
Storage and Access Structures
to Support a Semantic Data Model

Arvola Chan
Sy Danberg
Stephen Fox

Wen-Te K. Lin
Anil Nor i

Daniel Ries

Computer Corporation of America
575 Technology Square

Cambridge, Massachusetts 02139

Abstract

This paper describes the design of storage
and access structures for a high performance Ada*
compatible database management system. This sys-
tem supports the database application programming
language ADAPLEX ISmith81, Smith821, which is the
result of embedding the database
DAPLEX [Shipman 1

sublanguage
in the general purpose

language Ada [DoD80 1. A prominent feature of the
underlying data model is its support for general-
ization hierarchies [Smith771 which are intended
to simplify the mapping from conceptual entities
to database objects. An in-depth discussion of
the rationale behind our choice of storage and
access structures to support semantics intrinsic
to the data model and to permit physical database
organization tuning is provided in this paper.

1. INTRODUCTION

We are presently engaged in the development
of a distributed database management system that
is compatible with the programming language Ada
[DoD80 I. This system supports the general pur-
pose database ap lication
ADAPLEX [Smith82 P

programming language
which is the result of embed-

ding the database iublanguage DAPLEX [Shipman
in Ada. This DBMS is intended to go beyond sys-
tems like INGRES and System R, which are based on

the older relational technology, in terms of
modelling capabilities and ease of use. Two ver-
sions of the DBMS are being developed. A cen-
tralized DBMS, called the Local Database Manager
(LDM). is designed for hinh nerformance and for
use ai a standralone syst&.* A distributed DBMS,
called the Distributed Database Manager (DDM) ,
interconnects multiple LDMs in a computer network
in order to provide rapid access to data for
users who are geographically separated. This
paper describes the set of storage and access
structures supported in the LDM implementation.

The version of DAPLEX used in the formation
of ADAPLEX is a simplification of the language
described in [Shipman811. However, all the key
concepts have been retained. The semantics of
database structure is defined in terms of entity
types and relationships between entity types.
Aside from the use of functional notations for
expressions that significantly enhance the natur-
alness and readability of programs, the most
prominent language feature that distinguishes
ADAPLEX from other database languages is its sup-

P
ort for the notion of generalization hierarchies
Smith77 I. In this paper, we present our design

for a set of storage and access structures that
supports semantics intrinsic to the data model
and permits the tuning of physical database
organization. Section 2 provides a summary of
the data model underlying the ADAPLEX language.
Section 3 identifies our design objectives and
presents an in-depth discussion of the rationale
behind our design decisions.

2. DATA MDDEL SUMMARY

This research was jointly supported by the De-
fense Advanced Research Projects Agency of the
Department of Defense and the Naval Electronic
Systems Command under Contract Number N00039-
80-C-0402. The views and conclusions contained
in this paper are those of the authors and
should not be interpreted as necessarily
representing the official policies, either exl
pressed or implied, of the Defense Advanced
Research Projects Agency, the Naval Electronic
Systems Command, or the U.S. Government.

*Ada is a trademark of the Department of Defense
(Ada joint program office).

The basic modelling constructs in ADAPLEX
are entities and functions. These are intended
to correspond to conceptual objects and their
properties. Entities with similar generic pro-
perties are grouped together to form entity sets.
Functions may be single-valued or set-valued.
They may also be total or partial. Each (total)
function, when applied to a given entity, returns
a specific property of that Each pro-
perty

entity.
is represented in terms of either a single

value or a set of values. Such values can be
drawn from noncomposite, Ada-supported data types
and character strings, or they can refer to (com-
posite) entities stored in the database as
values.

Proceedings of the Eighth International Conference
on Very Large Data Bases IL2 Mexico City, September, 1982

Consider a university database modelling
students, instructors, departments, and courses.
Figure 2.1 is a graphical representation of the
logical definition for such a database in ADA-
PLEX.
entity

The big rectangles depict (composite)
types and the smaller rectangles indicate

(noncomposlte) Ada data types.
double

The single and
arrows represent respectively single-

valued and set-valued functions that map entities
from their domain types into their corresponding
range types.

