
Microprocessor Assisted
Tupie Access. Decompression and Assembly

for Statistical Database Systems’

Paula Hawthorn

Lawrence Berkeley Laboratory

A methodology is formulated for determining if
a microprocessor-based specialized system is practi-
cal for the solution of a problem in an application.
This methodology is followed in the description
and justification of of a back-end system for use with
a statistical database system. The functions to be
performed by the back-end system include those
related to attribute partitioning, compression, and
data access. It is shown that the system designed
(the Microprocessor Assist System) will be cost-
effective in increasing the performance of a statisti-
cal data management system.

Additionally, a category-based access method is
introduced. This access method is a variation of B-
trees, but its use results in smaller indices.

1. Introduction

An important problem in the development of data
management systems has been that of increasing
their performance. In this paper we explore the use
of low-cost, currently manufactured microprocessors
to increase the performance of statistical data
management systems.

We define a statistical data management system as
one where the use of data is primarily for statistical
analysis. In such systems the data are accessed and
updated in large quantities. Examples of statistical
database applications are sociological and epidemio-
logical studies of data derived from surveys; analyses
of economic data for forecasting and modeling;
management information systems; and analyses of
data resulting from instrumentation of experiments.

Traditional data management research has concen-
trated on transaction-oriented business systems.
such as banking or inventory control systems.
[BOBAf32] contains an introduction to some of the
issues in statistical data management research, and
points out that business-oriented DBMS do not satisfy
the needs of the community of users of data for sta-
tistical analysis. [TURN791 describes a data manage-
ment system for statistical databases.

’ This work wes supported by the Applied Mathematics Sci-
ences Research Program of the Ofice of Energy Research of the U.
S. Department of hergy under Contract No. DE-AC0576SFU3098.

Proceedings of the Eighth International Conference
on Very Large Data Bases

223

This paper presents a design for a Microprocessor
Assist System (MAS). which is a microprocessor-based
back-end system that performs a part of the work of
a statistical data management system. The MAS is
not a database machine because (1) it contains no
specialized hardware for data management, only
general-purpose microprocessors, and (2) it is not a
complete data management system within itself,
instead, it is an extension of a front-end resident sta-
tistical data management system. However, it is
similar to database machines in that it is a system
design specialized for data management. [DEWIB~]
points out that a major problem in the design of data-
base machines is that the cost/performance ratios
for the systems are often not considered during the
design phase. This paper presents a design, including
the cost/performance ratio, and also delineates a
general method for determining if the design of a
specialized system is practical.

The paper is organized as follows: In Section 2 we pro-
pose a general method for the determination of the
practicality of a specialized system. Section 3 is a
description of the MAS. The MAS is a back-end sys-
tem that handles functions relating to data access,
attribute partitioning and compression for a statisti-
cal data management system (SDS). The system
design is presented before the functions are
described in detail so that the context for discussing
the functions’ impact on the performance of the SDS
can be understood.

In Section 4 both attribute partitioning and compres-
sion are shown to be important to a SDS, and to have
significant impact on its performance.

Section 5 contains the cost/performance analysis of
the a general system compared to the MAS system.
It is shown that the MAS has a better
cost/performance ratio than a general system.

In Section 6 the use of the MAS in a statistical data
management system is discussed. A category based
access method is introduced. Section 7 is the conclu-
sion

2. Methodology

The following general method to determine the
practicality of a specialized system design is pro-
posed:
I) Determine that the functionality provided by

the specialized system is impartant to the eppli-
cation.

Mexico City, September, 1982

2) Show that the cost/performance of the special-
ized system is better than that of a general syp
tern performing the same application.

3) Show that the specialized system is easily
integrated into the application.

Step (1) is included because it is important to solve
real problems for the application. An example of a
solution of a non-problem is associative search for
business applications. In analyses in [BEWIB~,
HAWTBI] it is shown that index methods are better
suited for retrieving data than associative search
methods, if the access is to a single tuple, the media
involved is a moving-head disk, and the relation is
large. The reason that this is true is that associative
search techniques require passing all the data
through the read heads; clearly as the amount of
data increases the performance advantage of associa-
tive search techniques decreases, and eventually
index techmques (even with their associated over-
head) result in better performance.

Step (2) is necessary because if a design is a serious
design it is intended to be implemented and used.
Designs where the cost/performance is worse than
that of general-purpose systems probably will not be
built nor used.

The rationale for Step (3) is to show that the special-
ized design can be utilized easily in the application.
This is a measure of the practicality of the special-
ized system: that is a natural part of the application
as a whole.

In this paper, Section 4, where the importance of
attribute partitioning and compression are shown, is
mcluded to satisfy step (1). Step (2) is satisfied in
Section 5, where the cost/performance of the MAS is
shown to be better than that of a general system.
Section 6 satisfies step (3) by showing that the MAS
can be easily integrated into a statistical data
management system.

3. MASDesign

The design for the Microprocessor Assist System
(MAS) is shown in Figure 1.

FIGURE 1, MICROPROCESSOR ASSIST SYSTEM

=F=

I Microprocessor I

The MAS consists of (one or more) trees of micropro-
cessors that are at the bottom level connected one to
each disk (the leaf microprocessors) and at the
highest level (the root microprocessor) connected to
the front-end computer. A single root microproces-
sor directs the activities of, and receives data from,
its child processors. The tree can be more than two
levels, and there may be more than one tree con-
nected to the same front-end. However, for simpli-
city, in its initial implementation, a two level single
tree design is used.

