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New applications like office information systems 
need interfaces to data bases which integrate 
classical data manipulation with management and 
retrieval of textual (“unformatted”) data. The 
relational data model is widely accepted as a 
high level interface to classical (“formatted”) 
data management. It turns out, however, to be 
inconvenient for handling even simple data struc- 
tures as commonly used in information retrieval 
systems. To attack this shortcoming we propose an 
extension of the relational model by allowing Non 
First Normal Form (NF2> relations. We summarize 
extensions of the relational algebra, with main 
emphasis on the new “nest” and “unnest” oper- 
ations which transform between first normal form 
relations and the NF2 ones. A related language is 
discussed on the basis of a hypothetical SEQUEL 
language. As a contribution to the roblem of 
efficiently supporting the access to NF g tables a 
novel index support for structured textual data 
is proposed. It is based on word fragments, 
words, and word sequences as internal (textual) 
keys. 

1. Introduction 

1.1 Motivation of an Integrated System 
for Formatted and Unformatted Data 

In the past, database management systems (DBMS) 
and information retrieval systems (IRS) were 
separated in research and development and differ- 
ent products have been developed for either 
purpose. At present there is a trend towards a 
single integrated system for data base management 
and information retrieval - called DBMIRS - 
because of the following reasons: 

Many applications need a DBMIRS. Examples are 
patients’ data within hospital information 
systems, laboratory document administration, 
pharmaceutical data bases, library information 
systems, and - with growing awareness - office 
informatiom systems. A characteristical feature 
of these applications is the fact that it is 
necessary to combine text management and 
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retrieval with usual formatted data manipulation. 
Therefore a single user interface is necessary. 

Another argument for a DBMIRS is related to soft- 
ware architecture. DBMS and IRS share a number of 
common functions like concurrency control, 
logging and recovery, and internal indexing tech- 
niques. So, it is proposed to have one system 
instead of duplicating many functions within two 
different implementations. 

In the past, IRS have been regarded as special 
application programs on top of a DBMS interface, 
e. g. STAIRS /IBMl/ on DL/l. Now, after having 
reached a widely accepted DBMS technology it 
turns out that IRS requirements have been 
neglected. We will show that an application 
program solution to a DBMS with a (strict) rela- 
tional interface is not suitable. We restrict our 
discussion to relational DBMS /Co82,Da81/ due to 
its convenience for application programmers and 
interactive users. Note that IRS are used inter- 
actively too. 

In the next subsection we will demonstrate why 
the relational model is inconvenient for IRS data 
structures and for the most trivial IRS queries. 
The reason may be seen in the first normal form 
(INF) condition. Therefore we propose a relation- 
al model (section 2) where Non First Normal Form 
(NF2) relations are allowed.-The-extension encorn- 
passes the classical 1NF model and adds two new 
basic operations “nest” and “unnest” to the rela- 
tional algebra, described in 2.1. On the basis of 
the extended relational algebra we propose a 
query language extension for NF2 table definition 
and manipulation. 

In section 3 we propose an index component to 
support predicates against textual (complex) 
objects in NF2 tables. We start with a summary 
discussion, on the possible execution of a simple 
IRS query in a 1NF relational DBMS. It demon- 
strates again an advantage of the NF2 model, 
since it allows to apply techniques known from 
IRS. We propose a novel technique known as “frag- 
ment index” to support basic text retrieval 
functions. The index keys are word fragments, 
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words, and word sequences (= descriptor 
fragments). 

Our requirements for the data model of an inte- 
grated DBMIRS have been deduced from typical IRS 
related queries /SchSOa/. It should be noted, 
however, that similar requirements have been 
deduced elsewhere /TS81,LY81,SLTC81/ for data 
models taylored to Office Automation needs, often 
called “forms data models”, or to Engineering 
applications /Lo81/. The requirement for dropping 
the, 1NF has been stated several times 
/LY81 ,Ko81 ,Ma77/, but there have been no 
proposals for a general algebra extension to 
obtain INF relations from NF2 and vice versa, and 
no investigations on algebraic rules relating the 
new operations and the conventional ones. An 
effect similar to dropping the 1NF condition can 
be obtained by using “quotient relations” as 
introduced in /FK77/. A language proposal based 
on a SQL type interface has not yet been made 
either. However, the more general problem of 
providing a “universal language” /Da81/ or a 
language for data conversion and restructuring 
/SHL75/ has similarities. The index component, 
originally proposed in /BCLS74/ as word fragment 
index, has been extended to include word 
sequences. The index key selection criteria which 
we use /Sch78,Sch80b/ in order to have a most 
efficient execution of IRS queries are very simi- 
lar to the selection criteria for descriptors in 
automatic indexing investigated mainly by Salton 
/SW81/. 

1.2 An Introductory Example 

Figure 1 shows a book inventory table. Due to 
repeating values in the fields AUTHORS and 
DESCRIPTORS, this table violates the first normal 
form condition of relational theory. In order to 
adapt the table to a classical relational data 
model, it needs to be restructured as indicated 
in figure 2. 

