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A methodology is formulated for determining if 
a microprocessor-based specialized system is practi- 
cal for the solution of a problem in an application. 
This methodology is followed in the description 
and justification of of a back-end system for use with 
a statistical database system. The functions to be 
performed by the back-end system include those 
related to attribute partitioning, compression, and 
data access. It is shown that the system designed 
(the Microprocessor Assist System) will be cost- 
effective in increasing the performance of a statisti- 
cal data management system. 

Additionally, a category-based access method is 
introduced. This access method is a variation of B- 
trees, but its use results in smaller indices. 

1. Introduction 

An important problem in the development of data 
management systems has been that of increasing 
their performance. In this paper we explore the use 
of low-cost, currently manufactured microprocessors 
to increase the performance of statistical data 
management systems. 

We define a statistical data management system as 
one where the use of data is primarily for statistical 
analysis. In such systems the data are accessed and 
updated in large quantities. Examples of statistical 
database applications are sociological and epidemio- 
logical studies of data derived from surveys; analyses 
of economic data for forecasting and modeling; 
management information systems; and analyses of 
data resulting from instrumentation of experiments. 

Traditional data management research has concen- 
trated on transaction-oriented business systems. 
such as banking or inventory control systems. 
[BOBAf32] contains an introduction to some of the 
issues in statistical data management research, and 
points out that business-oriented DBMS do not satisfy 
the needs of the community of users of data for sta- 
tistical analysis. [TURN791 describes a data manage- 
ment system for statistical databases. 
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This paper presents a design for a Microprocessor 
Assist System (MAS). which is a microprocessor-based 
back-end system that performs a part of the work of 
a statistical data management system. The MAS is 
not a database machine because (1) it contains no 
specialized hardware for data management, only 
general-purpose microprocessors, and (2) it is not a 
complete data management system within itself, 
instead, it is an extension of a front-end resident sta- 
tistical data management system. However, it is 
similar to database machines in that it is a system 
design specialized for data management. [DEWIB~] 
points out that a major problem in the design of data- 
base machines is that the cost/performance ratios 
for the systems are often not considered during the 
design phase. This paper presents a design, including 
the cost/performance ratio, and also delineates a 
general method for determining if the design of a 
specialized system is practical. 

The paper is organized as follows: In Section 2 we pro- 
pose a general method for the determination of the 
practicality of a specialized system. Section 3 is a 
description of the MAS. The MAS is a back-end sys- 
tem that handles functions relating to data access, 
attribute partitioning and compression for a statisti- 
cal data management system (SDS). The system 
design is presented before the functions are 
described in detail so that the context for discussing 
the functions’ impact on the performance of the SDS 
can be understood. 

In Section 4 both attribute partitioning and compres- 
sion are shown to be important to a SDS, and to have 
significant impact on its performance. 

Section 5 contains the cost/performance analysis of 
the a general system compared to the MAS system. 
It is shown that the MAS has a better 
cost/performance ratio than a general system. 

In Section 6 the use of the MAS in a statistical data 
management system is discussed. A category based 
access method is introduced. Section 7 is the conclu- 
sion 

2. Methodology 

The following general method to determine the 
practicality of a specialized system design is pro- 
posed: 
I) Determine that the functionality provided by 

the specialized system is impartant to the eppli- 
cation. 
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2) Show that the cost/performance of the special- 
ized system is better than that of a general syp 
tern performing the same application. 

3) Show that the specialized system is easily 
integrated into the application. 

Step (1) is included because it is important to solve 
real problems for the application. An example of a 
solution of a non-problem is associative search for 
business applications. In analyses in [BEWIB~, 
HAWTBI] it is shown that index methods are better 
suited for retrieving data than associative search 
methods, if the access is to a single tuple, the media 
involved is a moving-head disk, and the relation is 
large. The reason that this is true is that associative 
search techniques require passing all the data 
through the read heads; clearly as the amount of 
data increases the performance advantage of associa- 
tive search techniques decreases, and eventually 
index techmques (even with their associated over- 
head) result in better performance. 

Step (2) is necessary because if a design is a serious 
design it is intended to be implemented and used. 
Designs where the cost/performance is worse than 
that of general-purpose systems probably will not be 
built nor used. 

The rationale for Step (3) is to show that the special- 
ized design can be utilized easily in the application. 
This is a measure of the practicality of the special- 
ized system: that is a natural part of the application 
as a whole. 

In this paper, Section 4, where the importance of 
attribute partitioning and compression are shown, is 
mcluded to satisfy step (1). Step (2) is satisfied in 
Section 5, where the cost/performance of the MAS is 
shown to be better than that of a general system. 
Section 6 satisfies step (3) by showing that the MAS 
can be easily integrated into a statistical data 
management system. 

3. MASDesign 

The design for the Microprocessor Assist System 
(MAS) is shown in Figure 1. 