The front-end system is assumed to be a minicom-
puter with equivalent functionality of a DEC VAX
11/760.

The major functionality of the microprocessors is to
implement compression and attribute partitioning
techniques for the statistical data management sys-
tern (SDS) runnine in the front-end cornouter. Sec-
tion 2.3 discusses &tribute partitioning and compres-
sion; Section 2.5 discusses the part of the MAS in the
overall SDS design. This section is concerned with
the motivation for the architecture of the MAS.

There are two major differences between this
hardware approach and others designed for the
management of data: the use of general-purpose
microprocessors, and the tree structure of the back-
end system.

3.1. Use of General Purpose Microprocessors

An example of the type of microprocessor specified in
the design is a Single Board Computer currently
manufactured by Forward Technology, Inc. This sys-
tem has a MM68000 microprocessor, two 1 Megabyte
I/O ports, 256K RAM, and a Multibus’ Interface. Its
selling price is $4,000. The processor executes
approximately one million instructions per second (1
MIPS).

The leaf microprocessors are in the same position as
data filters that exist m several database machine
designs (e.g. [BANCBO, BABB79]), and for the same
reason: they operate on data that is read from the
disk, pre-processing it before it is sent to the front-
end.

Filters are processors that operate at the transfer
rate of a disk, on the data as it is transferring from
the disk to the front-end system, and perform the
operations of restriction, projection, and semi-join.
The microprocessors proposed for the MAS are rela-
tively slow (slower than the front-end computer) and
do not have the power nor the functionality of
general-purpose filters. The microprocessors cannot
process data at the speed that it is transferred from
the disk because to do so requires at least a 3 MIPS
processor to keep up with the transfer rate of the
disk [DEWI61]. Instead, they store the data within
their memories, and process it more slowly than disk
transfer rates.

In the imtial implementation, and for the purpose of
the analysis in this paper, the MAS does not perform
general semi-joins, and the Only

restriction/projections it performs are those
immediately related to accessmg the data. This is an

Proceedings of the Eighth International Conference
on Very Large Data Bases

2 Multibus is a registered trademark of INTEL Corporation

224 Mexico City, September, 1982

example of limited design: we have chosen a few func-
tions for the MAS to do well. If under these conditions
it can be shown that the MAS is cost/effective, then
expanding its functionality will only make the
cost /performance better.

The LAS obtains its performance benefits from the
parallel operation of multiple microprocessors. The
leaf microprocessors schedule the disk reads, read
the required blocks, decompress the data, and send
the rclquired data up to the level above: the higher-
level microprocessor assembles attributes that are
spread across multiple disks (hence- multiple
microprocessors). Fully assembled tuples are sent
from the root microprocessor to the main computer.
The fundamental function provided by the MAS is to
make compression and partitioned attributes invisi-
ble to the front-end system.

Microprocessors are chosen to perform this function
rather than attempting to design and implement
filters because (1) a microprocessor is sufficient to
provide the limited functionality (shown in Section
2.4), and we wish to prove that simply providing the
limited functionality will significantly benefit a SDS;
and (2) microprocessors of the type described are
available to a wide community so that showing their
use in a system is of general interest.

3.2. Treestructured Design

The purpose of the MAS is to explore the result of off-
loading specific data management functions to a
back-end system, and not to explore complex proces-
sor interconnection schemes. Therefore, a tree-
structured design is chosen because it is architectur-
ally simpler than others used in back-end systems,
such as the modified cross-point switch of DIRECT
[DEW1791 or the ring structure connection of DBC’s
post-processing unit [MENOB~]. The problem with
this tree-structured design is that it does not easily
expand to large numbers of microprocessors. Adding
multiple leaf processors implies eventually adding
more roots (otherwise the root processors would
become a bottleneck) therefore forcing the front-end
into a complex control operation.

It is not claimed that the MAS is infinitely expandable.
Again this is a case of limited design goals: because
we target this system for minicomputer applications.
the number of disks (hence leaf processors) is small
and infinite expansion capability becomes unimpor-
tant compared to simplicity of implementation.

4. Techniques for Statistical Databases

The purpose of this section is to discuss the issues in
step (1) of the design verification methodology: that
the functionality provided by the specialized system
is important to the application.

4.1. Compression Techniques

Statistical database management systems must pro-
vide compression because often the databases they
manage would otherwise be impossible to store on
the available disks. [EGGEBl, EGGEBO] contain dis-
cussions of compression schemes applicable to sta-
tistical databases. Step (1) is satisfied for compres-
sion for SDS by noting that it is widely agreed that
the major drawback of compression schemes is that
they require CPU time to implement. See [LYNCBl]
for a discussion of the tradeoffs of compression
schemes and a suggestion that microprocessors
might be used to alleviate the compression-induced
CPU load.

In the remainder of this section we shall develop the
number of instructions per page for decompressing a
page of data. This number is to be used in the
cost/performance section. It is necessarily approxi-
mate, because the actual number of instructions per
page for decompressing data is dependent on many
factors, including the efficiency of the scheme (one
hopes that as the data compression rate goes to zero
the amount of CPU time to decompress also goes to
zero), the particular scheme used, and the type of
data. However, to develop an intuition for the
cost/performance of a MAS, several assumptions
shall be made about the type of compression, the
amount of compression achieved, the size and
number of attributes per page.

The compression scheme we shall use as an example
is run-length encoding. The Socio-Economic, Environ-
mental and Demographic Information System
(SEEDIS), the LBL special-purpose system for the
manipulation of summary census data, obtains 30% -
60% compression of the incoming data through the
use of run-length encoding and removing blanks. In
run-length encoding count, value pairs are stored for
values as they are encountered by sequentially
accessing the file.

