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ABSTRACT 

Most data base machines use some kind of "filter" 
that performs unary relational operators (selec- 
tion and projection) on relations Cl to 71. 
These filters operate "on the fly" that is, at 
the speed of the disk, while the relation is 
being transferred into main memory, Processing 
time being proportional to relation size, it is 
therefore important to represent data in the 
most compacted way. In this paper we address the 
problem of satisfying the two seemingly contra- 
dictory requirements : 

i) finding an "optimal" compaction scheme 
ii) processing optimally compacted relations on 

the fly. 

INTRODUCTION 

Most database machines (DBM) use some kind of 
filter that performs unary relational operators 
(selection and projection) on relations (see for 
example Cl to 7]).These filters operate "on the 
fly", that is at the speed of the disk, while 
the relation is being transferred into main memo- 
ry. Processing time being proportional to rela- 
tion size, it is important to represent data in 
the most compacted way. Most DBM just process 
standard uncompacted data [2.3,4,6.7]. We are 
currently realizing a machine Cl1 that uses such 
a filter to process compacted relations. 

In this paper we address the problem of satisfy- 
ing the two seemingly contradictory requirements : 

i> finding an "optimal" compaction scheme 
ii) processing optimally compacted relations on 

the fly. 

Section 1 addresses the problem of compacting 
relations. Compaction formats are defined for 
files representing a given relation. The notion 
of maximally compacted file is then introduced. 
To obtain an "optimally" compacted file, the 
method suggested in this section is to choose 
an adequate set of hierarchical dependencies 
and to compact the file according to that set. 

We then turn to the problem of processing such 
compacted files (section 2). 
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One reasonable way of filtering compacted files 
is the Finite State Automaton (FSA) approach. In 
[I] we concentrated on the problem of realizing 
such a filtering mechanism and raised the follow- 
ing question : given a selection projection ope- 
ration and given a file compacted according to 
some format, can we always find a FSA that per- 
forms the operations on the fly on this file. 
The answer was no and a restrictive class of com- 
pacted files was exhibited on which any selection 
projection operation can be performed on the fly. 
In this paper we give a complete characterization 
of operations that can be performed on the fly. 

I. COMPACTING RELATIONS 

We assume the reader familiar with relational 
terminology. A relation R is defined over a set 
of attributesu; with each A E Ll is associated a 
domain D(A), we denote D = U D(A). 

Relations are represented btctequential files. 
Attribute values in these files are represented 
byanattribute tag (that indicates the attribute 
name) followed by the attribute value and ended 
by an end tag. 

A file over U is a string over D+. For instance 
if U = {Course,Student,Grade) then F = MathJones 
A Math Susan B Latin Mike D, is a fi?e over U. 

Definition 1.1. A compaction format over U is 
defined recursively as follows : 

1) A and A+ are compaction formats over A 
2) if *is a compaction format over X so is (e; 
3) if\el and se2 are compaction formats over Xl 

andX2 andX1 n X = 2 @ then $.e2 is a com- 

paction format over Xl u X2. 

Such a definition in fact yields a special subset 
of regular expressions. Exam les of compaction 
formats over ABC are (A(BC ) > , (ABC)+ or (AB+C+): +P+ 

The language g(e) associated with (eis defined 
by : 

1) &A) = D(A) VAeU 
2) zq.Yz2) = 9te,,. zte2, 

3) -hz+) = G&e>>+ 
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Of course sentences from these languages are 
files over U. We shall say that file F satisfies 
compaction format eif : 

E.&w) 

For instance 

Math Jones A ?lath Susan B Latin Mike D 

satisfies (Course Student Grade)+ while 

Math Jones A Susan.B Latin Mike D 

satisfies (Course (Student Grade)+)+. 

These examples should give an intuitive feeling 
of the meaning of compaction formats : the last 
file consists of courses followed by sequences 
of student, grade couples. 

We shall find it practical to associate with a 
compaction format its “syntax tree". For instan- 
ce the syntax tree of (A B+ C+)+ is 

i 
A/i\ 

i i 
B C 

We shall also find it useful to associate with 
etiery file F that satisfies Qits syntax tree. 
We give an example since the notion is fairly 
straightforward. Consider the file : 
b b b c c over 
I? E?t?f& $he5co?paition 
The syntax tree of the sentence is 

/‘\’ 
A/h+ /I\ I\ ,/.l /+\ A 

B i 1 c F al bl b2 b3Cl '2 

4 2, I, i: 
a2 b2 cl 

One can see that it can easily be obtained from 
the compaction format syntax tree through an ex- 
pansion process. 

