
Reflections on Boyce-Codd Normal Form

Carol Helfgott LeDwx *

The Aerospace Corporation
El Segundo, California

D. Scott fiTkeT, ,h-, *

Computer Science Department
University of California, Los Angeles

ABSTRACT 1. Introduction

The usefulness of Boyce-Codd Normal Form
(BCNF) has been questioned by various
researchers. A recent study showed that under
common assumptions, BCNF no longer guaran-
tees freedom from various ‘anomalies’, one of its
purported virtues. Second, a BCNF covering is
sometimes unattainable, i.e., some sets of FDs
have no corresponding BCNF schema. Third, it
is difficult to determine whether a given schema
violates BCNF (doing so is known to be NP-
complete).

This paper reviews the intent of the normal
form, and suggests that these arguments may be
discounted. We show that
. BCNF still provides a useful design criterion

when such assumptions as the Universal
Instance Assumption are dropped (although
BCNF can be improved upon by taking into
consideration the dynamic use of the data-
base);

. even in schemata where BCNF is ‘unattain-
able’, BCNF can be attained by unconven-
tional means, typically by renaming or
adding attributes to better capture the
semantic content of the data;

. testing violation of BCNF seems to require
exponential time only in the w,orst case
where the set of ‘interesting’ dependencies
(nontrivial dependencies in minimal form)
in the dependency closure grows
exponentially large. Such situations do not
seem to typify the ‘real world’: We investi-
gate a model of FD schemata, called the FD
hierarchy model, similar to many other data
models proposed in recent years. For this
model the FD closure is always small, and
testing violation of BCNF is not only not
NP-complete, it is linear in the size of the
input. We also point out a relationship
between keys, FDs which violate BCNF, and
FD closures.

There are certainly drawbacks in using sim-
ple normal forms. No existing normal form
incorporates, in any way, the intended dynamic
behavior of the database, although this behavior
is important for the design. Moreover, all nor-
mal forms are defined in terms of dependencies.
Not all semantics fall into this mold, a.nd infor-
mation can be lost when semantics are encoded
into dependencies. ** Normal forms therefore

l * It is pointed out in [Atzeni & Parker, 19821 that depen-
dency inferences may not be meaningful, fi_rFt of a!!. For
example, consider the dependencies

COMPANY 4 ADDRESS (companies have a plant address)
ADDRESS + RESIDENT (residential addresses have an owner)

An important database design problem is
the development of a set of relations for the
database which capture the underlying data
semantics as accurately as possible. To the
extent it can be achieved, the designer should
attempt to ‘normalize’ the database into
semantically independent components. One
particular stopping point in the normalization
process is known widely as ‘Boyce-Codd Normal
Form’ (BCNF).

Unfortunately, BCNF has certain undesir-
able properties as a normal form: not all rela-
tion schemata have a BCNF representation,
although they always may be decomposed into
the less stringent ‘Third Normal Form’ (3NF).
Also, several results have been presented which
question the practical usefulness of BCNF as a
logical database design goal. First, a number of
questions involving both BCNF and keys have
been shown to be NP-complete [Beeri & Bern-
stein, 19791. Second, in [Bernstein & Goodman,
19801 it was demonstrated that BCNF does not
prevent ‘anomalous’ behavior if the database is
required to satisfy what is now termed ‘the
Universal Instance Assumption’ [the condition
whereby all tables (relation instances) in the
database are required to be projections of a sin-
gle universal table (universal instance), which is
defined over all attributes]. This paper tries to
put these criticisms in perspective.

l Research supported by NSF grant IST 90-12419.
suggesting by transitivity that each company has a unique
resident! Second, dependencies usually require an
artificial ‘relationship uniqueness’ assumption: Since func-
tional dependencies specify only the attribute sets on

Proceedings of the Eighth International Conference
on Very Large Data Bases 131 Mexico City, September, 1982

provide no guarantee that a design is correct or
appropriate for the application at hand. At
best, normal forms provide guidelines in the log-
ical design phase, and should be complemented
with some deeper understanding of the applica-
tion semantics.

However, BCNF does provide a useful design
benchmark. In essence it expresses the design
maxim, ‘one fact in one place’+**, assuming that
all facts are many-one relationships. We present
three arguments supporting its usefulness.
First, we argue that the problems with BCNF
noted by [Bernstein & Goodman, 19301 do not
apply if we drop the Universal Instance Assump-
tion, and that BCNF does then eliminate certain
kinds of anomalous behavior. Second, we show
that BCNF can be attained in many situations
where it appears unreachable, by renaming
schema attributes in such a way as to re-
express semantics properly. Finally, we present
simple algorithms for determining BCNF proper-
ties. The algorithms have exponential running
time only in the pathological case where the
given set of dependencies has a set of ‘interest-
ing’ FDs (nontrivial dependencies in minimal
form) in its closure which is exponentially large.
Thus, even the NP-completeness results here
may not be insurmountable.

2. Boyce-Codd Normal Form
BCNF and 3NF correspond to restrictions on

the functional dependencies (FDs) which hold in
a schema. A functional dependency is an
integrity constraint among data attributes in a
database. For example, the functional depen-
dency E-t C may represent the constraint that
each employee, E, works for only one company,
C. A relation schema with functional dependen-
cies is said to be in Boyce-Codd Normal Form if
all the dependencies are either trivial depen-
dencies (such as E-, E or EC+ E), or those in
which a key functionally determines one or
more attributes. Henceforth given any FD
1: X-2 Y, we will use LHS(f) (Left-Hand-Side of
f) and,X interchangeably, and RHS(f) and Y
interchangeably. Typicahy IIRHS(f)II= 1, i.e.,
RED(f) wiII consist of a single attribute. (]]S]l
denotes the cardinality of a set S).