To decompress a count, value pair, moving the va.Lue
into a decompressed tuple, the system must load the
count into a register; then each word of the value
field must be moved to their new locations count
times. The number of moves is then (number of
words in value) times (count). The minimal number
of instructions is then 1 (to load the register) + count
times words in value + 1 instruction per count to test
that the end of the loop is reached for each
compressed value.

For the purposes of this discussion let us assume that
a comoression rate of 50% is achieved in a relation of
20-byte values through the use of run-length encod-
ing. If the count fields are two bytes each, the 50%
compression implies an average count of 2. Assuming
that words are 4 bytes each, and that 100
compressed values will fit on a 2K page, then the
number of instructions per page is

(1 + 2 l 5 + 2) * 100 = 1300 instructions per page

In this section two necessary functions of statistical In this section two necessary functions of statistical
data management systems are discussed. These are data management systems are discussed. These are
compression and attribute partitioning. An estima- compression and attribute partitioning. An estima-
tion is made of the load upon a general-purpose com- tion is made of the load upon a general-purpose com-
puter for each of the functions. puter for each of the functions.

The instruction-count tech The instruction-count technique above is the least
number of instructions to execute a run-length
compression scheme because it does not allow for
subroutine calls, error handling, etc. However, it is
still significant compared to the processing time
required for some statistical queries: in a study of
INGRES [HAWT79], a simple statistical query was

Proceedings of the Eighth International Conference
on Very Large Data Bases 225 Mexico City, September, 1982

measured and required about .02 seconds of CPU
time per uncompressed page on a 1 MIPS machine
(therefore about 20,000 instructions) for the entire
processing of the query.

4.2. Attribute Partitioning

It is observed in [BORA62, LYNCBl, TEIT76] that data
for statistical database systems is probably most
efficiently stored in a transposed file format, although
for multi-field accesses such a format exhibits perfor-
mance degradation.

tuple assembly, all attributes with the same logical
position are gathered together into the same tuple.
In the above example, first the hpt index would be
read to determine the logical positions of the qualify-
ing tuples; then the needed attribute instances would
be read. The logical-to-physical translation can be
performed where-there isno compression by a simple
multiplication (length of attribute + position), and
where there is compression, by referencing a direc-
tory (“attribute position begins on page nn.“), then
reading the page sequentially.

A transposed file is one where data is stored by field,
rather than by record. Thus in a file where the
records have several fields each, all the first fields
are stored together, then all the second, and so on.
Attribute partitioning [HAMM79] is another term for a
transposed file scheme within a relational database,
As stated in [BORA62], such schemes are useful in
statistical database systems because although the
relations often contain many attributes, usually only
a few are referenced in any one query,

Additionally, attribute partitioning is useful in
compression schemes that depend on physical adja-
cency of identical values [EGGEBO, EGGEBl, TURN79].

Therefore, we can conclude that attribute partition-
ing is important to a SDS. The problems inherent in
attribute partitioning, and their effect on the perfor-
mance of the system, are discussed next.

Attributes may be fully partitioned (one attribute per
physical file) or grouped (several attributes that are
usually accessed together are stored together). In
either case performance problems may arise, These
are: (1) tuple assembly time: the time to form a tuple
from attributes stored in different files; and (2) extra
I/O accesses: these occur when a small amount of
data is needed, but due to attribute partitioning it is
stored on, and must be read from, separate files.
These problems are discussed in turn.

First, however, a term must be defined and an exam-
ple given: a clustered indez is an index for which the
data is physically ordered. This is sometimes called a
primary index and implies that the relation for which
the index exists is physically stored in order accord-
ing to the clustered index key. If the relation is not
partitioned, there can be only one clustered index for
it (it can be stored physically only one way) unless
the relation is fully replicated.

An example which shall be used in the remainder of
this section is retrieve (emp.name, emp.sa.Zary,
emp.mantzgeT) where empdept = “shoe”. (retrieve
the names, salaries, and manager’s names of all the
employees who work in the shoe department).
Assume there is a clustered index on dept.

Tuple Assembly

If the attributes of a tuple are not stored together
within the same record, some means of associating
them and of assembling them must be provided. The
two major methods of associating same-tuple attri-
butes are positional and tuple identi.eTs (tids). In
the positional method all the attributes for a given
relation are stored in the same order. To perform

A second method of tuple assembly is to assign a
unique id to each tuple, then carry the unique id with
each attribute. When tuple assembly is required, the
attributes with matching tuple ids (tids) are gathered
together. This is the method suggested for CASSM
[SU75] and DBC [HSIA76] and used extensively in
several “inverted file” systems. If the tuple id tech-
nique is used, attributes stored on separate files can
be oredered differently so that the effect can be
almost as good as if there were as many clustered
indices as attributes.

In the above example the tids for the qualifying
tuples can be read directly from the clustered index
on dept. Then the associated attributes for which
there is an index on tid can be immediately
retrieved, and any files for which there is no index on
tid must be sequentially read.

Optimal tuple assembly methods for any given sys-
tem are a function of access patterns and stability of
the data: if the data is stable, positional techniques
are appropriate; if the data is often accessed accord-
ing to values of different attributes, tid-based sys-
tems may be used even though they are costly in
storage space. In any tuple assembly technique the
following functions must be performed:

1) Identify attribute instances to be retrieved
(via a list of tids, positions, or value ranges).