Files are eventually meant to represent relations 
so we must define the interpretation of a file : 

Definition 1.2. Let F be a file over U satisfying 
compaction formateand let T be its syntax tree. 
With every subtree T' in T we associate an attri- 
bute set atset (T') and an interpretation int (T') 
which is a relation over atset as follows 7 

1) atset (a) = {A) where a E D(A) 
ma) = {a) 

2) atset (Tl.T2) = atset (Tl) u atset (T2) 
(note that these are dis- 
joint sets) 

int (Tl.T2) = int (T1) X int (T2) 

3) atset (+(T1 T, . . . T,)) = atset (Ti) V i 
(this is always 
the same set) 

int (+(T1 T2 . . . T,)) = u int (Ti) 
i 

For instance the interpretation of the file : 

bbbccabbcc al12 312 2 2 5 3 1 
consists of tuples (al bl cl), (al bl c2), 
(al b2 ~1) (al b2 ~21, ("1 b3 cl), (al b3 ~21, 
(a2 b2 ~3)) (a2 b2 cl> (a2 bg ~3) and (a2 bg cl). 

When relation R interprets file F we say that F 
represents R. It is clear that several files can 
represent the same relation. We are obviously in- 
terested into the shortest possible representation 
of a relation. 

A few definitions are first necessary. The general 
form of a 

e= 

where the 
e. ' s are 
t&e 

format is : 

(wl e; w.2 %; * ** wn yg wn+++ 
w.'s are sequences of attributes and the 
CIbl s. This corresponds to the following 

+ 

MVNwn+, "1 +\ 

I 

. . . . 
n 

4 1 
/\ 
sn 

We call wl w2 . . . wn+l the header of the compac- 
tion formate, and e1 . . . p-s tails. 

Let now F be a file satisfying e and T its syntax 
tree, it has the following form : 

Trees T11 . . . Tin . . . T,l . . . T, will be called 
subfiles of F. They satisfy the CF's (e; . . . e:. 

Definition 1.3. File F is said to be maximally 
compacted with respect to eiff 

1) The projection of F on the header of % con- 
tains no duplicate. 

2) each subfile of F is maximally compacted. 0 

Example 

ai E 
1 cl al bl c2 al b2 =1 c2 a2 bl b4 c1 =2 

which satisfies (A B+ C+)+ is not maximally com- 
pacted because its header is A and its projection 
onAis : 
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al al al a2 
while al bl b2 cl c2 a2 bl bq cl c2 ismaximally 
compacted. Note that they represent the same re- 
lation. 

Theorem 1.1. Let R be a relation and F a file 
maximally compacted w.r.t e that represents R, 
then : 

V F' E z&) s-t. F' represents R 
length (F') t length (F) 0 

Proof:Let z= (wl er w2 e+ . . . f+ w + 
let X = wl w2 . . . w,+l. Any x E ii(X) musf ap@l- 
at least once in the file F'. It appears once and 
only once in F (by definition of maximal compac- 
tion) therefore the header of F' is not shorter 
than that of F. The same process can then be re- 
peated for all subfiles of F'. Q.E.D. 

The next question is : Given a CF e on a set of 
attributes U, which are the relations R(U) that 
have a maximally compacted representation accor- 
ding to e . 

In order to determine that set of relations we 
introduce the set of integrity constraints asso- 
ciated with a compaction format. These integrity 
constraints happen to be a special set of multi- 
valued dependencies namely hierarchical dependen- 
cies as defined by Delobel C 81. 

We characterize the set of dependencies implied 
by a compaction format (denoted IMP&) in terms 
of Delobel's generalized hierarchical decomposi- 
tion (GHD). We need to consider the syntax tree 
associated with the compaction format. 

The general form is : 

<<‘\\b w 
W. 1 

I 
9 . . . n 

I 

n+l L 
I 

%2 

We recursively def 
as follows : 

IMP(e) = 

ine IMPM (which is a tree) - 

Let us consider for example the following CF : 

6= (AB(CD t+ F+)+ (G H+ I+)+)+ 

Its syntax tree is : 

AB /+\\ i\\ 
CD i i”ii 

E F H I 
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IM?&,) is : 

E F H I 

Thus IMP(CF) is obtained from the syntax tree of 
the compaction fcrmat only by removing the I+' 
signs. We recall [ 8; that a GHD is a particular 
set of hierarchical dependencies. 

In "he case of the above example, we have : 

AB - CDEFIGHI 
ABCD - E F 

ABG 3-f H I 

We can now state our main theorem. 