We can formally define a relation schema R
= R< U,F> as a set of attributes U and a set of
functional dependencies F defined on U.
Throughout this paper we will assume that F
contains only functional dependencies.

A database schema is a collection of one or
more relation schemata. A key for R< U,F> is a
--
which they hold, any two dependencies relating x to Y
should be equivalent. Thus, if we have three functional
dependencies

f :EMP+MGR, g:MGR+ SAL, and h:EMP+ SAL,
we must assume that h is equivalent to the functional
composition of g and f , although this might not be what
was intended. Cautious choice of attribute names can
avoid such problems.
l ** Words of J.N. Gray.

set of attributes K such that the FD K + U may
be inferred from F. A candidate key is a key K
such that no proper subset of K is also a key. A
relation schema R with dependencies F is in
Boyce-Codd Normal Form if whenever the non-
trivial FD X+ Y holds in R, then X includes a key
for R. That is, a set of attributes is either a key
or it does not determine any other attribute.
For more discussion, see [Date, 1931] or [Ull-
man, 19801. Any FD X + Y such that X does not
contain a key is called a non-Boyce-Codd func-
tional dependency (abbr. non-BCFD).

The relation schema
R< fA,B,CJ,lA-+ B,A+ Cj> is in BCNF because A
is a key, and neither B nor C determines any
other attributes in R. On the other hand, the
relation schema R-c tA,B,Cj,iA-, B,B+ Cj> is not
in BCNF because B is not a key, yet it deter-
mines C. B + C is a non-BCFD. If R is decom-
posed into a pair of relation schemata
RI< [A,Bj,tA-+ Bj> and R2< fB,Cf,iB+ Cl>, each
of the schemata RI, Rz is in BCNF.

The closure J’+ of a set of dependencies F is
the set of all dependencies which may be
inferred from those in F via one or more appli-
cations of inference rules. A complete set of
rules is Armstrong’s first three axioms:

FDl IfYEXc U,thenX+ Y
FD2 If X -, Y and 2 c U, then X2 + YZ
FD3 IfX+ YandY-, Z,thenX-, Z

A good introduction to the subject may be
found, for example, in [Ullman, 19801.

A covet Fc of a set of dependencies F is a
subset of F from which all of F may be inferred.
It is easily verified that FJ = F+. Such a set F,,
is a minimal cover if no proper subset of F,, is
also a cover.

A BCNF coverin of a schema R< U,F> is a
database schema &< Ud,Fi> 1 i=l,...,nj such 9
that
(1) Every attribute in U appears in at least one

of the sets Ui
(2) Fi* * mcludes alI dependencies of Ji’+ whose

attributes are drawn from Vi
(3) The union of the Fi sets comprises a cover

for F
(4) Each 4 is in BCNF.
If the union of the Fi
minimal cover for F,
f&C Ui,Fs> 1 i=l,...,nj is
covering.

sets is additionally a
the database schema
called a minimal BCNF

Clearly, whenever a minimal BCNF covering
exists, a BCNF covering exists also. However, it
is not always possible to And a BCNF covering.
An example which is typically given. to illustrate
this is the schema R< {C,S,Zj.lCS+ Z,Z+ Cl>
relating zip codes, Z, street addresses, S, and
cities, C. R is not in BCNF and there is no BCNF
covering for R.

Proceedings of the Eighth international Conference
on Very Large Data Bases

132 Mexico City, September, 1982

3. BCNF and Update Anomalies
In this section we review the intent of data-

base normalization. It is widely held that nor-
malization eliminates various
anomalies’:

‘storage
those problems arising when one

tries to update (insert, delete, or replace) a
relationship which is stored on a subset of the
columns in a relation. Perhaps one of the best
ways to view the problem is through the notion
of ‘syntactic
Goodman, 1980 P

redictability’ of [Bernstein &
. They feel that these anomalies

do not exist when the effects of an update can
be determined by examining the schema alone,
and not the content of the database.

It is interesting that Codd also foresaw
other desirable aspects of normalization. In
[Codd, 19721 it is pointed out that reduction of
databases into normal forms is desirable for
(1)

(2)

w
(4)

Each of these aspects restates the ‘one fact - _- _
in one place’ credo. Bernstein and Goodman
formalized the beneflts of normalization in
terms of improving update behavior, and proved
that BCNF attains this goal for the single rela-
tion case.

reducing the amount of restructuring done
to the database, thereby enhancing
software life time;
making relations more informative to naive
users, when they become cluttered with too
many attributes;
simplifying the maintenance of usage statis-
tics; and
making authorization requirements simpler
to enforce.

For the multirelation case, Bernstein and
Goodman went on to observe that anomalous
behavior is not avoided when the Universal
Instance Assumption (UIA) is required to hold.
The UIA is an artificial constraint, requiring that
each of the relation instances in the database
be projections of some universal relation
instance. Problems arise because the UIA forces
the introduction of null values whenever
updates are made on subsets of the set of all
attributes U.

When the UIA is dropped, and we make other
simple assumptions, we can show that BCNF has
desirable normalization properties. We begin by
formalizing the notion of update anomalies. We
propose an operational definition of anomalies
which takes into account the intended dynamic
behavior of the database. In particular, we for-
malize the notion of ‘update sets’ over data-
bases and define anomalous behavior in terms
of these sets.

Intuitively, an update set (elsewhere
referred to as an object, association, and by
other terms) is a collection of attributes which
is updated as a unit, and may be viewed as a
primitive ‘fact’ in the database.

Proceedings of the Eighth International Conference
on Very Large Data Bases 133

Definition An update set Z over a database
schema D = I&< Q,Fi>] i=l ,...,n j is any subset

of U = J Vi, such that a database defined on D

may beizodified atomically on the columns in Z.

Each database schema has a Axed number of
update sets. Appropriate update sets are deter-
mined by the database semantics. We further
specify update sets according to their intended
function:

(1) insertion sets
2 deletion sets

II 3 replacement sets
Update anomalies are defined in terms of the
update sets selected for a database.