2) As the attribute value is retrieved from
storage, store in a structure such that it can
be matched with corresponding attribute
values for the same tuple.

3) Pass the assembled tuple to the calling pro-
cess.

The above three steps require both processing time
and space. The space is that needed to store
corresponding attributes; the time is required to
identify corresponding attributes and to pass the
assembled tuple to the calling process.

To determine the effect of tuple assembly on the per-
formance of the system, we need to consider the
difference between a system without attribute parti-
tioning and a system with it: the system with it must
make at least one data movement and one test
instruction per attribute per tuple to be retrieved.
Therefore, the minimal effect of attribute assembly is
one instruction per word of the attribute, plus one
instruction per attribute, for each attribute
retrieved. For retrieving 100 tuples with 10 20-byte
(5 words) attributes each, the amount of extra time
due to tuple assembly is

(100 l 10 * 5) + (100 + 10) = 6000 instructions
6000 instructions, about 3 milliseconds on a 2 MIP
machine.

Proceedings of the Eighth International Conference
on Very Large Data Bases 226 Mexico City, September, 1982

The above analysis results in a minimal cost Of attri-
bute assembly because it does not account for space
consumption, managing the reading if different data
files, etc. Even with the minimal cost associated,
however, it is clear that attribute assembly can
impact the SDS.

Block Accesses

In this section we show that attribute partitioning,
although effective for a SDS, degrades badly in some
cases. We show that the use of the MAS helps allevi-
ate the degradation.

The fundamental point in achieving performance
effectiveness of an attribute partitioning scheme is to
determine the access patterns for the users’ queries,
and to structure the files accordingly. Attributes
that are often accessed together are grouped
together on the same file to reduce access time. In
[HAMM79] heuristics are given for grouping attri-
butes; in [BABA75] a model of system behavior is
presented for the case of partitioned files. [CARD751
presents a model for determining both storage
required and access times when certain flies are
inverted.

To show how attribute partitioning effects the perfor-
mance of a system, we introduce the concept of
efficiency. The efficiency of an access method is a
measure of how much data it caused to be read with
respect to the amount of data that was actually
needed. In the following section we show that the
efficiency of attribute partitioning varies widely
according to the structure of the data.

Efficiency can be represented as:

(EQ 1)

E=,
bytes needed

Yr npblocking factor
i=1

E = efficiency
bytes needed = number of bytes needed to answer
query
fief = number of fifes referenced

n,= number of blocks read from file i

blocking factor = number of bytes per block

An efficiency of 1 implies that all the data read was
needed. Efficiencies near zero imply highly
inefficient access methods: much more data was read
than needed.

The bytes needed to answer a query is the number of
bytes that the SDS requires to process the query and
prepare an answer. The number of files referenced,
fief, is a function of the number of attributes per file
and the distribution of the needed attributes across
those Ales, while n is the number of blocks read from
each file.

Clearly the efficiency of an access method is depen-
dent on the structures used to organize the storage
both in terms of the indices available and the method
d partitioning the file. This variation in efficiency is
illustrated by the following example.

Proceedings of the Eighth International Conference
on Very Large Data Bases 227 Mexico City, September, 1982

Assume that there are 50 attributes per tuple in a
relation, that each attribute is 20 bytes long, that
there are 100,000 tuples in the relation, and that data
is in 2K blocks. Assume also that a query is run that
retrieves five attributes per tuple. The graphs in
Figures 2 - 5 shows the efficiency of attribute parti-
tioning as the number of attributes per file increases
(from 1 to 50), for different numbers of tuples
retrieved.

Attribute Partitioning

FIGURE 2

CLUSTERED, OPT I MAL PLACEMENT
RETRIEVE 5 ATTR I BUTES

.I01 / , , , , , I I I I)
2 100 iuples returned

50 tuples returned

s 0.60
5
g 0.50

Attributes per file
FIGURE 3

CLUSTERED, WORST- CASE PLACEMENT
RETRIEVE 5 ATTRIBUTES

I I I I I

1.0

0.8

P-. c> - _ \
E 0.6’
.a,
;F”

iz

/ T I I
IO 20 30 40

Attributes per file
3

F16URt 4

CLUSTERED fN ONE ATTRIBUTE ONLY
OPTIMAL PLACEME \JT, RETRIEVE 5 ATTRIBUTES

111
OO IO 20 30 40 50

Attributes oer file

FIGURE 5

CLUSTERED ON ONE ATTRIBUTE ONLY WORST
CASE PLACEMENT, RETRIEVE 5 ATTRIBUTES

I I I I

0.4 -

0.2 -

OO
I I I I I
IO 20 30 40 50

Attributes per file
In each of figures 2 - 5 the horizontal axis is the
number of attributes per physical file and the vertical
axis is the efficiency (EQ 1). It is assumed that if
there are multiple attributes per file they are stored
in records (mini-tuples) so that the entire record
must be read to obtain any attribute from it.

