CONSISTENCY AND TRANSACTIONS IN CAD DATABASE

Thomas Neumann, Christoph Hornung

Fachgebiet Graphisch-Interaktive Systeme
Fachbereich Informatik
Technische Hochschule Darmstadt
D-6100 Darmstadt, Germany

Abstract

A CAD database will reach a consistent state only
at the end of the design process. This paper
provides a framework for transforming the CAD
database into the final consistent state. "or
this purpose we developed a model of a design
object. Each design object can be composed of
several representations. Some representations are
independent of any other representations and some
can be derived using other representations. Seve-
ral versions of each representations can be
stored simultaneously in the database. Using this
model we derive a set of global consistency
rules. The concept of transaction is refined to
suit the CAD environment. A mechanism assisting
in reaching the global consistency is described.
A protocol controlling the concurrent access to
the representation versions is given. Tinally the
consistency manager observing both the consisten-
cy and the concurrency protocol is outlined.

Introduction

Recently, research efforts have concentrated on
possible applications of centralized database
systems in CAD/CAM systems (Lorie81, Eastman80,
Eberlein80, Lillehagen80). An integrated CAD/CAM
system can be viewed as a chain of modules.
Each module takes several files as input and
produces several files as output. We can think of
these files as being different representations of
the same design. The original files are usually
the product specifications, the budget for this
product, the available parts, designs tools ete.
The final output is usually a set of design and
manufacturing documentations as well as a set of
control files for numerical machines. Usually
each module provides some data handling facili-

ties. The format of file differs from module to
module so that format translating facilities are
needed if the modules should be connected toge-

ther. Systems like these exhibit code redundancy,
strong dependence of programs on the file organi-
zation and lack of facilities for consistency
maintenance. With the design artifacts growing in
complexity such as electronic circuits, VLSI, or
airerafts the amount of design data of all kinds
grows rapidly. Therefore deficiency of systems

Proceedings of the Eighth International Conference
on Very Large Data Bases

181

which do not assist the designer in maintaining
the consistency becomes apparent. In consequence
research efforts have focused on the possibility
of 1integrating database management systems into
CAD/CAM systems. The existing database systems
have been designed to handle business data. Busi-
ness data can be characterized by small number of
large files of formatted homogeneous records. A
typical transaction against such database invol-
ves a small number of records and takes no more
than a second. Sophisticated systems were design-
ed which handle simultaneous execution of trans-
actions and feature advanced recovery facilities.
All these features were designed bearing business
transactions in mind. Data and transactions in
design applications differ significantly from
those in commercial applications. <wirst, the
objects that are manipulated cannot be described
conveniently wusing a small number of files of
homogeneous records. The objects are more complex
and have to be modelled by a collection of
heterogeneous related records. There are only a
few 1instances of such complex objects stored in
the database. The database management system
should provide functions for handling such comp-
lex objects (Lorie81). Second, we can distinguish
between various representations of the same real
world object. There can be a description of a
logical circuit diagram. “rom that a layout
description ‘can be derived. The data management
system should be aware of the connection bet-
ween the 1logical description and layout. Tradi-
tional database systems do not assist the user in
keeping different representations consistent.
Third, the designer will want to experiment with
different alternatives (versions) and will want
to keep them in the database simultaneously until
the design is complete. Again track of represen-
tations and versions should be kept by the
system. Wourth the transactions i.e. the periods
in which the database is inconsistent are in the
order of days not seconds. Consequently, a dif-
ferent approach must be taken in designing the
concurrehey control scheme and in designing the
recovery facilities. In traditional database sys-
tems the approach of aborting any incomplete
transaction in case of system failure and reset-
ting the system into consistent state has been
adopted. This 1is clearly intolerable in a CAD

Mexico City, September, 1982



system. The work done by the designer cannot be
undone although he did not reach the consistent
state yet. And fifth, the multiuser database
systems supporting recovery features are usually
too large to be integrated into one CAD/CAY
system which should run on medium machines sup-
porting a designer workstation. Instead a number
of CAD workstations with simpler database manage-
ment systems should be connected to a large
machine hosting a large multiuser CAD data mana-
gement system. Both the central and the worksta-
tion database management systems should be de-
signed to support more complex data objects,
storage of unformated data (think of a raster
picture representing a background to a building
being designed, or simply a textual description)
should support multiple representations and their
versions as well as the long lived CAD transac-
tion.

