Let L be the 
individual language induced by TL in 
what follows). 

P is a set of wffs of L, the static 
constraints (integrity constrzor 
consistency criteria) of 0; 

2 is a set of wffs of TL, the transition 
constraints of o, such that each Q E g- 
asfirst-order; 

(b) A database state of o is a structure of L; 

(c) A consistent database state of o is a data- 
base state I of o such that each static. 
constraint P E P is valid in I; 
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Cd) 

(4 

(f) 

A database universe U of o is a set of data- 
base states such that: (i) all database 
states differ only on the values of the rela 
tion names; (ii) for each I E U, for every - 
relation name r and every relation h over 
the common domain such that r and h have the 
same arity, there is J E U such that I and J 
differ only on the value of r, which is h. in 
J; 
A database history of 0' is a structure 
A = (I,S,P,A,B) of TL such that the range of 
A is a database universe of o; 

A consistent database history of o is a data- 
base history A of o such that all transition 
constraints of o are valid in A. 0 

note: if TL contains the special constant -c, then 
the definition of database universe must be 
modified so that states also differ on the 
value of T and, for each I E U, for each 
individual a, there is J E U such that I 
and J differ only on the value of r which 
is a in J. 0 

Thus, the pair o'= (L,p) in Definition 4.1 is 
a first-order theory and a consistent database 
state of U is just a model of o'. The notion that 
the meaning of all symbols, except the relation 
names, is fixed is embodied in clause (i) of the 
definition of database universe (clause (ii) as- 
sures that, if the value of r is changed to h, 
the new database state is still a member of the 
universe U). Finally, 2 should be viewed as 
defining constraints on the allowed state 
transitions. 

5, Second Level Specifications 

We now discuss how to define databases that 
include built-in operations, However, we assume 
that built-in operations are described by their 
properties, rather than by programs in a program 
ming language. We first define, in Section 5.1,- 
the class of temporal languages we will use and 
the concept of second level schemas. Then, in 
Section 5.2, we discuss the relationship between 
first and second level database specifications. 
Finally, Section 5.3 indicates how to account for 
triggers. 

5.1 - Temporal Languages with Procedures and 
Second Level Schemas 

A temporal language with procedures is a tem- 
poral language= a set of function symbols 
of sort (ind ,...,ind;prog), called procedures. -- 
If b is arpocedure of TL, the term b(f) is in- 
tended to denote a call to the procedure b with 
parameters X. 

A second level schema is a schema D=(TL,P,~) 
wherem apmanguage with procedures. 
We also say that the procedures of 71 are the 
built-in operations of o. 

We now briefly exhibit a second-level schema 
u = (TL,P,Q. We assume that TL has two binary 

predicate symbols, EME' and ASSIGN (see Section 
4.1), a procedure raise with two parameters and 
two procedures with one parameter, fire and 
liberate. The static constraints will not be dis 
cussed, since they do not depend on new concepts. 
The transition constraints 2 capture the intended 
interpretation of the procedures, which we now 
discuss. 

The intended interpretation of raise(n,s) is 
that employee n receives a salary raise of s 
dollars, which is captured by adding the follow- 
ing wff to 2: 

(1)Vn Vs ffs'Ui(EMP(n,s') A s>O h 
after(raise(n,s),cs, i) * R;(EMP(n,s'+s))) -- - 

(Note the use of the current state symbol cs). 
The wff in (1) does not specify the behaviour of 
raise completely, though. Other wffs saying that 
G(n,s) affects only the tuple of EMP 
corresponding to employee n, and no other tuple 
anywhere in the database, should be added to 2: 

(2)Vm Vr Vn Vs Vi(EMP(m,r) A m # n A 
after(raise(n,s),cs,i) * R;(E?Q'(m,r))) -- 

(3)fTm fTp Vn Vs tii(ASSIGN(m,p) A 
after(raise(n,s>,cs,i) * R;(ASSIGN(m,p))) -- 
The intended interpretation of fire(n) is that 

employee n is dismissed. However we wish to 
guarantee the constraint (see SectIon 4.1): 

"if an employee is assigned to some project, then 
he cannot be fired". Thus, 2 must include the 

following wffs: 

(4)Yn Vs Vi(EMP(n,s) A - 3p ASSIGN(n,p) A 
after(fire(n),cs,i)*R;(- gs'EMP(n,s'))) -- 

(5)Vn Vs Vi(EMP(n,s) A 3p ASSIGN(n,p) A 
after(fire(n),cs,i)*Ri(EMP(n,s))) -- 

As for raise, we must complete the specification 
of fire by adding to 2 constraints saying that 
fire(n) only deletes from EMP the tuple corresp% 
ding to employee n (which we omit for brevity). 

The intended interpretation of liberate(n) is 
that employee n is liberated from all tasks he 

,has on all projects, which is captured by adding 
to ?, the following wff: 

(6)ffn Vi (after(liberate(n),cs,i) * 
Ri(- dp ASSIGN(n,p))) 

Again, the specification of liberate must be corn 
pleted by adding other wffs -for raise. - 

This concludes our discussion about second- 
level schemas. 