Figure 2 shows the variation in efficiency in the case
where the attributes are optimally placed on the files
so that if there are two attributes per file, three files
must be accessed to retrieve the needed five; three
attributes per file implies that two files must be read;
and five attributes per file (and over) implies that
only one file must be read. Also in Figure 1 it is

Proceedings of the Eighth International Conference

assumed that the attributes are clustered such that
the SDS can retrieve exactly the blocks that contain
the needed attributes by referencing memory-
resident indices. In figure 2 we note that retrieving
one tuple is never very efficient; the efficiency cannot
rise above .05:

bytes needed = number of bytes needed to answer
query = 5 * 20 = 100

fief = number of files referenced = 1

q = number of blocks read from file i=!

blocking factor = number of bytes per block = 2048

E= =,-jfj
2048

The efficiency is a measure of the “wasted data” that
the disk must transfer. Therefore an efficiency of 1 is
only obtained when all of the data in each block is
actually needed by the SDS: this occurs when (1) the
attributes are fully partitioned and as many tuples
are needed from each block as are stored on the
block (in this case, 20 bytes per attribute, 100 attri-
bute values are stored per block), or (2) the data is
partitioned such that all the attributes stored on the
file are needed by the SDS, and as many tuples are
needed from each block as are stored on each block
(in this case, for 5 attributes at 20 bytes each, 20
tuples are stored per block, efficiencies near 1 can
only be obtained for total number of tuples retrieved
near or greater than 20). The efficiencies converge
for large values of the number of attributes per file
because the ratio of the bytes needed to the total
bytes read becomes overwhelmed by the amount of
wasted data per block.

Figure 3 shows the situation where the attribute file:-
are clustered, as in figure 2. but the attributes are
not ootimallv placed: &e files are alwavs read until
the total number of files is less than five. Again, the
efficiency for the single tuple case is always Tow. The
only efficient storage structure is the fully parti-
tioned case; all others must pass too much wasted
data.

In figure 4 it is assumed that the attributes are
optimally placed, but that only one has a clustering
index. In order to assemble tuples, the other four
attributes must be sequentially read if they are on
other files. Clearly in this case the only possible
efficient structure is where all five attributes needed
are on the same file, and where the total number of
tuples retrieved is greater than or close to the
number stored on per block.

Figure 5 shows the worst case: the attributes are not
optimally placed, and only one has a clustering index.
In this case, if there is more than one attribute file
each of the remaining files must be read entirely to
assemble the tuples. When there is only one file, the
amount of wasted space due to storing all 50 attri-
butes on the same me causes the efficiency to remain
very low.

End Example

The above example shows that partitioned attributes,
while not particularly effective for single-tuple
accesses, is a well suited technique for applications

228 Mexico City, September, 1982 on Very Large Data Bases

where the data is accessed in large quantities, as in
statlstlcal data management systems.

The efficiency of the partitioning scheme is related to
the use of the data; it may be assumed that the SDS
does not optimally partition the data for all cases.
Therefore in some instances less efficient methods
may have to be used. It 1s clear that attribute parti-
tioning, while optimal for a SDS, can result in a heavy
load upon the resources of the system when less
efficient accesses must be used.

A primary purpose of the MAS is to make attribute
partitioning invlsible to the front-end system: the
front-end simply requests the data it needs, and the
MAS provides it in decompressed, assembled tuples.
The effect of less-efficient accesses 1s that the total
number of pages to be read is greater; in that case
the MAS, by off-loading the data access activities and
relegating them to multiple processors, is able to
soften the effect of inefficiencies in the access
methods.
5. Cost/Performance

In order to justify the use of a back-end system to
increase the performance of a SDS, a model of the
system must be developed with and without the back-
end, and the performances and costs compared.

The response time of a SDS without the MAS can be
represented as:

(EQ 2)
i= mf

R=P+a+mmA+ f: 7lp(c +t)
i=l

R = response time
P = CPU time to process tuples
a = CPU time to decompress and assemble tuples
m = number of unoverlapped seeks
A = access time for the disk
pef = number of files referenced

ni = number of blocks read from attribute file i

c = CPU time to schedule and read a block of data
t = transfer time for a block of data

Response time is a function of the number of unover-
lapped seeks, the number of files referenced and
number of blocks read from each file, the CPU and
transfer times for each block and the CPU time to
process the assembled tupIes.

In the case of a system that includes a MAS, the
response time is:

i= raf

iI 7y(c’ +f)

(EQ 3) R=P+ $+rn-A+ irl
k

+nans*(c’+t’)+%2p*+C=nans+C

R = response time
P = CPU time to process tuples, in front-end
a’ = micro CPU time to decompress and assemble tUPleS

k = number of leaf microprocessors
m = number of unoverlapped seeks

Proceedings of the Eighth International Conference
on Very Large Data Bases

A = access time for the disk
fief = number of files referenced

n,= number of blocks read from attribute fle i

c ’ = micro CPU time to schedule and read a block of data
t ’ = micro transfer time for a block of data
nans = number of blocks of data in answer
cp = micro-to-micro communication time
C = front-end-to-micro communication time

The response time has three major components:
front-end processing time, I/O time, and MAS pro-
cessing time. The front-end processing time is sum
of the time to communicate from the front-end to the
root micro (c), the time to receive the required data
from the root micro (C times the number of blocks on
the answer, nans) and the processing time in the
front-end, P. The I/O time is the same as in the stan-
dard system, WA.

The processing time in the MAS is composed of the
following: One of the micros in the MAS must serially
receive data from the leaf micros and send it to the
front-end: the time to perform that function is the
time it takes to receive a data block (c ’ + t ‘) times
the number of blocks in the answer, nuns. The root
micro must send commands to the leaf micros:
assuming one command per query, the response time
addition due to the root-leaf command is cp times the
number of micros (k) times 2 (one send, one ack-
nowledge). The MAS leaf processing time is the sum
of the time to assemble and decompress the tuples,
a’ and the time to process the pages as they are
read,

i= ref
f: np(c’tt’)
t=1

divided by the number of leaf processors executing
the query. If we make a convenient assumption, that
alI the leaf processors are busy executing the com-
mand, then the assembly, decompression, and block
processing times can be divided by the number of
leaf processors, k.

