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ABSTRACT 1. Introduction 

The usefulness of Boyce-Codd Normal Form 
(BCNF) has been questioned by various 
researchers. A recent study showed that under 
common assumptions, BCNF no longer guaran- 
tees freedom from various ‘anomalies’, one of its 
purported virtues. Second, a BCNF covering is 
sometimes unattainable, i.e., some sets of FDs 
have no corresponding BCNF schema. Third, it 
is difficult to determine whether a given schema 
violates BCNF (doing so is known to be NP- 
complete). 

This paper reviews the intent of the normal 
form, and suggests that these arguments may be 
discounted. We show that 
. BCNF still provides a useful design criterion 

when such assumptions as the Universal 
Instance Assumption are dropped (although 
BCNF can be improved upon by taking into 
consideration the dynamic use of the data- 
base); 

. even in schemata where BCNF is ‘unattain- 
able’, BCNF can be attained by unconven- 
tional means, typically by renaming or 
adding attributes to better capture the 
semantic content of the data; 

. testing violation of BCNF seems to require 
exponential time only in the w,orst case 
where the set of ‘interesting’ dependencies 
(nontrivial dependencies in minimal form) 
in the dependency closure grows 
exponentially large. Such situations do not 
seem to typify the ‘real world’: We investi- 
gate a model of FD schemata, called the FD 
hierarchy model, similar to many other data 
models proposed in recent years. For this 
model the FD closure is always small, and 
testing violation of BCNF is not only not 
NP-complete, it is linear in the size of the 
input. We also point out a relationship 
between keys, FDs which violate BCNF, and 
FD closures. 

There are certainly drawbacks in using sim- 
ple normal forms. No existing normal form 
incorporates, in any way, the intended dynamic 
behavior of the database, although this behavior 
is important for the design. Moreover, all nor- 
mal forms are defined in terms of dependencies. 
Not all semantics fall into this mold, a.nd infor- 
mation can be lost when semantics are encoded 
into dependencies. ** Normal forms therefore 

l * It is pointed out in [Atzeni & Parker, 19821 that depen- 
dency inferences may not be meaningful, fi_rFt of a!!. For 
example, consider the dependencies 

COMPANY 4 ADDRESS (companies have a plant address) 
ADDRESS + RESIDENT (residential addresses have an owner) 

An important database design problem is 
the development of a set of relations for the 
database which capture the underlying data 
semantics as accurately as possible. To the 
extent it can be achieved, the designer should 
attempt to ‘normalize’ the database into 
semantically independent components. One 
particular stopping point in the normalization 
process is known widely as ‘Boyce-Codd Normal 
Form’ (BCNF). 

Unfortunately, BCNF has certain undesir- 
able properties as a normal form: not all rela- 
tion schemata have a BCNF representation, 
although they always may be decomposed into 
the less stringent ‘Third Normal Form’ (3NF). 
Also, several results have been presented which 
question the practical usefulness of BCNF as a 
logical database design goal. First, a number of 
questions involving both BCNF and keys have 
been shown to be NP-complete [Beeri & Bern- 
stein, 19791. Second, in [Bernstein & Goodman, 
19801 it was demonstrated that BCNF does not 
prevent ‘anomalous’ behavior if the database is 
required to satisfy what is now termed ‘the 
Universal Instance Assumption’ [the condition 
whereby all tables (relation instances) in the 
database are required to be projections of a sin- 
gle universal table (universal instance), which is 
defined over all attributes]. This paper tries to 
put these criticisms in perspective. 

l Research supported by NSF grant IST 90-12419. 
suggesting by transitivity that each company has a unique 
resident! Second, dependencies usually require an 
artificial ‘relationship uniqueness’ assumption: Since func- 
tional dependencies specify only the attribute sets on 
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provide no guarantee that a design is correct or 
appropriate for the application at hand. At 
best, normal forms provide guidelines in the log- 
ical design phase, and should be complemented 
with some deeper understanding of the applica- 
tion semantics. 

However, BCNF does provide a useful design 
benchmark. In essence it expresses the design 
maxim, ‘one fact in one place’+**, assuming that 
all facts are many-one relationships. We present 
three arguments supporting its usefulness. 
First, we argue that the problems with BCNF 
noted by [Bernstein & Goodman, 19301 do not 
apply if we drop the Universal Instance Assump- 
tion, and that BCNF does then eliminate certain 
kinds of anomalous behavior. Second, we show 
that BCNF can be attained in many situations 
where it appears unreachable, by renaming 
schema attributes in such a way as to re- 
express semantics properly. Finally, we present 
simple algorithms for determining BCNF proper- 
ties. The algorithms have exponential running 
time only in the pathological case where the 
given set of dependencies has a set of ‘interest- 
ing’ FDs (nontrivial dependencies in minimal 
form) in its closure which is exponentially large. 
Thus, even the NP-completeness results here 
may not be insurmountable. 

2. Boyce-Codd Normal Form 
BCNF and 3NF correspond to restrictions on 

the functional dependencies (FDs) which hold in 
a schema. A functional dependency is an 
integrity constraint among data attributes in a 
database. For example, the functional depen- 
dency E-t C may represent the constraint that 
each employee, E, works for only one company, 
C. A relation schema with functional dependen- 
cies is said to be in Boyce-Codd Normal Form if 
all the dependencies are either trivial depen- 
dencies (such as E-, E or EC+ E), or those in 
which a key functionally determines one or 
more attributes. Henceforth given any FD 
1: X-2 Y, we will use LHS(f) (Left-Hand-Side of 
f) and,X interchangeably, and RHS(f ) and Y 
interchangeably. Typicahy IIRHS(f )II= 1, i.e., 
RED(f) wiII consist of a single attribute. (]]S]l 
denotes the cardinality of a set S). 