We cannot of course address all of these issues
in this paper. In the first section we shall make
the notion of a design model more precise. Having
done this, we shall state the consistency rules
for such a model. Then we shall discuss some
peculiarities of the transaction and suggest a
locking protocol controlling the simultaneous
access of design data. ¥inally we shall sketch a
design of a CAD consistency Manager which com-
bines the consistency rules and the locking
protocols to maintain the database in a consis-
tent state.

The design object model

In this section we shall define what we under-
stand under the design object. An object in the
real world can be viewed from different angles
and hence an object can have different database
objects representing it. We shall call these
database objects representations. Take for
example a design of an electronic circuit. Tt
will have several representations in the data-
base, for example:

circuit diagram
description in form of text
components list

connections description
layout diagram

files for controlling the
manufacturing tools

Some representations are independent of any other

representations. We shall denote them as pri-
mary. In our example the circuit diagram is

primary representation. Other representations are
derived wusing the primary representations. They
are called the secondary representations. In our
example the layout may be derived using a connec-
tion list and a components list. Some representa-

functional
specifications
Real Yorld
Database World
ovaildble . cireuit ot
components diagrom

bill of

layout

control file

Fig 1s Repreeenrtations of an electromic circuit

designer may want to experiment and design seve-
ral circuit diagrams which meet functional speci-
fications and store them in the database. Tor
each of these diagrams he might develop several
possible layouts using the same circuit diagram
using the same component list. In this paper we
shall call these alternatives versions. A group
of versions derived from the same set of versions
forms an equivalence class. So alternative lav-
outs developed for one circuit diagram using the
same component list forms an equivalent class of
layouts with respect to this circuit diagram and
to the corresponding component 1list. We shall
call such a class a generation. In the following
we shall formalize the notions of representation,
generation and version.

Notation

Throughout the
notation:

paper we shall use the following

I will denote a set of non-negative integers
Ri will denote the representation i

RI will denote a set of representations Ri where

tions may be structured as the circuit descrip- i 1
tion, and some may be unstructured as a textual Gil will denote the generation 1 of representation
description deseribing the design (Fig. 1). The Ri

Proceedings of the Eighth International Conference 182

on Very Large Data Bases Mexico City, September, 1982



will denote the version t of the ge-
neration 1 of the representation i

Vi1t

The relationships among the representations can
be expressed in form of a directed acyvelic graph
(DAG) which we shall call the derivation graph.
If there is an edge from R, to Rj’ then version

of R, can be derived using a version from each Ri
where i €& T. The generation G.k of R, which was
derived using the same set ~of versions of R,

forms an equivalence class. Versions are ordered
: G = eee

with respect to time: G (vikt1; Vikt2? ,

viktn)' We further define a mechanism which maps

a set of representations onto a single represen-

tation. To this end we define a set of functions

v=(f_.: X R, R,). Fach f.. takes as input
(IJ . 3 j 13 p

i
versions from RI and outputs a version from R..

The set I is uniquely determined for each j by
the derivation graph.

The derivation graph specifies the static depen-
dencies among the representations of a design
object. We further need a graph which captures
the dynamic dependencies among the individual
versions. Tor this purpose we define a dependency
relation dep(vilt,v ks)' A tuple(vilt,v ks) is in
the dependency relation dep if and only if v ks
was derived by function fIﬁ using Vitee he
DAG defined by this relation will be referred to

as the version graph.