FIGURE 1, MICROPROCESSOR ASSIST SYSTEM 

=F= 

I Microprocessor I 

The MAS consists of (one or more) trees of micropro- 
cessors that are at the bottom level connected one to 
each disk (the leaf microprocessors) and at the 
highest level (the root microprocessor) connected to 
the front-end computer. A single root microproces- 
sor directs the activities of, and receives data from, 
its child processors. The tree can be more than two 
levels, and there may be more than one tree con- 
nected to the same front-end. However, for simpli- 
city, in its initial implementation, a two level single 
tree design is used. 

The front-end system is assumed to be a minicom- 
puter with equivalent functionality of a DEC VAX 
11/760. 

The major functionality of the microprocessors is to 
implement compression and attribute partitioning 
techniques for the statistical data management sys- 
tern (SDS) runnine in the front-end cornouter. Sec- 
tion 2.3 discusses &tribute partitioning and compres- 
sion; Section 2.5 discusses the part of the MAS in the 
overall SDS design. This section is concerned with 
the motivation for the architecture of the MAS. 

There are two major differences between this 
hardware approach and others designed for the 
management of data: the use of general-purpose 
microprocessors, and the tree structure of the back- 
end system. 

3.1. Use of General Purpose Microprocessors 

An example of the type of microprocessor specified in 
the design is a Single Board Computer currently 
manufactured by Forward Technology, Inc. This sys- 
tem has a MM68000 microprocessor, two 1 Megabyte 
I/O ports, 256K RAM, and a Multibus’ Interface. Its 
selling price is $4,000. The processor executes 
approximately one million instructions per second (1 
MIPS). 

The leaf microprocessors are in the same position as 
data filters that exist m several database machine 
designs (e.g. [BANCBO, BABB79]), and for the same 
reason: they operate on data that is read from the 
disk, pre-processing it before it is sent to the front- 
end. 

Filters are processors that operate at the transfer 
rate of a disk, on the data as it is transferring from 
the disk to the front-end system, and perform the 
operations of restriction, projection, and semi-join. 
The microprocessors proposed for the MAS are rela- 
tively slow (slower than the front-end computer) and 
do not have the power nor the functionality of 
general-purpose filters. The microprocessors cannot 
process data at the speed that it is transferred from 
the disk because to do so requires at least a 3 MIPS 
processor to keep up with the transfer rate of the 
disk [DEWI61]. Instead, they store the data within 
their memories, and process it more slowly than disk 
transfer rates. 

In the imtial implementation, and for the purpose of 
the analysis in this paper, the MAS does not perform 
general semi-joins, and the Only 

restriction/projections it performs are those 
immediately related to accessmg the data. This is an 
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example of limited design: we have chosen a few func- 
tions for the MAS to do well. If under these conditions 
it can be shown that the MAS is cost/effective, then 
expanding its functionality will only make the 
cost /performance better. 

The LAS obtains its performance benefits from the 
parallel operation of multiple microprocessors. The 
leaf microprocessors schedule the disk reads, read 
the required blocks, decompress the data, and send 
the rclquired data up to the level above: the higher- 
level microprocessor assembles attributes that are 
spread across multiple disks (hence- multiple 
microprocessors). Fully assembled tuples are sent 
from the root microprocessor to the main computer. 
The fundamental function provided by the MAS is to 
make compression and partitioned attributes invisi- 
ble to the front-end system. 

Microprocessors are chosen to perform this function 
rather than attempting to design and implement 
filters because (1) a microprocessor is sufficient to 
provide the limited functionality (shown in Section 
2.4), and we wish to prove that simply providing the 
limited functionality will significantly benefit a SDS; 
and (2) microprocessors of the type described are 
available to a wide community so that showing their 
use in a system is of general interest. 

3.2. Treestructured Design 

The purpose of the MAS is to explore the result of off- 
loading specific data management functions to a 
back-end system, and not to explore complex proces- 
sor interconnection schemes. Therefore, a tree- 
structured design is chosen because it is architectur- 
ally simpler than others used in back-end systems, 
such as the modified cross-point switch of DIRECT 
[DEW1791 or the ring structure connection of DBC’s 
post-processing unit [MENOB~]. The problem with 
this tree-structured design is that it does not easily 
expand to large numbers of microprocessors. Adding 
multiple leaf processors implies eventually adding 
more roots (otherwise the root processors would 
become a bottleneck) therefore forcing the front-end 
into a complex control operation. 

It is not claimed that the MAS is infinitely expandable. 
Again this is a case of limited design goals: because 
we target this system for minicomputer applications. 
the number of disks (hence leaf processors) is small 
and infinite expansion capability becomes unimpor- 
tant compared to simplicity of implementation. 

4. Techniques for Statistical Databases 

The purpose of this section is to discuss the issues in 
step (1) of the design verification methodology: that 
the functionality provided by the specialized system 
is important to the application. 