Dejhikicm A database schema D = t&< lJ",Fi> 1
i=l ,...,n j -is j+ae of update t&norm&es if every
update set Z
(I) is in SOITE scheme Vi of D,
(2) contains a key for U,, and
(3) contains the entire scheme Vi, if Z is a dele-

tion set.
This is an intuitively correct definition for the
following reasons: First, we desire update sets to
be contained within a single scheme so that we
are not confronted with the problems of updat-
ing views. Some of these problems were
addressed in [Bernstein & Goodman, 19801.
Second, we desire update sets to contain a key
so that nulls need not be inserted in a key field,
and so that replacements of large numbers of
records are avoided. (We assume, as does Codd,
that in every tuple at least the primary key
must be stored without null values.) Third, dele-
tion sets cover entire schemes to avoid
difficulties in deleting part of a tuple, which
again is part of the view update problem.

For example, the database. schema
D = IR,<IE,Mj,tE-,Mj>.Rz<tM,Dj,l~~Dj> 1,

may have the following update sets:
1 insertion sets:

II
2 deletion sets:
3 replacement sets: I

p&JpgW

EiJh4,WJf
The replacement set [E,Dj is not permitted.
With this definition we arrive at the following
result:

Prop A, database schema D = [Ri< Ui ,Fi > I
i=l ,...,n 1 is free of update anomalies if
(1) each & is in BCNF,
(2) every update set Z corresponds to a non-
trivial FD, i.e., we can write Z = Xv Y, where
X-t Y is an FD in some Fi,

deletion set, then in addition Z = Vi

Mexico City, September, 1982

fioof Since all update sets are defined by
FDs, every update set is in some scheme Vi
of D. Then, since each 4 is in BCNF, the
left hand side of every FD in Fi ‘contains a
key. Because all update sets are delined on
FDs, every update set contains a key for
some Fi- Condition (3) covers the speclial
requirement that deletion sets cover an
entire scheme. .

Now, consider the Zipcode database for
which there is no BCNF covering:

Suppose iC,S,Z{ is the only update set (a
natural assumption). By not using update sets
which correspond to non-BCFDs, we avoid
update anomalies. In situations where the
natural update sets avoid these FDs (such as the
situation here) we have no anomalies even when
BCNF cannot be achieved.

The simple observations above show that
BCNF does avoid anomalies under the right
assumptions; however, BCNF may be too strong
a condition under these assumptions -- we may
be able to avoid anomalies even without having
each scheme in BCNF. More research is neces-
sary to define a ‘normal form which properly
takes dynamic behavior of the database into
account.

4. ‘Unattainability’ of BCNF
It is now largely taken for granted that

BCNF is not attainable for some databases. The
previous section has shown that this may not be
serious, since we may not use any non-BCFDs as
update sets: having BCNF may not be necessary
to avoid anomalies. Regardless, we feel that
believing BCNF to be unattainable is incorrect,
and feel that those situations where BCNF is not
immediate are results of improper naming of
entities.

Consider the City, Street, Zip example. Note
Arst that ‘Street’, ‘Zip’, and ‘City’ are increas-
ingly larger abstractions for ‘location’. The
problem is that street names do not uniquely
determine locations on their own -- one street
name is associated with many physical streets.
If street names were unique, we would have
S+ Z, Z-, C and could And BCNF easily.

One solution is to make street addresses
unique somehow. We can achieve this by creat-
ing a new attribute A (address) to replace S,
where the domain of A covers Streets and Cities.
Our schema then becomes

<AZ,A+Z>, <ZC,Z-+C>.
Note that this solution could introduce update
anomalies if we tried to update a city name.
This is probably not a serious problem; but it
may be avoided by picking a unique ‘surrogate’
identifier* for each city and letting A range over
Streets and the surrogate domain. This solution

* A surrogute is an attribute whose domain is a set of

The problem here seems to run deeply into
the identification of entities and into naming.
Kent points out that there are important prob-
lems in naming [Kent, 19781:

Names and entities are not necessarily in
one-one correspondence. One name may
encompass many entities (generically); one
entity may be described by many names
(e.g., by virtue of being an aggregate); and
there are often multiple ways to view,
objects as entities, hence multiple naming
conventions (or names) for the same
phenomenon.
Having a poor connection between names
and entities leads to update problems. Kent
focuses particularly on the problems
encountered by aggregate entities.

may also be preferable in that storing a surro-
gate will probably be less wasteful of space.

Our feeling is that in many cases, ‘unattainable’
BCNF schemata can be reached by suitable
renaming of certain attributes and by using sur-
rogate attributes. We have a number of exam-
ples in which the rephrasing of FDs using these
new attributes led to better schemata. Sciore
has shown formally [Sciore, 19821 that many
schemata can be improved simply by adding
attributes. It is not clear a ptiori how these
schemata should be modified, but intuitively we
should be able to store most sets of facts in
such a way that anomalies do not arise. This is
an interesting area, calling for more research.

5. BCNF testing
This section is concerned with various

aspects of testing for BCNF. There are three
question to consider:
(i)-

(ii)

(iii)

Does a given schema R< U,F> violate
BCNF?
If so, does there exist a BCNF covering for
R?
If a BCNF covering does exist, how do we
And one? How do we find a minimal BCNF
covering?

The Arst two questions have been shown to be
NP-complete [Beeri & Bernstein, 19791. This
result led Osborn to develop a BCNF tester
which always requires exponential time to exe-
cute. We will show below, however, that the
problem is NP-complete only for pathological
sets of FDs, and that for ‘real-world’ sets of FDs
exponential amounts of time appears unneces-
sary.

identifiers which are guaranteed to determine an entity
uniquely. Surrogate values are immutable, they may bear
no relationship to real-world data (i.e., they are internally
defined), and may be invisible, in fact, to the database
user. They are typically created when an entity has multi-
ple names (keys), when entity names can change, or when
it is desirable to provide aggregate entities with concise
identifiers. Good discussions of many useful aspects of
surrogates may be found in [Kent, 19781.