A design scheme is a two tuple (R,DG) where R
is a set of representations belonging to this
design and NG is the corresponding derivation
graph.

A design object is a two tuple (V,VG) where V
is a set of versions and VG is the corresponding
version graph. Such an object is an instance of
the design scheme.

The consistency model

In the preceding section we have given a formal
definition of a design object. In this section we
state what constitutes a consistent design ob-

ject.

We can distinguish between 1local and global
consistency. Other researchers have observed the
difference (Eastman 80). Each (design) version
may be composed of several database entities. A
set of predicates may exist on database entities.
These predicates are called the consistency con-

straints (Gray 80). We shall call these consis-
tency constraints the local consistency con-
straints. In our example such constraints may

specify the least distance between two conductors
within a layout version. Here we want to address

the global consistency problem. We shall define
the global consistency constraints to be a set
of opredicates associated with the set of repre-
sentations. Tn our example global consistency
constraints specify the dependencies between the
circuit diagram and its corresponding layout. Tn
the following we shall make the notion of the
global consistencv more precise.

Definition of Global consistencv

A version v, of representation R, is globally

kt .
consistent ig and onlv if it can he derived from
the corresponding set of representations RI as
defined by the derivation graph.

An object 0=(V,VG) is globally consistent if and
only if each version vjkt of each representation
Rj is globally consistent.
By supergraph of a version we will understand the
set of all predecessor versions (direct and
indirect) in the version graph.

Similarly, by subgraph of a version we will
understand the subset 'of all successor versions
(direct and indirect).

To state the consistency rules we define the
notion of dependent and independent inconsisten-

ey:

A version is called independently inconsistent
if the supergraph of this version is globally
consistent and the version itself is globally
inconsistent.

The subgraph of an independently inconsistent
version is called dependently inconsistent.

To illustrate the meaning of these definitions
consider the following example. Suppose the de-
signer decides to modify the existing version of
the circuit diagram. Then we can mark all layouts
belonging to this diagram as dependently incon=-
sistent. It will be pointless to do any work on
these layouts until the circuit diagram becomes
consistent again (consistent with the funcional
specifications).

In the following we shall refer to the global

consistency as consistency unless specified
otherwise.
Assume that each time a version v is created

from RI using the function fI. and observing the

derivation graph, a tuple is inserted into the
relation dep. To add the consistency information
we can extend the version graph to a label-
ed graph. The label can assume one of the
following values ‘consistent”, “independently in-
consistent’, ‘dependently inconsistent’. When a
version v is read with the intention to modify
it, 1its subgraph is marked as dependently incon-

Proceedings of the Eighth International Conference

on Very Large Data Bases 183

Mexico City, September, 1982



sistent. After it has been modified and is
presumably consistent, its direct successors will
be marked as independently inconsistent.

Then we can say that the object O0(V,VG) is

consistent if and only if for each version there
is a tuple in the dependency relation and all
labels of the version graph are marked as “con-
sistent”.

Following the consistency definition the follow-
ing consistency rules can be inferred:

Rule 1 A version v. . of a generation G..K can

kt
be ugdateg if and only if it is
consistent or independently inconsist-
ent.

A version v, of G can be
kt Jk
created using only consis-

tent versions.

Rule 2

Rule 3 Any version can be deleted.
If a version is deleted then
its subgraph must be deleted.

Rule Y4 Any version can be read.