--------------------_________________^_ 
1 BOOKS 1 AUTHORS 1 TITLE 1 PRICE IDESCRIPTORS 1 
--------------------------------------- 

; ;;,A2 I Tl 1 Pl 1 Dl,D2 
IT1 jP2 IDl,D2 I 

I Al I Tl I Pl I Dl,D2,D3 I 
--------_------------------------ 

Fig. 1: Books table as NF2 relation 
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---------------------- -----s----------..-- 

I BOOK I BNO 1 TITLE I PRICE 1 1 AUTHOR 1 BNO I AUTHOR I 
---------^------------ -------------^----- 

I 1 I T1 I PI I IllAl I 
l2lTl I= I IllA I 
I3 11’1 I ~‘1 I l2lA2 I ----------------- 13lAl I ---_-------- 

--------------------------- 
I DESCRIPTOR I BNO I DESCRIPTOR I 
-___----------------------- 

KI D1 Dl I 
I21 Dl I 
I21 D2 

K1 D1 
I 

D2 I 
I31 D3 I 
---------------- 

Fig. 2: Normalized relations belonging 
to the Books table of fig. 1 

In comparison to figure 1, the normalized version 
(figure 2) enforces a rather user-unfriendly view 
of the book inventory table. In addition, common 
information retrieval requests exist which are 
hard to formulate on the basis of the data struc- 
ture in figure 2, such as 

Ql: Display title and price of books described by 
both descriptors Dl and D2 and written by 
author Al 

Figure 3a gives an SQL like formulation of Ql. 
Intuitively, a simpler formulation should be 
possible, as indicated in figure 3b. 

SELECT TITLE, PRICE 
FROM BOOK, AUTHOR, DESCRIPTOR X, DESCRIPTOR Y 

WHERE AUTHOR = A2 
AND AUTHOR.BNO = BOOK.BNO - 
AND BOOK.BNO = X.BNO 
AND X.DESCRIPTOR = Dl 
AND BOOK.BNO = Y.BNO - 
AND Y.DESCRIPTOR = D2 

Figure 3a: Formulation of Ql in SQL 
referring to fig. 2 

Figure 3b: Ql in an extended SQL 
referring to fig. 1 

The reason for that seemingly unnecessary compli- 
cation is the fact that we are not allowed to 
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keep sequences of values within one attribute. 
The situation will become even worse if we take 
into consideration that a single descriptor may 
in turn be viewed as a composite object (e. g., a 
word sequence, or even a sequence of sequences of 
characters). 

A relational data base consists of a set of 
tables (relations). Every table consists of a set 
of tuples. Every tuple consists of a sequence of 
attribute values, where every attribute value is 
atomic. An IRS data base is more deeply struc- 
tured: It contains one or several document files. 
Every document file consists of a set of docu- 
ments. Every document consists of a sequence of 
fields. Beyond that level of detail, IRS struc- 
tures become different. Rather than being atomic, 
a field (e. g., a document abstract or a document 
table of contents) may contain a sequence of 
sentences (in the grammatical sense), which in 
turn are sequences of words. Words, finally, are 
sequences of atomic values, namely single charac- 
ters. 

Positional information is important when address- 
ing either tuple attributes (DBMS) or document 
fields (IRS). Inside of DBMS fields or 
attributes, positional information looses its 
importance. This is not true with document 
fields. Here, information is looked for either by 
mere position, or - more often - by adjacency and 
order (so-called context information). 

2. Non First Normal Form (NF*)Relational Model 

According to the introductory remarks we propose 
to get rid of the first normal form condition 
(1NF) and to allow sets and sets of sets as 
attribute domains. It will allow us to regard the 
1NF relational model as a special case but more 
generally we will be flexible enough for the IRS 
data structures. It further means that all defi- 
nitions and all theoretical conclusions of the 
relational model which are independent from the 
1NF remain unchanged and valid. Surprisingly 
enough, most of the theory can be kept as summa- 
rized below: 

2.1 Extended Relational Algebra 

As usually we start with given sets Dl, D2, . . . , 
Dn to serve as atomic domains. However, we allow 
a k-ary relation R E Cl x C2 x . . . x Ck to be a 
subset of the Cartesian nroduct of k domains 
where not necessarily every domain Ci is simply 
some Dj of the given atomic ones. Rather we allow 
complex domains to be derived from the original 
ones by constructing powersets of Cartesian 
products out from the given domains. We call such 
relations Non First Normal Form (NF*> relations. 
As an example we may construct (P(S) denotes the 
powerset of a set S) Cl = P(D1 x D2) and 
c2 = P(P(D3)), and take R c Cl x C2 as binary 
relation defined on the complex domains Cl and 
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c2. The definition of attributes remains 
unchanged. 

The allowable domains are restricted either to be 
an atomic domain or a powerset-type domain for 
any attribute. (We do not allow a Cartesian- 
product-type domain only, but rather power sets 
of Cartesian products). Already Kobayashi /K081/ 
discussed these domain extensions and pointed out 
the importance of powerset-type domains. This 
restriction allows us to regard every attribute 
with complex domain as a relation-valued. We will 
also see that the algebraic operations will 
generate attribute domains only of this kind. 

