
Data Structures for an Integrated Data Base Management
and Information Retrieval System

H.-J.Schek, P.Pistor

IBM Scientific Center Heidelberg
Tiergartenstrasse 15

D-6900 Heidelberg, West Germany

New applications like office information systems
need interfaces to data bases which integrate
classical data manipulation with management and
retrieval of textual (“unformatted”) data. The
relational data model is widely accepted as a
high level interface to classical (“formatted”)
data management. It turns out, however, to be
inconvenient for handling even simple data struc-
tures as commonly used in information retrieval
systems. To attack this shortcoming we propose an
extension of the relational model by allowing Non
First Normal Form (NF2> relations. We summarize
extensions of the relational algebra, with main
emphasis on the new “nest” and “unnest” oper-
ations which transform between first normal form
relations and the NF2 ones. A related language is
discussed on the basis of a hypothetical SEQUEL
language. As a contribution to the roblem of
efficiently supporting the access to NF g tables a
novel index support for structured textual data
is proposed. It is based on word fragments,
words, and word sequences as internal (textual)
keys.

1. Introduction

1.1 Motivation of an Integrated System
for Formatted and Unformatted Data

In the past, database management systems (DBMS)
and information retrieval systems (IRS) were
separated in research and development and differ-
ent products have been developed for either
purpose. At present there is a trend towards a
single integrated system for data base management
and information retrieval - called DBMIRS -
because of the following reasons:

Many applications need a DBMIRS. Examples are
patients’ data within hospital information
systems, laboratory document administration,
pharmaceutical data bases, library information
systems, and - with growing awareness - office
informatiom systems. A characteristical feature
of these applications is the fact that it is
necessary to combine text management and

Proceedings of the Eighth International Conference
on Very Large Data Bases

retrieval with usual formatted data manipulation.
Therefore a single user interface is necessary.

Another argument for a DBMIRS is related to soft-
ware architecture. DBMS and IRS share a number of
common functions like concurrency control,
logging and recovery, and internal indexing tech-
niques. So, it is proposed to have one system
instead of duplicating many functions within two
different implementations.

In the past, IRS have been regarded as special
application programs on top of a DBMS interface,
e. g. STAIRS /IBMl/ on DL/l. Now, after having
reached a widely accepted DBMS technology it
turns out that IRS requirements have been
neglected. We will show that an application
program solution to a DBMS with a (strict) rela-
tional interface is not suitable. We restrict our
discussion to relational DBMS /Co82,Da81/ due to
its convenience for application programmers and
interactive users. Note that IRS are used inter-
actively too.

In the next subsection we will demonstrate why
the relational model is inconvenient for IRS data
structures and for the most trivial IRS queries.
The reason may be seen in the first normal form
(INF) condition. Therefore we propose a relation-
al model (section 2) where Non First Normal Form
(NF2) relations are allowed.-The-extension encorn-
passes the classical 1NF model and adds two new
basic operations “nest” and “unnest” to the rela-
tional algebra, described in 2.1. On the basis of
the extended relational algebra we propose a
query language extension for NF2 table definition
and manipulation.

In section 3 we propose an index component to
support predicates against textual (complex)
objects in NF2 tables. We start with a summary
discussion, on the possible execution of a simple
IRS query in a 1NF relational DBMS. It demon-
strates again an advantage of the NF2 model,
since it allows to apply techniques known from
IRS. We propose a novel technique known as “frag-
ment index” to support basic text retrieval
functions. The index keys are word fragments,

197 Mexico Citv. Seotember. 1982

words, and word sequences (= descriptor
fragments).

Our requirements for the data model of an inte-
grated DBMIRS have been deduced from typical IRS
related queries /SchSOa/. It should be noted,
however, that similar requirements have been
deduced elsewhere /TS81,LY81,SLTC81/ for data
models taylored to Office Automation needs, often
called “forms data models”, or to Engineering
applications /Lo81/. The requirement for dropping
the, 1NF has been stated several times
/LY81 ,Ko81 ,Ma77/, but there have been no
proposals for a general algebra extension to
obtain INF relations from NF2 and vice versa, and
no investigations on algebraic rules relating the
new operations and the conventional ones. An
effect similar to dropping the 1NF condition can
be obtained by using “quotient relations” as
introduced in /FK77/. A language proposal based
on a SQL type interface has not yet been made
either. However, the more general problem of
providing a “universal language” /Da81/ or a
language for data conversion and restructuring
/SHL75/ has similarities. The index component,
originally proposed in /BCLS74/ as word fragment
index, has been extended to include word
sequences. The index key selection criteria which
we use /Sch78,Sch80b/ in order to have a most
efficient execution of IRS queries are very simi-
lar to the selection criteria for descriptors in
automatic indexing investigated mainly by Salton
/SW81/.

1.2 An Introductory Example

Figure 1 shows a book inventory table. Due to
repeating values in the fields AUTHORS and
DESCRIPTORS, this table violates the first normal
form condition of relational theory. In order to
adapt the table to a classical relational data
model, it needs to be restructured as indicated
in figure 2.