In comparing (EQ 2) and (EQ 3) it is apparent that the
time to process the assembled, decompressed tuples
in the front-end (P) and the I/O time (WA) are
unchanged by the addition of the MAS. They will
therefore be dropped from comparisons of the two
systems.

To compare the two systems we wiI1 consider two real
computer systems available: for the front-end, a VAX
11/780 (instruction speed about 2 MIPS) and for the
microprocessors, Single Board Computers, described
in Section 3.

To compare the response times of the systems we will
fix a number of values for the above variables:

a = CPU time to decompress and assemble
tuples = ,004 set / blk

k = number of leaf microprocessors = 4
fief = number of files referenced = 4
c = CPU time to schedule and read a block

of data = ,001 set
t = front-end transfer time for a block of

data = .00005 see

Mexico City, September, 1982

t ’ = micro transfer time for a block of
data = .0005 set

cp = micro-to-micro communication
time = .002 set

C = front-end-to-micro communication
time = ,001 set

The front-end CPU time, a, is the time to decompress
and assemble one 2K byte data page given that the
processor is a 2 MIP processor is the time calculated
in the sections concerning decompression and assem-
bly. The CPU time to schedule and read a block of
data is the measured time for a VAX 111780 minicom-
puter running UNIXs. The transfer time for a block
on both the front-end and microprocessor systems is
the time that the system is completely unavailable to
do anything else while receiving the data. This time
is a function of the I/O bandwidth, the memory cycle
times, and the bus architecture. For a VAX 111780,
that time is .00005 set per 2K block; for a Single
Board Computer, that time is .0005 set / 2K block.

The time to communicate from the front-end to the
root micro is taken to be ,001 set for the first
analysis; this is the same communication time as is
necessary to communicate with a disk. In the next
section that time is varied to determine the effect of
higher communication times. The time to communi-
cate from one micro to another is flxed at .002 set,
twice the time for the front-end, because the micros
have half the processor speed of the front-end.

Figure 6 shows response time, in seconds, as a func-
tion of the number of tuples retrieved. The three
lines are (lower) the MAS-VAX system described above
(1 MIPS micros, 2 MIPS front-end); (middle) a stan-
dard VAX system; and (upper) a 4-leaf MAS-VAX sys-
tem where the micros operate at l/5 the processing
speed of the VAX (with appropriate changes to the
communication times as well as micro processing and
transfer times).

Figure 6 shows that the multiprocessing capability of
the microprocessors allow them to out-perform the
general purpose system as long as the aggregate pro-
cessing speed of the microprocessors is larger than
that of the general system. The MAS has a response
time less than that of the general system because
each disk is transferring data into its own micropro-
cessor, which acts independently of the front-end sys-
tem, sending only the required data up to the root
micro, where only assembled tuples are sent to the
front-end. The MAS therefore relieves the general
system of all functions related to tuple assembly and
compression, resulting in a performance benefit as
long as the MAS can perform those functions faster
than the general system.

3 UNIX is a trade-k oi Bell Laboratories

Proceedings of the Eighth International Conference
on Very Large Data Bases

230

FIGURE 6

4-ATTRIBUTE RETRIEVE, CLUSTERED

0.60 -

i! .- +

g 0.50-

E
%
i?!

xi
0.40 -

+
6
a

Tuples ret urned
XBL 8261467

FIGURE 7

4-ATTRIBUTE RETRIEVE, CLUSTERED

Ol-----l
Q) I Single processor\ ,

2 0.01
0
C t/

4 leaf proc.,
comm =0.009 7 I

$;o~~ Q) a v/ comm q 0.001

o-ooo’ loom
Tuples returned

XBL ms.1161

Mexico City, September, 1982

Figure 7 shows a comparison of the two systems from
another viewpoint: the cost/performance. If we
assume that the VAX cost $200,000, to be amortized
over 2 years, then a second of processing time on the
VAX costs .06 cents. The micros to be used for the
MAS (the single-board computers described above)
cost $4,000 each. Assuming another 12,000 each for
communication equipment, the 4-leaf, l-root MAS
described above costs $30,000. Amortizing that over
2 years gives a cost per second on the MAS of ,006
cents. Figure 7 shows the cents for the access-
method part of the response time of a four-attribute
query, where the number of tuples retrieved is varied
from 1 to 1000. The lower curve is plotted with the
assumption that the communication time from the
front-end to the micro is ,001 sec., the same as it is
between the front-end and a disk. The upper curve is
the cost per response of the VAX alone.

It is not clear that communicating with the MAS is the
same as communicating with a disk, so the middle
curves are plotted with the communication time as
,005 set per block (bottom) and ,009 sec. (top). In all
cases the MAS was much more cost-effective than the
VAX alone, even when the front-end to back-end com-
munication time was increased.

The cost/performance graph, Figure 7, was plotted
with the assumption that the data is optimally placed
and clustered. If the data is not clustered, then the
amount of processing time to read the data goes up,
and the cost for the general system increases much
higher than the same cost using the MAS. If the data
is not optimally placed, the response time for the
MAS will be slower for that particular query than if
the data were optimally placed (and all processors
working on the same query). However, we can
assume that the MAS can be at the same time execut-
ing requests for data from other queries, so that the
number of leaf micros in use is nearly always the
number on the system.

We therefore conclude that the MAS is a cost-effective
system that will improve the performance of a SDS.