An example of CAD object model

As an example, consider a design of a logical
circuit (Fig 2). From the functional specifica-
tions several circuit diagrams may be developed.
Here we consider the circuit diagram to be an
independent representation. That is, the system
will allow any modification on circuit diagram to
be performed. The validation of the specifica-
tions 1is 1left up to the designer. From the
logical circuit diagram other representations

can be derived using the functions fI . Let R1

denote the circuit diagram and R2 the list of
available components. Turther let R, be the list

of components with which the ecirecuit can be
realized. Ru should denote the connections de-

scription, R5 the layout and R6 the set of alter-

native control files for the numerically control-
led tools. Then we can define the following map-
pings:

circuit diagram and the available
list, define the bill of compo-
nents ’

circuit diagram and the bill of
components define the list of con-
nections

the bill of components and the
connections 1list define the layout
layout defines the control file

(R1,R2)
(R1,R3)

(Ry,Ry)

R5 -
The representation graph is shown below :

R1 and R2 are independent variables and can be

changed at will. All other representations must
be modified accordingly to keep the design con-

Proceedings of the Eighth International Conference
on Very Large Data Bases

184

sistent.

The CAD transaction

The transaction concept as defined for classical
systems is not well suited for CAD database
systems. The transaction concept has been intro-
duced to cope with the consistency issues in view
of concurrently executing programs and in view
of failures of software and hardware. We assume
that the reader is familiar with these concepts
and shall only briefly recapitulate the fundamen-
tals (Gray80). The database can be seen as a
collection of entities. Each entity can assume a
value. The system provides operations, each of
which manipulates one or more entities. Associa-
ted with the database are consistency constr-
aints. The collection of all values in the
database define a database state. A database
state, which satisfies the consistency cons-
traints 1is said to be consistent. A transaction
can then be defined as a sequence of database
actions which transfers the database from a
consistent database state to a new consistent
database state. In process of transforming the
state, the database may be temporarily in an
inconsistent state. The fundamental difference
between the conventional and CAD database is the
duration of inconsistent periods. A conventional
database is inconsistent only during a run of a
transaction, which wusually is in the order of
seconds. TIn contrast, the CAD database becomes
consistent only at the end of the design pro-
cess. Most of the time it is in inconsistent
states. Therefore CAD transaction cannot be de-
fined as a sequence of actions transforming the
database into a new consistent state. We have
distinguished between local and global consisten-
cy. The CAD database can be viewed as a collect-
ion of versions of object representations. With
each representation there is associated a set of
consistency constraints which define the local
consistency. The relationships among representa-
tions define the global consistency. We say that,
the CAD database is locally consistent, if each
representation version 1is 1locally consistent.
Conversely, the CAD database is said to be
locally inconsistent, if any representation ver-

Mexico City, September, 1982



sion 1is locally inconsistent. Then we can define
the CAD transaction as the sequence of actions
which transforms the CAD database from a locally
consistent state to a new 1locally consistent
state. The set of legal locally consistent
states is however determined by the global con-
sistency rules. The consistency constraits among
representations are usually too complex to be
observed automatically. Therefore, we propose a
half-automatic approach to reach the final glo-
bal consistency. The CAD transaction as defined
in our paper is still much longer than a conven-
tional transaction. In general, the time during
which the CAD database is locally inconsistent is
in order of days. Hence, it must span several
design sessions and survive system restart. This
kind of transaction has been suggested by other
researchers (Lorie81, Gray81). The conventional
transaction is both the concurrency and the
recovery unit. Each transaction sees only consis-
tent database state as its input. This is usually
achieved by locking the entities which the trans-
action intends to manipulate. Being the recovery
unit means, that all actions forming a transact-
jon must occur or none may occur. The consequence
of this is, that in case of a system failure only
the results of commited (normally) ended trans-
actions persist. The updates caused by uncommited
transactions are undone. We want to keep the idea
of the transaction being the concurrency unit.
That is, we can have concurrent transactions
transforming different representations or trans-
actions transforming different versions of a
representation. Each CAD transaction is allowed
to see only locally consistent state. As we said
earlier, we expect the system to assist us in
reaching the globally consistent state. That
implies, that not any two versions belonging to
different representations may be modified concur-
rently. After all, there are global consistency
constraints we hope to satisfy. The CAD trans-
action cannot serve as a recovery unit for an
obvious reason: a great amount of work could be
lost. In case of a failure some action consistent
state must be restored. In this paper we shall
not explore the issues of recovery any further.