One notable difference between .the data
model underlying ADAPLEX and the relational data
model is that referential constraints
which are

[Date81 I,
extremely general and fundamental in

database applications but not easily specifiable
in relational contexts,
ADAPLEX.

are directly supported in
In other words, the definition of the

range of a function in our model is much more
precise than the definition of the domain of a
column in the relational model. At the same
time, for functions that range over noncomposite
values, we are able to exploit Ada’s type defini-
tion facilities and avoid the need to introduce a
separate domain definition facility [McLeod761,
as has been proposed for a relational environ-
ment .

that
In relational systems, a real-world entity

plays several roles in an application
environment is typically represented by tuples in
a number of relations. In the example university
database, we might have an instructor named John
Doe and a student also named John Doe, who are in
fact the same person in real life. In this case,
we might want to impose the constraint that the
age of John Doe as an instructor should agree
with the age of John Doe as a student. This con-

Figure 2.1 An ADPAPELX Database

Proceedings of the Eighth International Conference
on Very Large Data Bases 123

straint can be more simply expressed in ADAPLEX
by declaring a new entity type called person,
indicating that student and instructor are sub-
types of person, and that age is a function
applicable to person. The function inheritance
semantics of ADAPLEX automatically guarantees the
consistency of age information on student and age
information on instructor since age is a function
inherited from the supertype person. At the same
time, inherited functions can be applied directly
to an entrty rn ADAPLEX data manrpulation con-
structs, without the need for tedious explicit
joining operations. Figure 2.2 is a graphical
representation of the revised database defini-
tion. The double-edged arrows represent is-a
relationships (e.g., each student is-a person).
A person entity has properties common to both
student and instructor entities, specifically
name and age. Each student entity not only
possesses properties specific to student (i.e.,
enrollments and advisor), but also inherits the
properties of name and age by virtue of being a
person. Similarly, each Instructor entity has
properties specific to instructor (i.e., dept and
rank), in addition to the properties name and age
inherited from being a person. The actual ADA-
PLEX syntax used in the definition of this data-
base is shown in Figure 2.3. Notice that the
degree of overlap between the extents of two
entity types is explicitly constrained. Such
overlaps can be total or partial. The overlap-
ping of the person, student, and instructor
entity sets in the above example is illustrated
graphically in Figure 2.4. The outer circle
represents the set of person entities. The two
inner circles represent the subset of person
entities that are also student entities and
instructor entities, respectively. The intersec-
tion of these two inner circles represents the

Credit e 1

Figure 2.2 An ADPAPELX Database with Type Overlap

Mexico City, September, 1982

database UNIVKRSITT &

t eRANK& -P ASST-PROF, ASSOC-PROF, FULLJROF);

t e
T- F,

SEMESTER &
w, S);

DEPARTMENT ;

&XR~ PERSON is entit
NAME : STRINxlti
AGE: INTEGKR; -

entity; end

eLNSE?OR ie entity

DEPT : :DEPARkNT;
end entite;

&~RR STUDENT is entity
ADVISOR: INSTRUCTOR partial;
ENROLLMENTS: set of COURSE;

snd entitv;

lyEn COURSE is entit
TITLE: STRING(1. .30 --+:
OFFKRED IN: SlkZSTER;
CREDITST INTEGER range 1..4;

end entity;

&y~g DEPARTMENT & entit
NAMR: STRING(1..30 I?
MAJORS: set of STUDENT;

pnd entitv;

uniaue NAME within PERSON;
uniaue NAM?, within DEPARTMENT;
uniaue TITLE~n COURSE ;
contain INSTR-& PERSON :
contain STUDENT in PEI RSON; -
81 1(~~e INSTRUCTOR-~ STUDENT;

end UNIVFRSITT ;

Figure 2.3 Definition of an Example Database

subset of person entities that are both student
entities and instructor entities.

Aside from general integrity constraints
that may be explicitly declared as part of the
database definition and that are enforced at the
end of each database transaction, there are a
number of invariant properties implied by the
data model. These latter are in some sense
treated as being more fundamental. Their vali-
dity is enforced at the end of each user-
specified database interaction, rather than at
the grosser transaction level. These fundamental
constraints include:

e Referential/range constraint. The range of an
entity-valued function may be another entity
type in the database. When an entity of the
latter type is deleted, it is necessary to
ensure that there are no dangling references.
For scalar and string functions, Ada provides
the facilities for constraining the range of

Proceedings of the Eighth International Conference
on Very Large Data Bases 124

--

student-instructors

Figure 2.4 Example of Entity Set Overlap

possible values in the underlying value set.
For example, the range of integers, the preci-
sion of real numbers, and the enumeration of
values in a discrete type can all be defined.