Theorem 11.1. Let % he a CF over U 
Let IMP(a) be its implied GHD. 
R(U) has a maximally compacted representa- 
tion according to'e iff R(U) satisfies 
IMP(@. fi 

Proof : 

1) Only if part : 

m&j is a set of hierarchical dependen- 

a dependency in IMP@) 
compacted file accord- 

Let F, be the restriction of F on value x of 
X 
(Fx is the subfile of F such that its value 
on X is x and that contains every tails asso- 
ciated to X-value x) 
Let FxlXi be the values of INS(F,)[Xi] (i.e. 
a set of tuples on Xi). We know that x 
appairs once and only once in F (since F is 
maximally compacted). Thus the only tuples 
in INT(F)CX Xl... X,1 that have X-value x are 
in the following set : 

CX} X Fx(Xi X ..' X FxlXn 

By iterating on every X-value in F we have : 

INT(F)[X Xl...X,.,] = INT(F)[X Xl3 *...* INT(F)[X X,] 

Thus INT(F) obeys X - XlI.../X,. By iterat- 
ing we show that it obeys the GHD implied by e:. 

2) if part : 

Let R(U) be a relation that satisfies a gives 
GHD. 
Let e= (wl 6; w2 Zi .a. wp ei wp+l)+ 

be a CF such that IMP&) = G. We construct 
a maximally compacted file according to e 
that represents R. 
Let X = U Wi, and Y. = atset 
then, following the definition o t the iHD, 
the following dependency holds in R(U)., 

x - YJ...;Yp 
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We use a notation defined by Delobel C8 1 : 

ff x E R(X) : R(x,Y) = {y E R(Y)/xy E R(XY)) 

We recursively define the compaction of R(U) ac- 
cording to -6 as the following file named F : 

F = COMP[R(U),e'I= 

x~C~~~COMP(R(~~,Y,),(~,,...~~C~~~CO~(R(~~,Y~),~~ 

x cw , p+,lX2rwllCOMP(R(x*,Yl)‘~l)...X2rWp+,l . . . 

x~C~~ICOMP(R(~~,Y~),‘~~)...X~~W~+~~. 

Where : R(X) = {xl,..., 
jection Of Xi on Wj. 

xn} and xi[wjl is the pro- 

The definition is sound since every IMP@.) is 
a GHD satisfied by R(x,Y.) for all x in R(B): 
and P is maximally compakted since every Xi in 
R(X) appears once in FX and since the definition 
is recursive. 

To end the proof the reader only has to notice 
that by construction INT(F) = R(U). Q.E.D. 

This theorem gives us a tool to choose CF's over 
sets of attributes in order to get the maximal 
compaction for the physical structure of rela- 
tions. We have to check if there exists a GHD 
over the relations we want to store, and to crea- 
te a compaction format such that the GHD is the 
set IMP(e). Then we can compact our relations, 
the compaction process being information lossless. 
If there is no such dependency, we can choose any 
simple right compaction format and compact the 
relations according to this format in order to 
get maximally compacted files, obviously, this 
process is generally less efficient in terms of 
space than the compaction according to a general 
compaction format. 

For example, compacting R(Course,Hour,Room, 
Student,Grade) according to (C(HR>+(SG)')+ gives 
shorter files than compacting according to 
(C(HR(~G)+)+)+. 

II. PROCESSING COMPACTED RELATIONS 

To filter compacted relations, the FSA approach 
was suggested in Cl I. Such a filtering mechanism 
is shown below. 

Source Data Target Data 

CONTROL 1 

Data is read one byte at a time from a source 
into the target buffer at the address indicated 
by the target pointer. Data is also sent to a 
FSA that controls the target pointer : it can 
increment that pointer, save it into a stack, 
push or pop this stack. 

To each selection/projection operation corres- 
ponds a FSA, i.e. a specific set of transition 
and output functions. This set constitutes a 
program stored in the filter memory. 

The transition from a state to another will 
depend upon the characters read from the source. 

In the sequel we assume the automaton is dealing 
with unit length words whose type it recognizes, 
I.e., we ignore for clarity the lexical analysis : 
an attribute value is represented by one word. 

To each state correspond one or several among 
the following output functions (commands to the 
target pointer) 

0 
1 TP+TP+l The next word in sequerr 

ce is read from the 
source and written in 
sequence into the tar- 
get buffer. 

0 2 DROP PUSHTP onS The target Pointer's 
content is pushed onto 
Stack S. 