Now, we discuss the extensions of the operations 
of the relational algebra using a notation as in 
/U180/. Standard operations as union (U), differ- 
ence (-), projection ll, and the Cartesian product 
(xl can be defined for all relations; so they 
also apply on NF*- relations in our sense. 

For the selection operator oF we extend the class 
of formulae F for which uF can be applied. With 
respect to 1NF relations F is a formula /U180/ 
involving 

a) operands that are constants or attributes. A 
constant is either atomic (for atomic attri- 
bute domain) or a constant set of the same 
type as the attribute domain. A constant set 
may also contain don’t care symbols (see 2.3). 

b) arithmetic comparison symbols =, f, <, <=, >, Z 
and set inclusion symbols C, 5, 2,~. 

c) logic symbols V, A, 7. 

Note that the = and # symbols are also applicable 
for sets. 

In our example query Ql we will be able to do the 
necessary selection by 

OAUTHORS z (Al) A DESCRIPTORS a {Dl,D2)(BooKS)’ 

The main extension consists in the introduction 
of two new operations, called “Nest” and 
“Unnes t” . They are used to transform a 1NF 
relation into a NF* relation and vice versa. 
Given a relation R(A,B,...) we obtain the nested 
relation along column A of R, abbreviated by 
\(A@) 9 by forming sets of A values if the tuples 
In R agree in the remaining components. The 
following example explains nesting along a single 
attribute A 

RI Al BI Cl VA(R) 1 AS IB IC I ------------------- ----------------_---------- 
I al I bl I cl I I ial,a21 I bl I cl I 
I a2 I bl I cl I I ia31 I b2 I c2 I 
I a3 I bl I c2 I I (a4,a5) I b2 I c2 I 
I a4 I b2 I c2 I 
I a5 I b2 I c2 I 
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Definition of Nest: 
Let R be a n-ary relation with attribute set A. 
Let f = {Xl, X2,-..., Xk) be a subset of A and B 
= A - P. Let X1X2 . ..Xk$ be a name not in A to be 
used as attribute for the resulting relation. For 
each subtuple 8 e ny(R) we define an 
(n-k+l)-tuple wg as 

wm = I3 
wg[XlX2...Xk$] = itcflltm A tP1 = 81 

The “relation nested along attribute set P’ 
abbreviated as v X (R) is then defined as 

vx(R) = bg I 8 e I-$(R)]. 

If X contains a 
“one-attribute” 

single attribute we call vx a 
nest operation, otherwise we have 

a “multi-attribute nest operation”. In our exam- 
ple above we obtain for vIA,B1(R) 

-YiAIB+R) ’ ABS I c 
- ----------------_--_----------------- 

I i[al,bll,[a2,blll 
I ([a3,bl],[a4,b2],[aS,b21] 1 z: 

We apply the following naming conventions: if X = 
1x1 ,...,Xk] is a set of attributes in R we gener- 
ate the name ‘X1X2 . ..Xk$’ as corresponding attri- 
bute in vX(R). Especially, if IF= {A) we generate 
AS. The $ sign always indicates a powerset-type 
attribute and we assume that $ is not allowed for 
attributes on atomic domains. Occasionally we use 
also Y$ for ‘XlX2...Xk$‘. Note that a nest opera- 
tion vXW generates an attribute with a 
;;;;;et-type domain C(X$) = P(C(X1) x C(X2) x 

. 

This is a main difference to the partition opera- 
tor in /FX77/. Whereas we generate new domains 
for attributes and thereby keeping the notion of 
tuple or relation, in /FX77/ a new notion of 
“blocks of tuples” is introduced. 

Next we define the unnest operation with the 
objective in mind to obtain an inverse operation 
to nest. 

Definition of Unnest: 
Let R be a n-ary relation with attribute set A 
and let X C A, B = A-(X]. We distinguish two 
cases 

(a) the domain C(X) is atomic (equal to some 
Dj) , then ~J~(R) = R , 

(b) the domain C(X) is a powerset-type domain; 
1. e. coo = P(ClXCZX... xCk) with b (atomic 
or complex) domains Ci, i=l,...,k. In this 
case let X = (X1,X2 ,...,Xk) be a (generated) 
set of attributes different from those in A. 
For every tuple tSR define the set of 
(n+k-1) tuples w by 

lJ+l> = blw[Xl e t[xi ft WPI = tP31 

and let 

CI~(R) = t;RPx(itl). 

Note that the case k=l is included in the above 
definition. Obviously, if we apply repeated 
unnest operations on a NF* relation we end up 
with a 1NF relation. Whether we can do that loss- 
less (in the sense that we reobtain the original 
relation by nesting) will be answered by the 
following 

Theorem: 
(1) Unnest is inverse to nest, i. e. 

IJ#~(R)) = R. 

(2) Nest is not always inverse to unnest but if 
X is not member of all keys of R 

+ vx (I.J~(R)) = R. 

The proof is omitted here. It can be found in 
/JS81/ for the special case of one-attribute 
nesting and can be extended easily to 
multi-attribute nesting. The statement (2) of the 
theorem is not severe. If X is a key attribute 
and if there is no other key which does not 
contain X we may add an (artificial) key attri- 
bute to R. 