--------------------_________________^_
1 BOOKS 1 AUTHORS 1 TITLE 1 PRICE IDESCRIPTORS 1

; ;;,A2 I Tl 1 Pl 1 Dl,D2
IT1 jP2 IDl,D2 I

I Al I Tl I Pl I Dl,D2,D3 I
--------_------------------------

Fig. 1: Books table as NF2 relation

Proceedings of the Eighth International Conference
on Very Large Data Bases

---------------------- -----s----------..--

I BOOK I BNO 1 TITLE I PRICE 1 1 AUTHOR 1 BNO I AUTHOR I
---------^------------ -------------^-----

I 1 I T1 I PI I IllAl I
l2lTl I= I IllA I
I3 11’1 I ~‘1 I l2lA2 I ----------------- 13lAl I ---_--------

I DESCRIPTOR I BNO I DESCRIPTOR I
-___-----------------------

KI D1 Dl I
I21 Dl I
I21 D2

K1 D1
I

D2 I
I31 D3 I

Fig. 2: Normalized relations belonging
to the Books table of fig. 1

In comparison to figure 1, the normalized version
(figure 2) enforces a rather user-unfriendly view
of the book inventory table. In addition, common
information retrieval requests exist which are
hard to formulate on the basis of the data struc-
ture in figure 2, such as

Ql: Display title and price of books described by
both descriptors Dl and D2 and written by
author Al

Figure 3a gives an SQL like formulation of Ql.
Intuitively, a simpler formulation should be
possible, as indicated in figure 3b.

SELECT TITLE, PRICE
FROM BOOK, AUTHOR, DESCRIPTOR X, DESCRIPTOR Y

WHERE AUTHOR = A2
AND AUTHOR.BNO = BOOK.BNO -
AND BOOK.BNO = X.BNO
AND X.DESCRIPTOR = Dl
AND BOOK.BNO = Y.BNO -
AND Y.DESCRIPTOR = D2

Figure 3a: Formulation of Ql in SQL
referring to fig. 2

Figure 3b: Ql in an extended SQL
referring to fig. 1

The reason for that seemingly unnecessary compli-
cation is the fact that we are not allowed to

198 Mexico City, September, 1982

keep sequences of values within one attribute.
The situation will become even worse if we take
into consideration that a single descriptor may
in turn be viewed as a composite object (e. g., a
word sequence, or even a sequence of sequences of
characters).

A relational data base consists of a set of
tables (relations). Every table consists of a set
of tuples. Every tuple consists of a sequence of
attribute values, where every attribute value is
atomic. An IRS data base is more deeply struc-
tured: It contains one or several document files.
Every document file consists of a set of docu-
ments. Every document consists of a sequence of
fields. Beyond that level of detail, IRS struc-
tures become different. Rather than being atomic,
a field (e. g., a document abstract or a document
table of contents) may contain a sequence of
sentences (in the grammatical sense), which in
turn are sequences of words. Words, finally, are
sequences of atomic values, namely single charac-
ters.

Positional information is important when address-
ing either tuple attributes (DBMS) or document
fields (IRS). Inside of DBMS fields or
attributes, positional information looses its
importance. This is not true with document
fields. Here, information is looked for either by
mere position, or - more often - by adjacency and
order (so-called context information).

2. Non First Normal Form (NF*)Relational Model

According to the introductory remarks we propose
to get rid of the first normal form condition
(1NF) and to allow sets and sets of sets as
attribute domains. It will allow us to regard the
1NF relational model as a special case but more
generally we will be flexible enough for the IRS
data structures. It further means that all defi-
nitions and all theoretical conclusions of the
relational model which are independent from the
1NF remain unchanged and valid. Surprisingly
enough, most of the theory can be kept as summa-
rized below:

2.1 Extended Relational Algebra

As usually we start with given sets Dl, D2, . . . ,
Dn to serve as atomic domains. However, we allow
a k-ary relation R E Cl x C2 x . . . x Ck to be a
subset of the Cartesian nroduct of k domains
where not necessarily every domain Ci is simply
some Dj of the given atomic ones. Rather we allow
complex domains to be derived from the original
ones by constructing powersets of Cartesian
products out from the given domains. We call such
relations Non First Normal Form (NF*> relations.
As an example we may construct (P(S) denotes the
powerset of a set S) Cl = P(D1 x D2) and
c2 = P(P(D3)), and take R c Cl x C2 as binary
relation defined on the complex domains Cl and

Proceedings of the Eighth International Conference
on Very Large Data Bases

c2. The definition of attributes remains
unchanged.

The allowable domains are restricted either to be
an atomic domain or a powerset-type domain for
any attribute. (We do not allow a Cartesian-
product-type domain only, but rather power sets
of Cartesian products). Already Kobayashi /K081/
discussed these domain extensions and pointed out
the importance of powerset-type domains. This
restriction allows us to regard every attribute
with complex domain as a relation-valued. We will
also see that the algebraic operations will
generate attribute domains only of this kind.

Now, we discuss the extensions of the operations
of the relational algebra using a notation as in
/U180/. Standard operations as union (U), differ-
ence (-), projection ll, and the Cartesian product
(xl can be defined for all relations; so they
also apply on NF*- relations in our sense.

For the selection operator oF we extend the class
of formulae F for which uF can be applied. With
respect to 1NF relations F is a formula /U180/
involving

a) operands that are constants or attributes. A
constant is either atomic (for atomic attri-
bute domain) or a constant set of the same
type as the attribute domain. A constant set
may also contain don’t care symbols (see 2.3).

b) arithmetic comparison symbols =, f, <, <=, >, Z
and set inclusion symbols C, 5, 2,~.

c) logic symbols V, A, 7.

Note that the = and # symbols are also applicable
for sets.