Proceedings of the Eighth International Conference
on Very Large Data Bases

134
Mexico City, September, 1982

We should emphasize that we are not saying
that BCNF is the way to go, or that we are
encouraging the use bf our algorithm for real
database design. Frankly, we have doubts even
about the usefulness of incorporating
Armstrong’s rules into the design phase.
Rather, our intent in this section is to investi-
gate the ‘insurmountability’ of the NP-

&le 1. Zip Code (not in BCNF)

U=~C,S,Z~
F=jCS-, Z,Z+ Cj
F;=IC+ C, S-,S, Z-t C, z-, z, es-, c, es-r s,
cs+ 2, cz-, c, cz-z, sz- c, sz- s, sz+ z,
csz-, s, csz-, c, csz-, zj

completeness results, and to experiment with
reasonable models for FDs.

The following dependencies in F=' are nontrivial
full FDs:

5-l_ Osborn’s Algorithm
A BCNF testing algorithm was developed by

Osborn [Osborn, 1979-J. She notes that the fol-
lowing economies can be made when one is
interested in BCNF. First, one can always res-
trict one’s attention to FDs in ‘canonical form’,
in which all FD right-hand sides have only one
attribute. Moreover, one can consider only full
FDs, functional dependencies whose left-hand
sides are minimal. If the dependencies X+A
and Y+ A both hold in R, and X is a subset of Y,
then Y-+A is not a full FD and need not be con-
sidered as far as BCNF is concerned. (If x
includes a key for R, then Y includes a key for
R since X s Y.)

Second, in generating a BCNF covering for R
it is sufficient to consider only those schemata
whose attributes are obtained from canonical
full FDs, determine which of them are in BCNF,
and then group together the BCNF schemata.
There is a BCNF covering if and only if these
BCNF schemata comprise a covering.

The first step in Osborn’s algorithm is to
compute a canonical closure, Fc+, of the set of
depend.encies p using Beeri and Bernstein’s
Membership algorithm. The canonical closure is
just thgt par+ of the closure F+ wlrhw.z -I! 5,:Flt,-
hand sides have only one attribute. In -the
second step, for each full FD J$+& in F,' a rela-
tion schema 4 < Vi ,Fi > is derived, where Vi = Xi
u & 1, and Fi is that subset of the dependencies
in Fz which holds on Vi. These schemata are
tested for compliance with BCNF, and the FDs
&+A for which the test is successful are added
to a set G. If the final set G forms a covering
for F, then a BCNF covering for F exists. Furth-
ermore, if a minimal BCNF covering exists, it can
be found by eliminating redundant dependen-
cies in G.

A pessimistic analysis of the performance of
this algorithm for testing the existence of a
BCNF covering shows that it runs in time 0(/l UI$
IlFll (2”q2). 0 ne can additionally find a minimal
covering, if one exists, within a su
amount of time bounded by O(llUll IIG~$eb~~~~!
strutting a minimal cover for G after one has
completed the main algorithm

U,=@‘Cj, F1=iZ-, Cj

U,=tCSZ], F2=F,+

Since Z+ C is in F2, but Z-, CSZ is not in F,+, the
dependency CS-, Z is not included in G.

G={Z-, C]
G+ =tC-, C, Z+ Z, Z+ C, CZ-r C, CZ+ Zj,
F) does not equal G,’

A BCNF covering does not exist, as V~S expected.

&le 2. from [Beeri and Bernstein, 19’791

U=[A,B,C,D,EJ

The following dependencies in F,' are nontrivial
full FDs:
lA-,B, A+C, E+C, AD+E, BC-tA, BCD+E,
BE-, Aj

G=IA-,B,A-,C,E-,C,AD-,E,B~~A~
G,'= F,'

Therefore a BCNF covering exists.
A relational schema representing < V,F> is:

RI< [A ,B,CJ,[A-, BC,BC+ A]>

R,c ~A,D,EJ,(AD-,E~>

44 fE,Ci, IE-, Cl>

5.2. A ‘Fast’ BCNF Testing Algorithm
In this section we develop a simple algo-

rithm for testing whether a schema is in BCNF.
Although the presentation here appears
(almost!) natural, in fact the development
derives from earlier work on the equivalence
between FD and MVD systems and certain frag-
ments of propositional logic [Delobel & Casey,
1973; Fagin, 1977; Parker & Delobel, 1979; Sagiv,
Delobel, Parker & Fagin, 19811.

The examples which follow illustrate the use
of Osborn’s BCNF tester. The algorithm does not
capitalize on the situation where the input
schema is initially in BCNF.

I)sfnition A key dependency is an FD of the form
X + I$, where rj~ is the empty set.

Proceedings of the Eighth International Conference
on Very Large Data Bases

135
Mexico City, September, 1982

This may seem strange at flrst, but should be
interpreted simply as saying that ‘X is a key’.
Thus if U is the set of attributes in the schema
where X is a key,

X -, $ implies X + U. +

fkfinittin X -) Y is a cunontiul FD if IIYII = 0 or
.

hfinition X -B Y is a fuL1 FD if there is no
proper subset X ’ of X such that X ’ + Y holds,
and in addition either (I) Y = #, or (2) the
key dependency X + # does not hold (since if it
did, it would imply X + Y).

Lkqhition X 4 Y is an interesting FD if it is non-
trivial, canonical, and full.

It is useful to observe that, when dealing with
FDs, we need only concern ourselves with
interesting FDs. All others are somehow redun-
dant. We argue below that the number of
interesting FDs in the closure p of F is limited
when F consists of ‘real world’ dependencies. Of
co&se, Fc is always exponentially large, since
there are exponentially many trivial dependen-
cies.