Joins : 
In the 1NF relational model we have some conven- 
ient operations defined on the basic ones such as 
joins. A “B-join” between two relations R and S 
on attribute A of R and B of S is defined by 
RlxlS = uA8B(RxS ) 

A8B 

Therefore, after having extended the selection 
formula by set inclusion symbols we may obtain 
e. g. a “g-join” between two relations if they 
have two attributes with the same domain type. 

The natural join between two relations can also 
be applied for powerset type attributes using set 
equality. The question arises whether we can 
obtain a natural join between two relations R and 
S by computing a natural join between vx(R) and 
v (S) and then unnest the result. X is assumed to 
be set of common attributes. Simple examples show 
that this is not the case generally. However with 
the “intersection join” we can find a simple 
solution: 

Definition “Intersection Join”: 
Let R and S be two relations with attribute sets 
A and lB and with X as common attribute set. The 
intersection join between R’ = v 

If 
and S’ = “9, 

abbreviated by R’RS’ is obtained y combining all 
pairs of tuples r’8R’ and ~‘8s’ where the inter- 
section r’[YSlns’[XSl, taken over the join 
attribute X$, is not empty. Precisely, 
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R'RS' = {t](Rr')(r'C R' A (3 s,)(s,8 S, 
A (t[x$l = r’ W$ln s’ [X$1 f 8) 
A t@-Ml1 = r’k+l*uS11 
A twm11 = s’B-mIl))I. 

The following is an example for an intersection 
join. 

R'IA IXS S' I xs I B 
-----------_--------- --------_------------ 

; ;~25x;~x41 I b2 
x 1x I bl 

R'ES' I A I X$ I B 
-------------------------- 

I al I {x2,x3] I b2 
I a2 I (~41 I b2 

The following theorem gives an answer to our 
original plan: 

Theorem: Under the assumptions of the above 
definition we have 
Rlx]S = IJ~~((v~W) 2 (v,@). 

The proof is obvious and omitted here. The theo- 
rem may be useful for a practical implementation 
when we have to compute a natural join between 
two nested relations. 

Lists 
For practical purposes it is convenient to have 
sets of items with an order. We may ask for an 
item before or after one specific item or we 
might ask for two items which are adjacent. As 
already mentioned typical applications can be 
found in IRS objects. Sections, sentences in 
sections, words in sentences can be regarded as 
(nested) lists. From a relational algebra point 
of view we regard lists as powersets of pairs. If 
C is the (complex or atomic) domain for the list 
elements we use the set of ordinal numbers N as 
additional domain and define the domain of a 
list-type attribute as P(CxN). Since we already 
allowed powersets of Cartesian products of 
domains we have lists as a special case. 

2.2 Dependency Theory 

Allowing NF* relations does not mean that we 
exclude 3NF or BCNF. Originally these higher 
normal forms have been defined on the basis of 
1NF /Da81/. Newer definitions do not assume the 
1NF /U180/. In /Ma77,Ko80,JS81/ it was pointed 
out that it has advantages to drop 1NF. It was 
shown that multivalued dependencies disappear and 
become simpler functional dependencies. This 
result may also be regarded as a justification 
for a NF* relational model. 

2.3 Query Language Considerations for NF* Tables 

As will be shown in a forthcoming paper /PiTr82/, 
the previously discussed extensions of the rela- 
tional algebra may be introduced into query 
languages like SQL /Ch76/. In doing so, one is 
faced with the problem of appropriately accessing 
non-atomic attributes. Since their values can be 
viewed as - possibly unnormalized - tables (see 
section 2.11, they may be handled by queries 
within queries ("field queries,,). Those "queries" 
may occur in complex query conditions (see formu- 
la 6.2))' or in cases where non-atomic attributes 
require some kind of editing (e. g. projection) 
before output (see formula (5.1)). These features 
might be too cumbersome in common tasks like 
defining less complicated predicates over 
non-atomic attributes. Therefore the manipulation 
facilities for non-atomic fields are complemented 
by features which emphasize the fact of 
non-atomic objects being lists, sets, or tuples. 

The following examples are intended to give an 
impression of our query language proposal. In 
order to demonstrate the language providing an 
appropriate interface for IR applications, all 
examples have been taken from that environment 
(cf. fig. 1). A first group of examples is 
centered around the so-called 'Boolean search' 
and stresses language features taylored to list 
and set type objects. The following subsection 
demonstrates the use of "field queries' and is 
intended to give some evidence for the language 
to provide the expressive power for supporting 
so-called "non-Boolean', /Sa81,Ri79/ search condi- 
tions. NEST and UNNFST operations are addressed 
in a final subsection. 

In the following subsections we use (...I for 
sets, <... > for lists, and [...I for tuples. As 
don't care symbols we introduce: 

* don't care either an arbitrary number 
of set element or a sublist of arbi- 
trary length, 
don't care exactly one set, list, or 
tuple component. 

2.3.1 Predicates Over Non-atomic Attributes 

The following query features a so-called Boolean 
search condition 

42: Using table BOOKS (see fig. l), find 
the titles of all books, the DESCRIP- 
TORS of which contain the word list 
DECISION TREE OPTIMIZATION. 