In our example query Ql we will be able to do the
necessary selection by

OAUTHORS z (Al) A DESCRIPTORS a {Dl,D2)(BooKS)’

The main extension consists in the introduction
of two new operations, called “Nest” and
“Unnes t” . They are used to transform a 1NF
relation into a NF* relation and vice versa.
Given a relation R(A,B,...) we obtain the nested
relation along column A of R, abbreviated by
\(A@) 9 by forming sets of A values if the tuples
In R agree in the remaining components. The
following example explains nesting along a single
attribute A

RI Al BI Cl VA(R) 1 AS IB IC I ------------------- ----------------_----------
I al I bl I cl I I ial,a21 I bl I cl I
I a2 I bl I cl I I ia31 I b2 I c2 I
I a3 I bl I c2 I I (a4,a5) I b2 I c2 I
I a4 I b2 I c2 I
I a5 I b2 I c2 I

199 Mexico City, September, 1982

Definition of Nest:
Let R be a n-ary relation with attribute set A.
Let f = {Xl, X2,-..., Xk) be a subset of A and B
= A - P. Let X1X2 . ..Xk$ be a name not in A to be
used as attribute for the resulting relation. For
each subtuple 8 e ny(R) we define an
(n-k+l)-tuple wg as

wm = I3
wg[XlX2...Xk$] = itcflltm A tP1 = 81

The “relation nested along attribute set P’
abbreviated as v X (R) is then defined as

vx(R) = bg I 8 e I-$(R)].

If X contains a
“one-attribute”

single attribute we call vx a
nest operation, otherwise we have

a “multi-attribute nest operation”. In our exam-
ple above we obtain for vIA,B1(R)

-YiAIB+R) ’ ABS I c
- ----------------_--_-----------------

I i[al,bll,[a2,blll
I ([a3,bl],[a4,b2],[aS,b21] 1 z:

We apply the following naming conventions: if X =
1x1 ,...,Xk] is a set of attributes in R we gener-
ate the name ‘X1X2 . ..Xk$’ as corresponding attri-
bute in vX(R). Especially, if IF= {A) we generate
AS. The $ sign always indicates a powerset-type
attribute and we assume that $ is not allowed for
attributes on atomic domains. Occasionally we use
also Y$ for ‘XlX2...Xk$‘. Note that a nest opera-
tion vXW generates an attribute with a
;;;;;et-type domain C(X$) = P(C(X1) x C(X2) x

.

This is a main difference to the partition opera-
tor in /FX77/. Whereas we generate new domains
for attributes and thereby keeping the notion of
tuple or relation, in /FX77/ a new notion of
“blocks of tuples” is introduced.

Next we define the unnest operation with the
objective in mind to obtain an inverse operation
to nest.

Definition of Unnest:
Let R be a n-ary relation with attribute set A
and let X C A, B = A-(X]. We distinguish two
cases

(a) the domain C(X) is atomic (equal to some
Dj) , then ~J~(R) = R ,

(b) the domain C(X) is a powerset-type domain;
1. e. coo = P(ClXCZX... xCk) with b (atomic
or complex) domains Ci, i=l,...,k. In this
case let X = (X1,X2 ,...,Xk) be a (generated)
set of attributes different from those in A.
For every tuple tSR define the set of
(n+k-1) tuples w by

lJ+l> = blw[Xl e t[xi ft WPI = tP31

and let

CI~(R) = t;RPx(itl).

Note that the case k=l is included in the above
definition. Obviously, if we apply repeated
unnest operations on a NF* relation we end up
with a 1NF relation. Whether we can do that loss-
less (in the sense that we reobtain the original
relation by nesting) will be answered by the
following

Theorem:
(1) Unnest is inverse to nest, i. e.

IJ#~(R)) = R.

(2) Nest is not always inverse to unnest but if
X is not member of all keys of R

+ vx (I.J~(R)) = R.

The proof is omitted here. It can be found in
/JS81/ for the special case of one-attribute
nesting and can be extended easily to
multi-attribute nesting. The statement (2) of the
theorem is not severe. If X is a key attribute
and if there is no other key which does not
contain X we may add an (artificial) key attri-
bute to R.

Joins :
In the 1NF relational model we have some conven-
ient operations defined on the basic ones such as
joins. A “B-join” between two relations R and S
on attribute A of R and B of S is defined by
RlxlS = uA8B(RxS)

A8B

Therefore, after having extended the selection
formula by set inclusion symbols we may obtain
e. g. a “g-join” between two relations if they
have two attributes with the same domain type.

The natural join between two relations can also
be applied for powerset type attributes using set
equality. The question arises whether we can
obtain a natural join between two relations R and
S by computing a natural join between vx(R) and
v (S) and then unnest the result. X is assumed to
be set of common attributes. Simple examples show
that this is not the case generally. However with
the “intersection join” we can find a simple
solution:

Definition “Intersection Join”:
Let R and S be two relations with attribute sets
A and lB and with X as common attribute set. The
intersection join between R’ = v

If
and S’ = “9,

abbreviated by R’RS’ is obtained y combining all
pairs of tuples r’8R’ and ~‘8s’ where the inter-
section r’[YSlns’[XSl, taken over the join
attribute X$, is not empty. Precisely,

Proceedings of the Eighth International Conference
on Very Large Data Bases 200 Mexico City, September, 1982

R'RS' = {t](Rr')(r'C R' A (3 s,)(s,8 S,
A (t[x$l = r’ W$ln s’ [X$1 f 8)
A t@-Ml1 = r’k+l*uS11
A twm11 = s’B-mIl))I.

The following is an example for an intersection
join.