We can formally define a relation schema R 
= R< U,F> as a set of attributes U and a set of 
functional dependencies F defined on U. 
Throughout this paper we will assume that F 
contains only functional dependencies. 

A database schema is a collection of one or 
more relation schemata. A key for R< U,F> is a 
-- 
which they hold, any two dependencies relating x to Y 
should be equivalent. Thus, if we have three functional 
dependencies 

f :EMP+MGR, g:MGR+ SAL, and h:EMP+ SAL, 
we must assume that h is equivalent to the functional 
composition of g and f , although this might not be what 
was intended. Cautious choice of attribute names can 
avoid such problems. 
l ** Words of J.N. Gray. 

set of attributes K such that the FD K + U may 
be inferred from F. A candidate key is a key K 
such that no proper subset of K is also a key. A 
relation schema R with dependencies F is in 
Boyce-Codd Normal Form if whenever the non- 
trivial FD X+ Y holds in R, then X includes a key 
for R. That is, a set of attributes is either a key 
or it does not determine any other attribute. 
For more discussion, see [Date, 1931] or [Ull- 
man, 19801. Any FD X + Y such that X does not 
contain a key is called a non-Boyce-Codd func- 
tional dependency (abbr. non-BCFD). 

The relation schema 
R< fA,B,CJ,lA-+ B,A+ Cj> is in BCNF because A 
is a key, and neither B nor C determines any 
other attributes in R. On the other hand, the 
relation schema R-c tA,B,Cj,iA-, B,B+ Cj> is not 
in BCNF because B is not a key, yet it deter- 
mines C. B + C is a non-BCFD. If R is decom- 
posed into a pair of relation schemata 
RI< [A,Bj,tA-+ Bj> and R2< fB,Cf,iB+ Cl>, each 
of the schemata RI, Rz is in BCNF. 

The closure J’+ of a set of dependencies F is 
the set of all dependencies which may be 
inferred from those in F via one or more appli- 
cations of inference rules. A complete set of 
rules is Armstrong’s first three axioms: 

FDl IfYEXc U,thenX+ Y 
FD2 If X -, Y and 2 c U, then X2 + YZ 
FD3 IfX+ YandY-, Z,thenX-, Z 

A good introduction to the subject may be 
found, for example, in [Ullman, 19801. 

A covet Fc of a set of dependencies F is a 
subset of F from which all of F may be inferred. 
It is easily verified that FJ = F+. Such a set F,, 
is a minimal cover if no proper subset of F,, is 
also a cover. 

A BCNF coverin of a schema R< U,F> is a 
database schema &< Ud,Fi> 1 i=l,...,nj such 9 
that 
(1) Every attribute in U appears in at least one 

of the sets Ui 
(2) Fi* * mcludes alI dependencies of Ji’+ whose 

attributes are drawn from Vi 
(3) The union of the Fi sets comprises a cover 

for F 
(4) Each 4 is in BCNF. 
If the union of the Fi 
minimal cover for F, 
f&C Ui,Fs> 1 i=l,...,nj is 
covering. 

sets is additionally a 
the database schema 
called a minimal BCNF 

Clearly, whenever a minimal BCNF covering 
exists, a BCNF covering exists also. However, it 
is not always possible to And a BCNF covering. 
An example which is typically given. to illustrate 
this is the schema R< {C,S,Zj.lCS+ Z,Z+ Cl> 
relating zip codes, Z, street addresses, S, and 
cities, C. R is not in BCNF and there is no BCNF 
covering for R. 
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3. BCNF and Update Anomalies 
In this section we review the intent of data- 

base normalization. It is widely held that nor- 
malization eliminates various 
anomalies’: 

‘storage 
those problems arising when one 

tries to update (insert, delete, or replace) a 
relationship which is stored on a subset of the 
columns in a relation. Perhaps one of the best 
ways to view the problem is through the notion 
of ‘syntactic 
Goodman, 1980 P 

redictability’ of [Bernstein & 
. They feel that these anomalies 

do not exist when the effects of an update can 
be determined by examining the schema alone, 
and not the content of the database. 

It is interesting that Codd also foresaw 
other desirable aspects of normalization. In 
[Codd, 19721 it is pointed out that reduction of 
databases into normal forms is desirable for 
(1) 

(2) 

w 
(4) 

Each of these aspects restates the ‘one fact - _- _ 
in one place’ credo. Bernstein and Goodman 
formalized the beneflts of normalization in 
terms of improving update behavior, and proved 
that BCNF attains this goal for the single rela- 
tion case. 

reducing the amount of restructuring done 
to the database, thereby enhancing 
software life time; 
making relations more informative to naive 
users, when they become cluttered with too 
many attributes; 
simplifying the maintenance of usage statis- 
tics; and 
making authorization requirements simpler 
to enforce. 

For the multirelation case, Bernstein and 
Goodman went on to observe that anomalous 
behavior is not avoided when the Universal 
Instance Assumption (UIA) is required to hold. 
The UIA is an artificial constraint, requiring that 
each of the relation instances in the database 
be projections of some universal relation 
instance. Problems arise because the UIA forces 
the introduction of null values whenever 
updates are made on subsets of the set of all 
attributes U. 

When the UIA is dropped, and we make other 
simple assumptions, we can show that BCNF has 
desirable normalization properties. We begin by 
formalizing the notion of update anomalies. We 
propose an operational definition of anomalies 
which takes into account the intended dynamic 
behavior of the database. In particular, we for- 
malize the notion of ‘update sets’ over data- 
bases and define anomalous behavior in terms 
of these sets. 