5.2 - The Relationship between First and Second 
Level Schemas 

The first and second level specifications of 
the same database are not at all unrelated. In 
fact, we imagine that the second level specific- 
ation is obtained from the first level descript- 
ion by a refinement process where: (i) a set of 
built-in operations is selected; (ii) built-in 
operation properties are introduced so as to 
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guarantee all static and transition constraints 
defined in the first-level specification. This 
section then defines precisely what we mean by 
refinement. 

Let o'=(TL',R',Q') be a first level schema and 
~=(TL,17,0_) be a second level schema. We say that 
TL is a refinement of TL' iff 

(i) TL' and TL differ only on the relation names 
and on the program symbols of sort 
(i . . ..i ; prog)(i.e., TL' has two cons- 
ta?r;s of zort prog by definition, while TL 
has a set of fzfon symbols of sort 
(&,...,*; prog)); 

(ii)there is a refining function y assigning to 
each n-arv relation name r of TL' a wff ry of 
TL with n=free individual variables ordered 
X1,...,Xn. Intuitively, y defines each 
relation name r of TL' in terms of those of 
JL. 

Suppose that TL is a refinement of TL' with 
refining function y. Given a standard structure 
A=(l,S,P,A,B) of TL, we construct a standard 
structure AY=(l,S,P',A',S') of TL' as follows. 
P' contains just two elements, c1 and a*, where 

a = 6% @ * I3 
' is such that B'(p) = a and 

B'(p*) = cl* @'(after) is then fixed, by 
definition of standard structure). For each a E .$ 
Ai is equal to Aa, except on the value of each 

relation name r of o', where AA(r) is the n-ary 

relation defined by r Y in A a. Ay is called the 

structure induced by A; likewise, AA is the data- 
base state of 0.' induced by A a' 

Intuitively, the value of p in A', B'(p) = ~1, 
contains all state transitions that can be 
brought about by a call to some built-in op- 
eration of o; likewise, the value of p* in A' con 
tains all state transitions that can be brought- 
about by zero or more calls to built-in operations 
of o. Hence A' assigns the intended interpretation 
(in terms of the built-in operations of o) to p 
and p*. The value of each relation n?me r of 0' 
in each A' ? is obtained from Aa via r , the wff 

defining r in TL. 

Given a first-level schema a'=(TL',R',Q') and 
a second level schema o=(TL,R,O_), we then say 
that o is a refinement of o' iff: (i) TL is a 
refinement of TL' with refining function y; (ii) 
for any standard structure A of o that satisfies 
2, A' also satisfies Q'; (iii) for any consistent 
database state I of o, the induced state 1' of 0' 
is also consistent. Thus, condition (ii) captures 
the idea that the constraints on the behaviour of 
built-in operations defined in o suffice to 
guarantee the transition constraints of o'. 
Similarly, condition (iii) implies that the 
static constraints of o are enough to guarantee 
those of 0'. 

We now indicate very briefly how we could 
prove that a second-level schema a=(TL,R,?) is a 
refinement of a first-level schema o'=(TL',R',T). 
Let y be a function refining TL' into TL. For 
each wff P E R' we can define a ywff Py of TL 
such that P is valid in Iy iff P is valid in I, 
for any database state I of o(see for example, 
[CCFI). Hence, testing condition (iii) reduces to 
proving that, for each P E R', PY is a logical 
consequence of R. Since Py is first-order, this 
presents no novelties. 

Condition (ii) can be checked in much the 
same way as condition (iii). To illustrate this 
remark, suppose that o is the schema described 
in Section 5.1, which has built-in operations 
raise fire and liberate. We sketch how we could -.-' - 
prove that the properties of these built-in op- 
erations listed in q guarantee the constraint 
"if an employee is assigned to some project,then 
he cannot be fired" (which might be considered a 
transition constraint of Q' for the purposes of 
this illustration). 

This constraint was defined in Section 4.1 
(in the basic temporal language TL') as follows: 

(1)Vn fTs(EMP(n,s) A 3p ASSIGN(n,p)* G(EMP(n,s))) 

Expanding the definition of G, we would have: 

(2)Vn Vs(EMP(n,s) A 3p ASSIGN(n,p) * 
Vi(after(p,cs,i) * Ri(EMP(n,s))) -- 
Let A be a structure of TL and A' be the 

structure of TL' induced by A. Recall that the 
interpretation of after(p,cs,i) in A' was that 
state i can be reached from the current state 
cs by executing some built-in operation. That is, 
after(p,cs,i) holds in A' iff the wff P holds in 
A, where P is: 

(3)3n 3s (after(raise(n,s>,cs,i)) v 
3n (after(f;re(n),cs,i)) v 
3n (af(iZZrate(n),cs,i)) 

Then, the wff in (2) holds in Ay iff the wff Q 
holds in A, where Q is: 

(4)Vn Vs(EMP(n,s) A 3p ASSIGN(n,p) * 
Vi(P * R;(EMP(n,s))) 

Therefore, given any structure A of TL that 
satisfies Q, the wff in (2) is valid in A' iff 
the wff in (4) is valid in A. But this is equiv- 
alent to proving that (4) is a logical con- 
sequence of 2, which can be established by an 
adaptation of the standard axiom system for tem- 
poral logic CRUl. 

