
A TEMPORAL FRAMEWORK FOR DATABASE SPEC IF ICATIONS

J.M.V. de Castilho
M.A. Casanova
A.L. Furtado

Departamento de Informatica
Pontificia Universidade Catolica do RJ

22453, Rio de Janeiro, RJ - Brasil

ABSTRACT

A database description framework is introduced
that accounts for static constraints, that is,
constraints on what data can be stored,as well
as transition constraints, that is, constraints
on how data can be updated. Two levels of
specification are considered. At the first
level of specification, a database description
Dl does not indicate how the database will be
updated. Transition constraints are then
specified with the help of a variant of Tem-
poral Logic. By contrast, at the second level
of specification, a database description D2
includes a set of built-in update operations,
which are described by their properties. The
advantages accrued from this approach are two-
fold: first-level specifications give a stable
description of constraints, while second-level
specifications suggest a strategy to enforce
constraints.

1. Introduction

We address in this paper the question of
specifying databases that contain static con-
straints, that is,

~ -
constraints on what data can

be stored, and transition constraints, that is,
constraints on how data can be updated. Moreover.
any constraint may involve time. -Examples of
transition constraints are "salaries must never
decrease" and "an employee that is currently
assigned to a project cannot be fired" (i.e. he
must first be disconnected from any project).
Examples of constraints involving time are "an
employee must receive a notice six weeks before
being fired" and "no project can be inactive
after January lSL, 1982".

We propose a multi-level database specific-
ation methodology, where levels differ essential-

Ily on how specific they are about database update
operations. (Hence, our multi-level specification
is orthogonal to the ANSI/SPARC three-level
proposal CANI). The first level of specification
corresponds to the usual assumption that a data-
base does not include any set of built-in update

operations. Constraints on state transitions are
described at this level with the help of a
variant of Temporal Logic CRUI. For example, the
constraint "salaries must never decrease" will
be rephrased into a sentence whose intuitive
meaning is "for any employee e, if e has now
salary s, then in the future, if e is still an
employee, he must have salary s', with s'&.".
Notice that, in the last sentence, no verb such
as "decrease", that suggests an operation, is
used. Temporal circumstances are captured by
timestamping the database or, putting it differ-
ently, by having an independent variable that
stands for the "clock".

Temporal Logic has been successfully applied in
a variety of problems, such as concurrentprogram
verification CLa,Pn,MPl, network protocol
specification, synthesis of communicating proces-
ses [MwI, and information systems specification
[Se] (the reference closest to our work).

At the second level of specification, a data-
base description follows the idea of encapsu-
lation CLZI. That is, each database contains a
predefined set of built-in update operations
which, by convention, ' must be used by any update
transaction. This strategy is advantageous
because built-in updates can be designed so that
no constraint is ever violated. Thus, users are
relieved from worrying about consistency, be-
cause transactions will automatically preserve
all constraints. This approach in no way res-
tricts queries, though.

We do not assume, at this second level of
specification, that built-in updates are des-
cribed by actual programs. They are rather
defined by their properties, which can take
either the form of pre - and post- conditions
[Ho,Br,Pal or the form of equations which allow
us to establish whether two sequences of op-
erations will yield the same result [EKW,LM,VCFl.

Although we will discuss only the two levels
sketched above, we can easily imagine a third
level where built-in updates are indeed defined
by programs.

Let Dl, D2 and D3 be the first, second and
third level specifications of the same database.

Proceedings of the Eighth International Conference
on Very Large Data Bases 280 Mexico City, September, 1982

They establish a crescendo of abstraction in the
sense that programs defined in D3 are replaced by
operation properties in D2, which are in turn abs
tracted into operation-independent constraints ix

D1'
This abstraction process must satisfy two

properties, which embody a notion of refinement:

(a) programs defining built-in updates in D3 must
satisfy all properties listed in D2;

(b) the set of built-in update properties listed
in D2 must guarantee all constraints defined
in D 1 (assuming that state transitions can
only be brought about by the built-in updates
defined in D2).

We close this discussion by briefly justifying
our multi-level database specification methodolo-
gy. The following points might be raised in favor
of our approach:

(4

(b)

cc>

Since different repertoires of operations may
span all (or part of the) valid states and
valid transitions, first-level specifications
tend to be more comprehensive and stable than
second level specifications. We can often add
or drop operations from a second level speci-i
fication and yet stay within the bounds of
the same first-level specification;

Built-in operations are an effective way to
enforce constraints, perhaps with the help
of auxiliary structures. They can either be
called by users'transactions or automatical

- ly, if considered as triggers CEsl;

Both levels of specification are useful:
first level specifications give a direct
description of constraints, whereas second
level specifications suggest implementation
strategies, following the idea of encapsu-
lation, that guarantee consistency preservat-
ion.

This last remark deserves additional comments.
Let D2 be a second level database description
based on built-in operations. If we ask ourselves
what set of database states D2 specifies, the
answer is: whatever the given set of operations
happens to generate. Therefore, an independent
definition of the set of acceptable states and
of the allowed state transitions, as contained
in a first level specification Dl, sounds super-
fluous.

Strictly speaking the above remark is indeed
correct, but we believe that constraints cannot
be ignored (see the remarks by Christian,Smith
and Balzer in [BZ]). When programming method-
ologies are discussed, it is adequate to describe
the behaviour of data, which are accessory ele-
ments in a computation, by whatever the operations
happen to do. However, data is fundamental for
databases. Therefore, valid states and state
transitions should be characterized independent-
ly of the set of built-in operations.

To further emphasize our point, consider the

example, described in CVCFI, of an employment
agency database. In this example, a person can
be hired through the agency only if he is a
candidate to a job; after being hired, he ceases
to be a candidate; a person becomes a candidate
when he applies to the agency or when he is fired
from a job he obtained through the agency. Note
that these sentences actually describe properties
of the built-in operations hire

_ _
T apply and fire. .

While each of these properties is quite easy to
understand, it may not be so obvious that, taken
together, they are a way to enforce the simple
constraint: "no person can simultaneously work
on more than one company, if he obtains all his
jobs through the agency".

A short description of each section now follms.
Section 2 informally describes the scenario that
underlies our formal treatment. Section 3 in-
troduces the formalism we will use throughout the
paper, Section 4 discusses first level database
specifications, which include static and transi-
tion constraints. Section 5 addresses second-
level database specifications (with built-in up-
dates) and their relationship with first-level
specifications. Finally, Section 6 contains con-
clusions and directions for future research.