Intuitively, an update set (elsewhere 
referred to as an object, association, and by 
other terms) is a collection of attributes which 
is updated as a unit, and may be viewed as a 
primitive ‘fact’ in the database. 
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Definition An update set Z over a database 
schema D = I&< Q,Fi> ] i=l ,...,n j is any subset 

of U = J Vi, such that a database defined on D 

may beizodified atomically on the columns in Z. 

Each database schema has a Axed number of 
update sets. Appropriate update sets are deter- 
mined by the database semantics. We further 
specify update sets according to their intended 
function: 

(1) insertion sets 
2 deletion sets 

II 3 replacement sets 
Update anomalies are defined in terms of the 
update sets selected for a database. 

Dejhikicm A database schema D = t&< lJ",Fi> 1 
i=l ,...,n j -is j+ae of update t&norm&es if every 
update set Z 
(I) is in SOITE scheme Vi of D, 
(2) contains a key for U,, and 
(3) contains the entire scheme Vi, if Z is a dele- 

tion set. 
This is an intuitively correct definition for the 
following reasons: First, we desire update sets to 
be contained within a single scheme so that we 
are not confronted with the problems of updat- 
ing views. Some of these problems were 
addressed in [Bernstein & Goodman, 19801. 
Second, we desire update sets to contain a key 
so that nulls need not be inserted in a key field, 
and so that replacements of large numbers of 
records are avoided. (We assume, as does Codd, 
that in every tuple at least the primary key 
must be stored without null values.) Third, dele- 
tion sets cover entire schemes to avoid 
difficulties in deleting part of a tuple, which 
again is part of the view update problem. 

For example, the database. schema 
D = IR,<IE,Mj,tE-,Mj>.Rz<tM,Dj,l~~Dj> 1, 

may have the following update sets: 
1 insertion sets: 

II 
2 deletion sets: 
3 replacement sets: I 

p&JpgW 

EiJh4,WJf 
The replacement set [E,Dj is not permitted. 
With this definition we arrive at the following 
result: 

Prop A, database schema D = [Ri< Ui ,Fi > I 
i=l ,...,n 1 is free of update anomalies if 
(1) each & is in BCNF, 
(2) every update set Z corresponds to a non- 
trivial FD, i.e., we can write Z = Xv Y, where 
X-t Y is an FD in some Fi, 

deletion set, then in addition Z = Vi 
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fioof Since all update sets are defined by 
FDs, every update set is in some scheme Vi 
of D. Then, since each 4 is in BCNF, the 
left hand side of every FD in Fi ‘contains a 
key. Because all update sets are delined on 
FDs, every update set contains a key for 
some Fi- Condition (3) covers the speclial 
requirement that deletion sets cover an 
entire scheme. . 

Now, consider the Zipcode database for 
which there is no BCNF covering: 

Suppose iC,S,Z{ is the only update set (a 
natural assumption). By not using update sets 
which correspond to non-BCFDs, we avoid 
update anomalies. In situations where the 
natural update sets avoid these FDs (such as the 
situation here) we have no anomalies even when 
BCNF cannot be achieved. 

The simple observations above show that 
BCNF does avoid anomalies under the right 
assumptions; however, BCNF may be too strong 
a condition under these assumptions -- we may 
be able to avoid anomalies even without having 
each scheme in BCNF. More research is neces- 
sary to define a ‘normal form which properly 
takes dynamic behavior of the database into 
account. 

4. ‘Unattainability’ of BCNF 
It is now largely taken for granted that 

BCNF is not attainable for some databases. The 
previous section has shown that this may not be 
serious, since we may not use any non-BCFDs as 
update sets: having BCNF may not be necessary 
to avoid anomalies. Regardless, we feel that 
believing BCNF to be unattainable is incorrect, 
and feel that those situations where BCNF is not 
immediate are results of improper naming of 
entities. 

Consider the City, Street, Zip example. Note 
Arst that ‘Street’, ‘Zip’, and ‘City’ are increas- 
ingly larger abstractions for ‘location’. The 
problem is that street names do not uniquely 
determine locations on their own -- one street 
name is associated with many physical streets. 
If street names were unique, we would have 
S+ Z, Z-, C and could And BCNF easily. 

One solution is to make street addresses 
unique somehow. We can achieve this by creat- 
ing a new attribute A (address) to replace S, 
where the domain of A covers Streets and Cities. 
Our schema then becomes 

<AZ,A+Z>, <ZC,Z-+C>. 
Note that this solution could introduce update 
anomalies if we tried to update a city name. 
This is probably not a serious problem; but it 
may be avoided by picking a unique ‘surrogate’ 
identifier* for each city and letting A range over 
Streets and the surrogate domain. This solution 

* A surrogute is an attribute whose domain is a set of 

The problem here seems to run deeply into 
the identification of entities and into naming. 
Kent points out that there are important prob- 
lems in naming [Kent, 19781: 

Names and entities are not necessarily in 
one-one correspondence. One name may 
encompass many entities (generically); one 
entity may be described by many names 
(e.g., by virtue of being an aggregate); and 
there are often multiple ways to view, 
objects as entities, hence multiple naming 
conventions (or names) for the same 
phenomenon. 
Having a poor connection between names 
and entities leads to update problems. Kent 
focuses particularly on the problems 
encountered by aggregate entities. 

may also be preferable in that storing a surro- 
gate will probably be less wasteful of space. 