0 3 RESET 

0 4 ERASE 

TP+POP(S) S is popped into the 
target pointer, i.e. 
the next word will be 
written at the address 
memorized in S. Clearly, 
this means erasing all 
words written into the 
buffer since the last 
memorization. 

POP s S is popped. This im- 
plies keeping all words 
written in the target 
buffer since the last 
memorization. 

11.1. Right simple compaction formats 

Let (RlC)[X] denote the projection on X s U of 
the restriction by boolean condition C of rela- 
tion R. The above filtering mechanism was design- 
ed to perform restriction/projection operations 
on any compacted relation. 

Consider file F 
(Hour,Room)+)+ 

: (Class,Prof,(Student,Grade)+, 
and the query q1 : (RIGrade=B) 

[Class,Student]. It is possible to generate a FSA 
that performs this query "on the fly" on file F 
(for details, see [II). 

However it is easy to find counterexamples where 
a query cannot be performed on the fly. In parti- 
cular, on the above example of file F. with the 
following query we cannot generate a FSA to filter 
P on the fly. q2 : (R[Grade=BvRoom=1108)[Class, 
Hour,Studentl. 
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Indeed, after having scanned a set of students, 
either we have eliminated all those whose grade 
was not B in which case we may discover later 
that the room where the class meets is "1108", 
or we have kept them and discover that Room # 
1108, in which case we have to backup and erase 
them. 

The question is then : given a file, compacted 
according to some CF, and given a query on this 
file, can we find a FSA that performs the query 
on the fly on this file ? 

Theorem 11.1. Given any CF and given a file F 
satisfyingthis CF, any projection/selection 
operation whose boolean condition does not con- 
tain any or can be performed on the fly. Thefor- 
ma1 proofwas given in Cl 1. 

Theorem 11.2. Let F be a file satisfying a 
Right Simple CF. Then any restriction/projection 
operation can be performed on the fly on F. 

Recall a CF is Right Simple (RS) if in its syntax 
tree all + signs are on the right and on the same 
branch. 

Proof : see Cll. -- 
The latter condition on the set of CF's is rather 
restrictive. 

In order to give a complete characterization of 
operations that can be performed on the fly we 
give below an algorithm that, given any CF and 
an operation (containing 'or' s) decides whether 
the operation can be performed on the fly on a 
file compacted according to this CF or not. In 
the latter case the operation must be decomposed 
in several operations each of them being perfor- 
med on the fly. 

11.2. A necessary and sufficient condition for a 
query to be performed on the fly on a non 
RS file 

We call rank of Attribute Name 1, denoted by 
rank(A), the number of attribute names counted 
before A when scanning the CF from left to right. 

The boolean condition Is of the query is of the 
form : 

\e= clvc*v...vciv...vcn 
where Ci is a conjunction of terms of the form 
< Attribute name > < comparator > < value >. 

We denote by AM(i) the attribute name of condi- 
tion Ci whose rank is the largest : 

for all A 6 U II Ci we have rank(A) zz rank(%(i)) 

We assume we have : 

rank(AM(l)) < .,. 5 rank(%(i)) 5 . . . < rank(%(n)) 

We denote by Tree(k) the subtree whose root is 
internal node k in the syntax tree associated 
with the CF. 

Theorem 11.3. The following propertyIF' is neces- 
sary and sufficient for the restriction/projec- 
tion (RICl v . . . VCiV . . . vC,)[X] to be performed 
on the fly on a file compacted according to CF 
CF : 

I 

For all k internal nodes of the syntax tree 

IP associated with CF, such that Xn Tree(k)#a. 
If 3 Ci such that AM(i) e Tree(k) 
then AM(j) E Tree(k) for all i< j In 

As an example, consider the file 

F :. (Class,(Student,Grade)+,(Hour,Room)+)+ 

Query q 
! 

: (RIGrade = BvRoom = 1108)CClass,Hour, 
Student cannot be performed on the fly, since in 
the subtree {Student,Grade} 

1) there are both an attribute to be projec- 
ted (Student) and an attribute of condi- 
tion Cl (Grade = B), 

2) 'Room' which belongs to condition C2 
(Room = 1108) 

- appears on the right of 'Grade' in the 
CF 

- and does not belong to the subtree. 

On the contrary, on the same file F, query q2 : 

(R/Grade = BvRoom = 1108)CClass,Hourl 

can be performed on the fly. 

