
CONSISTENCY AND TRANSACTIONS IN CAD DATABASE 

Thomas Neumann, Christoph Hornung 

Fachgebiet Graphisch-Interaktive Systeme 
Fachbereich Informatik 

Technische Hochschule Darmstadt 
D-6100 Darmstadt, Germany 

Abstract 

A CAD database will reach a consistent state only 
at the end of the design process. This paper 
provides a framework for transforming the CAD 
database into the final consistent state. "or 
this purpose we developed a model of a design 
object. Each design object can be composed of 
several representations. Some representations are 
independent of any other representations and some 
can be derived using other representations. Seve- 
ral versions of each representations can be 
stored simultaneously in the database. Using this 
model we derive a set of global consistency 
rules. The concept of transaction is refined to 
suit the CAD environment. A mechanism assisting 
in reaching the global consistency is described. 
A protocol controlling the concurrent access to 
the representation versions is given. Finally the 
consistency manager observing both the consisten- 
cy and the concurrency protocol is outlined. 

Introduction 

Recently, research efforts have concentrated on 
possible applications of centralized database 
systems in CAD/CA)! systems (Lorie81, Eastman80, 
Eberlein80, Lillehagen80). An integrated CAD/CAM 
system can be viewed as a chain of modules. 
Each module takes several files as input and 
produces several files as output. We can think of 
these files as being different representations of 
the same design. The original files are usually 
the product specifications, the budget for this 
product, the available parts, designs tools etc. 
The final output is usually a set of design and 
manufacturing documentations as well as a set of 
control files for numerical machines. Usually 
each module provides some data handling facili- 
ties. The format of file differs from module to 
module so that format translating facilities are 
needed if the modules should be connected toge- 
ther. Systems like these exhibit code redundancy, 
strong dependence of programs on the file organi- 
zation and lack of facilities for consistency 
maintenance. With the design artifacts growing in 
complexity such as electronic circuits, VLSI, or 
aircrafts the amount of design data of all kinds 
grows rapidly. Therefore deficiency of systems 

Proceedings of the Eighth International Conference 

which do not assist the designer in maintaining 
the consistency becomes apparent. In consequence 
research efforts have focused on the possibility 
of integrating database management systems into 
CAD/CAvJ systems. The existing database systems 
have been designed to handle business data. Busi- 
ness data can be characterized by small number of 
large files of formatted homogeneous records. A 
typical transaction against such database invol- 
ves a small number of records and takes no more 
than a second. Soohisticated systems were design- 
ed which handle simultaneous execution of trans- 
actions and feature advanced recovery facilities. 
All these features were designed bearing business 
transactions in mind. Data and transactions in 
design applications differ significantly from 
those in commercial applications. First, the 
objects that are manipulated cannot be described 
conveniently using a small number of files of 
homogeneous records. The objects are more complex 
and have to be modelled by a collection of 
heterogeneous related records. There are only a 
few instances of such complex objects stored in 
the database. The database management system 
should provide functions for handling such comp- 
lex objects (Lorie81). Second, we can distinguish 
between various representations of the same real 
world object. There can be a description of a 
logical circuit diagram. vrom that a layout 
description 'can be derived. The data management 
system should be aware of the connection bet- 
ween the logical description and layout. Tradi- 
tional database systems do not assist the user in 
keeping different representations consistent. 
Third, the designer will want to experiment with 
different alternatives (versions) and will want 
to keep them in the database simultaneously until 
the design is complete. Again track of represen- 
tations and versions should be kept by the 
system. Fourth the transactions i.e. the periods 
in which the database is inconsistent are in the 
order of days not seoonds. Consequently, a dif- 
ferent approach must be taken in designing the 
concurrehcy control scheme and in designing the 
recovery facilities. In traditional database sys- 
tems the approach of aborting any incomplete 
transaction in case of system failure and reset- 
ting the system into consistent state has been 
adopted. This is clearly intolerable in a CAD 

on Very Large Data Bases 181 Mexico City, September, 1982 



system. The work done by the designer cannot be 
undone although he did not reach the consistent 
state yet. And fifth, the multiuser database 
systems supporting recovery features are usually 
too large to be integrated into one CAD/CA*? 
system which should run on medium machines sup- 
porting a designer workstation. Instead a number 
of CAD workstations with simpler database manage- 
ment svstems should be connected to a large 
machine hosting a large multiuser CAD data mana- 
gement system. Both the central and the worksta- 
tion database management svstems should be de- 
signed to support more complex data objects, 
storage of unformated data (think of a raster 
picture representing a background to a building 
being designed, or simolv a textual descriotion) 
should support multiple representations and their 
versions as well as the long lived CAD transac- 
tion. 