2. Informal Discussion of Basic Concepts

In this section we informally cover some basic
concepts connected with database specifications.
We begin by discussing the role of consistency
criteria. We regard consistency criteria as des-
cribing policies of the enterprise and as
disciplining actions that produce or modify
information about the enterprise. That is, an
action is legal if and only if it preserves all
consistency criteria.

The disciplining role of consistency criteria
is greatly reinforced if we assume that actions
take place only through the database. For example,

/we do not merely record that a person is hired
by a company; a person is actually hired if and
when the appropriate update is sucessfully
executed in the database. Hence, no action that
violates a consistency criterion can actually
take place.

This assumption cannot always hold in practice,
however. There are external actions performed,
say, by government agencies that affect the enter

jprise. Thus, these actions will simply be record
ed after notice is receyved that they took place.
Examples are: tax cuts, price increases, etc...

A consequence of this assumption concerns the
role time plays in consistency criteria. An un-
qualified reference to time would be ambiguous,
since we would have real-world time and time as
recorded by the internal clock of the system
where the database is running. However, since we
assumed that actions take place through the data
base, it is the clock time that counts. Or -
rather, the time of execution of an action is
identified with the time when its results are
recorded in the database. Hence, no "actuality

Proceedings of the Eighth International Conference
on Very Large Data Bases 281 Mexico City, September, 1982

lag" [Bul exists.

We now examplify what we mean by static and
transition constraints, which may or may not in-
volve time. Suppose that we have a database with
three tables or relation schemes [Dal,
WORKERCNAME 1, COMPANYCCNAME1 and
WORKSFORCNAME, CNAMEI. By convention, WORKER(w)
indicates that person w is a certified worker;
COMPANY(c) indicates that company c is active;
and WORKSFOR(w,c) means that worker w works for
company c. In order to make our example quite
explicit we assume that there is just one com-
pany C and one worker W. Then, the database has
eight possible states as shown in Figure 3.1
(rows represent states and columns indicate the
different values of each table).

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

COMPANY WORKSFOR

Figure 3.1

It seems reasonable to impose the following
static constraint:
s: "person p can work for company a only if p

is a certified worker and e is an active
company"

Any state is valid iff it does not violate the
static constraints. Hence, states 1, 2, 3, 5 and
8 are valid (with respect to constraint s).

Whenever the database changes, we say that a
state transition occurs. In our simple example,
the set of all possible transitions can be re-
presented by a digraph G = (N,E) whose nodes
correspond to the five valid states and whose
edges represent all possible state transitions
(the reason for including loops (i,i) will be
given later).

Figure 3.2

Proceedings of the Eighth International Conference
on Very Larga Data Bases 282

Consider now the following three transition
constraints:

tl: "company e cannot become inactive if some
person p works for e";

t2: "if person p stops working for company e,
then p can never work for e again";

t3: "if worker p is unemployed for more than m
units of time, then p ceases to be a certi-
fied worker (and, perhaps, becomes eligible
to social security benefits)".

A set of state transitions is valid iff it
satisfies all transition

--
constraints.

Thus, constraint tl disallows transitions (8,l)
and (8,2). However, from state 8, we can still
reach a state where C becomes inactive, but only
through a sequence of transitions, such as
((8,5),(5,2)). Therefore, constraint tl imposes
that the dismissal of W must be considered sep-
arately from, and performed prior to, the de-
activation of C.

Constraint t2 disallows any sequence of tran-
sitions leading from state 8 to a distinct state
and then back to state 8.

Constraint t3 says that transitions (2,l) or
one of (5,l) and (5,3) become compulsory after
the database has been evolving in or between
states 2 and 5 for more than m units of time.

Thus, temporal circumstances, already implicit
in constraints tl and t2 through the use of the
adverbs after and again, are brought to the fore-
ground in constraint t3. Note that we implicitly
associated the flow of time with state trans-
itions. This can be explicitlydone by assuming
that:

(i) transitions are not instantaneous, that is,
the value of the clock after a transition is
strictly greater than the value of the clock
before the transition;

(ii)conversely, the flow of time is always as-
sociated with some transition; if the data-
base remains unchanged, then the trivial
transition represented by a loop (i,i) is
assumed (i.e. only the value of the clock
changes).

Using the terminology of the Introduction, a
first-level specification of our database then
consists of the three relation schemas,
WORKERCNAMEI, COMPANYCCNAMEI and
WORKSFOR[NAME,CNAMEl, the static constraint s
and the transition constraints tl, :? and t3.

In order to pass to a second-l? . specific-
ation, we describe, via their prc,c,ties, a set
of built-in operations. The set wt‘ consider con-
sists of the operations certify, register, hire,
fire and cancel. The intended behavior of these
operationmndicated in Figure 3.3, where
they are shown as edge labels.

Mexico City, September, 1982

a) cancel(W)
b) certify(W)
c> register(C)
d) register(C)

e>
f>
e)
h)

hire(W,C) --
fire(W)
cancel(W)
certify(W)

We observe at this point that sometimes it
may be necessary to enhance the original data-
base structures in order to define built-in op-
erations that guarantee consistency preservation.
For example, to guarantee property h" above, it
may be necessary to keep an extra table of former
employees. At a more abstract level, we may as-
sume that the database is ever-growing CSul in
the sense that information about past states is
always kept.

Figure 3.3

Note that the repertoire of operations chosen
permits all valid states to be reached from the
initial state 1, but it does not enable all valid
transitions (e.g., there is no way to make C inac
tive). A set of operations is complete CSFI when=
ever any state is reachable from any other state
through some sequence of updates. Hence, this
property does not hold in our example and, in
general, may or may not hold in a database ap-
plication,

We briefly discuss only the hire and cancel
operations. The intended effect of hire-is,
of course, that WORKSFOR(W,C) becomes true.
Thus, the second-level specification of our data-
base would include the following property of hire

h: "after hire(p,e) is successfully executed,
WORKSFOR(p,e) becomes true".

However, the intended effect of hire must be
disciplined so that no constraint isviolated.
Thus, to preserve the static constraint s,
hire(p,e) should fail on any state where either --
WORKER(p) or COMPANY(e) are false. This is
captured by including the following property of
hire in our second-level specification: --
h': "if WORKER(p) or COMPANY(e) are false, then

hire(p,e) must fail without modifying the
database".

Consider now constraint t.2: "if person p stops
working for company e, then p can never work for
e again". Any sequence of operations of the form

. . . hire(p,e);... fire(p);... hire(p,e);...

violates t2. Hence, an additional property of
hire must be included in our second-level specif- 7.
rcatron:
h' t . . "if WORKSFOR(p,e) was true in the past, then

hire(p,e) must fail without modifying the
database".

