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Abstract 

This paper describes the design of storage 
and access structures for a high performance Ada* 
compatible database management system. This sys- 
tem supports the database application programming 
language ADAPLEX ISmith81, Smith821, which is the 
result of embedding the database 
DAPLEX [ Shipman 1 

sublanguage 
in the general purpose 

language Ada [DoD80 1. A prominent feature of the 
underlying data model is its support for general- 
ization hierarchies [Smith771 which are intended 
to simplify the mapping from conceptual entities 
to database objects. An in-depth discussion of 
the rationale behind our choice of storage and 
access structures to support semantics intrinsic 
to the data model and to permit physical database 
organization tuning is provided in this paper. 

1. INTRODUCTION 

We are presently engaged in the development 
of a distributed database management system that 
is compatible with the programming language Ada 
[DoD80 I. This system supports the general pur- 
pose database ap lication 
ADAPLEX [ Smith82 P 

programming language 
which is the result of embed- 

ding the database iublanguage DAPLEX [Shipman 
in Ada. This DBMS is intended to go beyond sys- 
tems like INGRES and System R, which are based on 

the older relational technology, in terms of 
modelling capabilities and ease of use. Two ver- 
sions of the DBMS are being developed. A cen- 
tralized DBMS, called the Local Database Manager 
(LDM). is designed for hinh nerformance and for 
use ai a standralone syst&.* A distributed DBMS, 
called the Distributed Database Manager (DDM) , 
interconnects multiple LDMs in a computer network 
in order to provide rapid access to data for 
users who are geographically separated. This 
paper describes the set of storage and access 
structures supported in the LDM implementation. 

The version of DAPLEX used in the formation 
of ADAPLEX is a simplification of the language 
described in [Shipman811. However, all the key 
concepts have been retained. The semantics of 
database structure is defined in terms of entity 
types and relationships between entity types. 
Aside from the use of functional notations for 
expressions that significantly enhance the natur- 
alness and readability of programs, the most 
prominent language feature that distinguishes 
ADAPLEX from other database languages is its sup- 

P 
ort for the notion of generalization hierarchies 
Smith77 I. In this paper, we present our design 

for a set of storage and access structures that 
supports semantics intrinsic to the data model 
and permits the tuning of physical database 
organization. Section 2 provides a summary of 
the data model underlying the ADAPLEX language. 
Section 3 identifies our design objectives and 
presents an in-depth discussion of the rationale 
behind our design decisions. 

2. DATA MDDEL SUMMARY 

This research was jointly supported by the De- 
fense Advanced Research Projects Agency of the 
Department of Defense and the Naval Electronic 
Systems Command under Contract Number N00039- 
80-C-0402. The views and conclusions contained 
in this paper are those of the authors and 
should not be interpreted as necessarily 
representing the official policies, either exl 
pressed or implied, of the Defense Advanced 
Research Projects Agency, the Naval Electronic 
Systems Command, or the U.S. Government. 

*Ada is a trademark of the Department of Defense 
(Ada joint program office). 

The basic modelling constructs in ADAPLEX 
are entities and functions. These are intended 
to correspond to conceptual objects and their 
properties. Entities with similar generic pro- 
perties are grouped together to form entity sets. 
Functions may be single-valued or set-valued. 
They may also be total or partial. Each (total) 
function, when applied to a given entity, returns 
a specific property of that Each pro- 
perty 

entity. 
is represented in terms of either a single 

value or a set of values. Such values can be 
drawn from noncomposite, Ada-supported data types 
and character strings, or they can refer to (com- 
posite) entities stored in the database as 
values. 
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Consider a university database modelling 
students, instructors, departments, and courses. 
Figure 2.1 is a graphical representation of the 
logical definition for such a database in ADA- 
PLEX. 
entity 

The big rectangles depict (composite) 
types and the smaller rectangles indicate 

(noncomposlte) Ada data types. 
double 

The single and 
arrows represent respectively single- 

valued and set-valued functions that map entities 
from their domain types into their corresponding 
range types. 