Our feeling is that in many cases, ‘unattainable’ 
BCNF schemata can be reached by suitable 
renaming of certain attributes and by using sur- 
rogate attributes. We have a number of exam- 
ples in which the rephrasing of FDs using these 
new attributes led to better schemata. Sciore 
has shown formally [Sciore, 19821 that many 
schemata can be improved simply by adding 
attributes. It is not clear a ptiori how these 
schemata should be modified, but intuitively we 
should be able to store most sets of facts in 
such a way that anomalies do not arise. This is 
an interesting area, calling for more research. 

5. BCNF testing 
This section is concerned with various 

aspects of testing for BCNF. There are three 
question to consider: 
(i)- 

(ii) 

(iii) 

Does a given schema R< U,F> violate 
BCNF? 
If so, does there exist a BCNF covering for 
R? 
If a BCNF covering does exist, how do we 
And one? How do we find a minimal BCNF 
covering? 

The Arst two questions have been shown to be 
NP-complete [Beeri & Bernstein, 19791. This 
result led Osborn to develop a BCNF tester 
which always requires exponential time to exe- 
cute. We will show below, however, that the 
problem is NP-complete only for pathological 
sets of FDs, and that for ‘real-world’ sets of FDs 
exponential amounts of time appears unneces- 
sary. 

identifiers which are guaranteed to determine an entity 
uniquely. Surrogate values are immutable, they may bear 
no relationship to real-world data (i.e., they are internally 
defined), and may be invisible, in fact, to the database 
user. They are typically created when an entity has multi- 
ple names (keys), when entity names can change, or when 
it is desirable to provide aggregate entities with concise 
identifiers. Good discussions of many useful aspects of 
surrogates may be found in [Kent, 19781. 
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We should emphasize that we are not saying 
that BCNF is the way to go, or that we are 
encouraging the use bf our algorithm for real 
database design. Frankly, we have doubts even 
about the usefulness of incorporating 
Armstrong’s rules into the design phase. 
Rather, our intent in this section is to investi- 
gate the ‘insurmountability’ of the NP- 

&ample 1. Zip Code (not in BCNF) 

U=~C,S,Z~ 
F=jCS-, Z,Z+ Cj 
F;=IC+ C, S-,S, Z-t C, z-, z, es-, c, es-r s, 
cs+ 2, cz-, c, cz-z, sz- c, sz- s, sz+ z, 
csz-, s, csz-, c, csz-, zj 

completeness results, and to experiment with 
reasonable models for FDs. 

The following dependencies in F=' are nontrivial 
full FDs: 

5-l_ Osborn’s Algorithm 
A BCNF testing algorithm was developed by 

Osborn [Osborn, 1979-J. She notes that the fol- 
lowing economies can be made when one is 
interested in BCNF. First, one can always res- 
trict one’s attention to FDs in ‘canonical form’, 
in which all FD right-hand sides have only one 
attribute. Moreover, one can consider only full 
FDs, functional dependencies whose left-hand 
sides are minimal. If the dependencies X+A 
and Y+ A both hold in R, and X is a subset of Y, 
then Y-+A is not a full FD and need not be con- 
sidered as far as BCNF is concerned. (If x 
includes a key for R, then Y includes a key for 
R since X s Y.) 

Second, in generating a BCNF covering for R 
it is sufficient to consider only those schemata 
whose attributes are obtained from canonical 
full FDs, determine which of them are in BCNF, 
and then group together the BCNF schemata. 
There is a BCNF covering if and only if these 
BCNF schemata comprise a covering. 

The first step in Osborn’s algorithm is to 
compute a canonical closure, Fc+, of the set of 
depend.encies p using Beeri and Bernstein’s 
Membership algorithm. The canonical closure is 
just thgt par+ of the closure F+ wlrhw.z -I! 5,:Flt,- 
hand sides have only one attribute. In -the 
second step, for each full FD J$+& in F,' a rela- 
tion schema 4 < Vi ,Fi > is derived, where Vi = Xi 
u & 1, and Fi is that subset of the dependencies 
in Fz which holds on Vi. These schemata are 
tested for compliance with BCNF, and the FDs 
&+A for which the test is successful are added 
to a set G. If the final set G forms a covering 
for F, then a BCNF covering for F exists. Furth- 
ermore, if a minimal BCNF covering exists, it can 
be found by eliminating redundant dependen- 
cies in G. 

A pessimistic analysis of the performance of 
this algorithm for testing the existence of a 
BCNF covering shows that it runs in time 0(/l UI$ 
IlFll (2”q2). 0 ne can additionally find a minimal 
covering, if one exists, within a su 
amount of time bounded by O(llUll IIG~$eb~~~~! 
strutting a minimal cover for G after one has 
completed the main algorithm 

U,=@‘Cj, F1=iZ-, Cj 

U,=tCSZ], F2=F,+ 

Since Z+ C is in F2, but Z-, CSZ is not in F,+, the 
dependency CS-, Z is not included in G. 

G={Z-, C] 
G+ =tC-, C, Z+ Z, Z+ C, CZ-r C, CZ+ Zj, 
F) does not equal G,’ 

A BCNF covering does not exist, as V~S expected. 

&ample 2. from [Beeri and Bernstein, 19’791 

U=[A,B,C,D,EJ 

The following dependencies in F,' are nontrivial 
full FDs: 
lA-,B, A+C, E+C, AD+E, BC-tA, BCD+E, 
BE-, Aj 

G=IA-,B,A-,C,E-,C,AD-,E,B~~A~ 
G,'= F,' 

Therefore a BCNF covering exists. 
A relational schema representing < V,F> is: 

RI< [A ,B,CJ,[A-, BC,BC+ A]> 

R,c ~A,D,EJ,(AD-,E~> 

44 fE,Ci, IE-, Cl> 

5.2. A ‘Fast’ BCNF Testing Algorithm 
In this section we develop a simple algo- 

rithm for testing whether a schema is in BCNF. 
Although the presentation here appears 
(almost!) natural, in fact the development 
derives from earlier work on the equivalence 
between FD and MVD systems and certain frag- 
ments of propositional logic [Delobel & Casey, 
1973; Fagin, 1977; Parker & Delobel, 1979; Sagiv, 
Delobel, Parker & Fagin, 19811. 