We cannot of course address all of these issues 
in this paper. In the first section we shall make 
the notion of a design model more precise. Having 
done this, we shall state the consistency rules 
for such a model. Then we shall discuss some 
peculiarities of the transaction and suggest a 
locking protocol controlling the simultaneous 
access of design data. ?.nally we shall sketch a 
design of a CAD consistency "Tanager which com- 
bines the consistency rules and the locking 
protocols to maintain the database in a consis- 
tent state. 

The design object model 

In this section we shall define what we under- 
stand under the design object. An object in the 
real world can be viewed from different angles 
and hence an object can have different database 
objects representing it. We shall call these 
database objects representations. Take for 
example a design of an electronic circuit. It 
will have several representations in the data- 
base, for example: 

- circuit diagram 
- description in form of text 
- components list 
- connections description 
- layout diagram 
- files for controlling the 

manufacturing tools 

Some representations are independent of any other 
representations. We shall denote them as pri- 
mary. In our example the circuit diagram is 
primary representation. Other representations are 
derived using the primary representations. They 
are called the secondary representations. In our 
example the layout may be derived using a connec- 
tion list and a components list. 9ome representa- 
tions may be structured as the circuit descrip- 
tion, and some may be unstructured as a textual 
description describing the design (Fig. 1). The 

Proceedings of the Eighth International COnferem? 

on Very Large Data Bases 
182 

I fwctiaml 1 

R-1 U&d 
_--- 
oatabaao World 

wailchlo cirusit 

- - diog 

I cmbol file 

Fig, 1: Repreeantation8 of Q) electmnic circuit 

designer may want to experiment and design seve- 
ral circuit diagrams which meet functional speci- 
fications and store them in the database. "or 
each of these diagrams he might develop several 
possible layouts using the same circuit diagram 
using the same component list. Ln this paper we 
shall call these alternatives versions. A group 
of versions derived from the same set of versions 
forms an equivalence class. So alternative lav- 
outs developed for one circuit diagram using the 
same component list forms an equivalent class of 
layouts with respect to this circuit diagram and 
to the corresponding component list. We shall 
call such a class a generation. In the following 
we shall formalize the notions of representation, 
generation and version. 

Notation 

Throughout the paper we shall use the following 
notation: 

I will denote a set of non-negative integers 
Ri will denote the representation i 
RI will denote a set of representations Ri where 

i I 
Gil will denote the generation 1 of representation 

R: 

Mexico City, September, 1982 



"i1t will denote the version t of the Qe- 
neration 1 of the representation i 

The relationships among the representations can 
be expressed in form of a directed acyclic Qraph 
(DAG) which we shall call the derivation graph. 
If there is an edge from R, to Rj, then version 
of R 

j 
can be derived using a-version from each Ri 

where ie I. The generation G. of R. which was 
derived using the same set "!f ver&ons of RI 
forms an equivalence class. Versions are ordered 
with respect to time: G = (vikt,, v. lkt2’ l *” 

"iktn" We further define a mechani;m which maps 
a set of representations onto a single represen- 
tation. To this end we define a set of functions 

~~ $ RjJ. Each fIj takes as input 

versions from QI and outputs a version from R . 
The set I is uniquely determined for each j & 
the derivation graph. 

The derivation graoh specifies the static depen- 
dencies amonq the representations of a desian 
object. We further need a Qraph which captures 
the dynamic dependencies amonQ the individual 
versions. "or this purpose we define a dependencv 
relation dep(vilt,v-kSj. A tuple(vilt,v ks) is in 
the dependency re ation dep if and on y if viks ii 3 
was derived by function fIj using vilt. the 
DAG defined bv this relation will be referred to 
as the version Qraph. 

A design scheme is a two tuple (R,DC) where R 
is a set of representations belonging to this 
desiQn and DG is the corresponding derivation 
graph. 