At the end of a conventional transaction the
updates are validated against the consistency
constraints. Only transactions, updates of which

do not violate the consistency constraints are
allowed to commit. In a CAD database two sets of
consistency constraints must be checked:local and
global., Again, the practice of aborting trans-
actions violating the local or global consistency
constraints is untenable. Global consistency va-
lidation might be impossible to perform automati-
cally without designer’s intervention. Therefore,
what we propose here, is that the system keep
track of versions which may have become globally
inconsistent due to current transaction’s updates
and enforce the global consistency rules 1 to 4.
The designer is given a chance to either force
commit i.e. to declare the version as both
locally and globally consistent or to perform
additional update. We shall not discuss the

consistency validation mechanisms here,which are-

Proceedings of the Eighth International Conference
on Very Large Data Bases

185

application dependent. We assume that such a
mechanism exists and that once the transaction
has been allowed to commit the stored version is
globally consistent. We shall examine how the
database management system can assist the design-
er in maintaining the global consistency. As we
mentioned in the introduction, we shall assume
that there is a central depository of all design
data. Several workstation databases are connected
to the central database. Note that the worksta-
tion database need not reside on a satellite
computer. It can represent a private portion of
the central database. Versions can be extracted
from the central database into the workstation
database at the beginning of a CAD transaction.
In conventional systems which handle short trans-
actions, a transaction might be temporarily sus-
pended if a lock cannot be granted immediately.
CAD transactions cannot wait for locks as they
could be waiting for a very long time. We see two
solutions to this problem. One would be to force
each transaction to preclaim all the objects it
is going to use. If any of the objects cannot be
retrieved the transaction will be aborted. This
does not matter, as no work has been done yet
anyway. The other possibility is to allow the
designer to ask for new objects during the
transaction execution. If the requested object
cannot be granted the designer will be told so.
He can then decide if he wants to adjourn the
session’or continue in spite of it.

The global consistency mechanism

The mechanism described here assists the user in
reaching the ultimate design goal: the consistent
database. In particular it prevents construction
of new versions from inconsistent versions., We
can view this mechanism as directing the design
activities. The stored versions can be extracted
in one of the following modes:

consistent read mode
read mode

update mode
derivation mode

In consistent read mode only consistent or inde-
pendently inconsistent versions can be extracted.
In read mode any version can be extracted. When a
version is extracted in the update mode the old
version will be replaced by a new updated ver-
sion. The derivation mode tells the system that a
new version will be constructed using this ver-
sion as a source. The versions in the central
database are globally consistent independently
inconsistent or dependently inconsistent. They
are assumed to be locally consistent. In order to
obey the consistency rules transaction can ex-
tract a version v for update only if the version
is consistent or independently inconsistent. The
subgraph of so extracted version will be marked
as dependently inconsistent. This implies, that a
transaction cannot extract a version which may
have become inconsistent due to its own updates

Mexico City, September, 1982



on higher 1level in version graph. The rationale
here is that it does not make sense trying to
update a verson, ancestors of which are unstable
(being modified). When the transaction commits,
it will have returned a globally -consistent
version 1into the central database. The immediate
successors will now be marked as independently
inconsistent, so that they can be extracted for
update and made globally consistent. In this way
the whole subgraph and eventually the whole data-
base can be made globally consistent. 4 trans-
action can extract a version in the derivation
mode only if it is globallv consistent. Again it
does not make sense to create new versions using
an inconsistent source version. Nependentlv in-
consistent version can be extracted for examina-
tion only (in read mode).

The dependent or independent inconsistencv can be
checked using the version graph.

Synchronization of concurrent CAD" transactions

In the real environment there will be several CAD
workstations attached to the central host. Even
with only one workstation multiple CAD transact-
ions can be running simultaneously, since trans-
actions at the workstation can be suspended and
restarted at a later time. Hence a mechanism must
be vprovided to synchronize concurrent CAD
transactions.