Proof : 

1) Necessary condition : we show that if 
propertylP is not satisfix, the query cannot be 
performed on the .fly : 

Assume there exists Tree(N1) including 
Attribute A to be projected, attribute AM(i) 
of largest rank in condition Ci and that 
attribute AM(j) of largest rank %-condition 
Cj (j >i), does not belong to Tree(Nl), but 
to Tree(N2). 

Tree(N) Tree(N') 

There exists Tree(N3) including both Tree(N1) and 
Tree(N2). Between two successive visits to node 
N3, before N2 is reached, Tree(N1) has been scan- 
ned one or several times. Upon each visit to AM(i) 
we can conclude whether Ci is satisfied or not 
and therefore decide whether to keep (Ci satis- 
fied) or erase (Ci not satisfied) one or more va- 
lues ofA projected between two successive visits 
to AM(i). 
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Eventually when we finally leave Tree(N1) if we 
have erased one or more values of A (because Ci 
was not satisfied), then we may get into trouble 
later on when scanning attribute AM(j) : if con- 
dition Cj is satisfied, we should have kept all 
values of A, not only those for which Ci is satis- 
fied. 

On the contrary, if we had kept all values of A 
(even those for which Ci was not satisfied) then 
we encounter the risk that C; is never satisfied 
before coming back to node N3. 

2) sufPieiant condition : clearly, when 
scanning the file, upon leaving any subtree, 

a) either there wa8 no attribute to be pro- 
jected in-this subtree, then there is no 
decision to be made, 

b) or at least one attribute is to be pro- 
jected. Then, if we had to make a decision 
at this level (keep or erase some project- 
ed values), it is because we were able to 
conclude whether a condition is satisfied or 
not (in this subtree we encountered the at- 
tribute of largest rank for this condition). 

PropertylP implies the decision is safe, i.e. 
within each subtree, if we can make a decision 
on one condition ~ we can make a decision on all 
remaining conditrons. 

We choose a constructive proof to show that if 
Ip is satisfied, the query can be performed on 
the fly. 

We restrict ourselves to the case where : 

1) e=Cavcb 

2) the CF is : (A(BC+>+D+)+, i.e., the 
depth of the tree is 3, there are at 
most three branches and there is only 
one attribute at each level. 

3) All attributes are to be projected. 

‘The proof can then be generalized but 
with a great loss of readibility. 

We exhibit now a FSA that can perform the reques- 
ted restriction. 

Upon scanning an attribute value, the automaton 
can decide whether this value satisfies condi- 
tions Co and C or not. 

B 
%(A) (rev. Q,(A)) is true if attribute A does 
not appear in condition Co(resp. CS) or if it 
Eat;;iiy belongs to Co (resp. Cb) and it is test- 

The state diagram is given below. The states 
(0,1,2,3,4) memorize at which level of the tree 
we are. 

C 

We need the following variables E!o, Elb, E2o, 
Ezp, Ego, E3b, E4a, E4S for memoruing the eva- 
luation of C, and Cb in a given state : Eix is 
true if condition C, has been satisfied at level 
1. 

Finally we need six more variables, Hlo, Hip, 
H2a7 981 H3o and H36 to remember whether the 
prefix of the current tuple has already been 
validated or not : 

8. 1x is true if until level i we have had 
a hit with condition C,. 

The following table gives for each state and 
current attribute, the transition and output 
functions. 

State 

0 

1 

20r3 

3 

30r4 

4 

ittribute 

A 

B 

C 

B 

D 

- 
A 

Transition 

qa=H2,=H&=0 

Hlfi-H2~=H3~=0 

Elcr=C,(A) 

E, B=C~ (A) 

EZcr=Elcr" Cg(B: 

E,Q=E~B"C$(B) 

output 

DROP 

DROP 

DROP 

IF Eja"E3g=l 

then ERASE 
ELSE RESET 

IF H2a"H2g=l 
then ERASE 

ELSE RESET 

DROP 

DROP 

IF Eha"E46=1 

ERASE 
ELSE RESET 

IF H3a~H3B=1 
EIL4SE 
ELSE RESET 
DROP 
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CONCLUSION 

We have studied a representation of relations as 
compacted sequential files and the problem of 
processing unary relational operations on this 
representation. 

We have given a simple criterion for obtaining 
a minimal representation of relation. That cri- 
terion is based on hierarchical dependencies. 
Then we have described a filter that can process 
these representations and fully characterized 
the set of operations it can perform. 

One of the interesting properties of this 
approach is that is allows us to process unnor- 
malized relations (relations satisfying MVD's 
are normally decomposed into smaller relationsof 
avoid duplication thus generating frequent joins). 
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