R'IA IXS S' I xs I B
-----------_--------- --------_------------

; ;~25x;~x41 I b2
x 1x I bl

R'ES' I A I X$ I B

I al I {x2,x3] I b2
I a2 I (~41 I b2

The following theorem gives an answer to our
original plan:

Theorem: Under the assumptions of the above
definition we have
Rlx]S = IJ~~((v~W) 2 (v,@).

The proof is obvious and omitted here. The theo-
rem may be useful for a practical implementation
when we have to compute a natural join between
two nested relations.

Lists
For practical purposes it is convenient to have
sets of items with an order. We may ask for an
item before or after one specific item or we
might ask for two items which are adjacent. As
already mentioned typical applications can be
found in IRS objects. Sections, sentences in
sections, words in sentences can be regarded as
(nested) lists. From a relational algebra point
of view we regard lists as powersets of pairs. If
C is the (complex or atomic) domain for the list
elements we use the set of ordinal numbers N as
additional domain and define the domain of a
list-type attribute as P(CxN). Since we already
allowed powersets of Cartesian products of
domains we have lists as a special case.

2.2 Dependency Theory

Allowing NF* relations does not mean that we
exclude 3NF or BCNF. Originally these higher
normal forms have been defined on the basis of
1NF /Da81/. Newer definitions do not assume the
1NF /U180/. In /Ma77,Ko80,JS81/ it was pointed
out that it has advantages to drop 1NF. It was
shown that multivalued dependencies disappear and
become simpler functional dependencies. This
result may also be regarded as a justification
for a NF* relational model.

2.3 Query Language Considerations for NF* Tables

As will be shown in a forthcoming paper /PiTr82/,
the previously discussed extensions of the rela-
tional algebra may be introduced into query
languages like SQL /Ch76/. In doing so, one is
faced with the problem of appropriately accessing
non-atomic attributes. Since their values can be
viewed as - possibly unnormalized - tables (see
section 2.11, they may be handled by queries
within queries ("field queries,,). Those "queries"
may occur in complex query conditions (see formu-
la 6.2))' or in cases where non-atomic attributes
require some kind of editing (e. g. projection)
before output (see formula (5.1)). These features
might be too cumbersome in common tasks like
defining less complicated predicates over
non-atomic attributes. Therefore the manipulation
facilities for non-atomic fields are complemented
by features which emphasize the fact of
non-atomic objects being lists, sets, or tuples.

The following examples are intended to give an
impression of our query language proposal. In
order to demonstrate the language providing an
appropriate interface for IR applications, all
examples have been taken from that environment
(cf. fig. 1). A first group of examples is
centered around the so-called 'Boolean search'
and stresses language features taylored to list
and set type objects. The following subsection
demonstrates the use of "field queries' and is
intended to give some evidence for the language
to provide the expressive power for supporting
so-called "non-Boolean', /Sa81,Ri79/ search condi-
tions. NEST and UNNFST operations are addressed
in a final subsection.

In the following subsections we use (...I for
sets, <... > for lists, and [...I for tuples. As
don't care symbols we introduce:

* don't care either an arbitrary number
of set element or a sublist of arbi-
trary length,
don't care exactly one set, list, or
tuple component.

2.3.1 Predicates Over Non-atomic Attributes

The following query features a so-called Boolean
search condition

42: Using table BOOKS (see fig. l), find
the titles of all books, the DESCRIP-
TORS of which contain the word list
DECISION TREE OPTIMIZATION.

In our language proposal, this query is expressed
as

(1.0) SELECT TITLE FROM BOOKS
(1.1) WHERE DESCRImm 2

((,DECISI~N,,,~E,,,~~IRI~TI~N,~]

Proceedings of the Eighth International Conference
on Very Large Data Bases 201 Mexico City, September, 1982

By using the inclusion symbol, the WHERE clause
reflects the relational algebra extensions
discussed in section 2.1.

Set predicates as in (1.1) are obviously open for
joining, thus extending the capabilities of
Boolean search into directions not considered so
far in IR:

43: Display the BNO and TITLE of those
books whose DESCRIPTORS are properly
contained in the DESCRIPTORS of any
book in BOOKS

43 will be resolved by

(2.0) SELECT X.BNO, X.TITLE, Y.BNO,
FROM BOOKS X, BOOKS Y

(2.1) - WHERE X.DESCRIPTORS c Y.DESCRIPTORS

It is claimed that queries of this type - when
based on a normalized BOOKS table - can hardly be
answered without falling back to host language
support.

For the formulation of predicates as in (1.1) and
(2.1) we offer a probably quite attractive alter-
native, an extension of the so called template
technique featured in SQL/DS /ChgO,IBMZ/. With
this technique, query 42 transcribes to

(1.0’) - SELECT TITLE FROM BOOKS WHERE
(1.1') DESCRIPTORS =

{~'DECISION','TREE','OPTIMIZATION'>,*~

Advantages of the template technique become more
obvious when context conditions are to be
expressed in the case of list type objects.
Consider e. g.

44: Find the titles of all books, the
DESCRIPTORS of which contain at least
one descriptor with the adjacent words
TREE (first position) and OPTIMIZATION.