In our language proposal, this query is expressed 
as 

(1.0) SELECT TITLE FROM BOOKS 
(1.1) WHERE DESCRImm 2 

((,DECISI~N,,,~E,,,~~IRI~TI~N,~] 
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By using the inclusion symbol, the WHERE clause 
reflects the relational algebra extensions 
discussed in section 2.1. 

Set predicates as in (1.1) are obviously open for 
joining, thus extending the capabilities of 
Boolean search into directions not considered so 
far in IR: 

43: Display the BNO and TITLE of those 
books whose DESCRIPTORS are properly 
contained in the DESCRIPTORS of any 
book in BOOKS 

43 will be resolved by 

(2.0) SELECT X.BNO, X.TITLE, Y.BNO, 
FROM BOOKS X, BOOKS Y 

(2.1) - WHERE X.DESCRIPTORS c Y.DESCRIPTORS 

It is claimed that queries of this type - when 
based on a normalized BOOKS table - can hardly be 
answered without falling back to host language 
support. 

For the formulation of predicates as in (1.1) and 
(2.1) we offer a probably quite attractive alter- 
native, an extension of the so called template 
technique featured in SQL/DS /ChgO,IBMZ/. With 
this technique, query 42 transcribes to 

(1.0’) - SELECT TITLE FROM BOOKS WHERE 
(1.1') DESCRIPTORS = 

{~'DECISION','TREE','OPTIMIZATION'>,*~ 

Advantages of the template technique become more 
obvious when context conditions are to be 
expressed in the case of list type objects. 
Consider e. g. 

44: Find the titles of all books, the 
DESCRIPTORS of which contain at least 
one descriptor with the adjacent words 
TREE (first position) and OPTIMIZATION. 

(3.0) SELECT TITLE FROM BOOKS WHERE 
(3.1) DESCRIPTORS = 

(<*,'TREE', 'OPTIMIZATION',*>,*] 

Note that masking is applied here at two differ- 
ent levels. It could be applied even at lower 
levels, e. g. to catch records with the 
misspelled descriptor fragment OPTIMISATION: 

(3.1') . ..DESCRIPTORS = 
{<*,'TREE', 'OPTIMI-ATION',*>,*] 

The formulation of predicates as well as the 
construction of output tuples can greatly be 

facilitated by an appropriate set of built-in 
functions. Some useful functions are compiled in 
fig. 4. While some of them (e. g. SUM, AVG) are 
fairly application oriented, others (e. g. DCAT, 
DUNION, ELEMS, MLIST) are more general in that 
they can be used to restructure non-atomic 
objects. 

2.3.2 Advanced Query Facilities 

In contrast to Boolean search, non-Boolean search 
takes into account not only the presence/absence 
of specified search terms, but also their rele- 
vance for the record under consideration 1). 
Fig. 5 demonstrates how this information could be 
stored conceptually. A typical query against this 
table might be 

Function, 
Operation 

--------I 
CARD 
LEN 
SUM 
AVG 
MAX 
MIN 
DUNION 

CAT 
DCAT 

ELEMS 
MLIST 

(i> 

T 

‘I 
d 

_- 

Cardinality 
Length 
SUll 
Arithmetic Average 
Arithmetic Maximum 
Arithmetic Minimum 
Union of elements of a 
set of sets 
Concatenation 
Concatenation of compo- 
nents of a list of list 
Set of list components 
Generates a list of a 
set (any order) 
Index of the i-th 
component 

rpplicable with ;I 
'iel 
let 
B-s 
X 

s of 
List 
---- 

me 

?uple 
.--mm 

X 

Figure 4: Field oriented standard-functions 
and operators 

BOOKSW BNO AUTHORS TITLE PRICE WDESCR 

wGTi DESCR ___-___..--- -,-------------------------,----- e----- 
1 Al,AZ Tl Pl Wl 1 Dl 

-__-_--__-_--_ 
2- A2 

h’2.e LD2 _ 
Tl P2 W3 1 Dl 

3- zl- 
___------- 

T2 Pl Y? tD2- - 
Wl I D1 

I D2 
W3 , D3 

Fig. 5: Stylized fictitious book inventory table 
with weighted descriptors 

1) This paper does not address the question of how to extract useful descriptors from a given text 
(e. g. book titles), nor how to determine the relevance of descriptors for the piece of information 
containing them (see e. g. /RiTq,Sagl/). 
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Q5: Using table BOOKSW, find the titles of 
all books written by Al and described 
by descriptor Dl, provided its rele- 
vance for the book is greater than 
0.5. 

(4.0) SELECT TITLE FROM BOOKSW WHERE 
(4.1) AUTHORS 2 (Al) 
(4.2) (SELECT ;k FROM WDESF - - 

WHERE DESCR = Dl 
AND WGT > 0.5) 2 {) - 

Obviously, the predicate (4.2) surrogates an 
existential quantifier expression. It should be 
noted that the SELECT construct is needed here to 
extract information from a non-atomic field. The 
necessity for this technique may also arise 
outside the WHERE clause, as demonstrated in 46 
and 47: 

46: Find authors and descriptors for all 
books having at least one descriptor, 
the weight of which is greater than 
0.5. 