4.1. Compression Techniques 

Statistical database management systems must pro- 
vide compression because often the databases they 
manage would otherwise be impossible to store on 
the available disks. [EGGEBl, EGGEBO] contain dis- 
cussions of compression schemes applicable to sta- 
tistical databases. Step (1) is satisfied for compres- 
sion for SDS by noting that it is widely agreed that 
the major drawback of compression schemes is that 
they require CPU time to implement. See [LYNCBl] 
for a discussion of the tradeoffs of compression 
schemes and a suggestion that microprocessors 
might be used to alleviate the compression-induced 
CPU load. 

In the remainder of this section we shall develop the 
number of instructions per page for decompressing a 
page of data. This number is to be used in the 
cost/performance section. It is necessarily approxi- 
mate, because the actual number of instructions per 
page for decompressing data is dependent on many 
factors, including the efficiency of the scheme (one 
hopes that as the data compression rate goes to zero 
the amount of CPU time to decompress also goes to 
zero), the particular scheme used, and the type of 
data. However, to develop an intuition for the 
cost/performance of a MAS, several assumptions 
shall be made about the type of compression, the 
amount of compression achieved, the size and 
number of attributes per page. 

The compression scheme we shall use as an example 
is run-length encoding. The Socio-Economic, Environ- 
mental and Demographic Information System 
(SEEDIS), the LBL special-purpose system for the 
manipulation of summary census data, obtains 30% - 
60% compression of the incoming data through the 
use of run-length encoding and removing blanks. In 
run-length encoding count, value pairs are stored for 
values as they are encountered by sequentially 
accessing the file. 

To decompress a count, value pair, moving the va.Lue 
into a decompressed tuple, the system must load the 
count into a register; then each word of the value 
field must be moved to their new locations count 
times. The number of moves is then (number of 
words in value) times (count). The minimal number 
of instructions is then 1 (to load the register) + count 
times words in value + 1 instruction per count to test 
that the end of the loop is reached for each 
compressed value. 

For the purposes of this discussion let us assume that 
a comoression rate of 50% is achieved in a relation of 
20-byte values through the use of run-length encod- 
ing. If the count fields are two bytes each, the 50% 
compression implies an average count of 2. Assuming 
that words are 4 bytes each, and that 100 
compressed values will fit on a 2K page, then the 
number of instructions per page is 

(1 + 2 l 5 + 2) * 100 = 1300 instructions per page 

In this section two necessary functions of statistical In this section two necessary functions of statistical 
data management systems are discussed. These are data management systems are discussed. These are 
compression and attribute partitioning. An estima- compression and attribute partitioning. An estima- 
tion is made of the load upon a general-purpose com- tion is made of the load upon a general-purpose com- 
puter for each of the functions. puter for each of the functions. 

The instruction-count tech The instruction-count technique above is the least 
number of instructions to execute a run-length 
compression scheme because it does not allow for 
subroutine calls, error handling, etc. However, it is 
still significant compared to the processing time 
required for some statistical queries: in a study of 
INGRES [HAWT79], a simple statistical query was 
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measured and required about .02 seconds of CPU 
time per uncompressed page on a 1 MIPS machine 
(therefore about 20,000 instructions) for the entire 
processing of the query. 

4.2. Attribute Partitioning 

It is observed in [BORA62, LYNCBl, TEIT76] that data 
for statistical database systems is probably most 
efficiently stored in a transposed file format, although 
for multi-field accesses such a format exhibits perfor- 
mance degradation. 

tuple assembly, all attributes with the same logical 
position are gathered together into the same tuple. 
In the above example, first the hpt index would be 
read to determine the logical positions of the qualify- 
ing tuples; then the needed attribute instances would 
be read. The logical-to-physical translation can be 
performed where-there isno compression by a simple 
multiplication (length of attribute + position), and 
where there is compression, by referencing a direc- 
tory (“attribute position begins on page nn.“), then 
reading the page sequentially. 

A transposed file is one where data is stored by field, 
rather than by record. Thus in a file where the 
records have several fields each, all the first fields 
are stored together, then all the second, and so on. 
Attribute partitioning [HAMM79] is another term for a 
transposed file scheme within a relational database, 
As stated in [BORA62], such schemes are useful in 
statistical database systems because although the 
relations often contain many attributes, usually only 
a few are referenced in any one query, 

Additionally, attribute partitioning is useful in 
compression schemes that depend on physical adja- 
cency of identical values [EGGEBO, EGGEBl, TURN79]. 

Therefore, we can conclude that attribute partition- 
ing is important to a SDS. The problems inherent in 
attribute partitioning, and their effect on the perfor- 
mance of the system, are discussed next. 

Attributes may be fully partitioned (one attribute per 
physical file) or grouped (several attributes that are 
usually accessed together are stored together). In 
either case performance problems may arise, These 
are: (1) tuple assembly time: the time to form a tuple 
from attributes stored in different files; and (2) extra 
I/O accesses: these occur when a small amount of 
data is needed, but due to attribute partitioning it is 
stored on, and must be read from, separate files. 
These problems are discussed in turn. 