Extent overlap constraint. An entity can be
included into the extent of an entity type
only if overlaps among the extents of all of
the types to which it currently belongs, and
the extent of the type to which it is to be
included, are permissible. At the same time,
excluding an entity from the extent of a
specified type will also exclude it from the
extent of all subtypes whose extents are com-
pletely contained in the extent of the type in
question.

Totality constraint. A total function must be
defined for all elements in its domaina;; ai:
times; when a new entity is created,
its values for various total functions must be
IUlOWU.

Uniqueness constraint. One or more groups of
single-valued functions within an entity type
may optionally be declared to be unique. That
is, each group of functions will yield
distinct combinations of values when applied
to distinct entities of the underlying type.
This type of constraint is enforced automati-
cally on insertions and updates.

This concludes our overview of the ADAPLEX _- -_ .
data model. The interested readers are reterred
to [Smith81, Smith821 for more details on the
syntax and semantics of the ADAPLEX language.

3. STORAGE AND ACCESS STRUCTURE DESIGN

Our choice for the set of data structures
and implementation options to incorporate in the
LDM has been motivated primarily by three con-
siderations:

e Support for high-level ADAPLEX modelling con-
structs. Our data model provides several
functional capabilities not euppor ted by
models used in contemporary systems. In par-
ticular, we need to devise new structures to
eff icientl represent information concerning
entities t at belong to multiple overlapping ii
entity types.

Mexico City, September, 1982

6 Maintenance of fundamental semantic integrity
constraints. The underlying data model
implies several fundamental constraints that
must be enforced on database updates. Because
of the universal nature of these
it

constraints,
is desirable to design special structures

to facilitate their enforcement.

e Performance tuning. Since different struc-
tures and implementation options are best
suited for different patterns of use, effi-
ciency can be attained only through organiza-
tion tuning. We seek to achieve good perfor-
mance by providing the database designer with
a good range of implementation alternatives
that he can choose to match a ainst the
requirements of his applications.(l P

We are assuming an environment where the
bulk of the database is stored’on conventional
block-oriented storage devices. In this context,
two fundamental design issues are: the appropri-
ate clustering of information often used together
to maximize
efficient

the locality of reference, and the
support for frequently traversed

associative access paths to minimize the amount
of sequential searching required. More specif i-
tally, we are concerned with:

6 Grouping of information concerning entities
into logical records. Logical records of the
same type are assumed to store the same set of
fields.

8 Placement of logical records into physical
files. Each file is a linear address space
that is mapped into physical blocks of storage
devices. Logical records of the same type may
optionally b; divided into groups, each of
which mav then be stored in different files.
possibly Lsing different placement strategies:
We will refer to each of these groups of logi-
cal records as a storage record type. Dif-
f erent storage record types that originate
from the same generalizatron hierarchy may
also be stored in the same file to achieve the
desired clustering of information.

8 Support for efficient associative access to
stored records. The primary organization or
placement strategy for the stored records in a
file will determine the primary access path to
these records. In addition, auxiliary access
structures can be maintained in order to pro-
vide direct access based on secondary key
fields that are not used to determine record
placement.

3.1 Representing Entities and Entity Functions

The basic modelling concepts in ADAPLEX are
those of entities and entity functions. To
represent ’ functions
entity-val$YZnctions), it

(in particular,
is important that

entities be uniquely identifiable. However? the
data model does not require that each entity be
uniquely identifiable externally. That is, for
entities of a given type, there does not neces-
sarily exist a function (or a combination of
functions) that yields a distinct value (or a
tIEin;; combinatihn.of values) when applied to

the entrtres. Therefore. for Internal
unique identification purposes, an -entity iden-
tifrer is assigned to each entity upon creation.
This entity identifier then serves to stand for
the entity in the representation of functions.(2)

The set of functions that are applicable to
an entity depends on the entity type(s) to which
it belongs. Three different categories of infor-
mation about an entity need to be stored:

6 Values for applicable functions. This
corresponds to values for attributes relevant
to the entities in question and is typical of
information accessed by applications in
current database systems.

e Typing information. Given an entity, it is
often necessary to determine the set of entity
types (among a set of overlapping types) to
which it belongs. Such a capabilrty is essen-
tial for determining whether a function can
legally be applied to the entity on hand. Por
example, in looping through entities of the
type person, it is legal to apply the enroll-
ments function to an entity only if that
entity is also included in the type student.