(5.0) SELECT AUTHORS, - 
(5.1) (SELECT DESCR FROM WDESCR) 
(5.2) FROM BOOKSW WHERE 
(5.3) (SELECT * FROM WDESCR - 

WHERE WGT > 0.5) 2 {) 

47: Find the book numbers for all books 
having at least two descriptors out of 
Dl, D2, D3, D4, provided the cumulative 
weight of these descriptors exceeds 1. 
The non-occurrence of a descriptor is 
considered to reflect a zero weight. 

(6.0) SELECT BNO FROM BOOKSW 
(6.1) WHERE SUM (SELECT WGT FROM WDESCR 

m@-DESCR IN (Dl,D2,D3,D4))>1 
(6.2) AND CARD((Dl,D2~3,D4] A 

(SELECT mm3 FROM wmm)) h 2 

2.3.3 NEST and UNNEST Mapping Facilities 

The NEST and UNNEST operations serve two 
purposes. First, they provide a means of generat- 
ing unnormalized views out of first normal form 
(INF) tables, or vice versa. Second, they open a 
further possibility for temporarily changing the 
structure of tables subjected to queries. This 
feature will help in cases which cannot be 
handled by the constructs presented so far. 
Consider, e. g., the 1NF table AUTHOR (fig. 2). A 
denormalization as in 

Dl: Define the view AUTHORS on top of 
AUTHOR, which contains for every book 
number the set of associated authors 

is achieved by the NEST operation: 

(7.0) DEFINE VIEW AUTHOR-S (BOOKNO, AUTHORS) 
AS- - 
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(7.1) SELECT BNO, 
(7.2) - NEST (AUTHOR) 
(7.3) FROM AUTHOR 

This statement is supposed to collect the sets of 
AUTHOR values associated with the individual BNO 
values. 

The mapping from NF2 tables into 1NF tables, as 
in: 

D2: Define NORM AUTHOR-S as a normalized 
view of AUTHOR-S, 

is achieved by 

(8.0) DEFINE VIEW NORM-AUTHOR-S (BNO,AUTH) E 
(8.1) SELECT BOOKNO, 
(8.2) UNNEST (AUTHORS) 
(8.3) - FROM AUTHOR S 

The resulting table NORM AUTHOR S is equivalent 
to the table AUTHOR used in Dl. - 

When applying UNNEST to list type attributes, the 
sequence information of LIST objects being 
normalized may optionally be kept or suppressed. 
When the inverse operation is used, LIST type 
objects are collected in a fashion similar to 
that described along with example Dl. This proc- 
ess, however, requires some explicitely or 
implicitely stored ordering information. The 
latter case is illustrated by 

D3: Define the view AUTHOR-L on top of 
AUTHOR, which contains for every book- 
number the list of associated authors 
in alphabetical order. 

This nesting operation is achieved by: 

(9.0) DEFINE VIEW -- 
AUTHOR~L(BOOKNO,AUTHOR~LIST) & 

g:,' 
SELECT BNO, 

. NEST (AUTH, ORDER BY AUTH) 
FROM NORM AUTHOR S 

For a final example demonstrating multiattribute 
nesting, assume a weight column WGT in DESCRIPTOR 
(see fig. 2). By 

D4: Define a view DESCRIPTW on DESCRIPTOR, 
displaying for every book number the 
associated set of weight/descriptor 
pairs, 

i.e. by 

(10.0) 

(10.1) 

DEFINE VIEW 
DESCRIPTW(BNO,WDESCR (wGT,DESCR)) AS - 
SELECT BNO, 

NEST([WGT,DESCRIPTOR]) 
FROM DESCRIPTOR 
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one obtains the equivalent to a projection of the 
table in fig. 5. 

3. Indices for NF2 Relations 
with Textual Attributes 

The previous section was devoted to data model 
and query language considerations. Therefore, the 
main arguments were centered around convenience. 
This section adds performance oriented arguments. 
First we shortly discuss, how a typical (Boolean) 
information retrieval query could be processed in 
a relational DBMS like System R /BLAs81/. The 
assumption would be that we have the IRS data 
structures (NF2 relations) only as an external 
data model but a strict relational one as System 
R at the conceptual level. 

We use again the BOOKS table now stored as the 
tables B(BNO,T,P), A(BNO,A), D(BNO,DNO), 
DW(DNO,S,W). The B and A tables correspond to the 
BOOK and AUTBOR tables, resp., of fig. 2. The 
DESCRIPTOR table has been split into D(BNO,DNO) 
and DW(DNO,S,W) where DNO, W, and S denote 
descriptor number, word, and position of the 
word, respectively. As usual in IRS, this enables 
us to support predicates both at word and 
descriptor level. 

Let us consider, the following example query in 
RF2 notation: 

SELECT TITLE FROM BOOKS 
WHERE DESCRIPTORS = 

(<*,*DATA', 'BASE',*>, <*,'QIJERY',*>,*) 

This query searches all book titles whose 
descriptors contain DATA and BASE adjacently and 
somewhere else QUERY. Note that this is a quite 
simple and usual query in an IRS like STAIRS 
/IBMl/. 