Since hire does not affect constraints tl and
t3, propxes h, h' and h" suffice to charac-
terize hire and guarantee that no constraint is
ever vized.

We now discuss the operation cancel. We begin
by observing that the validity of constraints
that involve time may not depend only on the way
data is manipulated. Within this category, we
find constraint t3: "if worker p is unemployed
for more than m units of time, then p ceases to
be a certified worker". In order to enforce such
constraint, we introduce a special kind of
built-in operation, cancel, called a trigger C~sl.
The operation cancel will automatically delete
any person p from WORKER as soon as p stops work-
ing for any company for more than m units of time
Thus, cancel will be activated independently of
user'sactions, unlike all other operations,
which are called as part of the execution of a
transaction. (Databases that can initiate action
have been referred to as active databases in
other contexts CMRI). --

This concludes our remarks about constraints,
built-in operations and multi-level specifica-
tions. The next sections formalize the concepts
introduced here.

3. Basic Formalism

In this section we define a family of formal
languages, cdlled temporal languages, which are
appropriate to describe both constraints on data
and constraints on data transitions. We start by
reviewing some basic concepts of first-order
predicate calculus.

3.1 - First-Order Languages

We assume that the reader is familiar withthe
basic concepts of first-order predicate calculus
[En,Sh]. So, we review very briefly only the con-
cepts of many-sorted language, structure and
first-order theory, mostly to set up some basic
notation.

A many-sorted first-order language 1
[En,pp 2771 is defined quite similarly to a
first-order language, except that:

1 has a non-empty set S of sorts;
each variable belongs to a specific sort;

(iii) each n-ary predicate symbol p has an
associated sort (il,...,in), which is a
sequence in S;

(iv> each n-ary function symbol f also has an
associated sort (il,...,in;in+l);

(VI the formation rules of L respect sorts in
the usual sense.

A structure I of 1 assigns to each sort i. in
J

Proceedings of the Eighth International Conference
on Very Large Data Bases 283 Mexico City, September, 1982

S a domain Di.,
J

to each n-ary predicate symbol r

of sort (il,..., in) a relation I(r)cDilX...XDi,,

and to each n-cry function symbol of sort
(i

. .
l""'ln; ln+l) a n-ary function

I(f): Di1X".XDi, + Di,+l. In particular, I

assigns to each constant c of sort ij an element
I(C) & Di..

J

If a wff P of L is valid in a structure I of
L, we write I=IP . If PFalid in all structures
of L, we write I= P.

A first-order theory is a pair o = (L,P) where
L is a first-order language and P is a set of
formulas of L, the non-logical axioms of o. A
model of o is a structure of L where<11 formu-
min P are valid.

3.2 Temporal Languages

We set un in this section a family of formal
languages, called temporal languages; that per-
mit expressing transition constraints such as
"salaries never decrease" or "an employee can-
not receive a raise during his first six months
in the company". These transition constraints are
interesting because they involve comparing data
from different states (e.g., new salaries against
old salaries). Examples of transition constraints
formulated in temporal languages will be given in
Sections 4.1 and 5.1.

Intuitively, a temporal language has objects
of three types or sorts: (i) i&, that corresponds
to data elements; (ii)state that correspondsto
database states; and (iii)og corresponding to
programs.

We allow any function or predicate symbol over
individuals. They will represent data structures
or ordinary functions and predicates, such as
'5'. However, function or predicate symbols of
other sorts are restricted as follows. We will
have one oredicate svmbol. after.of sort .
(-9 state, state). The'iaed interpretation
of aftec,j)that there is a computation of
b that starts on state i and terminates on state
j. We allow any n-ary function symbol f of sort
(prog, '. *, prog.; prog) that creates a new pro-
gram f(bl,...,b) out of n programs bl,...,b,.
An example is tile familiar program composition
operation, We also allow any n-ary function sym-
bol g of sort (i&,...,si prog). The intended
interpretation of after(g(x)x) is that there
is a computation-of procedure g , when called
with parameters x, that starts on state i and
terminate; on state j.

To relate objects of sort state to formulas, --
we add a new type of formula, R;(P), to the
machinery of first-order logic. The intended in-
terpretation of Ri(P) is that the wff P holds on
state i. We will also have a special symbol, cs,
whose intended interpretation is that cs denotes
the "current state". It will become clear that cs

Proceedings of the Eighth International Conference
on Very Large Data Bases 284

is neither a constant nor a variable. Hence, it
constitutes a special characteristic of temporal
languages. Both Ri(P) and cs are taken, with
minor modifications, from Temporal Logic CRUI.

A few examples might help fix ideas at this
point:

(1)

(2)

(3)

Vi Vj (R;(P) A after (b,i,j) * Rj(Q))

expresses that, if b starts on a state i
satisfying P and terminates on a state j,
then j satisfies Q;

Vi 3j (R;(P) * after (b,i,j))
says that, if thxtial state satisfies P,
then b always halts;

3i (after (b,cs,i) A R;(P))
indicates that there is a computation of b
that takes the current state into some state
i where P is true.

More precisely, a temporal language TL is a
typed language with three sorts: the individual
sort (abbreviated ind), the state sort and the
program sort (abbreviated pr=TLhas the
followingsymbols:

loeical svmbols:

connectives and parentheses: -, , A , (,)
variables: x,y,z,... of sort ind and

i,j,k,... of sort state
equality symbols: = of sort mind) and

=s of sort (state,state)
quantifiers: V of sort ind and Vs of sort state
special symbols: cs, the current state, and

R, the Realization operator

non-logical symbols:

predicate symbols: for each n>O, there is a set
ossibly empty) of n-place predicate

lkbols of sort (ind ind)*- ,
special predicate symbol: aternary predicate -

symbol, after, of sort
(prog,state,state);

function svmbols: for each nZ0. there is a set - --__I -.
(possibly empty) of n-place function
symbols of sort (il,...,in; in+l),
where i l,...,in+l are either all of
sort ind or all of sort prog, or

7
il,...,in are all sort indnd -
i n+l is of sort prog.

note: for simplicity, we write = and V instead
of =s and V

S’

We note at this point that we imposed restric-
tions on temporal languages that seem unnecessary.
For example, there is no predicate symbol involv
ing different sorts, except after, and no
variables over programs (i.e., we cannot quantify
over programs). These restrictions are justified
by the scenario of this paper and could be
relaxed in other situations.