(3.0) SELECT TITLE FROM BOOKS WHERE
(3.1) DESCRIPTORS =

(<*,'TREE', 'OPTIMIZATION',*>,*]

Note that masking is applied here at two differ-
ent levels. It could be applied even at lower
levels, e. g. to catch records with the
misspelled descriptor fragment OPTIMISATION:

(3.1') . ..DESCRIPTORS =
{<*,'TREE', 'OPTIMI-ATION',*>,*]

The formulation of predicates as well as the
construction of output tuples can greatly be

facilitated by an appropriate set of built-in
functions. Some useful functions are compiled in
fig. 4. While some of them (e. g. SUM, AVG) are
fairly application oriented, others (e. g. DCAT,
DUNION, ELEMS, MLIST) are more general in that
they can be used to restructure non-atomic
objects.

2.3.2 Advanced Query Facilities

In contrast to Boolean search, non-Boolean search
takes into account not only the presence/absence
of specified search terms, but also their rele-
vance for the record under consideration 1).
Fig. 5 demonstrates how this information could be
stored conceptually. A typical query against this
table might be

Function,
Operation

--------I
CARD
LEN
SUM
AVG
MAX
MIN
DUNION

CAT
DCAT

ELEMS
MLIST

(i>

T

‘I
d

_-

Cardinality
Length
SUll
Arithmetic Average
Arithmetic Maximum
Arithmetic Minimum
Union of elements of a
set of sets
Concatenation
Concatenation of compo-
nents of a list of list
Set of list components
Generates a list of a
set (any order)
Index of the i-th
component

rpplicable with ;I
'iel
let
B-s
X

s of
List

me

?uple
.--mm

X

Figure 4: Field oriented standard-functions
and operators

BOOKSW BNO AUTHORS TITLE PRICE WDESCR

wGTi DESCR ___-___..--- -,-------------------------,----- e-----
1 Al,AZ Tl Pl Wl 1 Dl

-__-_--__-_--_
2- A2

h’2.e LD2 _
Tl P2 W3 1 Dl

3- zl-
___-------

T2 Pl Y? tD2- -
Wl I D1

I D2
W3 , D3

Fig. 5: Stylized fictitious book inventory table
with weighted descriptors

1) This paper does not address the question of how to extract useful descriptors from a given text
(e. g. book titles), nor how to determine the relevance of descriptors for the piece of information
containing them (see e. g. /RiTq,Sagl/).

Proceedings of the Eighth International Conference
on Very Large Data Bases

202 Mexico City, September, 1982

Q5: Using table BOOKSW, find the titles of
all books written by Al and described
by descriptor Dl, provided its rele-
vance for the book is greater than
0.5.

(4.0) SELECT TITLE FROM BOOKSW WHERE
(4.1) AUTHORS 2 (Al)
(4.2) (SELECT ;k FROM WDESF - -

WHERE DESCR = Dl
AND WGT > 0.5) 2 {) -

Obviously, the predicate (4.2) surrogates an
existential quantifier expression. It should be
noted that the SELECT construct is needed here to
extract information from a non-atomic field. The
necessity for this technique may also arise
outside the WHERE clause, as demonstrated in 46
and 47:

46: Find authors and descriptors for all
books having at least one descriptor,
the weight of which is greater than
0.5.

(5.0) SELECT AUTHORS, -
(5.1) (SELECT DESCR FROM WDESCR)
(5.2) FROM BOOKSW WHERE
(5.3) (SELECT * FROM WDESCR -

WHERE WGT > 0.5) 2 {)

47: Find the book numbers for all books
having at least two descriptors out of
Dl, D2, D3, D4, provided the cumulative
weight of these descriptors exceeds 1.
The non-occurrence of a descriptor is
considered to reflect a zero weight.

(6.0) SELECT BNO FROM BOOKSW
(6.1) WHERE SUM (SELECT WGT FROM WDESCR

m@-DESCR IN (Dl,D2,D3,D4))>1
(6.2) AND CARD((Dl,D2~3,D4] A

(SELECT mm3 FROM wmm)) h 2

2.3.3 NEST and UNNEST Mapping Facilities

The NEST and UNNEST operations serve two
purposes. First, they provide a means of generat-
ing unnormalized views out of first normal form
(INF) tables, or vice versa. Second, they open a
further possibility for temporarily changing the
structure of tables subjected to queries. This
feature will help in cases which cannot be
handled by the constructs presented so far.
Consider, e. g., the 1NF table AUTHOR (fig. 2). A
denormalization as in

Dl: Define the view AUTHORS on top of
AUTHOR, which contains for every book
number the set of associated authors

is achieved by the NEST operation:

(7.0) DEFINE VIEW AUTHOR-S (BOOKNO, AUTHORS)
AS- -

Proceedings of the Eighth International Conference
on Very Large Data Bases

(7.1) SELECT BNO,
(7.2) - NEST (AUTHOR)
(7.3) FROM AUTHOR

This statement is supposed to collect the sets of
AUTHOR values associated with the individual BNO
values.

The mapping from NF2 tables into 1NF tables, as
in:

D2: Define NORM AUTHOR-S as a normalized
view of AUTHOR-S,

is achieved by

(8.0) DEFINE VIEW NORM-AUTHOR-S (BNO,AUTH) E
(8.1) SELECT BOOKNO,
(8.2) UNNEST (AUTHORS)
(8.3) - FROM AUTHOR S

The resulting table NORM AUTHOR S is equivalent
to the table AUTHOR used in Dl. -

When applying UNNEST to list type attributes, the
sequence information of LIST objects being
normalized may optionally be kept or suppressed.
When the inverse operation is used, LIST type
objects are collected in a fashion similar to
that described along with example Dl. This proc-
ess, however, requires some explicitely or
implicitely stored ordering information. The
latter case is illustrated by

D3: Define the view AUTHOR-L on top of
AUTHOR, which contains for every book-
number the list of associated authors
in alphabetical order.