A design object is a two tuple (V,VG) where V 
is a set of versions and VG is the corresponding 
version graph. Such an object is an instance of 
the design scheme. 

The consistency model 

In the preceding section we have given a formal 
definition of a design object. In this section we 
state what constitutes a consistent design ob- 
ject. 

We can distinguish between local and global 
consistency. Other researchers have observed the 
difference (Eastman 801. Each (design) version 
may be composed of several database entities. A 
set of predicates may exist on database entities. 
These predicates are called the consistency con- 
straints (Gray 80). We shall call these consis- 
tency constraints the local consistency con- 
straints. In our example such constraints may 
specify the least distance between two conductors 
within a layout version. Here we want to address 

the global consistency problem. We shall define 
the global consistency constraints to be a set 
of predicates associated with the set of repre- 
sentations. Tn our examole Qlobal consistency 
constraints specify the dependencies between the 
circuit diagram and its corresponding layout. In 
the following we shall make the notion of the 
global consistencv more precise. 

Definition of Global consistencv 

A version v.~~ 
$ 

of representation R 
.j 

is globally 
consistent i and onlv if it can be derived from 
the corresponding set of representations RI as 
defined by the derivation Qraph. 

An object O=(V,VG) is globally consistent if and 
only if each version v. 
Rj is globally consisted!: 

of each representation 

By supergraph of a version we will understand the 
set of all predecessor versions (direct and 
indirect)x the version Qraph. 

Rimilarly, by subgraph of a version we will 
understand the subset'of all successor versions 
(direct and indirect). - 

To state the consistency rules we define the 
notion of dependent and independent inconsisten- 
cy: 

A version is called independently inconsistent 
if the supergraph of this version is Qlobally 
consistent and the version itself is globally 
inconsistent. 

The subgraph of an independently inconsistent 
version is called dependently inconsistent. 

To illustrate the meaning of these definitions 
consider the followinp; example. Suppose the de- 
signer decides to modify the existinq version of 
the circuit diagram. Then we can mark all layouts 
belonging to this diagram as dependentlv incon- 
sistent. It will be pointless to do any work on 
these layouts until the circuit diagram becomes 
consistent again 
specifications!. 

(consistent with the funcional 

In the following 
consistency as 
otherwise. 

we shall refer to the Qlobal 
consistency unless specified 

Assume that each 
from RI using the 
derivation graph, 

tf.t;.it;o;e;ion vjkt is created 

Ij 
and observing the 

a tuple is inserted into the 
relation dep. To add the consistency information 
we can extend the version graph to a label- 
ed graph. The label can assume one of the 
following values 'consistent', 'independently in- 
consistent*, 'dependently inconsistent'. When a 
version v is read with the intention to modify 
it, its subgraph is marked as dependently incon- 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 183 Mexico City, September, 1982 



sistent. After it has been modified and is 
presumably consistent, its direct successors will 
be marked as independently inconsistent. 

Then we can say that the object O(V,VG) is 
consistent if and only if for each version there 
is a tuple in the dependency relation and all 
labels of the version graph are marked as 'con- 
sistent'. 

vollowing the consistency definition the follow- 
ing consistency rules can be inferred: 

Rule 1 A version v kt 
d 

of a generation Gjk can 
be update if and only if it is 
consistent or independently inconsist- 
ent. 

Rule 2 A version v.~~ of Gjk can be 
created us ng only consis- i 
tent versions. 

Rule 3 Any version can be deleted. 
If a version is deleted then 
its subgraph must be deleted. 

Rule 4 Any version can be read. 

An example of CAD object model 

As an example, consider a design of a logical 
circuit (Pig 2). Prom the functional specifica- 
tions several circuit diagrams may be developed. 
Here we consider the circuit diagram to be an 
independent representation. That is, the system 
will allow any modification on circuit diagram to 
be performed. The validation of the specifica- 
tions is left up to the designer. Worn the 
logical circuit diagram other representations 
can be derived using the functions f . Let R, 
denote the circuit diagram and R2 ti: list of 
available components. vurther let R3 be the list 
of components with which the circuit can be 
realized. R4 should denote the connections de- 
scription, R5 the layout and R6 the set of alter- 
native control files for the numerically control- 
led tools. Then we can define the following map- 
pings: 

(R,,R2) + R3 circuit diagram and the available 
list, define the bill of compo- 
nents 

(R R)+R 
1’ 3 

,, circuit diagram and the bill of 
components define the list of con- 
nections 

(R3,R4) -, R5 the bill of components and the 
connections list define the layout 

R5 - R6 layout defines the control file 

The representation graph is shown below : 
R1 

and R2 are independent variables and can be 
changed at will. All other representations must 
be modified accordingly to keep the design con- 

sistent. 