The individual language induced by TL is the
first-order language L whose symbols are those

Mexico City, September, 1982

of TL, except the state variables, the symbols =s,
v s9 cs and R, the special predicate symbol after
and all function symbols of sort (il,...,i,;prog),
where i. can be either ind or prog (11jSn). L is --
then thi language used to talk about data.

The state language induced by Tl is the first-
order language T whose symbols are those of TL,
except the special symbols cs and R and the sym-
bols of L. T is then the language used to talk
about states and programs. Indeed, TL can be
viewed as combining T and L via the realization
operator R and the current state cs.

The set of terms of TL is defined induc-
tively as follows:

(1) any variable is a term;
(2) the special symbol cs is a term of sort state;
(3) if f is an n-ary function symbol of sort

(i
. .

1,' *"ln; In+1) and tl ,...,t, are terms of
sort il,...,i,, respectively, then
fctl,..., tn> is a term of sort i n+l'

note: the only terms of sort state are then the
state variables themselves and the current
state cs, since no function symbol in-
volves the sort state.

The set of well-formed formulas (wffs) of TL ~--
is defined inductively as follows:

(1) if p is an n-ary predicate symbol of sort
(il,...,i,),
and tl,...,

with ijE(ind,state,prog)(l<j<n),
t, are terms ofXF..,i,,

respectively, then p(tl,..."t,) is a wff;

(2) if tl, t2 are terms of the individual sort
(state sort), then tl = t2 (tl =s t,) is a
wff:

(3) if P and Q are wffs, x is an individual va-
riable and i is a state variable, then
-p, PAQ, flxP, V,iP are wffs;

(4) if P is a wff and u is a term of sort state,
then Ru(P) is a wff.

We also add to TL, by definition, the existen-
cial quantifier 3 and the boolean connectives
v , * , -9 in the usual way.

Examples of wffs of TL are CRUI:

(1) Ri(-P) F -Ri(P)

(2) Ri(P'Q) ' R;(P) ' Ri (Q>

(3) Ri(VxP) : VxR;(P)

(4) Ri(ffsjP) : Vsj(Ri(P)) , i and j distinct

(5) Rcs(P) s P

(6) Ri(Rj (P>> f Rj (P)

(7) Ri(cs =s j) z i =s j

(8) Ri(j =s k) E j zs k

(9) Vsj P * PCcs/jl , j does not occur within
the scope of an R opera-
tor.

Proceedings of the Eighth International Conference
on Very Large Data Bases 285

note: PCcs/jl indicates the result of replacing
every free occurrence of j in P by cs.

The semantics of TL will be such that the wffs
(1) through (9) are always true. Formulas (5),
(6) and (9) deserve some comment. Formula (5)

the fact that cs is the current state.
(6) indicates that the result of Rj(P)
change when reevaluated in state 1 (for

captures
Formula
will not
mula (6)
Ri (Rc s 'J'
mula (9)
state j,

. -
should be contrasted with

)) E R;(P), which is implied by (5)).Fo~
indicates that. if P is true in everv ,
then P is, in particular, true now (i.e.

in the current state).

We now turn to the semantics of TL. A struc-
ture of TL is a quintuple A = (7,S,P,A,B) where:

(a) 7 is a non-emotv set of individuals . the

(b)
individual domain of
S is a non-empty set
domain of A:

A;
of states, the state

I

(c) P non-empty set of programs, the program
domain of A;

(d) A is a function assigning to each a E -9 , a
structure A, of L, the individual language
induced by 71, such that all structures have
the same domain, which is I;

(e) B is a function assigning to after a relation
B(after) 5 P XSX S, and to each n-ary func-
tion'-s;pbol f of sort (prog,...,prog;m),
nt0, an n-ary function B(f) : P" + P, and to
each m-ary function symbol g of sort
(&I,...,=; prog), mZ0, an m-ary function
B(g):7"-t.

Hence, associated with each state a E S,there
is a structure A giving meaning to the symbols
of the individua? language L induced by TL. The
function B can also be viewed as a structure for
the state language T induced by TL. Note then
that the meaning of the symbols of T is fixed in
A, whereas those of 1 have variable meaning.

We assign meaning to the wffs of TL as follckJs
Let v be a function that assigns to each individ
ual variable x, an individual VEX and to each
state variable i, a state v(i)ES. Given a&S, we
then define a function v,, the extension of v in
A, that assigns to each term t of sort s an el-
ement of the domain of A of sort s. The function
v, is defined inductively as follows:

(1) Va(U) = V(U), if u is a state or individual
variable;

(2) va(cs) = a;
(3) va(f(tl,...,tn)) = F(va(tl),...,va(tn))

where F is the function associated with f by
A a, or by B, if f is of sort (il,...,in;prog).

We now extend v to the wffs of TL as follows
(the value of va(P") will be true or false); --

(1) v,(p(tl,...,t,)) = true

iff (va(tl),...,vaCtn))Eh

where h is the relation associated with p by
A a, or by B, if p is the special predicate

Mexico City, September, 1982

symbol after;

(2) va(t 1 - = t2)=true if va(tl) = va(t2)

false otherwise

(3) v,(t 1 =s t2) = true if va(tl) = va(t2)

taise otherwise

CL> v,w = true if v,(P) = false

4. First Level Database Specifications

We discuss in this section how to describe
databases at the first level of abstraction.That
is, the descriptions will include constraints on
state transitions, but they will not be based on
any set of built-in update operations. Descrip-
tions of this sort will use a class of temporal
languages, called basic temporal languages.

false otherwise

(5) v,(PAQ) = true if v,(P) = v,(Q) = true

false otherwise

(6) va(vxP) = true if vb(P) = true, for every
function vb that agrees with
V a on all symbols, except on x

false otherwise

(7) va(VsiP) = true (same as in (6), except that
i replaces x)

false otherwise

(8) va(Bu(P)) = true if vb(P) = true , where _-_
b = v,(u)

false otherwise

Finally, we say that a wff P of TL is valid
(written I= P) iff. for every struct&e
A = (I,S,+,A,B) of -TL, for every assignment
v of values (from 1 and S) to the variables of
TL, and for every aES, v,(P) = true.

We conclude our list of basic definitions by
saying that a structure A = (I,S,P,A,B) of Tl
is standard iff P is a set of binary relations
over S and, for any a E P and any ;,j E S,
(a,i,j) E B(after) iff (i,j) E a. We may con-
sider, from now on, only standard structures of
TL because the following lemma holds.