The examples which follow illustrate the use 
of Osborn’s BCNF tester. The algorithm does not 
capitalize on the situation where the input 
schema is initially in BCNF. 

I)sfnition A key dependency is an FD of the form 
X + I$, where rj~ is the empty set. 
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This may seem strange at flrst, but should be 
interpreted simply as saying that ‘X is a key’. 
Thus if U is the set of attributes in the schema 
where X is a key, 

X -, $ implies X + U. + 

fkfinittin X -) Y is a cunontiul FD if IIYII = 0 or 
. 

hfinition X -B Y is a fuL1 FD if there is no 
proper subset X ’ of X such that X ’ + Y holds, 
and in addition either (I) Y = #, or (2) the 
key dependency X + # does not hold (since if it 
did, it would imply X + Y). 

Lkqhition X 4 Y is an interesting FD if it is non- 
trivial, canonical, and full. 

It is useful to observe that, when dealing with 
FDs, we need only concern ourselves with 
interesting FDs. All others are somehow redun- 
dant. We argue below that the number of 
interesting FDs in the closure p of F is limited 
when F consists of ‘real world’ dependencies. Of 
co&se, Fc is always exponentially large, since 
there are exponentially many trivial dependen- 
cies. 

Henceforth, let us permit dependencies with null 
right-hand-sides in our dependency inferences. 
Thus we extend Armstrong’s axiom FD3 (transi- 
tivity) 

IfX-, Yand Y-, Z,thenX-, Z 
so that Z can be null. Below, when we speak of 
‘closures’, it will be relative to this extended 
defintion. 

We now have a. direct relationship between 
keys, non-BCFDs, and interesting closures. 

Theorem 1 Consider the relation schema 
R< U,F> . Let X + Y be an interesting FD in the 
closure of 

Fu ~U+$j. 

Then 
(1) Y = I# if and only if X is a candidate key for 

R< U,F> ; 
(2) Y # 9 if and only if X + Y is a non-Boyce- 

Codd FD for R< U,F> 
(i.e., an FD which violates BCNF). 

l This statement does not imply that 9 + $, and hence 
for example the ‘decomposition rule’ 

A+BC implies A+B and A-C 
requires Bf $ and c# 9. Also clearly X -) A does not 
imply X + #, for otherwise every left hand side of a 
dependency will be a key. This ia all consistent with the 
equivalence between dependencies and propositional logic 
Delobel & Casey 1973; Fagin 19771, since the formula 

t X => $) E (7 X) logically implies (X=> Jr), for any 
term y. 
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Roof (1) It is clear that if Y = 9, then X 
must be a candidate key: X + U must be a 
consequence of F, since F contains no key 
dependencies other than U -) 9. Moreover 
since this is a full FD, X must be a candidate 
key (not just a key). 

Conversely, if X is a candidate key, then the 
only full FD we can find is X + 9. 

(2) Assume then that Y # $. Suppo?e that 
X + Y is not a non-Boyce-Codd FD. Then X 
must contain some key K. But this implies 
K + Y, contradicting that X -) Y is full. So 
X + Y must be a non-BCFD. 

Conversely, let X -) Y be a non-BCFD. Then 
X does not contain a key. But this implies 
that Y cannot be null, since if it were, we 
would have a key dependency and reach a 
contradiction. l 

We can exploit this theorem to obtain an algo- 
rithm for BCNF testing. We need first to produce 
the set of all interesting FDs in the closure of F. 
This is easily accomplished, for example, using 
the algorithm for closure in [Parker & Delobel, 
19791. For reference we construct a version of 
the algorithm here which does not make use of 
propositional logic. 

Algorithm INTERESTING_CLOSURE, 
generating F&m*, the nontrivial canonical 
full FDs in F’+ 
Input: 

output: 
Step 1: 
Step 2: 

Step 3: 

A set of FDs F, possibly containing key 
dependencies 
F,+ WLtEmstirbg 
Set Tl + F. 
Set T2 + Tl. For each pair of FDs 
ol, c2 in Tl, apply Armstrong’s axioms 
if possible to produce a new result FD (I. 
Delete any FD in T2 implied by Q. Then, 
if D is not implied by any element in T2, 
add it to T2. 
If Tl and T2 are not equal, set Tl t T2 
and proceed to Step 2. Otherwise set 
F&.~f~g to T2 and halt.. 

This algorithm leads directly to the follow- 
ing algorithm to test whether a given relation 
schema is in BCNF. 

Algorithm BCNFTEST, 
checking compliance with BCNF 
Input: A relation schema R< U,F> 
Output: ‘YES’, if R is in BCNF; alternatively a set 

of dependencies in p which are non- 
BCFDs. 
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Step 1: 

Step 2: 

Step 3: 

Add the key dependency U+ #J to the set 
F. 
Compute the closure F’rostin . 
algorithm IN*ERESTINGdO~K~ 
above. 
Every set of attributes X such that the 
FD X+# is in this closure is a key. All 
remaining dependencies in the closure 
are non-BCFDs. R is in BCNF if, and 
only if, there are no such dependencies. 
. 