First, however, a term must be defined and an exam- 
ple given: a clustered indez is an index for which the 
data is physically ordered. This is sometimes called a 
primary index and implies that the relation for which 
the index exists is physically stored in order accord- 
ing to the clustered index key. If the relation is not 
partitioned, there can be only one clustered index for 
it (it can be stored physically only one way) unless 
the relation is fully replicated. 

An example which shall be used in the remainder of 
this section is retrieve (emp.name, emp.sa.Zary, 
emp.mantzgeT) where empdept = “shoe”. (retrieve 
the names, salaries, and manager’s names of all the 
employees who work in the shoe department). 
Assume there is a clustered index on dept. 

Tuple Assembly 

If the attributes of a tuple are not stored together 
within the same record, some means of associating 
them and of assembling them must be provided. The 
two major methods of associating same-tuple attri- 
butes are positional and tuple identi.eTs (tids). In 
the positional method all the attributes for a given 
relation are stored in the same order. To perform 

A second method of tuple assembly is to assign a 
unique id to each tuple, then carry the unique id with 
each attribute. When tuple assembly is required, the 
attributes with matching tuple ids (tids) are gathered 
together. This is the method suggested for CASSM 
[SU75] and DBC [HSIA76] and used extensively in 
several “inverted file” systems. If the tuple id tech- 
nique is used, attributes stored on separate files can 
be oredered differently so that the effect can be 
almost as good as if there were as many clustered 
indices as attributes. 

In the above example the tids for the qualifying 
tuples can be read directly from the clustered index 
on dept. Then the associated attributes for which 
there is an index on tid can be immediately 
retrieved, and any files for which there is no index on 
tid must be sequentially read. 

Optimal tuple assembly methods for any given sys- 
tem are a function of access patterns and stability of 
the data: if the data is stable, positional techniques 
are appropriate; if the data is often accessed accord- 
ing to values of different attributes, tid-based sys- 
tems may be used even though they are costly in 
storage space. In any tuple assembly technique the 
following functions must be performed: 

1) Identify attribute instances to be retrieved 
(via a list of tids, positions, or value ranges). 

2) As the attribute value is retrieved from 
storage, store in a structure such that it can 
be matched with corresponding attribute 
values for the same tuple. 

3) Pass the assembled tuple to the calling pro- 
cess. 

The above three steps require both processing time 
and space. The space is that needed to store 
corresponding attributes; the time is required to 
identify corresponding attributes and to pass the 
assembled tuple to the calling process. 

To determine the effect of tuple assembly on the per- 
formance of the system, we need to consider the 
difference between a system without attribute parti- 
tioning and a system with it: the system with it must 
make at least one data movement and one test 
instruction per attribute per tuple to be retrieved. 
Therefore, the minimal effect of attribute assembly is 
one instruction per word of the attribute, plus one 
instruction per attribute, for each attribute 
retrieved. For retrieving 100 tuples with 10 20-byte 
(5 words) attributes each, the amount of extra time 
due to tuple assembly is 

(100 l 10 * 5) + (100 + 10) = 6000 instructions 
6000 instructions, about 3 milliseconds on a 2 MIP 
machine. 
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The above analysis results in a minimal cost Of attri- 
bute assembly because it does not account for space 
consumption, managing the reading if different data 
files, etc. Even with the minimal cost associated, 
however, it is clear that attribute assembly can 
impact the SDS. 

Block Accesses 

In this section we show that attribute partitioning, 
although effective for a SDS, degrades badly in some 
cases. We show that the use of the MAS helps allevi- 
ate the degradation. 

The fundamental point in achieving performance 
effectiveness of an attribute partitioning scheme is to 
determine the access patterns for the users’ queries, 
and to structure the files accordingly. Attributes 
that are often accessed together are grouped 
together on the same file to reduce access time. In 
[HAMM79] heuristics are given for grouping attri- 
butes; in [BABA75] a model of system behavior is 
presented for the case of partitioned files. [CARD751 
presents a model for determining both storage 
required and access times when certain flies are 
inverted. 

To show how attribute partitioning effects the perfor- 
mance of a system, we introduce the concept of 
efficiency. The efficiency of an access method is a 
measure of how much data it caused to be read with 
respect to the amount of data that was actually 
needed. In the following section we show that the 
efficiency of attribute partitioning varies widely 
according to the structure of the data. 

Efficiency can be represented as: 

(EQ 1) 

E=, 
bytes needed 

Yr npblocking factor 
i=1 

E = efficiency 
bytes needed = number of bytes needed to answer 
query 
fief = number of fifes referenced 

n,= number of blocks read from file i 

blocking factor = number of bytes per block 

An efficiency of 1 implies that all the data read was 
needed. Efficiencies near zero imply highly 
inefficient access methods: much more data was read 
than needed. 

The bytes needed to answer a query is the number of 
bytes that the SDS requires to process the query and 
prepare an answer. The number of files referenced, 
fief, is a function of the number of attributes per file 
and the distribution of the needed attributes across 
those Ales, while n is the number of blocks read from 
each file. 