Category Access Methods

[BORA62, TEIT76] observed that the major method of
accessing data in statistical databases is by category
rather than by the mdividual record keys often used
in business data management systems. A category is
a major horizontal partition of the data, usually
expressible by simple boolean functions (e.g.,
uge<20, 20<=uge<=40, age>40). Data is separated
into major categories in order to provide meaningful
analyses.

We assume that any data management system
designed for the statistical analysis of data will con-
tain methods for the user to specify category attri-
bute values. The following is a suggested physical
implementation of category-based access methods.

Assume that the attributes are fully partitioned so
that each category attribute can be sorted
separately. Then to build the category index there
are two steps:

(1) sort the attribute-based partition, compressing if
possible
(2) build a B-Tree like index which consists of
pointers (beginning and end) to the user-specified
category boundaries for the attribute.

The following is an example of this method:

Example

Assume the attribute time is declared to be a
category attribute, the boundaries specified by time
< = 00999, 01000 <= time <= 30000, time >= 30001.
and assume that there are one million tuples m the
underlying relation, The time, tid pairs are sent (in
tuple id (tid) order) to the index creation process,
which sorts the attribute by time, and as each
boundary is reached enters the page number in the
index. Then example data pages are:

Flgure 8. Data Page

6. Using the MAS in a System

The MAS is used as follows: the SDS receives a query
from a user and determines which (relations, attri-
butes) are needed. It passes to the MAS a data
request: “get attribute-list, relation for attribute1
between xx and yy, attribute2 between zz and qq,

I’. The root micro receives the request and sends
the appropriate requests to the child micros; as they
send the data back, the root micro assembles the
tuples and sends them to the SDS. To process
updates, the front-end sends the MAS the assembled
tuples, with the relations and attributes identified;
the MAS performs the partitioning and compression.
The MAS simply requires a high-level interface within
the SDS to be integrated into the system, which it is
clear can be accomplished in a straight-forward
manner. There is a problem, however: the MAS
micros have a limited amount of memory in which to
store indices. If normal indexing methods are used,
the MAS may be very inefficient in accessing data. In
the remainder of this section we discuss an indexing
method that will result in smaller indices.

Proceedings of the Eighth International Conference
on Very Large Data Bases 231

The entries left, right are pointers to the left and
right sibling data pages, up points to the parent index
page, time and tid are in binary representation.

The index page contains the usual B-Tree pointers
and the following:

FIgwe 9. Index Page Data Pointers

Mexico City, September, 1982

vuluel, valzLe2 represent the beginning and ending
values of the attribute; start, end are the page
numbers for the beginning and ending pages. It is
important that the ending page be kept track of so
additions can be quickly made. ,number denotes the
number of tuples within the partition; this informa-
tion is useful for query optimization schemes.

Note that since time can be expected to have many
umque values over the one million tuples m the rela-
tion, any ordinary record-oriented index structure
must be very large. The effect of the category-based
access method is to reduce the size of the index
because pointers are only retained for category
boundaries.

lCnd Example

In step (2) above, the “create index” process marked
the category boundaries on the tndex page and was
done. It can be expected, however, that different
users will want to see different category boundaries.
These can be implemented by the SDS forming “inter-
mediate” categories whose unions form the
categories required for each user. For example, sup-
pose in the above example a second user defines the
time boundaries to be: time <= 500, 501 <= time <=
20000, time >= 20001. Then an implementation of
the category index is:

Figure 10. Index Page Data Pointers

If both boundaries are presented to the SDS at the
same time, the “create index” command has only the
task of splitting up the index into component parts
such that both boundary specifications are satisfied.
A more difficult problem occurs when a new set of
boundaries is specified for an existing category attri-
bute. There are two cases: where the data is sorted
within the categories, and where it is not.

6.1. Unsorted Data

In the above implementation it is assumed that the
data within categories does not need to remain
sorted: that new items can be added at the end of the
category, deleted items marked, and occasionally (in
the middle of the night) “clean-up” algorithms run to
re-form the attribute files that have undergone
extensive updates. Rewriting extensively updated
fles is necessary because physical sequentiality of
logically sequential data must be maintained to
minimize disk head movement [HAWT79].

This approach works well for statistical databases
where the data within the attribute files does not
have to remain sorted because the analysts are only
concerned with major partitions of the data, not with
the specific ordermg within the partitions. Then, if
new categories are created, the “create index” pro-

cess must decide on the new- partitions. sort the data
within the partitions to be changed, and re-form the
Index page

6.2. Sorted Data

If the application is such that the data must remain
sorted, then either a binary insertion lechnique (for
one-at-a-time updates) or a sort of incoming data,
then merge with the categories (for multiple addi-
tions at once) must be performed to keep the data in
the partitions sorted. Then new categories can be
added by simply implementing several sets of
category indices (e.g., one per user), or by re-
forming the old one.

6.3. Benefits

The benefit of the MAS is to off-load a portion of the
work of the SDS. The category-based access method
is of use to both a general-purpose and a MAS-type
system; its advantage is that the index is small,
representing only the necessary data.

7. Conclusion

The general method proposed to determme if a sys-
tem design is practical is:

1) Determine that the functionality provided by
the specialized system is important to the appli-
cation.

2) Show the cost/performance of the specialized
system is better than that of a general system
performing the same application.

3) show that the specialized system is easily
integrated into the application.

In Section 4 both attribute partitioning and compres-
sion are shown to be important to a SDS, and have
significant impact on its performance. Thus, Step (1)
is satisfied in Section 4.

In Section 5 it is shown that the MAS has a much
better cost/performance ratio than a general sys-
tem; therefore Step (2) is satisfied.