The CAD transaction 

The transaction concept as defined for classical 
systems is not well suited for CAD database 
systems. The transaction concept has been intro- 
duced to cope with the consistency issues in view 
of concurrently executing programs and in view 
of failures of software and hardware. Ye assume 
that the reader is familiar with these concepts 
and shall only briefly recapitulate the fundamen- 
tals (Gray80). The database can be seen as a 
collection of entities. Each entity can assume a 
value. The system provides operations, each of 
which manipulates one or more entities. Associa- 
ted with the database are consistency constr- 
aints. The collection of all values in the 
database define a database state. A database 
state, which satisfies the consistency cons- 
traints is said to be consistent. A transaction 
can then be defined as a sequence of database 
actions which transfers the database from a 
consistent database state to a new consistent 
database state. In process of transforming the 
state, the database may be temporarily in an 
inconsistent state. The fundamental difference 
between the conventional and CAD database is the 
duration of inconsistent periods. A conventional 
database is inconsistent only during a run of a 
transaction, which usually is in the order of 
seconds. In contrast, the CAD database becomes 
consistent only at the end of the design pro- 
cess. "ost of the time it is in inconsistent 
states. Therefore CAD transaction cannot be de- 
fined as a sequence of actions transforming the 
database into a new consistent state. We have 
distinguished between local and global consisten- 
CY. The CAD database can be viewed as a collect- 
ion of versions of object representations. With 
each representation there is associated a set of 
consistency constraints which define the local 
consistency. The relationships among representa- 
tions define the global consistency. We say that, 
the CAD database is locally consistent, if each 
representation version is locally consistent. 
Conversely, the CAD database is said to be 
locally inconsistent, if any representation ver- 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 

184 
Mexico City, September, 1982 



sion is locally inconsistent. Then we can define 
the CAD transaction as the sequence of actions 
which transforms the CAD database from a locally 
consistent state to a new locallv consistent 
state. The set of legal locally consistent 
states is however determined bv the global con- 
sistency rules. The consistency.constraits among 
representations are usually too complex to be 
observed automatically. Therefore, we propose a 
half-automatic approach to reach the final & 
bal consistency. The CAD transaction as defined 
in our paper is still much longer than a conven- 
tional transaction. In general, the time during 
which the CAD database is locally inconsistent is 
in order of days. Hence, it must span several 
design sessions and survive system restart. This 
kind of transaction has been suggested by other 
researchers (Lorie81, Grav81!. The conventional 
transaction is both the concurrency and the 
recovery unit. Each transaction sees only consis- 
tent database state as its input. This is usually 
achieved by locking the entities which the trans- 
action intends to manipulate. Being the recovery 
unit means, that all actions forming a transact- 
ion must occur or none may occur. The consequence 
of this is, that in case of a system failure only 
the results of commited (normally) ended trans- 
actions persist. The updates caused by uncommited 
transactions are undone. We want to keep the idea 
of the transaction being the concurrency unit. 
That is, we can have concurrent transactions 
transforming differen,t representations or trans- 
actions transforming different versions of a 
representation. Each CAD transaction is allowed 
to see only locally consistent state. As we said 
earlier, we expect the system to assist us in 
reaching the globally consistent state. That 
implies, that not any two versions belonging to 
different representations may be modified concur- 
rently. After all, there are global consistency 
constraints we hope to satisfy. The CAD trans- 
action cannot serve as a recovery unit for an 
obvious reason: a great amount of work could be 
lost. In case of a failure some action consistent 
state must be restored. In this paper we shall 
not explore the issues of recovery any further. 
At the end of a conventional transaction the 
updates are validated against the consistency 
constraints. Only transactions, updates of which 
do not violate the consistency constraints are 
allowed to commit. In a CAD database two sets of 
consistency constraints must be checked:local and 
global. Again, the practice of aborting trans- 
actions violating the local or global consistency 
constraints is untenable. Global consistency va- 
lidation might be impossible to perform automati- 
cally without designer's intervention. Therefore, 
what we propose here, is that the svstem keep 
track of versions which may have become globally 
inconsistent due to current transaction's updates 
and enforce the global consistency rules 1 to 4. 
The designer is given a chance to either force 
commit i.e. to declare the version as both 
locally and globally consistent or to oerform 
additional update. We shall not discuss the 
consistency validation mechanisms here,which are 