This nesting operation is achieved by:

(9.0) DEFINE VIEW --
AUTHOR~L(BOOKNO,AUTHOR~LIST) &

g:,'
SELECT BNO,

. NEST (AUTH, ORDER BY AUTH)
FROM NORM AUTHOR S

For a final example demonstrating multiattribute
nesting, assume a weight column WGT in DESCRIPTOR
(see fig. 2). By

D4: Define a view DESCRIPTW on DESCRIPTOR,
displaying for every book number the
associated set of weight/descriptor
pairs,

i.e. by

(10.0)

(10.1)

DEFINE VIEW
DESCRIPTW(BNO,WDESCR (wGT,DESCR)) AS -
SELECT BNO,

NEST([WGT,DESCRIPTOR])
FROM DESCRIPTOR

203 Mexico City, September, 1982

one obtains the equivalent to a projection of the
table in fig. 5.

3. Indices for NF2 Relations
with Textual Attributes

The previous section was devoted to data model
and query language considerations. Therefore, the
main arguments were centered around convenience.
This section adds performance oriented arguments.
First we shortly discuss, how a typical (Boolean)
information retrieval query could be processed in
a relational DBMS like System R /BLAs81/. The
assumption would be that we have the IRS data
structures (NF2 relations) only as an external
data model but a strict relational one as System
R at the conceptual level.

We use again the BOOKS table now stored as the
tables B(BNO,T,P), A(BNO,A), D(BNO,DNO),
DW(DNO,S,W). The B and A tables correspond to the
BOOK and AUTBOR tables, resp., of fig. 2. The
DESCRIPTOR table has been split into D(BNO,DNO)
and DW(DNO,S,W) where DNO, W, and S denote
descriptor number, word, and position of the
word, respectively. As usual in IRS, this enables
us to support predicates both at word and
descriptor level.

Let us consider, the following example query in
RF2 notation:

SELECT TITLE FROM BOOKS
WHERE DESCRIPTORS =

(<*,*DATA', 'BASE',*>, <*,'QIJERY',*>,*)

This query searches all book titles whose
descriptors contain DATA and BASE adjacently and
somewhere else QUERY. Note that this is a quite
simple and usual query in an IRS like STAIRS
/IBMl/.

A 1 BNO 1 A 1 BIBNO(T IP 1
--------------- --------------------

I1 IAll I 1 11-1 I ~‘1 I
I1 IA21 I2 ITllP21
I2 IA21 I 3 IT1 I Pl I
I3 IAll

D I BNO I DNO I DW I DNO I S I W I
---------------- ------------------------

* 11121 I 1 I 1 I DATA I
I 1 I 2 I I 1 I 2 I BASE I
I 2 I 1 I I 2 I 1 I DATA I
I 2 I 2 I 1 2 I2 1 SYSTEM I
I 3 I 1 I I 3 I 1 I QUERY I
I 3 I 2 I I3 12lLANG. l
I3 I3 I

When adapting this query to the normalized tables
B, D, and DW, it becomes fairly complicated:

SELECT T FROM B, D X, D Y, DW Zl, DW 22, DW 23 - -

WHERE Z1.W = 'DATA'
AND Z2.W = 'BASE' -
AND z1.s = z2.s-1 -
AND Zl.DNO = ZZ.DNO -
AND Z3.W = 'QUERY' -
AND X.BNO = Y.BNO -
AND X.DNO = Zl.DNO -
AND Y.DNO = Z3.DNO -
AND X.BNO = B.BNO -

The reader may have noticed that this represents
a join involving 6 tables. Even if we assume that
all addressed attributes are supported by
indexes, queries of this type are expensive to
process. This is especially true with volume of
data typically encountered in IRS (e. g. 100.000
documents, 100.000 different descriptor words).

From this example we must conclude that it is not
recommendable to implement NF* tables on top of a
classical relational DBMS. On the contrary, a
direct access support is required, as it is
offered for textual data by IR systems like
STAIRS. This section presents an alternative
access support which is more appropriate for
textual data with update traffic, and which
supports general fragment search.

3.1 Indices for NF2 Relations
With Textual Attributes

In a 1NF relation an index being created to an
attribute contains every attribute value as a
key. Attribute values are atomic and so are the
keys. In a NF2 relation we have non-atomic attri-
bute values. Therefore we allow to have
non-atomic keys also for an index to a non-atomic
attribute. Roughly, if the attribute is of type
SET or LIST, index keys are of type SET or LIST,
respectively. Index keys have the same (complex)
domain as the associated attribute and the asso-
ciated search arguments. An index for textual
attributes following these general lines is the
Fragment Index. It is a novel text index
/BCLS74,SchR76,Sch78/ the keys of which are frag-
ments, words, and word sequences. Compared with a
favourite IR indexing technique, namely full word
indexing (e. g. STAIRS), this approach has the
following advantages:

(i) Small set of index keys: With Fragment
Indexing, the number of index keys is typi-
cally 2000 - 5000; with full word indexing
the number of index keys increases with
primary data size. 500 000 index keys are
quite common.

(ii) Set of index keys insensitive against
changes of primary data content: This prop-
erty simplifies index maintenance. Primary
data changes need be reflected only in
record identifier lists.