A 1 BNO 1 A 1 BIBNO(T IP 1 
--------------- -------------------- 

I1 IAll I 1 11-1 I ~‘1 I 
I1 IA21 I2 ITllP21 
I2 IA21 I 3 IT1 I Pl I 
I3 IAll 

D I BNO I DNO I DW I DNO I S I W I 
---------------- ------------------------ 

* 11121 I 1 I 1 I DATA I 
I 1 I 2 I I 1 I 2 I BASE I 
I 2 I 1 I I 2 I 1 I DATA I 
I 2 I 2 I 1 2 I2 1 SYSTEM I 
I 3 I 1 I I 3 I 1 I QUERY I 
I 3 I 2 I I3 12lLANG. l 
I3 I3 I 

When adapting this query to the normalized tables 
B, D, and DW, it becomes fairly complicated: 

SELECT T FROM B, D X, D Y, DW Zl, DW 22, DW 23 - - 

WHERE Z1.W = 'DATA' 
AND Z2.W = 'BASE' - 
AND z1.s = z2.s-1 - 
AND Zl.DNO = ZZ.DNO - 
AND Z3.W = 'QUERY' - 
AND X.BNO = Y.BNO - 
AND X.DNO = Zl.DNO - 
AND Y.DNO = Z3.DNO - 
AND X.BNO = B.BNO - 

The reader may have noticed that this represents 
a join involving 6 tables. Even if we assume that 
all addressed attributes are supported by 
indexes, queries of this type are expensive to 
process. This is especially true with volume of 
data typically encountered in IRS (e. g. 100.000 
documents, 100.000 different descriptor words). 

From this example we must conclude that it is not 
recommendable to implement NF* tables on top of a 
classical relational DBMS. On the contrary, a 
direct access support is required, as it is 
offered for textual data by IR systems like 
STAIRS. This section presents an alternative 
access support which is more appropriate for 
textual data with update traffic, and which 
supports general fragment search. 

3.1 Indices for NF2 Relations 
With Textual Attributes 

In a 1NF relation an index being created to an 
attribute contains every attribute value as a 
key. Attribute values are atomic and so are the 
keys. In a NF2 relation we have non-atomic attri- 
bute values. Therefore we allow to have 
non-atomic keys also for an index to a non-atomic 
attribute. Roughly, if the attribute is of type 
SET or LIST, index keys are of type SET or LIST, 
respectively. Index keys have the same (complex) 
domain as the associated attribute and the asso- 
ciated search arguments. An index for textual 
attributes following these general lines is the 
Fragment Index. It is a novel text index 
/BCLS74,SchR76,Sch78/ the keys of which are frag- 
ments, words, and word sequences. Compared with a 
favourite IR indexing technique, namely full word 
indexing (e. g. STAIRS), this approach has the 
following advantages: 

(i) Small set of index keys: With Fragment 
Indexing, the number of index keys is typi- 
cally 2000 - 5000; with full word indexing 
the number of index keys increases with 
primary data size. 500 000 index keys are 
quite common. 

(ii) Set of index keys insensitive against 
changes of primary data content: This prop- 
erty simplifies index maintenance. Primary 
data changes need be reflected only in 
record identifier lists. 
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(iii) It supports general fragment search (mask- 
ing of search terms at any position) often 
useful for textual objects in DBMS. 

3.1.1 Index Key Selection 

The basic ideas of Fragment Indexing are most 
readily outlined for a file, the records of which 
contain just one field of the type "word list" 
such as 

DATA: <'QDERIES','AGAINST','BYPOTBETICAL', 
'DATA','BASE','SYSTEMS'> 

Query arguments exhibit the same structure, e. g. 

QUERY: <*,'QDERY',*,'DATA','BASE','SYSTEMS',*'> 

Consequently an index for such a non-atomic 
attribute should reflect just this data structure 
in its index keys. In our example, keys like 

INDEX: '+,'DATA','BASE','SYSTEMS',*> 
<*,‘QmRy*‘,*> 

might appear. The problem is how to find a "good" 
set of these "fragments". We have proposed a 
solution along the following lines: If we built 
the index such that all possible words occur as 
index keys, we would have two problematic subsets 
of keys, namely unselective keys and exotic keys. 

In order to make unselective keys more selective 
(and at the same time shorten the associated 
pointer list), we make use of the following 
observation. A non-selective word like "SYSTEMS" 
will probably be used in context with other 
words, e. g. "DATA BASE SYSTEMS", in order to 
increase selectivity. Consequently, word lists 
(so-called phrases) should be identified as index 
terms to reflect frequently referenced context 
information in the index. To return to our exam- 
ple, an object "SYSTEMS AND CYBERNETICS" will be 
referred to by the key "SYSTEMS", the object 
"DATA BASE SYSTEMS ANALYSIS", however, by the key 
"DATA BASE SYSTEMS" rather then by the key "SYS- 
TEMS". 