Lemma 3.1:

For any- structure A = (I,S,P,A,B) with dis-
joint domains, there is a homomorphism h of A in-
to a standard structure A' = (I,S,P’,A,B’) such

4.1 - Basic Temporal Languages

A basic temporal language TL is a temporal
language whose induced state language contains
just two constants of sort prog, p and p*, and
no other function symbol. TKntended inter-
pretation of after(p,i,j) is that j is obtained
by applying some (unspecified) built-in op-
eration to i. That is, j is an immediate suc-
cessor of i, considering built-in operations as
indivisible. The intended internretation of
after(p*, i,j) is that j is obtained by applying
zero or more (unspecified) built-in operations
to i. This is captured in part by defining a
basic standard structure of TL as a standard
structure A = (I,S,P,A,B) of TL such that
B(p*) is the reflexive and transitive closure of
B(p) (recall that, since A is a standard struc-
ture, B(p) and B(p*) are both binary relations).

Basic Temporal Languages give us a flexible
and general mechanism to define tense operators -_
or modalities, which increase the readability of
formulas. Table 4.1, at the end of this section
contains a list of modalities we have found use-
ful.

We now give a few examples that help as-
sess the expressive power of basic temporal lan-
guages. Assume that TL has two binary predicate
symbols, EMP and ASSIGN; the intended inter-
pretation of EMP(n,s) is that employee n has
salary s, and of ASSIGN(n,p) is that employee
n is assigned to project p.

Using modalities, the sentence l'salaries never
decrease" could be formalised as:

that (1) Vn Bs Vs' (EMP(n,s) * @(EMP(n,s') * sIs'))
ldividual domain 1 and on T. . . 'eresting to rephr (a) h is one-to-one on il

the state domain S;
(b) for any assignment v of values to the varia-

bles of TL (fmom d and S), for every a E S ,
and every wff P of TL,

v,(P) = true iff vi(P) = true --
where v v' are the
and A' &p&tively. 0

extensions of v in A

without loss of
onsider a program b

as represenrea oy a ulnary relation a such that
(i,j)&a iff there is a computation of b that
starts on state i and terminates in state j .

This concludes the description of our basic
formalism. The next sections discuss how it can

Lemma 3.1 tells us that,
generality, we can always c
^_ ee^---_--L-> 1--- - CT--..--

Lr 1s int -ase (1) in English
again, since it says that: for any employee n,if
n now has salary s, then henceforth if n has
salary s', then s<s'. Thus, according to (l), if
an employee is fired and hired again, his second
salary must be greater than or equal to his first
salary. That is, nowhere in (1) we expressed that
the person must be continuously hired in order
for the rule to apply.

If we understand "salaries never decrease" as
saying that "during the lifetime of the same
contract, the salary of an employee cannot de-
crease", then we would have:

(2) Vn Bs (EMP(n,s) * (Vs'(EMP(n,s')* ~5s')
whilehenceforth 3s"EMP(n,s")))

be used to describe databases. The need for two constants of sort prog, p ard
p*, with their intended interpretations, arose

Proceedings of the Eighth International Conference
on Very Large Data Bases

286
Mexico City, September, 1982

because we came across sentences that imposed res
trictions on single state transitions, as opposed
to restrictions on sequences of state transitions.
For example, consider the sentence "employees
that are assigned to a project cannot be fired".
It could be formalized as:

(3)Yn (jp ASSIGN(n,p)A3s EMP(n,s)*G*(3s'EME'(ns')))

A closer inspection of (3) reveals that its
meaning is "if employee n is now assigned to some
project p, then henceforth n will always be an
employee", which is too restrictive. A better
formalization is:

(4)Vn (3s EMP(n,s)r\3pASSIGN(n,p)*G(3dEMP(n,s')))

that restricts, under the intended interpretation,
what built-in operations can do (i.e., no single
application of one built-in operation can at the
same time disconnect an employee from all his
tasks and fire him).

To talk about timestamps, such as the date an
employee was hired, we assume that TL has an
individual constant T whose value in state i is
intended to be the time state i was created.Then,
the sentence 'an employee cannot receive a raise
until he has been working for the company for A
units of time" is formalized as:

(5)Vn Vs Vt(EMP(n,s)Aff (-jsEMP(n,s')) A r = t *
((T 2 t + A *EMP(n,s))

whilehenceforth As"EMP(n,s"))) --
The antecedent of (5) expresses that employee

n was hired at time t with salary s; the con-
sequent of (5) says that the salary of n must be
s at any time r<t+A, if n has been continuously
employed by the company.

Table 4.1

A List of Modalities ----.---
classical unary modalities for p

(1)

(2)

(3)

(4)

F(P) - 3i (after(p,cs,i) A R;(P)) --
"eventually P after" (i.e., "eventually P
holds after executing some built-in operatioq
starting on the current state)

P(P) Z di(after(p,i,cs) A R;(P)) -I
"eventually P before"

G(P) z - F(- P)
"always P after"

H(P) E - P(- P)
"always P before"

classical binary modalities for p*

(5) (P since Q) Z ji(after(p*,i,cs) A Ri(Q) A

vj(after(p*,i,j)A after(p*,j,cs)*Rj(P))) ---
"P has been true up to now since Q was trueM

(6) (P until Q) Z qi(after(p*,cs,i) A Ri(Q) A

Vj(after(p*,cs,j) A after(p*,j,i) * Rj(P)))

"',,;il,l always be true from now on until Q is

c
(7) F*(P) f (true until P)

"eventual- ine futuretl

(8) P*(P) G (true since P)
"eventual~ine past"

(9) G*(P) : - F*(- P)
"henceforth always P"

(10) ff"(P) - - P"(- P)
"heretofore always P"

non-standard binary modalities for p*

(11) (Q whileheretofore P) Z - (P since - Q)
"necessarily Q will be true while hereto-

fore P was always true"
--

(12) (Q whilehenceforth P) Z - (P until - Q)
"necessarily Q will be true wmhence-

forth P will always be true". ---

4.2 First Level Relational Schemas

We now use the concepts developed in Section
4.1 to formalize the notion of first level
relational database schema and related notions, -
such as consistent database state. Schemas at
this stage will include constraints on state
transitions, but they will not be based on any
set of built-in update operations.

Before defining what we mean by a schema, it
is worth noting that we classify all symbols of
a schema into two sets. The first set contains
all symbols, such as '=I, whose intended inter-
pretation is fixed. The second set includes all
symbols whose meaning varies over time, which
will be the relation names in the case of the
relational model. Their meaning at a given point
in time t comprises what is called the database
state at t (however, for simplicity, our defini-
sof database state also includes the meaning
of all other symbols).