Proceedings of the Eighth International Conference
on Very Large Data Bases

204 Mexico City, September, 1982

(iii) It supports general fragment search (mask-
ing of search terms at any position) often
useful for textual objects in DBMS.

3.1.1 Index Key Selection

The basic ideas of Fragment Indexing are most
readily outlined for a file, the records of which
contain just one field of the type "word list"
such as

DATA: <'QDERIES','AGAINST','BYPOTBETICAL',
'DATA','BASE','SYSTEMS'>

Query arguments exhibit the same structure, e. g.

QUERY: <*,'QDERY',*,'DATA','BASE','SYSTEMS',*'>

Consequently an index for such a non-atomic
attribute should reflect just this data structure
in its index keys. In our example, keys like

INDEX: '+,'DATA','BASE','SYSTEMS',*>
<*,‘QmRy*‘,*>

might appear. The problem is how to find a "good"
set of these "fragments". We have proposed a
solution along the following lines: If we built
the index such that all possible words occur as
index keys, we would have two problematic subsets
of keys, namely unselective keys and exotic keys.

In order to make unselective keys more selective
(and at the same time shorten the associated
pointer list), we make use of the following
observation. A non-selective word like "SYSTEMS"
will probably be used in context with other
words, e. g. "DATA BASE SYSTEMS", in order to
increase selectivity. Consequently, word lists
(so-called phrases) should be identified as index
terms to reflect frequently referenced context
information in the index. To return to our exam-
ple, an object "SYSTEMS AND CYBERNETICS" will be
referred to by the key "SYSTEMS", the object
"DATA BASE SYSTEMS ANALYSIS", however, by the key
"DATA BASE SYSTEMS" rather then by the key "SYS-
TEMS".

Exotic words, on the other hand, are infrequent
both in data and queries. In this case fragments
should be identified which also occur in other -
possibly exotic - words. E. g. the fragment
"BYPO" could be a useful key since it could make
dispensable a whole pool of index keys like
HYPOTHETICAL, HYPOCHONDRIA, BYPO, HYPOCRITE etc.

Putting the previous discussion into more general
terms, index keys are selected on the basis of
data and query statistics. These are determined
from a frequency analysis of representative
samples of data and of queries. Given the data
and query statistics and a desired frequency t
for every key, an algorithm determines a set of
keys where every key has a sum of data and query
frequency close to t.

The availability of query statistics is not
considered critical. One may start with plausible
estimates; at a later point in time, the index
can be adapted, if the original assumptions are
outdated by observed query statistics.

There is a connection to the Interval Index prob-
lem discussed in /Sche80b/. Among other results,
it points out that equiprobable keys are cost
optimal if no update activities are assumed and
if the distributions of values in data and in
queries are the same. Since updates are regarded
infrequent in IR applications, and, since a
correlation between data and query frequencies
could be observed, empirically we have a justi-
fication of the heuristics applied for textual
key selection. It is also interesting to notice
that the selection of descriptors in the methods
of statistical "Automatic Indexing" is based on
the equiprobability approximation /SW81/.

3.1.2 Query Resolution

To resolve a query by using the Text Fragment
Index, three processing steps are required,
decomposition, pointer list merge, and verifica-
tion.

NAME-LIST (a)

Fragment Index on NAME (b)

Figure 6: Fictitious table (a) and
related fragment index (b)

(Note the non-redundancy of pointer lists. E.g.
'SING' is not associated with record 3 of
NAME-LIST, since it does not occur outside of
'COMPUTER LEASING CO.' and note also that point-
ers do not contain "context information" such as
word position).

The decomposition step determines a set of index
keys which are compatible with the search argu-
ment. For instance, with the data structures of
fig. 6 and the predicate

(11) *.. WHERF, NAME = <*,'COMPDTER','LEASING',*>,

Proceedings of the Eighth International Conference
on Very Large Data Bases 205 Mexico City, September, 1982

the decomposition recognizes that the word
sequence COMPUTER LEASING is the index key which
completely reflects the search argument in (11).
Things get more involved, when the index keys do
not contain the search argument , as in

(12) . . . WHERE NAME = <*,'*COMp','LEASING',*>

The difference is that now the word fragment COMP
is used with front and end masking.

In this case the decomposition determines a pred-
icate which defines the least possible superset
of all matches to the original predicate. Details
are described in /KW81/. In our example, the
decomposition of (12) is

(13) . . . WHERE NAME = <*,'COMPUTER','LEASING',*'>
OR NAME = <*, '*CO)@ ,*> -

m NM = <*,'*'LEAS*',*> - ANJ-j NAME = <*, '*SIN@ ,34> -

Note that the format (13) has been used to
explain the decomposition, It is not generated
internally in this way.

Subsequent to query decomposition, the pointer
lists of the matching index keys have to be
merged (set union, intersection) in a way which
reflects the query structure. As indicated in
(13) the pointer lists of COMP, LEAS, SING must
be intersected. The result is set-united with the
pointers of COMPUTER LEASING.

The final step is the verification step: The
merge result is used to actually access the
primary data and to discard those records which
do not match the search argument.

Obviously the masking of index keys need not be
restricted to two levels of nesting, as in (13).
The Fragment Index approach is open for any depth
of nesting, be it of type LIST - as in the previ-
ous examples - or of type SET (not further to be
outlined here).