We can also use Theorem 1 to find a decom- 
position which forms a BCNF oovering, if we add 
one more result. Suppose for the moment that 
we have an algorithm which determines, for a 
schema C F,U> and a set of attributes X, the 
FDs in p which hold on the set of attributes 
V-X. Then we can search for BCNF coverings in 
the following way: 

Algorithm BCNFJOVER, 
determining a BCNF covering if one exists. 
Input: 
output: 

Step 1: 

R< V,F> , a relation schema 
A BCNF covering l&< q,Fi>( i=l,...,nj 
for R if one exists; otherwise ‘NONE’ 
Generate the set FAsrsstiw of all non- 
trivial canonical full FDs of the set F, 
using algorithm INTERESTING-CLOSURE 
above. 

Step 2: 

Step 3: 

Step 2 

For each interesting FD Xj + Aj in 
FL- And the subset of p which 
holds on the attribute set U., where 
V. = Xj u [A-j. Use the BCNPtesting 
a gorithm a I i ove to And all non-.BCFDs 
for this set. If no non-BCFDs exist, add 
Xj-*Aj to a set G. 
Test whether F c G+, by testing 
membership of every dependency of F 
in G. This may easily be effected using 
the Membership algorithm in [Beeri & 
Bernstein, 19791. If F c G+, then the 
database schema f< V,,Fi> [ i=l,...,nj 
composed of schemata for which 4 -) 4 
is in G forms a BCNF covering for R. 
Otherwise, no BCNF covering exists, and 
the algorithm should output ‘NONE’. q 

of this algorithm appears expensive to 
perform, but in fact this need not be so. The 
nmd function [Parker & Delobel, 19793 + may be 
used to determine the set of dependencies 
which apply in a projection of a schema on a 
smaller set of attributes. An alternative method 
is to flrst evaluate the interesting closure and 
then discard dependencies involving attributes 
not in the projection, Below we will argue that 
the interesting closure is usually not large, so 
this alternative approach will be adequate. 
However we will refer to the dependencies in 
4Ld~ 
F-d%? 

which hold on attributes U-Z as. 

The algorithm above may be modified to And 
a minimal BCNF covering by removing redun- 
dant schemata after Step 3 (as in Osborn’s algo- 
rithm). It should also be mentioned that, in 
some cases, the set of schemata generated in 
Step 3 will not contain all of the attributes in U. 
(Consider, for example, the initial schema 
Rx {A,B,CJ,{A-, Bj> .) This is a minor problem 
not handled by Osborn. If this happens one 
should include an additional schema < K,$> to 
the Anal database schema, where K is an arbi- 
trary candidate key for the entire initial set of 
attributes. This approach has been taken in 
[Delobel & Casey, 1973; Biskup, Dayal & Bern- 
stein, 19791. 

Below we consider several examples of sche- 
mata on which the above algorithms are applied. 

Elcumpls 1. Zip code (not in BCNF) 
V=[C,S,Zj 

First, we can test if < U,F> is already in BCNF. 

Z-, C is a non-BCFD; therefore < V,F> is not in 
BCNF. 

Now, we search for a BCNF covering of < U,F> . 

There are two interesting FDs in F; namely 
CS+ Z and Z-, C. 

Fl =Fxmd(U-CSZ) = Fmod$ = F 
F,u IV+ $1 has the non-BCFD Z-, C, so we do not 
add CS-, Z to the set G. 

FZ =Fmod(V-ZC) = FmodS = {Z+Cj. 
Fz u (ZC+ #I 1 has no non-BCFDs, so we add Z+ C 
to G. 
At this point we have examined all interesting 
FDs, and have G = tZ+ Cl. The algorithm then 
detects that F is not a subset of G+. Therefore 
no BCNF covering exists, as was expected. 

l We give only a brief description of md here in the in- 
terest of simplicity: 

be the propositional logic equivalent. Define 

Fmod 2 = (FIFO) v (Flr=~) 

and 

Frmdx, --*z, = (...(F mod z,) . ..)mod q, 
We then have 

Bqp F wd Z corresponds precisely to the set of 
&E$Fie; in the closure 8’+ which hold in the 

. - . . 
Thi result can be quickly used to develop the set of FDs 
required by Step 2. 
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sample 2. (already in BCNF) 

u = IA,B,c~ 
F=fA+B,A+Cj 

Test if < U,F> is in BCNF. 

(F” tu+#l)ik,,tin, = tA-t$j 

Since there are no non-BCFDs in this set, 
< U,F> is already in BCNF. 

&ample 3. from [Beeri and Bernstein, 19791 

U=[A,B,C,D,Ej 
F=tA+BC,BC-,A,BCD+E,E+Cj 

Definition Let F be a set of interesting FDs. The 
transitivity graph T(F) is a labelled, directed 
graph (VJ) with vertices V = F and edges 

E= I (11J2) I Rfmf,) L J5=w2) 1 

Note that here, RHS(f ) and LAS(f) are the 
right- and left-hand sides of the FD f . If 
RHS(f) = 6, then the vertex f is connected to 
all other vertices. 
Defhition A subset W of vertices of a directed 
graph G is called a consensus set of G if the res- 
triction of G to W is a rooted DAG (directed acy- 
clic graph) in which all edges pokt t~6ard the 
root (a vertex of outdegree zero). 