One notable difference between .the data 
model underlying ADAPLEX and the relational data 
model is that referential constraints 
which are 

[Date81 I, 
extremely general and fundamental in 

database applications but not easily specifiable 
in relational contexts, 
ADAPLEX. 

are directly supported in 
In other words, the definition of the 

range of a function in our model is much more 
precise than the definition of the domain of a 
column in the relational model. At the same 
time, for functions that range over noncomposite 
values, we are able to exploit Ada’s type defini- 
tion facilities and avoid the need to introduce a 
separate domain definition facility [McLeod761, 
as has been proposed for a relational environ- 
ment . 

that 
In relational systems, a real-world entity 

plays several roles in an application 
environment is typically represented by tuples in 
a number of relations. In the example university 
database, we might have an instructor named John 
Doe and a student also named John Doe, who are in 
fact the same person in real life. In this case, 
we might want to impose the constraint that the 
age of John Doe as an instructor should agree 
with the age of John Doe as a student. This con- 

Figure 2.1 An ADPAPELX Database 
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straint can be more simply expressed in ADAPLEX 
by declaring a new entity type called person, 
indicating that student and instructor are sub- 
types of person, and that age is a function 
applicable to person. The function inheritance 
semantics of ADAPLEX automatically guarantees the 
consistency of age information on student and age 
information on instructor since age is a function 
inherited from the supertype person. At the same 
time, inherited functions can be applied directly 
to an entrty rn ADAPLEX data manrpulation con- 
structs, without the need for tedious explicit 
joining operations. Figure 2.2 is a graphical 
representation of the revised database defini- 
tion. The double-edged arrows represent is-a 
relationships (e.g., each student is-a person). 
A person entity has properties common to both 
student and instructor entities, specifically 
name and age. Each student entity not only 
possesses properties specific to student (i.e., 
enrollments and advisor), but also inherits the 
properties of name and age by virtue of being a 
person. Similarly, each Instructor entity has 
properties specific to instructor (i.e., dept and 
rank), in addition to the properties name and age 
inherited from being a person. The actual ADA- 
PLEX syntax used in the definition of this data- 
base is shown in Figure 2.3. Notice that the 
degree of overlap between the extents of two 
entity types is explicitly constrained. Such 
overlaps can be total or partial. The overlap- 
ping of the person, student, and instructor 
entity sets in the above example is illustrated 
graphically in Figure 2.4. The outer circle 
represents the set of person entities. The two 
inner circles represent the subset of person 
entities that are also student entities and 
instructor entities, respectively. The intersec- 
tion of these two inner circles represents the 

------------------------------------------------- 

Credit e 1 

Figure 2.2 An ADPAPELX Database with Type Overlap 
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database UNIVKRSITT & 

t eRANK& -P ASST-PROF, ASSOC-PROF, FULLJROF); 

t e 
T- F, 

SEMESTER & 
w, S); 

DEPARTMENT ; 

&XR~ PERSON is entit 
NAME : STRINxlti 
AGE: INTEGKR; - 

entity; end 

eLNSE?OR ie entity 

DEPT : :DEPARkNT; 
end entite; 

&~RR STUDENT is entity 
ADVISOR: INSTRUCTOR partial; 
ENROLLMENTS: set of COURSE; 

snd entitv; 

lyEn COURSE is entit 
TITLE: STRING(1. .30 --+: 
OFFKRED IN: SlkZSTER; 
CREDITST INTEGER range 1..4; 

end entity; 

&y~g DEPARTMENT & entit 
NAMR: STRING(1..30 I? 
MAJORS: set of STUDENT; 

pnd entitv; 

uniaue NAME within PERSON; 
uniaue NAM?, within DEPARTMENT; 
uniaue TITLE~n COURSE ; 
contain INSTR-& PERSON : 
contain STUDENT in PEI RSON; - 
81 1(~~e INSTRUCTOR-~ STUDENT; 

end UNIVFRSITT ; 

Figure 2.3 Definition of an Example Database 

subset of person entities that are both student 
entities and instructor entities. 