Clearly the efficiency of an access method is depen- 
dent on the structures used to organize the storage 
both in terms of the indices available and the method 
d partitioning the file. This variation in efficiency is 
illustrated by the following example. 
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Assume that there are 50 attributes per tuple in a 
relation, that each attribute is 20 bytes long, that 
there are 100,000 tuples in the relation, and that data 
is in 2K blocks. Assume also that a query is run that 
retrieves five attributes per tuple. The graphs in 
Figures 2 - 5 shows the efficiency of attribute parti- 
tioning as the number of attributes per file increases 
(from 1 to 50), for different numbers of tuples 
retrieved. 

Attribute Partitioning 

FIGURE 2 
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FIGURE 3 

CLUSTERED, WORST- CASE PLACEMENT 
RETRIEVE 5 ATTRIBUTES 

I I I I I 

1.0 

0.8 

P-. c> - _ \ 
E 0.6’ 
.a, 
;F” 

iz 

/ T I I 
IO 20 30 40 

Attributes per file 
3 



F16URt 4 

CLUSTERED fN ONE ATTRIBUTE ONLY 
OPTIMAL PLACEME \JT, RETRIEVE 5 ATTRIBUTES 

111 
OO IO 20 30 40 50 

Attributes oer file 

FIGURE 5 
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Attributes per file 
In each of figures 2 - 5 the horizontal axis is the 
number of attributes per physical file and the vertical 
axis is the efficiency (EQ 1). It is assumed that if 
there are multiple attributes per file they are stored 
in records (mini-tuples) so that the entire record 
must be read to obtain any attribute from it. 

Figure 2 shows the variation in efficiency in the case 
where the attributes are optimally placed on the files 
so that if there are two attributes per file, three files 
must be accessed to retrieve the needed five; three 
attributes per file implies that two files must be read; 
and five attributes per file (and over) implies that 
only one file must be read. Also in Figure 1 it is 
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assumed that the attributes are clustered such that 
the SDS can retrieve exactly the blocks that contain 
the needed attributes by referencing memory- 
resident indices. In figure 2 we note that retrieving 
one tuple is never very efficient; the efficiency cannot 
rise above .05: 

bytes needed = number of bytes needed to answer 
query = 5 * 20 = 100 

fief = number of files referenced = 1 

q = number of blocks read from file i=! 

blocking factor = number of bytes per block = 2048 

E= =,-jfj 
2048 

The efficiency is a measure of the “wasted data” that 
the disk must transfer. Therefore an efficiency of 1 is 
only obtained when all of the data in each block is 
actually needed by the SDS: this occurs when (1) the 
attributes are fully partitioned and as many tuples 
are needed from each block as are stored on the 
block (in this case, 20 bytes per attribute, 100 attri- 
bute values are stored per block), or (2) the data is 
partitioned such that all the attributes stored on the 
file are needed by the SDS, and as many tuples are 
needed from each block as are stored on each block 
(in this case, for 5 attributes at 20 bytes each, 20 
tuples are stored per block, efficiencies near 1 can 
only be obtained for total number of tuples retrieved 
near or greater than 20). The efficiencies converge 
for large values of the number of attributes per file 
because the ratio of the bytes needed to the total 
bytes read becomes overwhelmed by the amount of 
wasted data per block. 

Figure 3 shows the situation where the attribute file:- 
are clustered, as in figure 2. but the attributes are 
not ootimallv placed: &e files are alwavs read until 
the total number of files is less than five. Again, the 
efficiency for the single tuple case is always Tow. The 
only efficient storage structure is the fully parti- 
tioned case; all others must pass too much wasted 
data. 

In figure 4 it is assumed that the attributes are 
optimally placed, but that only one has a clustering 
index. In order to assemble tuples, the other four 
attributes must be sequentially read if they are on 
other files. Clearly in this case the only possible 
efficient structure is where all five attributes needed 
are on the same file, and where the total number of 
tuples retrieved is greater than or close to the 
number stored on per block. 

Figure 5 shows the worst case: the attributes are not 
optimally placed, and only one has a clustering index. 
In this case, if there is more than one attribute file 
each of the remaining files must be read entirely to 
assemble the tuples. When there is only one file, the 
amount of wasted space due to storing all 50 attri- 
butes on the same me causes the efficiency to remain 
very low. 

End Example 

The above example shows that partitioned attributes, 
while not particularly effective for single-tuple 
accesses, is a well suited technique for applications 
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where the data is accessed in large quantities, as in 
statlstlcal data management systems. 

The efficiency of the partitioning scheme is related to 
the use of the data; it may be assumed that the SDS 
does not optimally partition the data for all cases. 
Therefore in some instances less efficient methods 
may have to be used. It 1s clear that attribute parti- 
tioning, while optimal for a SDS, can result in a heavy 
load upon the resources of the system when less 
efficient accesses must be used. 