Henceforth, let us permit dependencies with null
right-hand-sides in our dependency inferences.
Thus we extend Armstrong’s axiom FD3 (transi-
tivity)

IfX-, Yand Y-, Z,thenX-, Z
so that Z can be null. Below, when we speak of
‘closures’, it will be relative to this extended
defintion.

We now have a. direct relationship between
keys, non-BCFDs, and interesting closures.

Theorem 1 Consider the relation schema
R< U,F> . Let X + Y be an interesting FD in the
closure of

Fu ~U+$j.

Then
(1) Y = I# if and only if X is a candidate key for

R< U,F> ;
(2) Y # 9 if and only if X + Y is a non-Boyce-

Codd FD for R< U,F>
(i.e., an FD which violates BCNF).

l This statement does not imply that 9 + $, and hence
for example the ‘decomposition rule’

A+BC implies A+B and A-C
requires Bf $ and c# 9. Also clearly X -) A does not
imply X + #, for otherwise every left hand side of a
dependency will be a key. This ia all consistent with the
equivalence between dependencies and propositional logic
Delobel & Casey 1973; Fagin 19771, since the formula

t X => $) E (7 X) logically implies (X=> Jr), for any
term y.

Proceedings of the Eighth International COnferenCe

on Very Large Data Bases 136

Roof (1) It is clear that if Y = 9, then X
must be a candidate key: X + U must be a
consequence of F, since F contains no key
dependencies other than U -) 9. Moreover
since this is a full FD, X must be a candidate
key (not just a key).

Conversely, if X is a candidate key, then the
only full FD we can find is X + 9.

(2) Assume then that Y # $. Suppo?e that
X + Y is not a non-Boyce-Codd FD. Then X
must contain some key K. But this implies
K + Y, contradicting that X -) Y is full. So
X + Y must be a non-BCFD.

Conversely, let X -) Y be a non-BCFD. Then
X does not contain a key. But this implies
that Y cannot be null, since if it were, we
would have a key dependency and reach a
contradiction. l

We can exploit this theorem to obtain an algo-
rithm for BCNF testing. We need first to produce
the set of all interesting FDs in the closure of F.
This is easily accomplished, for example, using
the algorithm for closure in [Parker & Delobel,
19791. For reference we construct a version of
the algorithm here which does not make use of
propositional logic.

Algorithm INTERESTING_CLOSURE,
generating F&m*, the nontrivial canonical
full FDs in F’+
Input:

output:
Step 1:
Step 2:

Step 3:

A set of FDs F, possibly containing key
dependencies
F,+ WLtEmstirbg
Set Tl + F.
Set T2 + Tl. For each pair of FDs
ol, c2 in Tl, apply Armstrong’s axioms
if possible to produce a new result FD (I.
Delete any FD in T2 implied by Q. Then,
if D is not implied by any element in T2,
add it to T2.
If Tl and T2 are not equal, set Tl t T2
and proceed to Step 2. Otherwise set
F&.~f~g to T2 and halt..

This algorithm leads directly to the follow-
ing algorithm to test whether a given relation
schema is in BCNF.

Algorithm BCNFTEST,
checking compliance with BCNF
Input: A relation schema R< U,F>
Output: ‘YES’, if R is in BCNF; alternatively a set

of dependencies in p which are non-
BCFDs.

Mexico City, September, 1982

Step 1:

Step 2:

Step 3:

Add the key dependency U+ #J to the set
F.
Compute the closure F’rostin .
algorithm IN*ERESTINGdO~K~
above.
Every set of attributes X such that the
FD X+# is in this closure is a key. All
remaining dependencies in the closure
are non-BCFDs. R is in BCNF if, and
only if, there are no such dependencies.
.

We can also use Theorem 1 to find a decom-
position which forms a BCNF oovering, if we add
one more result. Suppose for the moment that
we have an algorithm which determines, for a
schema C F,U> and a set of attributes X, the
FDs in p which hold on the set of attributes
V-X. Then we can search for BCNF coverings in
the following way:

Algorithm BCNFJOVER,
determining a BCNF covering if one exists.
Input:
output:

Step 1:

R< V,F> , a relation schema
A BCNF covering l&< q,Fi>(i=l,...,nj
for R if one exists; otherwise ‘NONE’
Generate the set FAsrsstiw of all non-
trivial canonical full FDs of the set F,
using algorithm INTERESTING-CLOSURE
above.

Step 2:

Step 3:

Step 2

For each interesting FD Xj + Aj in
FL- And the subset of p which
holds on the attribute set U., where
V. = Xj u [A-j. Use the BCNPtesting
a gorithm a I i ove to And all non-.BCFDs
for this set. If no non-BCFDs exist, add
Xj-*Aj to a set G.
Test whether F c G+, by testing
membership of every dependency of F
in G. This may easily be effected using
the Membership algorithm in [Beeri &
Bernstein, 19791. If F c G+, then the
database schema f< V,,Fi> [i=l,...,nj
composed of schemata for which 4 -) 4
is in G forms a BCNF covering for R.
Otherwise, no BCNF covering exists, and
the algorithm should output ‘NONE’. q

of this algorithm appears expensive to
perform, but in fact this need not be so. The
nmd function [Parker & Delobel, 19793 + may be
used to determine the set of dependencies
which apply in a projection of a schema on a
smaller set of attributes. An alternative method
is to flrst evaluate the interesting closure and
then discard dependencies involving attributes
not in the projection, Below we will argue that
the interesting closure is usually not large, so
this alternative approach will be adequate.
However we will refer to the dependencies in
4Ld~
F-d%?

which hold on attributes U-Z as.