Exotic words, on the other hand, are infrequent 
both in data and queries. In this case fragments 
should be identified which also occur in other - 
possibly exotic - words. E. g. the fragment 
"BYPO" could be a useful key since it could make 
dispensable a whole pool of index keys like 
HYPOTHETICAL, HYPOCHONDRIA, BYPO, HYPOCRITE etc. 

Putting the previous discussion into more general 
terms, index keys are selected on the basis of 
data and query statistics. These are determined 
from a frequency analysis of representative 
samples of data and of queries. Given the data 
and query statistics and a desired frequency t 
for every key, an algorithm determines a set of 
keys where every key has a sum of data and query 
frequency close to t. 

The availability of query statistics is not 
considered critical. One may start with plausible 
estimates; at a later point in time, the index 
can be adapted, if the original assumptions are 
outdated by observed query statistics. 

There is a connection to the Interval Index prob- 
lem discussed in /Sche80b/. Among other results, 
it points out that equiprobable keys are cost 
optimal if no update activities are assumed and 
if the distributions of values in data and in 
queries are the same. Since updates are regarded 
infrequent in IR applications, and, since a 
correlation between data and query frequencies 
could be observed, empirically we have a justi- 
fication of the heuristics applied for textual 
key selection. It is also interesting to notice 
that the selection of descriptors in the methods 
of statistical "Automatic Indexing" is based on 
the equiprobability approximation /SW81/. 

3.1.2 Query Resolution 

To resolve a query by using the Text Fragment 
Index, three processing steps are required, 
decomposition, pointer list merge, and verifica- 
tion. 

NAME-LIST (a) 

Fragment Index on NAME (b) 

Figure 6: Fictitious table (a) and 
related fragment index (b) 

(Note the non-redundancy of pointer lists. E.g. 
'SING' is not associated with record 3 of 
NAME-LIST, since it does not occur outside of 
'COMPUTER LEASING CO.' and note also that point- 
ers do not contain "context information" such as 
word position). 

The decomposition step determines a set of index 
keys which are compatible with the search argu- 
ment. For instance, with the data structures of 
fig. 6 and the predicate 

(11) *.. WHERF, NAME = <*,'COMPDTER','LEASING',*>, 
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the decomposition recognizes that the word 
sequence COMPUTER LEASING is the index key which 
completely reflects the search argument in (11). 
Things get more involved, when the index keys do 
not contain the search argument , as in 

(12) . . . WHERE NAME = <*,'*COMp','LEASING',*> 

The difference is that now the word fragment COMP 
is used with front and end masking. 

In this case the decomposition determines a pred- 
icate which defines the least possible superset 
of all matches to the original predicate. Details 
are described in /KW81/. In our example, the 
decomposition of (12) is 

(13) . . . WHERE NAME = <*,'COMPUTER','LEASING',*'> 
OR NAME = <*, '*CO)@ ,*> - 

m NM = <*,'*'LEAS*',*> - ANJ-j NAME = <*, '*SIN@ ,34> - 

Note that the format (13) has been used to 
explain the decomposition, It is not generated 
internally in this way. 

Subsequent to query decomposition, the pointer 
lists of the matching index keys have to be 
merged (set union, intersection) in a way which 
reflects the query structure. As indicated in 
(13) the pointer lists of COMP, LEAS, SING must 
be intersected. The result is set-united with the 
pointers of COMPUTER LEASING. 

The final step is the verification step: The 
merge result is used to actually access the 
primary data and to discard those records which 
do not match the search argument. 

Obviously the masking of index keys need not be 
restricted to two levels of nesting, as in (13). 
The Fragment Index approach is open for any depth 
of nesting, be it of type LIST - as in the previ- 
ous examples - or of type SET (not further to be 
outlined here). 

3.1.3 Results of Prototype Experiments 

A quantitative evaluation of performance aspects 
has been performed, such as the average number of 
secondary pointer list operations, the number of 
index keys, the degree of equiprobability, the 
influence of the index size on the number of 
IO'S, the CPU time needed for the decomposition, 
the average hit rate (false drops), the influence 
of adaptation. Results can be found in /Wi81/. In 
summary, the experiments show, that with a 
dictionary size of two or three .thousand entries 
the overall number of secondary IO's is between 
two and four for two word queries with general 
masking. The hit rate depends on the length of 
the documents. For short textual objects like 
names and addresses, the hit rate is between 80 
and 100 percent. It was further shown that we 
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obtain a similar performance as obtainable with a 
full word dictionary. 

Conclusions 

The NF* relational model, if used for the concep- 
tual level would allow to define external views 
for different applications easily. Especially, 
where the classical relational model is conven- 
ient, it can be provided since it is contained as 
a special case. Some other applications such as 
information retrieval would prefer NF* relations. 
In order to support the new predicates for NF* 
relations we propose an index whose keys are also 
non-atomic. For the special case of textual 
attributes we could show the feasibility of this 
approach. Many questions still need more investi- 
gations, e. g. embedding NF* relations into a 
host language, and general index support for 
complex attributes beyond the textual case. 
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This is a worst-case figure. In general, only the maximum 
hot point needs to be computed. 
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Figure 1. Measured page faults versus Buffer Size for 2-way join query. 
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Figure 2. Measured page faults versus Buffer Size for 4-way join query. 
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