8 Additional control information. The deletion
semantics of ADAPLEX requires that upon
excluding an entity from an entity type, that
entity must no longer be referenced by other
entities (i.e., it is no longer in the active
range of entity-valued functions). An effi-
cient way to check for the satisfaction of
such constraints is through the maintenance of
reference counts that indrcate the number of
times each entity is referred to by entity
functions, one for each entity type to which
it belongs. (3)

Below, we describe our representation
schemes for the above categories of function. We
will first describe the mapping of entity func-
tions into logical records and then introduce the
notion of an entity directory as a receptacle for
the remaining typing and reference count informa-
tion.

3.1 .l Mapping Function Values Into
Logical Records

As mentioned earlier, an important perfor-
mance consideration is the clustering of informa-
tion often needed together. In terms of the
representation of functions, there are a number
of obvious clustering alternatives:

(1) Our desire for tunability must, however, be
balanced against the complexity and size of re-
quired software. Besides, in the absence of
powerful design aids, we must ensure that the
design freedom we provide to designers can be
exploited effectively.

(2) Of course, given an entity identifier, it
should be possible to obtain efficiently all in-
formation known about the corresponding entity.

(3) An exclusion operation is legal only if the
corresponding reference count is zero.

Proceedings of the Eighth International Conference
on Very Large Data Bases 125 Mexico City, September, 1982

The no grouping approach. Each entity func-
tion is stored as a binary relation (i.e., a
two-attribute file) .

The complete grouping approach. The values
for all functions that are applicable to an
entityindependent of entity types within a
generalization hierarchy) are stored in the
same record.

The semantic grouping approach. The values
for all (noninherited) functions applicable to
an entity from the viewpoint of a particular
entity type are stored in the same record.

The arbitrary grouping approach. The values
for functions applicable to an entity are
stored in an arbitrary number of records to
suit the usage pattern.

Our decision here is to use a combination of
the semantic grouping approach and the no group-
ing approach. As a default, we will use the
semantic grouping approach- and store values for
all noninherited avplicable functions from the
same entity-type -;iewpoint in the same record.
In cases where arbitrarily
(repeating/varying ~>$feields that might tzif
plicate storage allocation, we provide for the
option of storing such fields as individual
secondary records. Our rationale for such a
choice is that while the no grouping ap roach
results in an overly fragmented database,(4 P the
complete grouping- app;oach has the -opposite
effect.(S) As we shall see later, when coupled
with the horizontal partitioning and clusteiing
options, our approach is flexible enough to per-
mit the grouping together of & information
known about &lJ entities of a given type, while
being completely isolated from other irrelevant
information.(6) By clustering all of the record
types that store information on a set of entities
from different viewpoints, an organization that
approximates the complete grouping approach can
also be obtained as a special case. Finally, we
disallow arbitrary grouping of functions because
we fear that this may result in too enormous a
physical design space, one which a human database
designer may not be able to utilize effectively.
Besides, a significant increase in software com-
plexity may also result.

In summary, to store the values of functions
applicable to entities, there will be one primary
logical record type corresponding to each entity
type l Typically, each primary logical record
includes one field for the identifier of the

(4) It is frequently true that values for multi-
ple functions applied to the same entity are
of ten needed together.

(5) The end result is that unnecessary data
transfers often have to be made.

(6) An entity type that is lower in a generali-
zation hierarchy conceptually inherits all the
functions applicable to its ancestors in the
hierar thy . Rather than duplicating such infor-
mation, we allow the use of clustering to ap-
propriately juxtapose the related information.

entity beine represented. and a number of reneat-
ing 0; nonrepealing fields for each set-valued or
sinele-valued function (as aonlied to the entity
in -question and not speciEled for
representation).

separate
In addition, there may be zero

or more secondary logical records for separately
represented functions. Only the primary logical
records may be considered for further horizontal
partitioning and clustering. Each type of secon-
hary logicai record will be stored as-a separate
two-attribute file(7) that will permit efficient
associative access based on entity identifiers.
In case an entity belongs to multiple entity
types, there will be one primary logical record
for each entity type to which it belongs.