The algorithm above may be modified to And
a minimal BCNF covering by removing redun-
dant schemata after Step 3 (as in Osborn’s algo-
rithm). It should also be mentioned that, in
some cases, the set of schemata generated in
Step 3 will not contain all of the attributes in U.
(Consider, for example, the initial schema
Rx {A,B,CJ,{A-, Bj> .) This is a minor problem
not handled by Osborn. If this happens one
should include an additional schema < K,$> to
the Anal database schema, where K is an arbi-
trary candidate key for the entire initial set of
attributes. This approach has been taken in
[Delobel & Casey, 1973; Biskup, Dayal & Bern-
stein, 19791.

Below we consider several examples of sche-
mata on which the above algorithms are applied.

Elcumpls 1. Zip code (not in BCNF)
V=[C,S,Zj

First, we can test if < U,F> is already in BCNF.

Z-, C is a non-BCFD; therefore < V,F> is not in
BCNF.

Now, we search for a BCNF covering of < U,F> .

There are two interesting FDs in F; namely
CS+ Z and Z-, C.

Fl =Fxmd(U-CSZ) = Fmod$ = F
F,u IV+ $1 has the non-BCFD Z-, C, so we do not
add CS-, Z to the set G.

FZ =Fmod(V-ZC) = FmodS = {Z+Cj.
Fz u (ZC+ #I 1 has no non-BCFDs, so we add Z+ C
to G.
At this point we have examined all interesting
FDs, and have G = tZ+ Cl. The algorithm then
detects that F is not a subset of G+. Therefore
no BCNF covering exists, as was expected.

l We give only a brief description of md here in the in-
terest of simplicity:

be the propositional logic equivalent. Define

Fmod 2 = (FIFO) v (Flr=~)

and

Frmdx, --*z, = (...(F mod z,) . ..)mod q,
We then have

Bqp F wd Z corresponds precisely to the set of
&E$Fie; in the closure 8’+ which hold in the

. - . .
Thi result can be quickly used to develop the set of FDs
required by Step 2.

Proceedings of the Eighth International Conference
on Very Large Data Bases 137 Mexico City, September, 1982

sample 2. (already in BCNF)

u = IA,B,c~
F=fA+B,A+Cj

Test if < U,F> is in BCNF.

(F” tu+#l)ik,,tin, = tA-t$j

Since there are no non-BCFDs in this set,
< U,F> is already in BCNF.

&le 3. from [Beeri and Bernstein, 19791

U=[A,B,C,D,Ej
F=tA+BC,BC-,A,BCD+E,E+Cj

Definition Let F be a set of interesting FDs. The
transitivity graph T(F) is a labelled, directed
graph (VJ) with vertices V = F and edges

E= I (11J2) I Rfmf,) L J5=w2) 1

Note that here, RHS(f) and LAS(f) are the
right- and left-hand sides of the FD f . If
RHS(f) = 6, then the vertex f is connected to
all other vertices.
Defhition A subset W of vertices of a directed
graph G is called a consensus set of G if the res-
triction of G to W is a rooted DAG (directed acy-
clic graph) in which all edges pokt t~6ard the
root (a vertex of outdegree zero).

Example

(F ” t u+ 9 IXkresting = {A-B, A+C, BC+A,
BCD+E,E+C,AD-+E,BE+Aj F= {A-,B,A+~,BC+A,BCD+E,E+C~

We now construct F mod (U-Q) for each of
the seven interesting FDs X, + 4 in this set, and
come up with the following corresponding sets
of dependencies:

F1 = tA+Bj
F2 = IA+ Cj

Transitivity graph T(F):

F3= ~BC+A,A+B,A+C~
F4= ~BCD+E,E+C~
F5 = {E+ Cl
Fs = ~AD+ ~j
F7 = ~BE+A,A+ ~j

After this, we find G = [A+B, A-4, BC+A,
E+ C, AD+ Ej. Since F is a subset of G’, G pro-
vides a BCNF covering for < U,F> ,
Since the Arst two schemata obtained from G on
AB and AC are redundant, we can generate the
covering
RI< fA,B,C],~A+BC,BC+A{>.
R2< [A,D,E~,~AD+E~>
R,< fE,CLtE+ Cl>
This is the same covering that was generated by
Osborn’s algorithm.

5.3. Complexity Analysis
The timing of the algorithms above is not

simple to ascertain precisely, but in this section
we provide bounds. The bounds are related to
the number of interesting FDs in the closure,
not the cardinality of the closure. We also pro-
vide a model of those schemata we feel typify
the real world, called the FD hierarchy model.
This model is an adaptation of Lien’s hierarchi-
cal schemata [Lien, 19801 incorporating
features of many other models. With this model,
we find that time bounds are not exponential in
l[Fll, but linear in JIFIJ. Throughout this section,
we assume w.1.o.g. that F contains only interest-
ing FDs.

We begin by establishing a relatively tight
upper bound on the number of interesting FDs
in F’s closure.

There are many consensus sets: fA + Bj, fBC-+A f,
. . . lA-,B,BCD+Ef,
IA-+B,'A-+c,BcD+E~, etc.

lBCD+E,E+ Cj,

Theorem 2
IIJ”tSmstingII < [[consensus sets of T(F)]1

Proof We show that there is a one-many
relationship between FGtazesting and the con-
sensus sets of T(F).

Let X-t A be a FD in Fiitsrssting. Then there is
an irredundant set S of interesting FDs in F
which together imply X+ A. In addition, the
FDs in S irredundantly imply no other
interesting FD. We claim that S is a con-
sensus set of i"(F), and that

x =
I
u LHS(v) -

USS 1 I U/-NV) I
A = RHS(vo)

where v. is the root vertex of S.

If llS]l = 1, this statement is true since S is a
single vertex in Z'(F), and must equal
tX+A j. Assume then that IlS(l > 1. It is
clear that T(F) restricted to S must have a
single root vertex, for otherwise S is redun-
dant. In addition, every vertex in this res-
tricted graph must have a path to the root,
for otherwise transitivity cannot be applied,
and either S must be redundant or X-A
must not be interesting.