5.3 - Triggers 

Recall from Section 2 that a trigger p. was 
an operation executed automatically whene:er a 
certain condition B. was true. We show in this 
section that we caniview triggers as a method of 
defining built-in operations and that we need 
not leave the framework developed in Sections 
5.1 and 5.2. 
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Let o be a second level schema and suppose 
that operations pl,..., p of o are considered as 
triggers and operations t ..,q are treated as 
normal built-in operation&I'Let n 
dition for executing pi, l<i<m. 

Bi be the con- 

Our approach is indeed quite simple. We ass= 
that the system will implement triggers by check- 
ing whether any trigger can be executed only 
before or after the execution of a normal built- 
in operation. We also assume that, if more than 
one trigger can be executed, the order of exec- 
ution is selected nondeterministically. These 
assumptions are equivalent to transforming each 
built-in operation qi into the program p; qi; 5, 

where i = do Bl + pl fl . . . 0 Bm -+ pm* (see - 
CDil for the guarded do-loop). 

Thus, triggers can be viewed as a way of im- 
plementing complex built-in operations. We in- 
clude p before and after qi because a guard Bk 
may be affected by the results of qi and, hence, 
must be tested after qi executes. Moreover, after 
executing a built-in operation q. and before 

J executing the next one, qi, the clock may advance 
thus rendering some guard Bk true, which was 
false right after the execution of q.. Hence,each 
guard must be tested before qi execuges. (Note 
that, in our formalization, triggers are called 
only when a built-in operation is invoked). 

Hence, to account for triggers, it remains to 
phrase 6 as a program of temporal languages with 
procedures. In order to do so, we first write i 
as a regular program [Hal: 

m 
(1) ; = (Bl?; pl u . . . u B,?; pm)*; ( n -, B;)? 

i=l 
The union operation can be introduced in a tem- 
poral language as a binary function symbol, u,of 
sort (prog,prog; prog); a test B? can be in- 
troducxsconstant of sort prog, for each wff 
B of TL; finally the reflexive and transitive 
closure operation can be introduced as an unary 
function symbol, *, of sort (prog; prog). The ip 
tended meaning of these symbols is captured by 
forcing, in each standard structure A=(l,S,P,A, 
B(U) to be the set theoretic union operation, 
8(*) to be the set theoretic reflexive and 
transitive closure, and B(B?) = {(a,a>ES'/I=A- 

J), 

With these provisos, i becomes a term of TL 0'; 
sort prog. 

Then, we can reduce our second level schema 0 
with triggers to a similar one, o', without 
triggers, simply by replacing each normal built- 
in operation qi of 0 by p; qi; b. This reduction 
justifies our initial remark that we view trig- 
gers as a method of defining built-in operations. 

6. Conclusions 

We introduced a family of high level database 
specification languages, called temporal lan- 
wages, that permit expressing transition con- 
straints as well as the more traditional static 
constraints. These languages are quite flexible 
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and permit defining a meaningful dictionary of 
modalities that greatly enhance the readability 
of transition constraints, without additional 
conceptual burden. 

We introduced the idea of multi-level data- 
base specifications of increasing degree of 
abstraction. At the highest level of abstraction, 
static and transition constraints are specified 
without mentioning any set of built-in operatiohs. 
This description serves mostly to document the 

iintended behavior of the database. That is, it 
describes both the nature of the data kept in 
the database and the rules governing how to 
create and modify such data. 

Moving towards implementing the database, a 
set of built-in operations, that are able to 
create and modify the data kept, is identified. 
The database schema at this second level of des- 
cription will include, besides the names of the 
operations their properties. But no actual code 
for the operations is provided. The properties 
must be carefully defined so as to guarantee 
that no constraint listed in the first-level 
description is violated. 

These were the two levels discussed in this 
paper. The trend would continue by choosing an 
implementation for the operations, which would 
require defining an appropriate class of tem- 
poral languages that include a suitable program- 
ming language (one such class was sketched at 
the end of Section 5.3; see also [CB]). More 
generally, going towards an implementation in- 
volves selecting a data structure oriented data 
model that contains, not only a programming 
language, but also suitable features to repres- 
ent data. 

Further theoretical work would involve in- 
vestigating the decision problem for each class 
of Temporal Languages, starting with the defi- 
nition of consistent and complete axiom systems 
for these languages. It is also worth investigat 
ing the expressive power of the modalities in- 
troduced in Section 4.1, vis-a-vis the 
necessities of high-level database specifications. 
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