3 .1.2 Entity Directory

To keep the remaining information concerning
entities, an entity directory is maintained for
each generalization hierarchy. The information
stored in the entity directory is essentially
redundant and can be obtained through sequential
searching of logical records that represent enti-
ties. The purpose of the entity directory, how-
ever, is to centralize all information known
about entities in order to permit efficient
access. In the entity directory, there will be
one entry for each entity that belongs to at
least one of the types in the underlying general-
ization hierarchy. In addition to the typing
information and the reference count information,
the directory entry for each entity will also
contain physical pointers to the primary storage
records that store values for applicable func-
tions, one for each entity type to which it
belongs. Thus, given an entity identifier, all
stored information concerning the entity can be
located either directly in the entity directory
itself or indirectly through it.

Occasionally, an entity may belong to an
arbitrary number of types in a generalization
hierarchy. Thus, an entry in an entity directory
may have to store a varying number of pointers.
We use a varying length record representation for
the entries to reduce storage overhead. The
organization of the entries also must support
efficient associative access based on entity
identifiers. Furthermore, to permit the inclu-
sion of new entities and to reuse the space occu-
pied by entries for defunct entities, it is
important that a dynamic file organization be
used. For this reason, we choose to or anize the
entity directory using linear hashing r: Larson80,
Litwin 1. Each associative retrieval of an
entry based on entity identifier can typically be
made in one page access, regardless of growth or
shrinkage of the directory.

3.2 Horizontal Partitioning of Primary
Logical Records

In order to achieve better inter and intra
entity type information clustering, we support

(7) That is, the entity identifier will be in-
cluded as one of the attributes.

Proceedings of the Eighth International Conference
on Very Large Data Bases

126
Mexico City, September, 1982

the options of mapping one primary logical record
type into several disjoint storage record types,
and also the option of

record types
clustering multiple

storage originating from the same
generalization hierarchy in the same file.

Consider the following generalization
hierarchy involving the entity types persons,
students, and instructors.(8) Assume that stu-
dents and instructors do not overlap (i.e., a
person cannot be both a student and an instruc-
tar>. An alternative to storing all the person
records in the same file is to divide the
records into disjoint groups, and to stof?FEE
groups of records in different files. If we view
all of the logical records of a given type as a
table, then the grouping may be viewed as parti-
troning this table horizontally. Instead of hor-
izontal partitioning based on arbitrary criteria,
we require that the partitioning be based on pro-
perties of overlapping type membership only. - In
the above generalization hierarchy, we can divide
person records into records for:

8 person who is a student
6 person who is an instructor
8 person who is neither a student nor an

instructor

Alternatively, to suit a different usage
pattern, we can divide the person records into
records for :

6 person who is an instructor
w person who is not an instructor

Now consider a generalization
where student and instructor do overlap.

hierarchy
Rere we

may want to divide person records into:

6 person who is a student but is not an instruc-
tor

o person who is an instructor but is not a stu-
dent

e person who is both a student and an instruc-
tor .

e person who is neither a student nor an
instructor.

In essence, the blocks of a horizontal par-
titioning scheme are defined by a number of nono-
verlapping block definition predicates. Each
block- - definition predicate may- consist of a con-
junction of type condi-
tions

inclusion/noninclusion
involving types that overlap with the type

in question.(9) In addition to the blocks defined
by each of these predicates, a complementary
block is also induced by the complement of their
disjunction when this complement is satisfiable.
That is, records that do not satisfy any of the
block definition predicates will be stored in the
complementary block.

(8) That is, each student is also a person and
each instructor is also a person.

(9) The use ;i dt;$u;c,tt;n& subtype membership
properties 1s in effect sup-
ported since we allow the placement of two or
more blocks from the same horizontal partitioning
scheme in the same file.

Proceedings of the Eighth International Conference 177

3.3 Placement of Storage Records

mines
The primary organization of a file deter-

how records are to be positioned within the
file. In general, the placement criteria may be
based on:

6 The entity identifier of the record
8 One or more other fields stored in the record
e The positioning of related records

Typical file organizations may be dichotom-
ized as static versus dynamic. In a static
organization, records do not move once they have
been inserted in the file. When the original
(primary) space assigned to the file runs out,
overflow space
chained onto

(typically additional pages
the original pages) is used to

accommodate the subsequently inserted
records.(lO) Contrarily, in a dynamic organiza-
tion, the amount of primary space assigned to a
file grows or shrinks dynamically in response to
insertions and deletions. Records are moved as a
result of page splitting and merging operations
(used to maintain a certain loading factor) and
to guarantee a certain level of associative
access efficiency and uniformity.