(a) A triple u = (TL,P,?_) is a first level
relational schema iff

(i>

(ii)

(iii)

TL is a basic temporal language with a
distinguished set of predicate symbols
P'{ rl,...,rnl, ri of arity ki(l<i~n),
the relation names of 0; (Let L be the
individual language induced by TL in
what follows).

P is a set of wffs of L, the static
constraints (integrity constrzor
consistency criteria) of 0;

2 is a set of wffs of TL, the transition
constraints of o, such that each Q E g-
asfirst-order;

(b) A database state of o is a structure of L;

(c) A consistent database state of o is a data-
base state I of o such that each static.
constraint P E P is valid in I;

Proceedings of the Eighth International Conference
on Very Large Data Bases

287
Mexico City, September, 1982

Cd)

(4

(f)

A database universe U of o is a set of data-
base states such that: (i) all database
states differ only on the values of the rela
tion names; (ii) for each I E U, for every -
relation name r and every relation h over
the common domain such that r and h have the
same arity, there is J E U such that I and J
differ only on the value of r, which is h. in
J;
A database history of 0' is a structure
A = (I,S,P,A,B) of TL such that the range of
A is a database universe of o;

A consistent database history of o is a data-
base history A of o such that all transition
constraints of o are valid in A. 0

note: if TL contains the special constant -c, then
the definition of database universe must be
modified so that states also differ on the
value of T and, for each I E U, for each
individual a, there is J E U such that I
and J differ only on the value of r which
is a in J. 0

Thus, the pair o'= (L,p) in Definition 4.1 is
a first-order theory and a consistent database
state of U is just a model of o'. The notion that
the meaning of all symbols, except the relation
names, is fixed is embodied in clause (i) of the
definition of database universe (clause (ii) as-
sures that, if the value of r is changed to h,
the new database state is still a member of the
universe U). Finally, 2 should be viewed as
defining constraints on the allowed state
transitions.

5, Second Level Specifications

We now discuss how to define databases that
include built-in operations, However, we assume
that built-in operations are described by their
properties, rather than by programs in a program
ming language. We first define, in Section 5.1,-
the class of temporal languages we will use and
the concept of second level schemas. Then, in
Section 5.2, we discuss the relationship between
first and second level database specifications.
Finally, Section 5.3 indicates how to account for
triggers.

5.1 - Temporal Languages with Procedures and
Second Level Schemas

A temporal language with procedures is a tem-
poral language= a set of function symbols
of sort (ind ,...,ind;prog), called procedures. --
If b is arpocedure of TL, the term b(f) is in-
tended to denote a call to the procedure b with
parameters X.

A second level schema is a schema D=(TL,P,~)
wherem apmanguage with procedures.
We also say that the procedures of 71 are the
built-in operations of o.

We now briefly exhibit a second-level schema
u = (TL,P,Q. We assume that TL has two binary

predicate symbols, EME' and ASSIGN (see Section
4.1), a procedure raise with two parameters and
two procedures with one parameter, fire and
liberate. The static constraints will not be dis
cussed, since they do not depend on new concepts.
The transition constraints 2 capture the intended
interpretation of the procedures, which we now
discuss.

The intended interpretation of raise(n,s) is
that employee n receives a salary raise of s
dollars, which is captured by adding the follow-
ing wff to 2:

(1)Vn Vs ffs'Ui(EMP(n,s') A s>O h
after(raise(n,s),cs, i) * R;(EMP(n,s'+s))) -- -

(Note the use of the current state symbol cs).
The wff in (1) does not specify the behaviour of
raise completely, though. Other wffs saying that
G(n,s) affects only the tuple of EMP
corresponding to employee n, and no other tuple
anywhere in the database, should be added to 2:

(2)Vm Vr Vn Vs Vi(EMP(m,r) A m # n A
after(raise(n,s),cs,i) * R;(E?Q'(m,r))) --

(3)fTm fTp Vn Vs tii(ASSIGN(m,p) A
after(raise(n,s>,cs,i) * R;(ASSIGN(m,p))) --
The intended interpretation of fire(n) is that

employee n is dismissed. However we wish to
guarantee the constraint (see SectIon 4.1):

"if an employee is assigned to some project, then
he cannot be fired". Thus, 2 must include the

following wffs:

(4)Yn Vs Vi(EMP(n,s) A - 3p ASSIGN(n,p) A
after(fire(n),cs,i)*R;(- gs'EMP(n,s'))) --

(5)Vn Vs Vi(EMP(n,s) A 3p ASSIGN(n,p) A
after(fire(n),cs,i)*Ri(EMP(n,s))) --

As for raise, we must complete the specification
of fire by adding to 2 constraints saying that
fire(n) only deletes from EMP the tuple corresp%
ding to employee n (which we omit for brevity).

The intended interpretation of liberate(n) is
that employee n is liberated from all tasks he

,has on all projects, which is captured by adding
to ?, the following wff:

(6)ffn Vi (after(liberate(n),cs,i) *
Ri(- dp ASSIGN(n,p)))

Again, the specification of liberate must be corn
pleted by adding other wffs -for raise. -

This concludes our discussion about second-
level schemas.

5.2 - The Relationship between First and Second
Level Schemas

The first and second level specifications of
the same database are not at all unrelated. In
fact, we imagine that the second level specific-
ation is obtained from the first level descript-
ion by a refinement process where: (i) a set of
built-in operations is selected; (ii) built-in
operation properties are introduced so as to

Proceedings of the Eighth International Conference
on Very Large Data Bases 288 Mexico City, September, 1982

guarantee all static and transition constraints
defined in the first-level specification. This
section then defines precisely what we mean by
refinement.

Let o'=(TL',R',Q') be a first level schema and
~=(TL,17,0_) be a second level schema. We say that
TL is a refinement of TL' iff

(i) TL' and TL differ only on the relation names
and on the program symbols of sort
(ii ; prog)(i.e., TL' has two cons-
ta?r;s of zort prog by definition, while TL
has a set of fzfon symbols of sort
(&,...,*; prog));

(ii)there is a refining function y assigning to
each n-arv relation name r of TL' a wff ry of
TL with n=free individual variables ordered
X1,...,Xn. Intuitively, y defines each
relation name r of TL' in terms of those of
JL.