The synchronizing mechanism should:

prevent two transactions from updating the
same version

prevent a transaction from modifying a ver-
sion when any of its descendants in the
version graph are being modified

prevent a transaction from modifying a ver-
sion when any of its descendants 1in the
version graph are being used by an applica-
tion to create a version of a different
representation

prevent a transaction from modifving a ver-
sion whose one or more predecessors are being
modified
prevent a
sion while
transaction
prevent deadlocks

transaction from modifving a ver-
it 1is being inspected by other

A -

We shall refer to these goals as concurrency
rules. The above rules mav be relaxed to allow
reading of versions which have heen extracted for
update. This will be useful in the environment of
long CAD transactions.

All the above points are obvious. The deadlocks
must be prevented, since there is no wavy how they
can be resolved. Transactions cannot be rolled
back as it is practice in conventional database
systems because of their 1long duration. The
deadlocks are automatically prevented if the
above mentioned practice of not suspending trans-

actions or by forcing each transaction to pre-
claim all versions it is going to use is adooted.

Tn this paper we shall ignore the problems of
mixing the short (traditional) and CAD transact-
ions. Tor simplicity we shall assume that all
transactions are CAD transactions and that the
only lockable granule is a representation ver-
sion.

We introduce two lock modes: update or u-mode
and derivation or d-mode. The u-lock is an ex-
clusive lock. The d-lock will serve three pur-
poses:

it will be used to lock a version extracted as

a source for derivation

- it will signal that a locking is being done at
a lower level on the version graph

- it will be used to lock a version extracted for
read if desired

The d- and u-lock modes are incompatible.

The CAD transaction is well hehaved if it ob-
serves the following locking protocol.

- if a transaction wishes to extract a version
for update it must 1lock all the paths
leading to it in d-mode and and the version
itself in u-mode

- if a transaction wants to create a new
version of a representation it must lock for
each source version 3all path leading to it
in d-mode

- if a transaction wants to prevent other
transactions from modifving a version or its
supergraph while it is inspecting this ver-
sion it must lock all path leading to it in
d-mode and the the version itself in d-mode

- locks can be released only at the end of the
transaction and so thev can released in anv
order

The reasons for the releasing the locks at the
end of the transactions only can bhe read in
(Gray75) and will not be discussed here.

Tt can be easilv shown, that if a transaction is
well behaved, it preserves the concurrency rules:

- Suppose transaction T acquired a u-lock for a
node n in the version graph. Then according to
the 1locking protocol all path leading to this
node must have been 1locked 1in d-mode by T.

Hence no node lying on the path to the node n
could have been locked in u-mode by any other
transaction since u and d modes are incompati-
ble. Hence goals 1, 2 and 4 of concurrency

rules are satisfied.

Suppose transaction T extracted a version v in
derivation mode. Then according to the locking

Proceedings of the Eighth International Conference

on Very Large Data Bases 186

Mexico City, September, 1982



protocol all path leading to this version and
the version itself must have been locked in
d-mode. Hence no version in v’s suvergraph can
be 1locked in u-mode since u and d modes are
incompatible. Hence item 3 of concurrencv rules
is met.

Similarly, if a version v has been extracted
for inspection and locked then all path leading
to it and the version itself must have been
locked in d-mode. Hence no version in v’s
supergraph or the version itself can bhe locked
in u-mode. However, in view of longevity of CAD
transactions, locking a version which is being
extracted for read will seldom be done., *ore
often, a version will be extracted without
acquiring a lock. Such transaction could see
an old version while new version is being
prepared.