3.1.3 Results of Prototype Experiments

A quantitative evaluation of performance aspects
has been performed, such as the average number of
secondary pointer list operations, the number of
index keys, the degree of equiprobability, the
influence of the index size on the number of
IO'S, the CPU time needed for the decomposition,
the average hit rate (false drops), the influence
of adaptation. Results can be found in /Wi81/. In
summary, the experiments show, that with a
dictionary size of two or three .thousand entries
the overall number of secondary IO's is between
two and four for two word queries with general
masking. The hit rate depends on the length of
the documents. For short textual objects like
names and addresses, the hit rate is between 80
and 100 percent. It was further shown that we

Proceedings of the Eighth International COnferenCe

on Very Large Data Bases

obtain a similar performance as obtainable with a
full word dictionary.

Conclusions

The NF* relational model, if used for the concep-
tual level would allow to define external views
for different applications easily. Especially,
where the classical relational model is conven-
ient, it can be provided since it is contained as
a special case. Some other applications such as
information retrieval would prefer NF* relations.
In order to support the new predicates for NF*
relations we propose an index whose keys are also
non-atomic. For the special case of textual
attributes we could show the feasibility of this
approach. Many questions still need more investi-
gations, e. g. embedding NF* relations into a
host language, and general index support for
complex attributes beyond the textual case.

References

/BCLS74/ I. J. Barton, S. E. Creasey, M. F.
Lynch, M. J. Snell: An Information
Theoretic Approach to Text Searching in
Direct Access Systems, CACM 17 (1974),
pp. 345 - 350.

/BlAs81/ M. W. Blasgen, M. M. Astrahan et al.:
System R: An Architectural Overview, IBM
Systems Journal 20 (1981), No. 1, pp.
41 - 62.

/Ch76/ D. D. Chamberlin et al.: SEQUEL2: A
Unified Approach to Data Definition,
Manipulation and Control, IBM Journal of
Research and Development 20 (1976),
pp. 560 - 575.

/CMO/ D. D. Chamberlin: A Summary of User Expe-
rience with the SQL Data Sublanguage
Proceedings of the Int. Conf. on Data
Bases (ed. S. M. Deen), Heyden & Son,
London 1980.

/Co821 E. F. Codd: Relational Database: A Prac-
tical Foundation for Productivity, CACM
25 (1982) No. 2, pp. 109 - 118.

/Da81/ C. J. Date: An Introduction to Database
Systems, 3rd ed., Addison-Wesley Publ.
co., Reading, Mas., 1981.

/FK77/ A. Furtado, L. Kerschberg: An Algebra of
Quotient Relations, in ACM SIGMOD (ed. D.
Smith), August 1977.

/JS81/ G. Jaeschke, H.-J. Schek: Remarks on the
Algebra of Non First Normal Form
Relations, in Principles of Database
Systems, ACM SIGACT-SIGMOD Proceedings,
Los Angeles, March 1982, ACM Order NO.
475820.

/Ko80/ I. Kobayashi: An Overview of the Database
Management Technology, Techn. Report
TRCS-4-1, Sanno College, 1753 Kamikasuya,
Isehara, Kanagawa 259-11, Japan, Juni
1980.

206 Mexico City, September, 1982

This is a worst-case figure. In general, only the maximum
hot point needs to be computed.

6. REFERENCES

[ASTR76]

[BLAS79]

Astrahan, M. M., et al. “System R: A
Relational Approach to Database
Management,” ACM Trans. on Database
Systems, 1, 2, June 1976 (97-137).
Blasgen, M. W., et al. “System R: An
Architectural Update,” IBM Research Report:
RJ2581, July 1979.

[DENN68] Denning, P. J. “The Working Set Model for
Program Behavior,” Comm. of the ACM, 11,
5, May 1968 (323-333).

[OBER80] Obermark, R. “Giobal Deadlock Detection
Algorithm,” IBM Research Report RJ2845,
June 1980.

[SACC821 Sacco, G.M. and Schkolnick, M. “Buffer
Management in Relational Database
Management Systems,” in preparation.

[SEL1791 Selinger, P. G., et al. “Access Path Selection
in a Relational Database Management
System”. Proc. of the 1979 SIGMGD
Conference.

LANG771 Lang, T., et al. “Database Buffer Paging in
VhtUal Storage Systems,” ACM Trans. on

[LORI77]
Database Systems, 2, 4, Dec. 1977 (339-351)
Lorie, R. “Physical Integrity in a Large
Segmented Database,” ACM Trans. on
Database Systems, 2, 1, Mar. 1977 (91-104)

[Page Faults]

2000 SELECT *
FROM BATTING X,PITCHING Y

1800 X WHERE X.GAMES=Y.WON;

Estimated Hot Set Size = 4
Actual Hot Set Size = 5

.

200

100 X

xxxxxx xxxxxxxxx
0 b

0 2 4 6 8 10 12 14 16 18 20
[Buffer Size]

Figure 1. Measured page faults versus Buffer Size for 2-way join query.

[Page Faults] *
900

800

700

600

X SELECT *
FROM DEPARTMENT X,ENROLLMENT Y,

STUDENTS W, COURSES Z
WHERE X.DEPTNO = Z.DEPTNO
AND Y.CNUM = Z.CNUM
AND W.STUDID = Y.STUDID

500

400

300

X Estimated Hot Set Size = 14
xx Actual Hot Set Size = 12

xx

200
xx

100
xxxxxxxx

0 +
0 2 4 6 8 10 12 14 16 18 20

[Buffer ,Size]

Figure 2. Measured page faults versus Buffer Size for 4-way join query.

roceedings of the Eighth International Conference
n Very Large Data Bases

261
Mexico City, September, 1982