application dependent. We assume that such a 
mechanism exists and that once the transaction 
has been allowed to commit the stored version is 
globally consistent. We shall examine how the 
database management system can assist the design- 
er in maintaining the global consistency. As we 
mentioned in the introduction, we shall assume 
that there is a central depository of all design 
data. Several workstation databases are connected 
to the central database. Note that the worksta- 
tion database need not reside on a satellite 
computer. It can represent a private portion of 
the central database. Versions can be extracted 
from the central database into the workstation 
database at the beginning of a CAD transaction. 
In conventional systems which handle short trans- 
actions, a transaction might be temporarilv sus- 
pended if a lock cannot be granted immediately. 
CAD transactions cannot wait for locks as they 
could be waiting for a very long time. We see two 
solutions to this problem. One would be to force 
each transaction to preclaim all the objects it 
is going to use. If any of the objects cannot be 
retrieved the transaction will be aborted. This 
does not matter, as no work has been done yet 
anyway. The other possibility is to allow the 
designer to ask for new objects during the 
transaction execution. If the requested object 
cannot be granted the designer will be told so. 
He can then decide if he wants to adjourn the 
session or continue in spite of it. 

The global consistency mechanism 

The mechanism described here assists the user in 
reaching the ultimate design goal: the consistent 
database. In particular it prevents construction 
of new versions from inconsistent versions. We 
can view this mechanism as directing the design 
activities. The stored versions can be extracted 
in one of the following modes: 

- consistent read mode 
- read mode 
- update mode 
- derivation mode 

In consistent read mode onlv consistent or inde- 
pendently inconsistent versions can be extracted. 
In read mode any version can be extracted. When a 
version is extracted in the update mode the old 
version will be replaced by a new updated ver- 
sion. The derivation mode tells the system that a 
new version will be constructed using this ver- 
sion as a source. The versions in the central 
database are globally consistent independently 
inconsistent or dependently inconsistent. They 
are assumed to be locally consistent. In order to 
obey the consistency rules transaction can ex- 
tract a version v for update only if the version 
is consistent or independently inconsistent. The 
subgraph of so extracted version will be marked 
as dependently inconsistent. This implies, that a 
transaction cannot extract a version which may 
have become- inconsistent due to its own updates 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 185 Mexico City, September, 1982 



on hinher level in version graph. The rationale 
here is that it does not make sense tryinn to 
update a verson, ancestors of which are unstable 
(being modified). When the transaction commits, 
it will have returned a globally consistent 
version into the central database. The immediate 
successors will now be marked as independentlp 
inconsistent, so that they can be extracted for 
update and made globally consistent. Tn this way 
the whole subgraph and eventually the whole data- 
base can be made Qlobally consistent. A trans- 
action can extract a version in the derivation 
mode only if it is Qloballv consistent. Again it 
does not make sense to create new versions using 
an inconsistent source version. nependentlv in- 
consistent version can be extracted for examina- 
tion only (in read mode). 

The dependent or independent inconsistency can be 
checked usinq the version graph. 

synchronization of concurrent CAP transactions 

In the real environment there will be several CAT) 
workstations attached to the central host. Even 
with only one workstation multiple CAD transaat- 
ions can be runninq simultaneously, since trans- 
actions at the workstation can be suspended and 
restarted at a later time. Sence a mechanism must 
be orovided to synchronize concurrent CAD 
transactions. 