A primary purpose of the MAS is to make attribute 
partitioning invlsible to the front-end system: the 
front-end simply requests the data it needs, and the 
MAS provides it in decompressed, assembled tuples. 
The effect of less-efficient accesses 1s that the total 
number of pages to be read is greater; in that case 
the MAS, by off-loading the data access activities and 
relegating them to multiple processors, is able to 
soften the effect of inefficiencies in the access 
methods. 
5. Cost/Performance 

In order to justify the use of a back-end system to 
increase the performance of a SDS, a model of the 
system must be developed with and without the back- 
end, and the performances and costs compared. 

The response time of a SDS without the MAS can be 
represented as: 

(EQ 2) 
i= mf 

R=P+a+mmA+ f: 7lp(c +t) 
i=l 

R = response time 
P = CPU time to process tuples 
a = CPU time to decompress and assemble tuples 
m = number of unoverlapped seeks 
A = access time for the disk 
pef = number of files referenced 

ni = number of blocks read from attribute file i 

c = CPU time to schedule and read a block of data 
t = transfer time for a block of data 

Response time is a function of the number of unover- 
lapped seeks, the number of files referenced and 
number of blocks read from each file, the CPU and 
transfer times for each block and the CPU time to 
process the assembled tupIes. 

In the case of a system that includes a MAS, the 
response time is: 

i= raf 

iI 7y(c’ +f) 

(EQ 3) R=P+ $+rn-A+ irl 
k 

+nans*(c’+t’)+%2p*+C=nans+C 

R = response time 
P = CPU time to process tuples, in front-end 
a’ = micro CPU time to decompress and assemble tUPleS 

k = number of leaf microprocessors 
m = number of unoverlapped seeks 
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A = access time for the disk 
fief = number of files referenced 

n,= number of blocks read from attribute fle i 

c ’ = micro CPU time to schedule and read a block of data 
t ’ = micro transfer time for a block of data 
nans = number of blocks of data in answer 
cp = micro-to-micro communication time 
C = front-end-to-micro communication time 

The response time has three major components: 
front-end processing time, I/O time, and MAS pro- 
cessing time. The front-end processing time is sum 
of the time to communicate from the front-end to the 
root micro (c), the time to receive the required data 
from the root micro (C times the number of blocks on 
the answer, nans) and the processing time in the 
front-end, P. The I/O time is the same as in the stan- 
dard system, WA. 

The processing time in the MAS is composed of the 
following: One of the micros in the MAS must serially 
receive data from the leaf micros and send it to the 
front-end: the time to perform that function is the 
time it takes to receive a data block (c ’ + t ‘) times 
the number of blocks in the answer, nuns. The root 
micro must send commands to the leaf micros: 
assuming one command per query, the response time 
addition due to the root-leaf command is cp times the 
number of micros (k) times 2 (one send, one ack- 
nowledge). The MAS leaf processing time is the sum 
of the time to assemble and decompress the tuples, 
a’ and the time to process the pages as they are 
read, 

i= ref 
f: np(c’tt’) 
t=1 

divided by the number of leaf processors executing 
the query. If we make a convenient assumption, that 
alI the leaf processors are busy executing the com- 
mand, then the assembly, decompression, and block 
processing times can be divided by the number of 
leaf processors, k. 

In comparing (EQ 2) and (EQ 3) it is apparent that the 
time to process the assembled, decompressed tuples 
in the front-end (P) and the I/O time (WA) are 
unchanged by the addition of the MAS. They will 
therefore be dropped from comparisons of the two 
systems. 

To compare the two systems we wiI1 consider two real 
computer systems available: for the front-end, a VAX 
11/780 (instruction speed about 2 MIPS) and for the 
microprocessors, Single Board Computers, described 
in Section 3. 

To compare the response times of the systems we will 
fix a number of values for the above variables: 

a = CPU time to decompress and assemble 
tuples = ,004 set / blk 

k = number of leaf microprocessors = 4 
fief = number of files referenced = 4 
c = CPU time to schedule and read a block 

of data = ,001 set 
t = front-end transfer time for a block of 

data = .00005 see 
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t ’ = micro transfer time for a block of 
data = .0005 set 

cp = micro-to-micro communication 
time = .002 set 

C = front-end-to-micro communication 
time = ,001 set 

The front-end CPU time, a, is the time to decompress 
and assemble one 2K byte data page given that the 
processor is a 2 MIP processor is the time calculated 
in the sections concerning decompression and assem- 
bly. The CPU time to schedule and read a block of 
data is the measured time for a VAX 111780 minicom- 
puter running UNIXs. The transfer time for a block 
on both the front-end and microprocessor systems is 
the time that the system is completely unavailable to 
do anything else while receiving the data. This time 
is a function of the I/O bandwidth, the memory cycle 
times, and the bus architecture. For a VAX 111780, 
that time is .00005 set per 2K block; for a Single 
Board Computer, that time is .0005 set / 2K block. 