For an infrequently updated file, a static
organization typically is faster than a dynamic
organization. However, the amount of overflow in
a statically organized file is liable to become
excessive and unbalanced, requiring costly
neriodic reorganization of the whole file. This
will result in-the file’s inaccessibility while
reorganization is in progress. In a dynamically
organized file, reorganization is performed
incrementally and continuously, so that perfor-
mance and accessibility tends to be more uniform.
The drawback with having to move records around
in response to insertions and deletions is that
pointers to these records cannot readily be main-
tained. On the other hand, the storage of such
pointers is often necessary in auxiliary access
structures in order to provide additional access
paths to the records. As we shall see in subse-
quent discussions, it is possible to replace phy-
sical pointers to records with logical pointers
consisting of entity identifiers in order to
minimize the impact of record relocation. HOW-
ever, this will require indirection through the
entity directory for each access.

It is our belief that there will be situa-
tions where a static organization is more desir-
able than a dynamic one, and vice versa. BOW-
ever, in an attempt to limit the size and com-
plexity of the system, we have decided to support
dynamic organizations only in the initial imple-
mentation. Our rationale is that stability is
often more critical than performance, and that
the need to initiate reorganization is too much
of a burden on users in many applications [Stone-
braker80 1. As will be discussed in Section 3.6,

(10) The distinction between primary and over-
flow is that access to a record in the ove;fttgF
space can be made only by first accessing
records in the primary space. Thus, it is more
expensive to access a record in the overflow
space.

on Very Large Data Bases
..-I

Mexico City, September, 1982

we have an optimization scheme for approximating
the performance characteristics of static file

a scheme very similar to one that is obtained by
storine values for all annlicable functions in

organizations through the storage of hybrid
pointers (combination of logical and physical

the same record.(lZ) In gen&al, we allow multi-

pointers).
ple storage records representing the same under-
lying entity to be clustered together. We also

From an alternate viewpoint, we can distin-
guish between organizations based on address cal-
culation (randomization) and those that use
tree-structured directories. Typically, a tree-
structured organization provides the capability
of accessing records in key order, which is not
feasible in randomized organizations. On the
other hand, a randomized organization isr~;~~~y
more efficient for accessing individual .
To accommodate a range of applications, we have
decided to support both randomized and tree-
structured organizations. Thus, the dynamic

allow multiple storage record types that ori-
ginate from the the same logical record type to
provide the functions for determining record
placement.

Besides contiguous clustering based on one-
to-one relationships, it is possible to perform
clustering based on one-to-many relationships.
For example, if there is a one-to-man relation-
ship between department and employee ir department
is a single-valued function applicable to
employee entities), we may require each employee
record to be stored close to the corresponding
department record. In this case, it may not
always be possible to store all of the employee
records related to a particular department record
on the same page. Rather, it may be more reason-
able to require that they be stored only in the
same general vicinity (a small fraction of the
file space). We will call this type of cluster-

organizations we support initially- will include
Comer791 and linear hashing
.

It should be noted that the choice of pri-
mary organization is allowed for only in the case
of primary storage records. Secondary storage
records will always be organized using linear
hashing since the predominant access mode will be
keyed on individual entity identifiers.

3.4 Clustering of Storage Record Types

In addition to positioning criteria based
purely on record contents, we also support the
placement of records dependent on the position of
related records. For example, we may want to
store a student storage record next to a person
storage record when they represent the same
underlying entity. In particular, we may combine
clustering with horizontal partitioning to
achieve better juxtapositioning of information
within the same generalization hierarchy. For
example, we may map person logical records into
storage records for person who is also an
instructor, and storage records for person who is
not an instructor, and then cluster the instruc-
tor storage records with the first group of per-
son storage records. In this way, all the infor-
mation concerning instructor entities will be
readily accessible together.

In the above example, the clustering is
based on a one-to-one relationship, namely,
records representing the w entity are to be
stored close to each other. In this case, we
require the related records to be stored adja-
cently on the same page, so that a single page
access will sufZZ for their simultaneous
access.(ll) We will call such clustering continu-
ggg. As a special case, if we cluster both stu-
dent records and instructor records with the
corresponding person records, we effectively have

(11) In fact, we will construct a hybrid record
to combine the information from the original
records representing the same under1 ing entity.
In general, a (hybrid or nonhybrid 3 record may
consist of a fixed length portion followed by a
varying length portion. We require only that
the fixed length portion of the combined record
not span page boundaries.

ing noncontinuous. One practical way to imple-
ment noncontinuous clusterine is in coniunction

.a

with a static file organization. Inszead of
requiring that all related records be found on
the same page, related records are localiz;: ;;t;
on pages assigned to the same bucket.
case, all related records can be located by a
sequential scan of the entire bucket. As in con-
tiguous clustering, multiple types of records may
be clustered. For example, we may want to store
Employee records close to the related Department
records, and to store Dependent records close to
corresponding Employee records. However, in view
of our decision not to support static organiza-
tion initially, we must also postpone support for
noncontiguous clustering.