Aside from general integrity constraints 
that may be explicitly declared as part of the 
database definition and that are enforced at the 
end of each database transaction, there are a 
number of invariant properties implied by the 
data model. These latter are in some sense 
treated as being more fundamental. Their vali- 
dity is enforced at the end of each user- 
specified database interaction, rather than at 
the grosser transaction level. These fundamental 
constraints include: 

e Referential/range constraint. The range of an 
entity-valued function may be another entity 
type in the database. When an entity of the 
latter type is deleted, it is necessary to 
ensure that there are no dangling references. 
For scalar and string functions, Ada provides 
the facilities for constraining the range of 
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------------------------------------------------ 

student-instructors 

Figure 2.4 Example of Entity Set Overlap 

------------------------------------------------- 

possible values in the underlying value set. 
For example, the range of integers, the preci- 
sion of real numbers, and the enumeration of 
values in a discrete type can all be defined. 

Extent overlap constraint. An entity can be 
included into the extent of an entity type 
only if overlaps among the extents of all of 
the types to which it currently belongs, and 
the extent of the type to which it is to be 
included, are permissible. At the same time, 
excluding an entity from the extent of a 
specified type will also exclude it from the 
extent of all subtypes whose extents are com- 
pletely contained in the extent of the type in 
question. 

Totality constraint. A total function must be 
defined for all elements in its domaina;; ai: 
times; when a new entity is created, 
its values for various total functions must be 
IUlOWU. 

Uniqueness constraint. One or more groups of 
single-valued functions within an entity type 
may optionally be declared to be unique. That 
is, each group of functions will yield 
distinct combinations of values when applied 
to distinct entities of the underlying type. 
This type of constraint is enforced automati- 
cally on insertions and updates. 

This concludes our overview of the ADAPLEX _- -_ . 
data model. The interested readers are reterred 
to [Smith81, Smith821 for more details on the 
syntax and semantics of the ADAPLEX language. 

3. STORAGE AND ACCESS STRUCTURE DESIGN 

Our choice for the set of data structures 
and implementation options to incorporate in the 
LDM has been motivated primarily by three con- 
siderations: 

e Support for high-level ADAPLEX modelling con- 
structs. Our data model provides several 
functional capabilities not euppor ted by 
models used in contemporary systems. In par- 
ticular, we need to devise new structures to 
eff icientl represent information concerning 
entities t at belong to multiple overlapping ii 
entity types. 
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6 Maintenance of fundamental semantic integrity 
constraints. The underlying data model 
implies several fundamental constraints that 
must be enforced on database updates. Because 
of the universal nature of these 
it 

constraints, 
is desirable to design special structures 

to facilitate their enforcement. 

e Performance tuning. Since different struc- 
tures and implementation options are best 
suited for different patterns of use, effi- 
ciency can be attained only through organiza- 
tion tuning. We seek to achieve good perfor- 
mance by providing the database designer with 
a good range of implementation alternatives 
that he can choose to match a ainst the 
requirements of his applications.(l P 

We are assuming an environment where the 
bulk of the database is stored’on conventional 
block-oriented storage devices. In this context, 
two fundamental design issues are: the appropri- 
ate clustering of information often used together 
to maximize 
efficient 

the locality of reference, and the 
support for frequently traversed 

associative access paths to minimize the amount 
of sequential searching required. More specif i- 
tally, we are concerned with: 

6 Grouping of information concerning entities 
into logical records. Logical records of the 
same type are assumed to store the same set of 
fields. 

8 Placement of logical records into physical 
files. Each file is a linear address space 
that is mapped into physical blocks of storage 
devices. Logical records of the same type may 
optionally b; divided into groups, each of 
which mav then be stored in different files. 
possibly Lsing different placement strategies: 
We will refer to each of these groups of logi- 
cal records as a storage record type. Dif- 
f erent storage record types that originate 
from the same generalizatron hierarchy may 
also be stored in the same file to achieve the 
desired clustering of information. 