Proceedings of the Eighth International Conference
on Very Large Data Bases 138 Mexico City, September, 1982

~Jow, every attribute of X must 3c in LES(v)
for some ‘U&S. However, notice that X can-
not contain any attribl~te in ,?.???(?J) frr 3ny
v&S, since then S-iv j would still imply
X+A, contradicting the irredundancy of S.
Thus

X s
I
y/=(v)

I [
- ~J~RWV) .

I
Suppose that equality does not hold, i.e.,
there is some vertex v&S such that LHS(v)
contains an attribute 23 which is not in X,
yet B is not in the RHS of any vertex in S.
Then S-lv 1 still implies X+A, again con-
tradicting the irredundancy of S.

A similar argument shows that the res-
tricted graph must be acyclic. The attri-
bute A cannot be in LHS(v) for any v&S,
since otherwise we could remove v. We can
now proceed inductively, showing no direct
ancestor of the root vertex can have an
edge to one of its ancestors v, etc. =

CoTollaTy lIF~tsresfirrgI1 < d4’
fiooJ There are 21141-
vertices in T(F). n

1 nonempty subsets of

Theorem 2 is interesting in that it provides
us a method for computing FiLOmSting: we con-
struct T(F) rapidly, then enumerate all of its
consensus sets. For each consensus set S we
then generate the FD

I
u LJ=(v) 1 f - ‘J~RHW] -+ RH%J
UCS

where v. is the root vertex of S, and then elim-
inate subsumed FDs. The algorithm
INTERESTING_CLOSURE essentially does this, but
is inefficient in its searches for FDs to which
Armstrong’s rules may be applied. The algo-
rithm executes in time at most quadratic in the
number of consensus sets in T(F), and this can
be improved to near-linear time if we use data
structures which reduce the time required for
subsumption checking. An open problem is to
And an optimal algorithm here.

The time to generate closures is thus at
most quadratic in the number of rooted DAGs
(consensus sets) in the graph T(F). Exponential
time is required only when there are an
exponential number of such DAGs. Further-
more, the running time will be a direct function
of jlF&@&Jj in the case where n3 I’Ds art a-db-
sumed or generated multiple times.

We feel that for ‘real ,aorld’ ca;l~cti~,la uf
FDs, the number of consensus sets will be subex-
ponential, and that few FDs will be subsumed, or
generated multiple times. To support this state-
ment we consider the following adaptation of
Lien’s hierarchical schemata [Lien, 19801, called
the FD hierarchy model. We feel this model is
flexible enough to describe real databases, yet
restrictive enough that useful conclusions
regarding the complexity of logical design can
be derived from it.
D@nition A FD hierarchy over V (a fixed set of
attributes) is a directed acyclic vaph H = (V,EJ
and a pair of maps KEY: V-r2 , ATTR: V-, 2 ,
such that
(i)
(3

(iii)

for every v&V, KEY(v) c ATTR(v)
po every v&V, KEY(v) -B ATTR(v) is a valid

if the edges leaving any vertex v are
(v,q), . . . v b w,,) then

KEY(v) c : KEY(q) t ATTR(v)
i-l

(i-4 if A EATTR(v)-KEY(v), and A&ATTJ(y) with
V#W, then necessarily A &KEY(w), and
there must be a path fromv to w.

An example of an FD hierarchy is shown in Fig-
ure 1. It is similar to a schema of [Lien, 19801
pp.66-67, but has been modified to make certain
points.

Remarks
(1) The FD hierarchy model is similar to not

only Lien’s hierarchical schemata, but also
many others -- Eachman diagrams, Entity-
relationship schemata, etc.

CLASS, TUTOR ,STlJDENT +
CLASS,TVTOR,STlJDENT

CLASS ,STUDENT -, EXAM

ROOM* BLDG +D$ [’ STUDENT + MAJOR

Figure 1. An FD hierarchy

Proceedings of the Eighth International Conference
on Very Large Data Bases 139 Mexico City, September, 1982

(2)

(3)

(4) In the example, the only dependencies on
which transitivity
CLASS-, TUTOR & T?iOR : :FF;:id itit:
CLASS-, ROOM & ROOM-, BLDG. In ’ Lien’s
scheme, in fact, no transitivity existed. This
is not atypical of the ‘real world’, in our
experience. For example, an E-R schema in
which all relationships are many-many will
have F&,,,tis = F.

Suppose we consider the largest indegree d, and
the ‘height’ (length of the longest path) h, of an
FD hierarchy H. The example above has a
height of 2, and the vertex with FD CLASS-, DAY
has a maximal indegree of 3. In our experience,
d and h rarely exceed 4 in real schemata. If we
consider only FD hierarchies with bounded inde-
grees and heights, we arrive at the following
result.

Note ’ ’
KEY(v) =%TRis,)

possible to have
, i.e. a trivial FD. In fact,

a consequence of the definition above is
that every FD in H is either interesting or
trivial. To see this, suppose X-, A is a non-
trivial FD in H. Then by condition (iv), A
cannot appear in the RHS of any other FD.
The FD hierarchy H is closely related to the
transitivity graph T(F). A vertex in H with
associated FD X-, AlA - - 9 A, will have
corresponding vertices X+ Al, X+A,, in
T(F) (assuming of course that these FDs are
nontrivial).