The 

1 - 

synchronizing mechanism should: 

prevent two transactions from undatine; the 
same version 

;!- 

3- 

4- 

5- 

6- 

prevent a transaction from modifyinq a ver- 
sion when any of its descendants in the 
version graph are being modified 
prevent a transaction from modifvinp; a ver- 
sion when anv of its descendants in the 
version QraDh are beinQ used bv an applica- 
tion to create a version of a different 
representation 
prevent a transaction from modifvinQ a ver- 
sion whose one or more predecessors are being 
modified 
prevent a transaction from modifvinq a ver- 
sion while it is beinQ inspected by other 
transaction 
prevent deadlocks 

Ye shall refer to these Qoals as concurrencv 
rules. The above rules mav be relaxed to allow 
reading of versions which have been extracted for 
update. This will be useful in the environment of 
long CAD transactions. 

All the above ooints are obvious. The deadlocks 
must be prevented, since there is no way how they 
can be resolved. Transactions cannot be rolled 
back as it is practice in conventional database 
systems because of their lonq duration. The 
deadlocks are automatically prevented if the 
above mentioned practice of not suspending trans- 

actions or by forcinQ each transaction to vre- 
claim all versions it is Qoing to use is adooted. 

Tn this paoer we shall ignore the nroblems of 
mixinq the short (traditional) and CAT) transact- 
ions. For simplicity we shall assume that all 
transactions are CAD transactions and that the 
only lockable Qranule is a representation ver- 
sion. 

We introduce two lock modes: update or u-mode 
and derivation or d-mode. The u-lock is an ex- 
clusive lock. The d-lock will serve three our- 
poses: 

- it will be used to lock a version extracted as 
a source for derivation 

- it will siQna1 that a lockine; is beina done at 
a lower level on the version graoh 

- it will be used to lock a version extracted for 
read if desired 

The d- and u-lock modes are incompatible. 

The CAn transaction is well behaved if it ob- 
serves the followinQ 1ockinQ protocol. 

The 
end 

if a transaction wishes to extract a version 
for update it must lock all the paths 
1eadinQ to it in d-mode and and the version 
itself in u-mode 

if a transaction wants to create a new 
version of a representation it must lock for 
each source version all oath leadina to it -- 
in d-mode 

if a transaction wants to prevent other 
transactions from modifying a version or its 
superQraph while it is insoecting this ver- 
sion it must lock all path leadine: to it in 
d-mode and the the version itself in d-mode 

locks can be released only at the end of the 
transaction and so thev can released in anv 
order 

reasons for the releasinq the locks at the 
of the transactions onlv can be read in 

(Grayv5) and will not be discussed here. 

Tt can be easilv shown, that if a transaction is 
well behaved , it oreserves the concurrency rules: 

- Suppose transaction T acquired a u-lock for a 
node n in the version Qrawh. Then accordin: to 
the 1ockinQ protocol all oath leadinq to this 
node must have been locked in d-mode bv T. 
Yence no node lyinq on the path to the node n 
could have been locked in u-mode by anv other 
transaction since u and d modes are incoaoati- 
ble. Yence goals 1, ? and 4 of concurrencv 
rules are satisfied. 

- Suppose transaction T extracted a version v in 
derivation mode. Then accordine; to the lockiw 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 186 Mexico City, September, 1982 



protocol all Dath leadinq to this version and 
the version itself must have been locked in 
d-mode. Hence no version in v's suDerQraDh can 
be locked in u-mode since u and d modes are 
incompatible. Yence item ? of concurrencv rules 
is met. 

- similarly, if a version v has been extracted 
for inspection and locked then all path leadinp: 
to it and the version itself must have been 
locked in d-mode. Yence no version in v's 
suDergraph or the version itself can be locked 
in u-mode. Yowever, in view of 1onQevity of CAP 
transactions, 1ockinQ a version which is beinQ 
extracted for read will seldom be done. "'ore 
often, a version will be extracted without 
acquirina a lock. such transaction could see 
an old version while new version is beina 
DreDared. 