3.5 Auxiliary Access Structures

In addition to primary access paths provided
by record placement strategies, often it is
desirable to support associative access based on
additional criteria. As in conventional systems,
we permit the maintenance of simple and combined
indices on logical records of a given type. Con-
ceptually, an index provides a mapping from an
indexed key value (or combination of values) to a
set of pointers to the storage records that con-
tain the indexed value (or combination of
values). (As will be seen in the next section,

(12) A single record header is used to describe
a group of records that represent the same
underlying entity that is being clustered to-
gether. This header will also replicate the
typing information in order to eliminate access
to the entity directory when it is necessary to
obtain information about an entity from the
viewpoints of several overlapping entity types,
and this information is already clustered in the
same hybrid record. Pointers from the entity
directory point to the combined record instead
of to the individual records.

Proceedings of the Eighth International Conference
on Very Large Data Bases 128 Mexico City, September, 1982

we will use only logical and hybrid pointers to
point to dynamically organized records.) As for
the organization for -the index file(l3) the
options of using either a B*-tree organization or
a linear hashing organization may both be useful.
(There is no advantage for using a static organi-
zation for the index file since records in this
file are not pointed to by records in other
files.) A linear hashing organization provides
more efficient
search.

access based on an equality
Typically, a single access is all that

is needed to locate a particular index entry. A
B*-tree organization, on the other hand, requires
one access for each level of the tree, while vro-
viding a fuller range of functional capabilities:
the ability to access index entries in key order
makes it useful in the resolution of ranze
queries. In addition,
‘such an index to

it is also possible to uie
retrieve all records

order .
in key

Both types of organizations are allowed
for in the LDM implementation.

Another relevant organizational issue is how
a pointer list should be represented. While most
contemporary systems use a sorted array represen-
tation, there are also some which automatically
convert an array representation to a bit-map
representation when a list gets long. The advan-
tage of the latter scheme is that it results in a
much more compact representation on which bitwise
operations can be performed in order to implmnent
set operations on pointer lists.
be more difficult to intersect

However, it may
pointer lists that

use different representation. For the sake of
software simplicity, we restrict our initial
implementation to the array representation only.

3.6 Hybrid Pointers

Pointers in data structures are essential
for supporting associative access. These
pointers may be of a logical nature, or they may
be physically oriented. A logical pointer has
the advantage of providing a higher level of data
independence. Hewer, once a logical pointer is
obtained, an extra level of searching must be
performed to acquire an actual physical pointer
to the desired information. the
entity ident if ier

In our context,
serves as a logical pointer,

with the entity directory ‘providing the indirec-
tion. When a storage record that stores inforzia-
tion concerning an entity has to be relocated,
only the corresponding entry in the entity direc-
tory needs to be updated; ail other records that
store the entity identifier of
entity need not be modified.

the affected
For indices that

point to dynamically organized records, it would
be appropriate to store logical pointers to sim-
plify pointer maintenance.

As a physical pointer, we use the page

(13) Each record in this file consists of an in-
dexed key value and an associated pointer list.

number together with the direct
offset of

or indirect (14)
the record within the page. Physical

pointers have the advantage of directness. How-
ever, the price we pay is pointer maintenance
when records are relocated. Since we support
only dynamic organizations, we do not permit the
use of physical pointers in isolation in secon-
dary indices or
tions.

in the representation of func-

As an optimization, however, we support the
option of combining a physical pointer with a
logical pointer to form a hybrid pointer. For
example, when representing a function from course
to student, it may be useful to store both the
student entity identifier. and the physical
pointer to the student record. The rationale is
that often when the student function is applied
to the course entity, one is interested oniy in
the student aspects of the target entity. Simi-
larly, in the index on age for the student record
type, we can store both the entity identifiers
and the physical pointers to the student records.
In general. we can follow the nhvsical portion of
a hybrid pointer to find the- p&ted-to record,
and then compare the entity identifier stored
there against the logical pointer portion of the
hybrid pointer on hand. If the two entity iden-
tifiers do not match, we know that the pointed-to
record has been relocated. In this case, the
corresponding entry in the entity directory
should be examined to determine the new address
of the relocated record, and the hybrid pointer
should be updated. The advantage of this scheme
is that records can be relocated without regard
to the Pointers that noint to them. Only the
entity directory needs to-be updated. The hybrid
Pointers are rwalidated when thev are next used.
Thus in a high update situation, ; record may be
relocated many times before pointers pointing to
it need be updated.