Therefore, for schemata fitting this model
T(F) contains no cycles, and because of the
condition (iv), it is impossible to derive a
single FD in multiple ways with this model.
In particular, duplicate keys (A + B,B+ A)
cannot be represented directly.

nLeorem 3 Suppose that
vertex has more than d
is longer than h, and

in a FD hierarchy H, no
ancestors, and no path
that F is the set of __ --

interesting FDs given by H. Then

IIF&eresfiTq7 II s llconsensus sets of T(F)11 < k IlFll

where k = 2$.
Proof Since H is restricted by the constants
d and h, T(F) is also. (This follows since
each vertex in T(F) with FD X-, A will have
indegree less than or equal to that of the
vertex in H with FD X+A.) There are
therefore only llF]l p ossible root vertices in
T(F), and each one is the root of a DAG, for
which each vertex has indegree at most d ~
and in which no path is longerthan h. For
such a DAG there are fewer than k = 2&
subsets of vertices which determine a sub-
DAG connected to the root. So, altogether
there are at most kllFll consensus sets of
T(F). Combining this with Theorem 2 gives
‘us the stated bound. =

Proceedings of the Eighth International Conference
on Very Large Data Bases

This theorem states that the number of
interesting dependencies in F’s closure is not
only not exponential, but is linear, in IlFll. Thus
the NP-completness results in this area are not
necessarily obstacles to designers. Further
exploration of the FD hierarchy model is neces-
sary, but we are confident of the validity of
results like Theorem 3.

6. Conclusions
We have reviewed various criticisms of

BCNF, discussing its virtues and limitations.
Some limitations to the effectiveness of BCNF
disappear if we drop the Universal Instance
Assumption. In fact, under suitable assumptions
BCNF is more restrictive than necessary for
avoiding update anomalies. (Essentially, BCNF
strives to place ‘one fact in one place’, assuming
that all facts are representable as many-one
relationships. However not all facts may be
updated by users of the database, and hence it
may not be necessary to normalize all of these
facts.) We also showed that BCNF can be often
attained by renaming or adding attributes, even
when it is formally unachievable.

We then pointed out a relationship between
keys, FDs violating BCNF, and FD closures. As an
application of this relationship, we presented
algorithms for both BCNF testing and for the
development of a BCNF covering for a relation
schema. These algorithms have exponential
running time only in the pathological case
where the set of ‘interesting’ dependencies in
the dependency closure grows exponentially
large. For the FD hierarchy model with restric-
tions on the height and indegrees of the hierar-
chy, we showed these closures are not exponen-
tial, but are linear, in the size of the input set of
FDs.

It is difficult to evaluate normal forms in
any precise way, given the ambiguity of semanti-
cal constructs aild design objstivss t;-Lich
surround the logical design process. Our effort
has been to reflect on the limitations of BCNF as
a logical design benchmark, reviewing the vari-
ous negative results against it put forth over the
past years. It is hoped that this effort will spark
work on new measures of logical design
effectiveness, as well as on new areas such as
‘attribute renaming, consideration of dynamic
behavior of the database, and formal models.

Acknowledgement
The authors are grateful to the referees for a
number of suggestions which have greatly
improved the presentation here. D.S.P. would
like also to acknowledge several insightful com-
ments of T. Wheeler, and some recommendations
by S. Osborn during this paper’s Arst incarna-
tion.

Mexico City, September, 1982

References

Atzeni, P. and D.S. Parker (March 1982).
‘Assumptions in Relational Database Theory,’
Rot. First ACM SIGACT-SIGMOD Conf. on Princi-
ples of Database Systems, Los Angeles, CA.

Beeri, C. and P.A. Bernstein (1979). ‘Computa-
tional problems related to the design of normal
form relation schemes,’ ACM Z+ans. on Database
Systems 4:1, pp.30-59.

Bernstein, P.A. and N. Goodman (Oct. 1980).
‘What does Boyce-Codd Normal Form do?,’ fioc.
of the 6th EjLtnl. Conf. on VLDB, Montreal, pp.
245-259.

Biskup, J., U. Dayal, and P.A. Bernstein (May
1979). ‘Synthesizing Independent Database
Schemas,’ Proc. ACM-SIGMOD Intnl. Conf. on
Mgmt. of Data, Boston, pp. 143-151.

Codd, E.F. (1972). ‘Further Normalizaiton of the
Data Base Relational Model,’ in Data Base as-
terns (R. Rustin, ed.), Prentice-Hall, Englewood
Cliffs, NJ, pp. 33-64.

Date, C.J. (1981). An hztroduction to Database
Systems , Addison-Wesley, Reading, Mass.

Delobel, C. and R.C. Casey (1973). ‘Decomposi-
tion of a Database and the Theory of Boolean
Switching Functions,’ IBM .l. Res. and Develop.
17, p.374ff.
Fagin, R. (1977). ‘Functional Dependencies in a
Relational Database and Propositional Logic,’
LBM J. Res. Develop. 2116, pp. 543-544.

Fo;,ndW. (1978). Data and Reality, North-

Lien, Y.E. (1981). ‘Hierarchical Schemata for
Relational Databases,’ ACM Transactions on
Database g/stems 6:1, pp. 48-69.

Osborn, S.L. (Jan. 1979). ‘Testing for existence of
a covering Boyce-Codd Normal Form,’ Informa-
tion Processing Letters 8:1, pp. 1 l-14

Parker,D.S. and C. Delobel (October 1979).
‘Algorithmic applications for a new result on
multivalued dependencies’, Proceedings of the
5th hztnl. Conf. on VLDB, Rio de Janeiro, pp. 67-
74.

Sagiv, Y., Delobel, C., Parker, D.S., Fagin, R.
(1981). ‘An equivalence between relational data-
base dependencies and a fragment of proposi-
tional logic,’ JACM 28:3, pp. 435453.

Sciore, E., (1982). ‘Improving Database Schemes
by Adding Attributes,’ Tech. Rept. #82/035,
Dept. of Computer Science, SUNY Stony Brook.

Ullman, J.D. (1980). Principles of Database 9/s-
tems, Computer Science Press, Potomac, Mary-
land.

Proceedings of the Eighth International Conference
on Very Large Data Bases 141 Mexico City, September, 1982