The time to communicate from the front-end to the 
root micro is taken to be ,001 set for the first 
analysis; this is the same communication time as is 
necessary to communicate with a disk. In the next 
section that time is varied to determine the effect of 
higher communication times. The time to communi- 
cate from one micro to another is flxed at .002 set, 
twice the time for the front-end, because the micros 
have half the processor speed of the front-end. 

Figure 6 shows response time, in seconds, as a func- 
tion of the number of tuples retrieved. The three 
lines are (lower) the MAS-VAX system described above 
(1 MIPS micros, 2 MIPS front-end); (middle) a stan- 
dard VAX system; and (upper) a 4-leaf MAS-VAX sys- 
tem where the micros operate at l/5 the processing 
speed of the VAX (with appropriate changes to the 
communication times as well as micro processing and 
transfer times). 

Figure 6 shows that the multiprocessing capability of 
the microprocessors allow them to out-perform the 
general purpose system as long as the aggregate pro- 
cessing speed of the microprocessors is larger than 
that of the general system. The MAS has a response 
time less than that of the general system because 
each disk is transferring data into its own micropro- 
cessor, which acts independently of the front-end sys- 
tem, sending only the required data up to the root 
micro, where only assembled tuples are sent to the 
front-end. The MAS therefore relieves the general 
system of all functions related to tuple assembly and 
compression, resulting in a performance benefit as 
long as the MAS can perform those functions faster 
than the general system. 

3 UNIX is a trade-k oi Bell Laboratories 
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FIGURE 6 
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Figure 7 shows a comparison of the two systems from 
another viewpoint: the cost/performance. If we 
assume that the VAX cost $200,000, to be amortized 
over 2 years, then a second of processing time on the 
VAX costs .06 cents. The micros to be used for the 
MAS (the single-board computers described above) 
cost $4,000 each. Assuming another 12,000 each for 
communication equipment, the 4-leaf, l-root MAS 
described above costs $30,000. Amortizing that over 
2 years gives a cost per second on the MAS of ,006 
cents. Figure 7 shows the cents for the access- 
method part of the response time of a four-attribute 
query, where the number of tuples retrieved is varied 
from 1 to 1000. The lower curve is plotted with the 
assumption that the communication time from the 
front-end to the micro is ,001 sec., the same as it is 
between the front-end and a disk. The upper curve is 
the cost per response of the VAX alone. 

It is not clear that communicating with the MAS is the 
same as communicating with a disk, so the middle 
curves are plotted with the communication time as 
,005 set per block (bottom) and ,009 sec. (top). In all 
cases the MAS was much more cost-effective than the 
VAX alone, even when the front-end to back-end com- 
munication time was increased. 

The cost/performance graph, Figure 7, was plotted 
with the assumption that the data is optimally placed 
and clustered. If the data is not clustered, then the 
amount of processing time to read the data goes up, 
and the cost for the general system increases much 
higher than the same cost using the MAS. If the data 
is not optimally placed, the response time for the 
MAS will be slower for that particular query than if 
the data were optimally placed (and all processors 
working on the same query). However, we can 
assume that the MAS can be at the same time execut- 
ing requests for data from other queries, so that the 
number of leaf micros in use is nearly always the 
number on the system. 

We therefore conclude that the MAS is a cost-effective 
system that will improve the performance of a SDS. 

Category Access Methods 

[BORA62, TEIT76] observed that the major method of 
accessing data in statistical databases is by category 
rather than by the mdividual record keys often used 
in business data management systems. A category is 
a major horizontal partition of the data, usually 
expressible by simple boolean functions (e.g., 
uge<20, 20<=uge<=40, age>40 ). Data is separated 
into major categories in order to provide meaningful 
analyses. 

We assume that any data management system 
designed for the statistical analysis of data will con- 
tain methods for the user to specify category attri- 
bute values. The following is a suggested physical 
implementation of category-based access methods. 

Assume that the attributes are fully partitioned so 
that each category attribute can be sorted 
separately. Then to build the category index there 
are two steps: 

(1) sort the attribute-based partition, compressing if 
possible 
(2) build a B-Tree like index which consists of 
pointers (beginning and end) to the user-specified 
category boundaries for the attribute. 

The following is an example of this method: 

Example 

Assume the attribute time is declared to be a 
category attribute, the boundaries specified by time 
< = 00999, 01000 <= time <= 30000, time >= 30001. 
and assume that there are one million tuples m the 
underlying relation, The time, tid pairs are sent (in 
tuple id (tid) order) to the index creation process, 
which sorts the attribute by time, and as each 
boundary is reached enters the page number in the 
index. Then example data pages are: 

Flgure 8. Data Page 

6. Using the MAS in a System 

The MAS is used as follows: the SDS receives a query 
from a user and determines which (relations, attri- 
butes) are needed. It passes to the MAS a data 
request: “get attribute-list, relation for attribute1 
between xx and yy, attribute2 between zz and qq, 

I’. The root micro receives the request and sends 
the appropriate requests to the child micros; as they 
send the data back, the root micro assembles the 
tuples and sends them to the SDS. To process 
updates, the front-end sends the MAS the assembled 
tuples, with the relations and attributes identified; 
the MAS performs the partitioning and compression. 
The MAS simply requires a high-level interface within 
the SDS to be integrated into the system, which it is 
clear can be accomplished in a straight-forward 
manner. There is a problem, however: the MAS 
micros have a limited amount of memory in which to 
store indices. If normal indexing methods are used, 
the MAS may be very inefficient in accessing data. In 
the remainder of this section we discuss an indexing 
method that will result in smaller indices. 
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The entries left, right are pointers to the left and 
right sibling data pages, up points to the parent index 
page, time and tid are in binary representation. 