Example 

(F ” t u+ 9 IXkresting = {A-B, A+C, BC+A, 
BCD+E,E+C,AD-+E,BE+Aj F= {A-,B,A+~,BC+A,BCD+E,E+C~ 

We now construct F mod (U-Q) for each of 
the seven interesting FDs X, + 4 in this set, and 
come up with the following corresponding sets 
of dependencies: 

F1 = tA+Bj 
F2 = IA+ Cj 

Transitivity graph T(F): 

F3= ~BC+A,A+B,A+C~ 
F4= ~BCD+E,E+C~ 
F5 = {E+ Cl 
Fs = ~AD+ ~j 
F7 = ~BE+A,A+ ~j 

After this, we find G = [A+B, A-4, BC+A, 
E+ C, AD+ Ej. Since F is a subset of G’, G pro- 
vides a BCNF covering for < U,F> , 
Since the Arst two schemata obtained from G on 
AB and AC are redundant, we can generate the 
covering 
RI< fA,B,C],~A+BC,BC+A{>. 
R2< [A,D,E~,~AD+E~> 
R,< fE,CLtE+ Cl> 
This is the same covering that was generated by 
Osborn’s algorithm. 

5.3. Complexity Analysis 
The timing of the algorithms above is not 

simple to ascertain precisely, but in this section 
we provide bounds. The bounds are related to 
the number of interesting FDs in the closure, 
not the cardinality of the closure. We also pro- 
vide a model of those schemata we feel typify 
the real world, called the FD hierarchy model. 
This model is an adaptation of Lien’s hierarchi- 
cal schemata [Lien, 19801 incorporating 
features of many other models. With this model, 
we find that time bounds are not exponential in 
l[Fll, but linear in JIFIJ. Throughout this section, 
we assume w.1.o.g. that F contains only interest- 
ing FDs. 

We begin by establishing a relatively tight 
upper bound on the number of interesting FDs 
in F’s closure. 

There are many consensus sets: fA + Bj, fBC-+A f, 
. . . lA-,B,BCD+Ef, 
IA-+B,'A-+c,BcD+E~, etc. 

lBCD+E,E+ Cj, 

Theorem 2 
IIJ”tSmstingII < [[consensus sets of T(F)]1 

Proof We show that there is a one-many 
relationship between FGtazesting and the con- 
sensus sets of T(F). 

Let X-t A be a FD in Fiitsrssting. Then there is 
an irredundant set S of interesting FDs in F 
which together imply X+ A. In addition, the 
FDs in S irredundantly imply no other 
interesting FD. We claim that S is a con- 
sensus set of i"(F), and that 

x = 
I 
u LHS(v) - 

USS 1 I U/-NV) I 
A = RHS(vo) 

where v. is the root vertex of S. 

If llS]l = 1, this statement is true since S is a 
single vertex in Z'(F), and must equal 
tX+A j. Assume then that IlS(l > 1. It is 
clear that T(F) restricted to S must have a 
single root vertex, for otherwise S is redun- 
dant. In addition, every vertex in this res- 
tricted graph must have a path to the root, 
for otherwise transitivity cannot be applied, 
and either S must be redundant or X-A 
must not be interesting. 
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~Jow, every attribute of X must 3c in LES(v) 
for some ‘U&S. However, notice that X can- 
not contain any attribl~te in ,?.???(?J) frr 3ny 
v&S, since then S-iv j would still imply 
X+A, contradicting the irredundancy of S. 
Thus 

X s 
I 
y/=(v) 

I [ 
- ~J~RWV) . 

I 
Suppose that equality does not hold, i.e., 
there is some vertex v&S such that LHS(v) 
contains an attribute 23 which is not in X, 
yet B is not in the RHS of any vertex in S. 
Then S-lv 1 still implies X+A, again con- 
tradicting the irredundancy of S. 

A similar argument shows that the res- 
tricted graph must be acyclic. The attri- 
bute A cannot be in LHS(v) for any v&S, 
since otherwise we could remove v. We can 
now proceed inductively, showing no direct 
ancestor of the root vertex can have an 
edge to one of its ancestors v, etc. = 

CoTollaTy lIF~tsresfirrgI1 < d4’ 
fiooJ There are 21141- 
vertices in T(F). n 

1 nonempty subsets of 

Theorem 2 is interesting in that it provides 
us a method for computing FiLOmSting: we con- 
struct T(F) rapidly, then enumerate all of its 
consensus sets. For each consensus set S we 
then generate the FD 

I 
u LJ=(v) 1 f - ‘J~RHW] -+ RH%J 
UCS 

where v. is the root vertex of S, and then elim- 
inate subsumed FDs. The algorithm 
INTERESTING_CLOSURE essentially does this, but 
is inefficient in its searches for FDs to which 
Armstrong’s rules may be applied. The algo- 
rithm executes in time at most quadratic in the 
number of consensus sets in T(F), and this can 
be improved to near-linear time if we use data 
structures which reduce the time required for 
subsumption checking. An open problem is to 
And an optimal algorithm here. 

The time to generate closures is thus at 
most quadratic in the number of rooted DAGs 
(consensus sets) in the graph T(F). Exponential 
time is required only when there are an 
exponential number of such DAGs. Further- 
more, the running time will be a direct function 
of jlF&@&Jj in the case where n3 I’Ds art a-db- 
sumed or generated multiple times. 

We feel that for ‘real ,aorld’ ca;l~cti~,la uf 
FDs, the number of consensus sets will be subex- 
ponential, and that few FDs will be subsumed, or 
generated multiple times. To support this state- 
ment we consider the following adaptation of 
Lien’s hierarchical schemata [Lien, 19801, called 
the FD hierarchy model. We feel this model is 
flexible enough to describe real databases, yet 
restrictive enough that useful conclusions 
regarding the complexity of logical design can 
be derived from it. 
D@nition A FD hierarchy over V (a fixed set of 
attributes) is a directed acyclic vaph H = (V,EJ 
and a pair of maps KEY: V-r2 , ATTR: V-, 2 , 
such that 
(i) 
(3 

(iii) 

for every v&V, KEY(v) c ATTR(v) 
po every v&V, KEY(v) -B ATTR(v) is a valid 

if the edges leaving any vertex v are 
(v,q), . . . v b w,,) then 

KEY(v) c : KEY(q) t ATTR(v) 
i-l 

(i-4 if A EATTR(v)-KEY(v), and A&ATTJ(y) with 
V#W, then necessarily A &KEY(w), and 
there must be a path fromv to w. 