The Consistency “Yanager

The Consistencv *anager assists the designer in
maintaining the gzlobal consistencv of the design
object. It does that by observing both the
locking and the consistencv protocols. The locks
vertain to the CAN transactionsand do not persist
bevond the transaction termination. Tn contrast
the version graph exists independently of trans-
actions and must persist bevond the transaction
completion. Transactions submit lock requests to
the Consistency 'fanager. The Consistencv Manager
can grant a lock request onlyv if there is no
conflict due to concurrencyv protocol and due to
consistency rules. Tf a transaction needs a
version in update mode the consistencv manacer
grants permission if

the version is consistent or independently
inconsistent

its supergraph can be locked in d-mode and the

version itself in u-mode

After the version has been extracted the cor-
responding subgraph is 1labeled as ‘dependently
inconsistent . This ensures that no other trans-

action can extract a subgraph version for undate.
When the transaction commits its uodates, the
immediate successors of the updated version are
labeled ‘independently inconsistent’ and the lock

is released. Now the immediate successors mav be
uodated and made elobally consistent. Tn this
manner the entire database can be step bv step

transferred to a globally consistent state. The
database will normally become consistent only
when the design is comoleted.

If a version is needed in derivation mode
- it must be consistent
- a d-lock must be acquired for its supergraoh

and for the version itself

If a version is needed in consistent read mode
with 1lock the consistencv manager grants nermis-

Proceedings of the Eighth International Conference
on Very Large Data Bases

187

sion if:

- the version is consistent or independentlv
inconsistent

- the supergranh and the version itself can be

locked in d-mode

Consistency ‘*anager does not suspend transact-
ions, but rather returns a message if the re-
quested lock cannot he granted. The rationale is
that the transaction could be suspended for a
long periods of time (days).

The locks managed by the Consistency *‘anager
differ from conventional locks in that they are
recorded in nonvolatile storage as they must span
sessions and system failures. Such lock locks are
called permanent locks (permanent for the dura-
tion of a transaction, of course). If the system
is to handle both the conventional (short) and
the CAN (long) transactions the conventional Lock
*‘anager and the Consistencvy “anager must be aware
of each others locks. An efficient solution to
this problem remains to be found.

Conclusions

We believe that the above discussion helps to
clarify the issues of consistencv in CAD data-
bases. We realize, that it might be difficult if
not impossible to build a svstem which will check
global consistencv of different versions automa-
ticallv. The primary reason is the dependency of
such mechanisms on the particular application,
and their high complexity. Turther reasearch is
needed to clarifv these 1ssues. However, we
strongly believe that a CAD transaction manager
based on ideas presented above would be of great
assistence in keeping the CAD datahase consistent
and will make the database management systems
more attractive in this application area.

Mexico City, September, 1982



References

Eastman81:

Charles M. Eastman, Gilles M,E, Lafue

Semantic Integrity Transactions in Design
Databases

Proceedings of the I¥IP Working Conference on CAD
Databases,

to be published by North Holland

Publishing Company, 1982

Gray75:

J.N. Gray, R.A. Lorie, G.R. Putzolu,

I.L. Traiger

Granularity of Locks and Degrees of Consistency
IBM Research Report RJ1654, 1975

Gray80: .Jim Gray
A Transaction Model,
IBY Research Report R.12895, 1980

Gray81: Jim Gray

The Transaction Concept: Virtues and
Limitations

Proceeding of the Conference on Very Large
Data Bases, 1981

Lillehagen81: “rank M. Lillehagen

Towards a Methodology for Constructing Product
Modelling Databases in CAD

Proceedings of the IFIP Working Conference on
CAD Databases,

to be published by North Holland

Publishing Company, 1982

Lorie81: Raymond A. Lorie:

Issues in Databases for Design Applications
Proceedings of the IFIP Working Conference on
CAD Databases,

to be published by North Holland

Publishing Company, 1982

Eberlein81:

Werner Eberlein, Hartmut Wedekind

A Methodology for Embedding Design Databases
into Integrated Engineering Systems
Proceedings of the IFIP Working Conference on
CAD Databases,

to be published by North Holland

Publishing Company, 1982

Proceedings of the Eighth International Conference
on Very Large Data Bases 188 Mexico City, September, 1982