The index page contains the usual B-Tree pointers 
and the following: 

FIgwe 9. Index Page Data Pointers 

Mexico City, September, 1982 



vuluel, valzLe2 represent the beginning and ending 
values of the attribute; start, end are the page 
numbers for the beginning and ending pages. It is 
important that the ending page be kept track of so 
additions can be quickly made. ,number denotes the 
number of tuples within the partition; this informa- 
tion is useful for query optimization schemes. 

Note that since time can be expected to have many 
umque values over the one million tuples m the rela- 
tion, any ordinary record-oriented index structure 
must be very large. The effect of the category-based 
access method is to reduce the size of the index 
because pointers are only retained for category 
boundaries. 

lCnd Example 

In step (2) above, the “create index” process marked 
the category boundaries on the tndex page and was 
done. It can be expected, however, that different 
users will want to see different category boundaries. 
These can be implemented by the SDS forming “inter- 
mediate” categories whose unions form the 
categories required for each user. For example, sup- 
pose in the above example a second user defines the 
time boundaries to be: time <= 500, 501 <= time <= 
20000, time >= 20001. Then an implementation of 
the category index is: 

Figure 10. Index Page Data Pointers 

If both boundaries are presented to the SDS at the 
same time, the “create index” command has only the 
task of splitting up the index into component parts 
such that both boundary specifications are satisfied. 
A more difficult problem occurs when a new set of 
boundaries is specified for an existing category attri- 
bute. There are two cases: where the data is sorted 
within the categories, and where it is not. 

6.1. Unsorted Data 

In the above implementation it is assumed that the 
data within categories does not need to remain 
sorted: that new items can be added at the end of the 
category, deleted items marked, and occasionally (in 
the middle of the night) “clean-up” algorithms run to 
re-form the attribute files that have undergone 
extensive updates. Rewriting extensively updated 
fles is necessary because physical sequentiality of 
logically sequential data must be maintained to 
minimize disk head movement [HAWT79]. 

This approach works well for statistical databases 
where the data within the attribute files does not 
have to remain sorted because the analysts are only 
concerned with major partitions of the data, not with 
the specific ordermg within the partitions. Then, if 
new categories are created, the “create index” pro- 

cess must decide on the new- partitions. sort the data 
within the partitions to be changed, and re-form the 
Index page 

6.2. Sorted Data 

If the application is such that the data must remain 
sorted, then either a binary insertion lechnique (for 
one-at-a-time updates) or a sort of incoming data, 
then merge with the categories (for multiple addi- 
tions at once) must be performed to keep the data in 
the partitions sorted. Then new categories can be 
added by simply implementing several sets of 
category indices (e.g., one per user), or by re- 
forming the old one. 

6.3. Benefits 

The benefit of the MAS is to off-load a portion of the 
work of the SDS. The category-based access method 
is of use to both a general-purpose and a MAS-type 
system; its advantage is that the index is small, 
representing only the necessary data. 

7. Conclusion 

The general method proposed to determme if a sys- 
tem design is practical is: 

1) Determine that the functionality provided by 
the specialized system is important to the appli- 
cation. 

2) Show the cost/performance of the specialized 
system is better than that of a general system 
performing the same application. 

3) show that the specialized system is easily 
integrated into the application. 

In Section 4 both attribute partitioning and compres- 
sion are shown to be important to a SDS, and have 
significant impact on its performance. Thus, Step (1) 
is satisfied in Section 4. 

In Section 5 it is shown that the MAS has a much 
better cost/performance ratio than a general sys- 
tem; therefore Step (2) is satisfied. 

In Section 6 the use of the MAS in a statistical data 
management system is discussed. A category-based 
access method is introduced. This is a variation of 
B-trees. In B-trees all the umque values of the 
records to be indexed are stored m the leaves of the 
B-tree. It is observed that m statistical applications 
users are interested in broad categories, not unique 
records, so that the category-based indices dre 
smaller, and therefore more easily stored in the 
small memories of the microprocessors of the M.4S. 
Since the mterface to the MAS is a simple, hgh- 
leveled one, it is argued that the MAS is easily 
integrated into the SDS, thus satisfying Step (3). 

Therefore, we have presented a design for a 
microprocessor system that is a practical solution to 
some of the problems in statistical data manage- 
ment. 
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