4. SUMMARY

We have presented a set of storage and
access structures for supporting a semantic data
model. The prominent features of this data
model, which are intended to capture more appli-
cation semantics than constructs found in conven-
tional data models, include the notions of gen-
eralization hierarchies and referential con-
straints. Our design allows for the flexible
tuning of database organizations to match appli-
cation requirements. The design space encozr
passes such options as horizontal and vertical
partitioning of information within an entity
type, as well as the clustering of information
across entity types within the same generaliza-
tion hierarchy. Dynamic file organizations are
used for the storing of data records, and the
concept of hybrid pointers is introduced for the

(14) In the case of varying length records, it
is often desirable to be able to relocate a
record within a page without having to update
all pointers that point to the relocated record.
The indirection of the physical pointer can
solve the problem by means of indexing informa-
tion stored at the bottom of the same page.

Proceedings of the Eighth International Conference
on Very Large Data Bases

129
Mexico City, September, 1982

purpose of pointing to dynamically relocatable
records in the representation of inverted lists
in secondary indices,
of interentity

and in the representation
relationships. The underlying

DBMS that supports the discussed set of storage
and access structures is being developed by the
Computer Corporation of America. It is scheduled
to be completed in 1983.

5. ACKNOWLEDGEMENTS

We are indebted to Professor Philip Bern-
stein, Professor Nathan Goodman, Dr. Randy Katz,
Terry Landers, Frank Manola, Dr. James Rothnie,
Dr. Diane Smith, and Dr. John Smith for providing
us with invaluable input and feedback during the
design of the Local Database Manager to support
the ADAPLEX language.

6. REFERENCES

[Bayer721
Bayer, R., C. McCreight, “Organization and
Maintenance of Large Ordered Indexes,” Acta

- lnformatica, Vol. 1, No. 3, 1972.

[Comer791
Comer, D., “The Ubiquitous B-Tree,” ACM Com-
puting Surveys, Vol. 11, No. 2, June, 1979.

[Date81 1
Date, C. J., “Referential Integrity,” m
Conference Proceedings, 1981.

[DoD80 1
United States Department of Defense, “Refer-
ence Manual for the Ada Programming
Language, ” Proposed Standard Document, July
1980.

Proceedings of the Eighth International Conference
on Very Large Data Bases 130

[Larson80 1
Larson, P.,
Ex ansions, ”

“Linear Hashing With Partial

19fso.
u Conference Proceedinps,

[Litwin I
Litwin, W., “Linear Hashing: A New Tool for
File and Table Addressing,” m Conference
Proceedings, 1980.

iMcLeod76 I
McLeod, D. J., “Righ Level Domain Definition
in a Relational Database,” Proceedinns for
ACM SIGPLAN/SIGMOD Co,nf erence on Da=
Abstraction, Definition, & StrucG,
1976.

[Shipman 1
Shipman, D., “The Functional Data Model and
the Data Language DAPLEX,” & Transactions
z Database Systems, Vol. 6, No. 1, March
1981.

[Smith771
Smith, J. M., D. C. P. Smith, “Database
Abstractions : Aggregation and Generaliza-
tion, ” & Transact&s on Database Systems,
Vol. 2, No. 2, June, 197x

[Smith81 1
Smith. J. M.. S. Fox, T. Landers, “Reference
Manuai for -ADAPLEX;” Technical-Report CCA-
81-02, Computer Corporation of America,
January 1981.

[Smith821
Smith. J. M.. S. Fox, T. Landers, ’ ‘ADAPLEX :
The -Integration of the DAPLEX Database
Language with the Ada Programming Language, ”
Technical Report, Computer Corporation of
America, in preparation.

IStonebraker801
S tonebraker , M., “Retrospection on a Data-
base System,” ACM Transactions gn Database
Systems, Vol. 5, No. 2, June 1980.

Mexico City, September, 1982