In Section 6 the use of the MAS in a statistical data
management system is discussed. A category-based
access method is introduced. This is a variation of
B-trees. In B-trees all the umque values of the
records to be indexed are stored m the leaves of the
B-tree. It is observed that m statistical applications
users are interested in broad categories, not unique
records, so that the category-based indices dre
smaller, and therefore more easily stored in the
small memories of the microprocessors of the M.4S.
Since the mterface to the MAS is a simple, hgh-
leveled one, it is argued that the MAS is easily
integrated into the SDS, thus satisfying Step (3).

Therefore, we have presented a design for a
microprocessor system that is a practical solution to
some of the problems in statistical data manage-
ment.

Proceedings of the Eighth International Conference
on Very Large Data Bases

232 Mexico City, September, 1982

Acknowledgements:

The author would like to gratefully acknowledge the
help of the following: for their support and careful
reading of this paper: Arie Shoshani and John L.
McCarthy of LBL and Michael Ubell of Britton-Lee.;
the suggestion for the need for a currently-
implementable system: Professor Lawrence Rowe, of
UC Berkeley; and Michael Tlberio of Lincoln Labora-
tories for pointing out the problem of updating
record-oriented indices.

[EGGEB~] Eggers, Susan, Frank Olken and Arie
Shoshani, “A Compression Technique for
Large Statistical Databases”, Proceedings,
IEEE and ACM 7th conf on Very Large Data-
bases, Cannes, France, 1981.

[HAMM79] Hammer, M., and B. Niamir, “A Heuristic
Approach to Attribute Partitioning”,
Proceedings, ACM Sigmod International
Conference on the Management of Data,
Boston, 1979.

[HAwT79] Hawthorn, Paula, “Evaluation and
Enhancement of the Performance of Rela-
tional Database Management Systems”, ERL
Memo No. M79/70, Electronics Research
Laboratory, UC Berkeley, November, 1979.

[HAWTBl] Hawthorn, Paula “The Effect of Target
Applications on Database Machines”,
Proceedings, ACM Sigmod International
Conference on the Management of Data, Ann
Arbor, Michigan, 1981.

[HSIA76] Hsiao, D.K., and K. Kannan, “The Architec-
ture of a Database Computer - Part II: The
Design of Structure Memory and its Related
Processors,” National Technical Information
Service Number AD/A035 178

[LYNCB~] Lynch, Clifford A. and Edwin Brownrigg,
“Application of Data Compression Tech-
niques to a Large Bibliographic Database”,
Proceedings, IEEE and ACM 7th conf on Very
Large Databases, Cannes, France, 1981.

[MENOBl] Menon, M. J. and David K. Hsiao, “Design
and Analysis of a Relational Join Operation
for VLSI”, Proceedings, IEEE and ACM 7th
conf on Very Large Databases, Cannes,
France, 1981.

[SU75] Su, S.Y.W. and G.J. Lipovski, “CASSM: A Cellu-
lar System for Very Large Data Bases”,
Proceedings of the VLDB, 1975, pp. 456-472.

[TEIT76] Teitel, Robert F., “Data Base Concepts for
Social Science Computing”, Proc., Computer
Science and Statistics 9th Annual Confer-
ence on the Interface, Harvard, 1976;
Proceedings ava!!abIo from: Prindle, Weber
and Schmidt, Inc., 20 Newbury St., Boston,
MA 02i16.

[TURN?91 Turner, M.J., R. Hammond and P. Cotton,
“A DBMS for Large Statistical Databases”,
Proceedings, IEEE and ACM 5th conf on Very
Large Databases, Rio de Janeiro, Brazil,

BIBLIOGRAPHY

[BABA77] Babad, J.M., “A Record and File Partitioning
Model”, Commun. of the ACM. Jan., 1977

[BABB79] Babb, E., “Implementing a Relational data-
base by Means of Specialized Hardware,”
ACM Transactions of Database Systems, Vol.
4, No. 1, March 1979, pp. l-29.

[BANCBO] Bancilhon, F., and M. Scholl, “Design of a
Backend Processor for a Data Base
Machine”, Proceedings, ACM Sigmod Inter-
national Conference on the Management of
Data, Santa Monica, California, May 1960.

[BORA62] Baoral, Haran, David J. Dewitt and Doug
Bates, “A Framework for Research in Data-
base Management for Statistical Analysis”,
Computer Sciences Tech. Report #465,
University of Wisconsin-Madison, Feb. 1982,
to appear in Sigmod, 1982.

[CARD751 Cardenas, A.F., Analysis and Performance
of Inverted Data Base Structures:, Com-
mun. ACM., May, 1975 (with a correction in
Yao, S.B., “Approximating Block Accesses in
Database Organizations”, Commun. ACM.,
April 1977.)

[DEW1781 Dewitt, David, “DIRECT - A Multiprocessor
Organization for Supporting Relational Data
Base Management Systems, “Proc. Fifth
Annual Symposium on Computer Architec-
ture, 1978.

[DEW1611 Dewitt, David and Paula Hawthorn “A Per-
formance Evaluation of Database Machine
Architectures”, Proceedings, IEEE and ACM
7th conf on Very Large Databases, Cannes,
France, 1981.

[EGGEBO] Eggers, Susan and Arie Shoshani, “Efficient
Access of Compressed Data”, Proceedings,
IEEE and ACM 6th conf on Very Large Data-
bases, Montreal, Canada, 1980. 1979.

Proceedings of the Eighth International Conference
on Very Large Data Bases 233 Mexico City, September, 1982