The Consistencv *"anaQer 

The Consistencv \'anaQer assists the desiqner in 
aaintaininq the ,Qlobal consistencv of the desi,Qn 
object. Xt does that by observing both the 
locking and the consistencv Drotocols. The locks 
Dertain to the CAD transactionsand do not Persist 
beyond the transaction termination. Tn contrast 
the version graph exists independentlv of trans- 
actions and must persist bevond the transaction 
completion. Transactions submit lock requests to 
the Consistency 'TanaQer. The Consistencv ""anaqer 
can FSrant a lock request onlv if there is no 
conflict due to concurrencv Drotocol and due to 
consistencv rules. Tf a transaction needs a 
version in update mode the consistencv manaQer 
qrants permission if 

- the version is consistent or indeDendentlv 
inconsistent 

- its suDergraDh can be locked in d-mode and the 
version itself in u-mode 

After the version has been extracted the cor- 
respondine; sub,Qraph is labeled as 'deoendentlv 
inconsistent '. This ensures that no other trans- 
action can extract a subQrsDh version for UDdate. 
Vhen the transaction commits its uDdates, the 
immediate successors of the uDdated version are 
labeled 'independentlv inconsistent' and the lock 
is released. Vow the immediate successors mav be 
uDdated and made qloballv consistent. Tn this 
manner the entire database can be step bv Step 
transferred to a Qloballv consistent state. The 
database will normally become consistent only 
when the design is comoleted. 

If a version is needed in derivation mode 

- it must be consistent 
- a d-lock must be acquired for its supergraoh 

and for the version itself 

If a version is needed in consistent read mode 
with lock the consistencv aanaqer grants Dermis- 

sion if: 

- the VerSiOn iS Consistent, Or independent 

inconsistent 
Iv 

- the superQraDh and the version itself can be 
locked in d-mode 

Consistencv >Janaqer does not susDond transact- 
ions, but rather returns a message if the re- 
quested lock cannot be Qranted. The rationale is 
that the transaction could be suspended for a 
lonq periods of time (days). 

The locks managed by the Consistencv '"anager 
differ from conventional locks in that they are 
recorded in nonvolatile storage as they must span 
sessions and svstem failures. Quch lock locks are 
called permanent locks (permanent for the dura- 
tion of a transaction, of course). If the svstem 
is to handle both the conventional (short) and 
the CAT! !lonQJ transactions the conventional Lock 
"anaQer and the Consistencv \fanaQer must be aware 
of each others locks. An efficient solution to 
this problem remains to be found. 

Conclusions 

Ve believe that the above discussion helps to 
clarifv the issues of consistencv in CAD data- 
bases. We realize, that it might be difficult if 
not imnossible to build a system which will check 
Qlobal consistencv of different versions automa- 
tiaallv. The primary reason is the dependencv of 
such mechanisms on the Darticular application, 
and their hiqh complexity. %rther reaaearch is 
needed to clarifv these issues. Yowever, we 
stronQly believe that a CAJI transaction manaQer 
based on ideas Dresented above would be of great 
assistence in keeoinq the CAD database consistent 
and will make the database management SYstemS 
more attractive in this application area. 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 187 Mexico City, September, 1982 



References 

Eastman81: 
Charles \A. Eastman, Gilles M.E. Lafue 
Semantic Integrity Transactions in Design 
Databases 
"roceedings of the FIR Working Conference on CAD 
Databases, 
to be published by North Holland 
%blishing Company, 1982 

Gray75: 
S.N. Gray, R.A. Lorie, G.R. nutzolu, 
I.L. Traiger 
Granularity of Locks and Degrees of Consistency 
IBM Research Report R,T1654, 1975 

Gray80: .Tim Gray 
A Transaction Model, 
IFS" Research Report R,P895, 1980 

Grav81: .Tim Grav 
The Transaction Concept: Virtues and 
Limitations 
Oroceeding of the Conference on Very Large 
Data Bases, 1981 

LillehagenRl: "rank XT. Lillehagen 
Towards-a Methodology for Constructing Oroduct 
FJodelling Databases in CAD 
"roceedings of the IPID Working Conference on 
CAD Databases, 

- 

to be published by North Holland 
Publishing Company, 1982 

Lorie81: Raymond A. Lorie: 
Issues in Databases for Design Applications 
%-oceedings of the IFIP Working Conference on 
CAD Databases, 
to be published by North Holland 
*ublishing Company, 1982 

Eberlein81: 
Werner Eberlein, Hartmut Wedekind 
A Yethodology for Embedding Design Databases 
into Integrated Engineering Systems 
Proceedings of the FI? Working Conference on 
CAD Databases, 
to be published by North Holland 
%blishing Company, 1982 

Proceedings of the Eighth International Conference 
on Very Large Data Bases 188 Mexico City, September, 1982 