Suppose that TL is a refinement of TL' with
refining function y. Given a standard structure
A=(l,S,P,A,B) of TL, we construct a standard
structure AY=(l,S,P',A',S') of TL' as follows.
P' contains just two elements, c1 and a*, where

a = 6% @ * I3
' is such that B'(p) = a and

B'(p*) = cl* @'(after) is then fixed, by
definition of standard structure). For each a E .$
Ai is equal to Aa, except on the value of each

relation name r of o', where AA(r) is the n-ary

relation defined by r Y in A a. Ay is called the

structure induced by A; likewise, AA is the data-
base state of 0.' induced by A a'

Intuitively, the value of p in A', B'(p) = ~1,
contains all state transitions that can be
brought about by a call to some built-in op-
eration of o; likewise, the value of p* in A' con
tains all state transitions that can be brought-
about by zero or more calls to built-in operations
of o. Hence A' assigns the intended interpretation
(in terms of the built-in operations of o) to p
and p*. The value of each relation n?me r of 0'
in each A' ? is obtained from Aa via r , the wff

defining r in TL.

Given a first-level schema a'=(TL',R',Q') and
a second level schema o=(TL,R,O_), we then say
that o is a refinement of o' iff: (i) TL is a
refinement of TL' with refining function y; (ii)
for any standard structure A of o that satisfies
2, A' also satisfies Q'; (iii) for any consistent
database state I of o, the induced state 1' of 0'
is also consistent. Thus, condition (ii) captures
the idea that the constraints on the behaviour of
built-in operations defined in o suffice to
guarantee the transition constraints of o'.
Similarly, condition (iii) implies that the
static constraints of o are enough to guarantee
those of 0'.

We now indicate very briefly how we could
prove that a second-level schema a=(TL,R,?) is a
refinement of a first-level schema o'=(TL',R',T).
Let y be a function refining TL' into TL. For
each wff P E R' we can define a ywff Py of TL
such that P is valid in Iy iff P is valid in I,
for any database state I of o(see for example,
[CCFI). Hence, testing condition (iii) reduces to
proving that, for each P E R', PY is a logical
consequence of R. Since Py is first-order, this
presents no novelties.

Condition (ii) can be checked in much the
same way as condition (iii). To illustrate this
remark, suppose that o is the schema described
in Section 5.1, which has built-in operations
raise fire and liberate. We sketch how we could -.-' -
prove that the properties of these built-in op-
erations listed in q guarantee the constraint
"if an employee is assigned to some project,then
he cannot be fired" (which might be considered a
transition constraint of Q' for the purposes of
this illustration).

This constraint was defined in Section 4.1
(in the basic temporal language TL') as follows:

(1)Vn fTs(EMP(n,s) A 3p ASSIGN(n,p)* G(EMP(n,s)))

Expanding the definition of G, we would have:

(2)Vn Vs(EMP(n,s) A 3p ASSIGN(n,p) *
Vi(after(p,cs,i) * Ri(EMP(n,s))) --
Let A be a structure of TL and A' be the

structure of TL' induced by A. Recall that the
interpretation of after(p,cs,i) in A' was that
state i can be reached from the current state
cs by executing some built-in operation. That is,
after(p,cs,i) holds in A' iff the wff P holds in
A, where P is:

(3)3n 3s (after(raise(n,s>,cs,i)) v
3n (after(f;re(n),cs,i)) v
3n (af(iZZrate(n),cs,i))

Then, the wff in (2) holds in Ay iff the wff Q
holds in A, where Q is:

(4)Vn Vs(EMP(n,s) A 3p ASSIGN(n,p) *
Vi(P * R;(EMP(n,s)))

Therefore, given any structure A of TL that
satisfies Q, the wff in (2) is valid in A' iff
the wff in (4) is valid in A. But this is equiv-
alent to proving that (4) is a logical con-
sequence of 2, which can be established by an
adaptation of the standard axiom system for tem-
poral logic CRUl.

5.3 - Triggers

Recall from Section 2 that a trigger p. was
an operation executed automatically whene:er a
certain condition B. was true. We show in this
section that we caniview triggers as a method of
defining built-in operations and that we need
not leave the framework developed in Sections
5.1 and 5.2.

Proceedings of the Eighth International Conference
on Very Large Data Bases 289 Mexico City, September, 1982

Let o be a second level schema and suppose
that operations pl,..., p of o are considered as
triggers and operations t ..,q are treated as
normal built-in operation&I'Let n
dition for executing pi, l<i<m.

Bi be the con-

Our approach is indeed quite simple. We ass=
that the system will implement triggers by check-
ing whether any trigger can be executed only
before or after the execution of a normal built-
in operation. We also assume that, if more than
one trigger can be executed, the order of exec-
ution is selected nondeterministically. These
assumptions are equivalent to transforming each
built-in operation qi into the program p; qi; 5,

where i = do Bl + pl fl . . . 0 Bm -+ pm* (see -
CDil for the guarded do-loop).

Thus, triggers can be viewed as a way of im-
plementing complex built-in operations. We in-
clude p before and after qi because a guard Bk
may be affected by the results of qi and, hence,
must be tested after qi executes. Moreover, after
executing a built-in operation q. and before

J executing the next one, qi, the clock may advance
thus rendering some guard Bk true, which was
false right after the execution of q.. Hence,each
guard must be tested before qi execuges. (Note
that, in our formalization, triggers are called
only when a built-in operation is invoked).

Hence, to account for triggers, it remains to
phrase 6 as a program of temporal languages with
procedures. In order to do so, we first write i
as a regular program [Hal:

m
(1) ; = (Bl?; pl u . . . u B,?; pm)*; (n -, B;)?

i=l
The union operation can be introduced in a tem-
poral language as a binary function symbol, u,of
sort (prog,prog; prog); a test B? can be in-
troducxsconstant of sort prog, for each wff
B of TL; finally the reflexive and transitive
closure operation can be introduced as an unary
function symbol, *, of sort (prog; prog). The ip
tended meaning of these symbols is captured by
forcing, in each standard structure A=(l,S,P,A,
B(U) to be the set theoretic union operation,
8(*) to be the set theoretic reflexive and
transitive closure, and B(B?) = {(a,a>ES'/I=A-

J),

With these provisos, i becomes a term of TL 0';
sort prog.

Then, we can reduce our second level schema 0
with triggers to a similar one, o', without
triggers, simply by replacing each normal built-
in operation qi of 0 by p; qi; b. This reduction
justifies our initial remark that we view trig-
gers as a method of defining built-in operations.