An example of an FD hierarchy is shown in Fig- 
ure 1. It is similar to a schema of [Lien, 19801 
pp.66-67, but has been modified to make certain 
points. 

Remarks 
(1) The FD hierarchy model is similar to not 

only Lien’s hierarchical schemata, but also 
many others -- Eachman diagrams, Entity- 
relationship schemata, etc. 

CLASS, TUTOR ,STlJDENT + 
CLASS,TVTOR,STlJDENT 

CLASS ,STUDENT -, EXAM 

ROOM* BLDG +D$ [’ STUDENT + MAJOR 

Figure 1. An FD hierarchy 
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(2) 

(3) 

(4) In the example, the only dependencies on 
which transitivity 
CLASS-, TUTOR & T?iOR : :FF;:id itit: 
CLASS-, ROOM & ROOM-, BLDG. In ’ Lien’s 
scheme, in fact, no transitivity existed. This 
is not atypical of the ‘real world’, in our 
experience. For example, an E-R schema in 
which all relationships are many-many will 
have F&,,,tis = F. 

Suppose we consider the largest indegree d, and 
the ‘height’ (length of the longest path) h, of an 
FD hierarchy H. The example above has a 
height of 2, and the vertex with FD CLASS-, DAY 
has a maximal indegree of 3. In our experience, 
d and h rarely exceed 4 in real schemata. If we 
consider only FD hierarchies with bounded inde- 
grees and heights, we arrive at the following 
result. 

Note ’ ’ 
KEY(v) =%TRis,) 

possible to have 
, i.e. a trivial FD. In fact, 

a consequence of the definition above is 
that every FD in H is either interesting or 
trivial. To see this, suppose X-, A is a non- 
trivial FD in H. Then by condition (iv), A 
cannot appear in the RHS of any other FD. 
The FD hierarchy H is closely related to the 
transitivity graph T(F). A vertex in H with 
associated FD X-, AlA - - 9 A, will have 
corresponding vertices X+ Al, . . . . X+A,, in 
T(F) (assuming of course that these FDs are 
nontrivial). 

Therefore, for schemata fitting this model 
T(F) contains no cycles, and because of the 
condition (iv), it is impossible to derive a 
single FD in multiple ways with this model. 
In particular, duplicate keys (A + B,B+ A) 
cannot be represented directly. 

nLeorem 3 Suppose that 
vertex has more than d 
is longer than h, and 

in a FD hierarchy H, no 
ancestors, and no path 
that F is the set of __ -- 

interesting FDs given by H. Then 

IIF&eresfiTq7 II s llconsensus sets of T(F)11 < k IlFll 

where k = 2$. 
Proof Since H is restricted by the constants 
d and h, T(F) is also. (This follows since 
each vertex in T(F) with FD X-, A will have 
indegree less than or equal to that of the 
vertex in H with FD X+A.) There are 
therefore only llF]l p ossible root vertices in 
T(F), and each one is the root of a DAG, for 
which each vertex has indegree at most d ~ 
and in which no path is longerthan h. For 
such a DAG there are fewer than k = 2& 
subsets of vertices which determine a sub- 
DAG connected to the root. So, altogether 
there are at most kllFll consensus sets of 
T(F). Combining this with Theorem 2 gives 
‘us the stated bound. = 
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This theorem states that the number of 
interesting dependencies in F’s closure is not 
only not exponential, but is linear, in IlFll. Thus 
the NP-completness results in this area are not 
necessarily obstacles to designers. Further 
exploration of the FD hierarchy model is neces- 
sary, but we are confident of the validity of 
results like Theorem 3. 

6. Conclusions 
We have reviewed various criticisms of 

BCNF, discussing its virtues and limitations. 
Some limitations to the effectiveness of BCNF 
disappear if we drop the Universal Instance 
Assumption. In fact, under suitable assumptions 
BCNF is more restrictive than necessary for 
avoiding update anomalies. (Essentially, BCNF 
strives to place ‘one fact in one place’, assuming 
that all facts are representable as many-one 
relationships. However not all facts may be 
updated by users of the database, and hence it 
may not be necessary to normalize all of these 
facts.) We also showed that BCNF can be often 
attained by renaming or adding attributes, even 
when it is formally unachievable. 

We then pointed out a relationship between 
keys, FDs violating BCNF, and FD closures. As an 
application of this relationship, we presented 
algorithms for both BCNF testing and for the 
development of a BCNF covering for a relation 
schema. These algorithms have exponential 
running time only in the pathological case 
where the set of ‘interesting’ dependencies in 
the dependency closure grows exponentially 
large. For the FD hierarchy model with restric- 
tions on the height and indegrees of the hierar- 
chy, we showed these closures are not exponen- 
tial, but are linear, in the size of the input set of 
FDs. 

It is difficult to evaluate normal forms in 
any precise way, given the ambiguity of semanti- 
cal constructs aild design objstivss t;-Lich 
surround the logical design process. Our effort 
has been to reflect on the limitations of BCNF as 
a logical design benchmark, reviewing the vari- 
ous negative results against it put forth over the 
past years. It is hoped that this effort will spark 
work on new measures of logical design 
effectiveness, as well as on new areas such as 
‘attribute renaming, consideration of dynamic 
behavior of the database, and formal models. 
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