6. Conclusions

We introduced a family of high level database
specification languages, called temporal lan-
wages, that permit expressing transition con-
straints as well as the more traditional static
constraints. These languages are quite flexible

Proceedings of the Eighth International Conference
on Very Large Data Bases 290

and permit defining a meaningful dictionary of
modalities that greatly enhance the readability
of transition constraints, without additional
conceptual burden.

We introduced the idea of multi-level data-
base specifications of increasing degree of
abstraction. At the highest level of abstraction,
static and transition constraints are specified
without mentioning any set of built-in operatiohs.
This description serves mostly to document the

iintended behavior of the database. That is, it
describes both the nature of the data kept in
the database and the rules governing how to
create and modify such data.

Moving towards implementing the database, a
set of built-in operations, that are able to
create and modify the data kept, is identified.
The database schema at this second level of des-
cription will include, besides the names of the
operations their properties. But no actual code
for the operations is provided. The properties
must be carefully defined so as to guarantee
that no constraint listed in the first-level
description is violated.

These were the two levels discussed in this
paper. The trend would continue by choosing an
implementation for the operations, which would
require defining an appropriate class of tem-
poral languages that include a suitable program-
ming language (one such class was sketched at
the end of Section 5.3; see also [CB]). More
generally, going towards an implementation in-
volves selecting a data structure oriented data
model that contains, not only a programming
language, but also suitable features to repres-
ent data.

Further theoretical work would involve in-
vestigating the decision problem for each class
of Temporal Languages, starting with the defi-
nition of consistent and complete axiom systems
for these languages. It is also worth investigat
ing the expressive power of the modalities in-
troduced in Section 4.1, vis-a-vis the
necessities of high-level database specifications.

Acknowledgements

This research was supported in part by FINEP
and CNPq grant 402090/80. Support from IBM do
Brasil Ltda,is also gratefully acknowledged.
The authors are also grateful to Ms. Leticia Du-
hoc Andreiolo for her typing assistance.

References

CAN1 "Study Group on Data Base Management Sys-
tems: Interim Report"
FDT 7.2, ACM(1975)

[Br] M.L.Brodie. "On Modelling Behavioural Se-
mantics of Databases".
Proc. 7th Int. Conf. on Very Large Data
Bases (1981), 32-42

Mexico City, September, 1982

CBUI

CBZI

CCBI

CCCFI

[Dal

CDil

[EnI

[Es]

[EKW 1

Cl-la1

[Ho]

CLal

[LMI

CLZI

[Ma]

CMRI

M.A. Casanova, J.M.V. de Castilho, A.L.Fur-
tado. "Properties of the Conceptual and Ex-
ternal Schemas". Proc of the TC 2 - Working
Conference on Formal Description of Program
ming Concepts II (1982)

D.J. Date. "An Introduction to Database Sy_s.
terns." (3rd Ed,) Addison-Wesley (1981)

E.W. Dijkstra. "A Discipline of Programming',
Prentice-Hall (1976)

H.B. Enderton. "A Mathematical Introduction
to Logic"
Academic Press (1972)

K.P. Eswaran. "Specification, Implementat-
ion and Interaction of a Trigger Subsystem
in an Integrated Data Base System".
IBM Research Report RJ1820 (Aug. 1976)

H. Ehrig, H.J. Kreowski, H. Weber
"Algebraic Specification Schemes for Data-
base Systems". Proc. 4th VLDB Conf.,
Berlin (1978)

D. Harel. "First-Order Dynamic Logic".
Lecture Notes in Computer Science, vol.68
(1979)

C.A.R. Hoare. "An Axiomatic Basis for Com-
puter Programming." CACM 12,lO (Oct. 1969)

L. Lamport. "On the Temporal Logic of Pro-
grams" Technical Report CSL-86, SRI Inter
national (1979)

P.C. Lockemann, H.C. Mayr, W.H. Weil, W.H.
Wohlleber. "Data Abstractions for Data Base
Systems." ACM/TODS 4 (1979)

B. Liskov, S. Zilles "Specification Tech-
niques for Data Abstractions." IEEE Trans.
on Soft. Eng. SE-1 (1975)

Z. Manna. "Verification of Sequential Pro-
grams: Temporal Axiomatization." Report n.
STAN-CS-81-877, Department of Computer
Science, Stanford University (Sept. 1981)

C.A. Montgomery, E.H. Ruspini. "The Active
Information System: a Data-Driven System
for the Analysis of Imprecise Data." Proc.
7th Int. Conf. on Very Large Data Bases
(1981), 376-384

Proceedings of the Eighth International Conference
on Very Large Data Bases 291

J. Bubenko. "The Temporal Dimension in In-
formation Modelling".
In "Architecture and Models in Data Base
Management Systems (ed. by G. Nijssen).
North-Holland (1977)

M.L. Brodie, S.N. Zilles. (Discussion about
Consistency of Models, page 72, bottom of
second column). Proc. Workshop on Data Abs
traction, Databases and Conceptual Model--
ling (1981).

M.A. Casanova, P.A. Bernstein. "A Fo'i-mal
System for Reasoning about Programs access-
ing a Relational Database" ACM TOPLAS 2,3
(July 1980), 386-414

CMPI

CMWI

[Pal

CPnl

[RLJI

[SF]

CSel

[Shl

CSUI

Z. Manna, A. Pnueli. "Verification of Con-
current Programs, Part I: The Temporal
Framework.' Report n. STAN-CS-81-836,
Department of Computer Science, Stanford
University (June 1981)

Z. Manna, P. Wolper, "Synthesis of Com-
municating Processes from Temporal Logic
Specifications." Report n. STAN-CS-81-872,
Department of Computer Science, Stanford
University (Sept. 1981)

P. Paolini. "Verification of Views and Ap-
plication Programs." Proc. Workshop on
Formal Bases for Databases, Toulouse (1979)

A. Pnueli. "The Temporal Logic of Program&'
Proc. 18th Foundations of Computer Science
Conference (Nov. 1979), 46-57

N. Rescher, A. Urquhart. "Temporal Logic".
Springer-Verlag (1971)

K.C. Sevcik, A.L. Furtado. "Complete and
Compatible Sets of Update Operations."
Proc. ACM ICMOD (1978), 247-260

A. Sernadas. " Temporal Aspects of Logic-
al Procedure Definition."
Info. Systems 5 (1980), 167-187

J.R. ShoenfieId. "Mathematical Logic."
Addison-Wesley (1967)

B. Sundgren. "An Infological Approach to
Data Bases."
Urval 7. SCB - Statistika Centralbyran.
Stockholm (1973)

Mexico City, September, 1982