8 Support for efficient associative access to 
stored records. The primary organization or 
placement strategy for the stored records in a 
file will determine the primary access path to 
these records. In addition, auxiliary access 
structures can be maintained in order to pro- 
vide direct access based on secondary key 
fields that are not used to determine record 
placement. 

3.1 Representing Entities and Entity Functions 

The basic modelling concepts in ADAPLEX are 
those of entities and entity functions. To 
represent ’ functions 
entity-val$YZnctions), it 

(in particular, 
is important that 

entities be uniquely identifiable. However? the 
data model does not require that each entity be 
uniquely identifiable externally. That is, for 
entities of a given type, there does not neces- 
sarily exist a function (or a combination of 
functions) that yields a distinct value (or a 
tIEin;; combinatihn.of values) when applied to 

the entrtres. Therefore. for Internal 
unique identification purposes, an -entity iden- 
tifrer is assigned to each entity upon creation. 
This entity identifier then serves to stand for 
the entity in the representation of functions.(2) 

The set of functions that are applicable to 
an entity depends on the entity type(s) to which 
it belongs. Three different categories of infor- 
mation about an entity need to be stored: 

6 Values for applicable functions. This 
corresponds to values for attributes relevant 
to the entities in question and is typical of 
information accessed by applications in 
current database systems. 

e Typing information. Given an entity, it is 
often necessary to determine the set of entity 
types (among a set of overlapping types) to 
which it belongs. Such a capabilrty is essen- 
tial for determining whether a function can 
legally be applied to the entity on hand. Por 
example, in looping through entities of the 
type person, it is legal to apply the enroll- 
ments function to an entity only if that 
entity is also included in the type student. 

8 Additional control information. The deletion 
semantics of ADAPLEX requires that upon 
excluding an entity from an entity type, that 
entity must no longer be referenced by other 
entities (i.e., it is no longer in the active 
range of entity-valued functions). An effi- 
cient way to check for the satisfaction of 
such constraints is through the maintenance of 
reference counts that indrcate the number of 
times each entity is referred to by entity 
functions, one for each entity type to which 
it belongs. (3) 

Below, we describe our representation 
schemes for the above categories of function. We 
will first describe the mapping of entity func- 
tions into logical records and then introduce the 
notion of an entity directory as a receptacle for 
the remaining typing and reference count informa- 
tion. 

3.1 .l Mapping Function Values Into 
Logical Records 

As mentioned earlier, an important perfor- 
mance consideration is the clustering of informa- 
tion often needed together. In terms of the 
representation of functions, there are a number 
of obvious clustering alternatives: 

(1) Our desire for tunability must, however, be 
balanced against the complexity and size of re- 
quired software. Besides, in the absence of 
powerful design aids, we must ensure that the 
design freedom we provide to designers can be 
exploited effectively. 

(2) Of course, given an entity identifier, it 
should be possible to obtain efficiently all in- 
formation known about the corresponding entity. 

(3) An exclusion operation is legal only if the 
corresponding reference count is zero. 
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The no grouping approach. Each entity func- 
tion is stored as a binary relation (i.e., a 
two-attribute file) . 

The complete grouping approach. The values 
for all functions that are applicable to an 
entityindependent of entity types within a 
generalization hierarchy) are stored in the 
same record. 

The semantic grouping approach. The values 
for all (noninherited) functions applicable to 
an entity from the viewpoint of a particular 
entity type are stored in the same record. 

The arbitrary grouping approach. The values 
for functions applicable to an entity are 
stored in an arbitrary number of records to 
suit the usage pattern. 

Our decision here is to use a combination of 
the semantic grouping approach and the no group- 
ing approach. As a default, we will use the 
semantic grouping approach- and store values for 
all noninherited avplicable functions from the 
same entity-type -;iewpoint in the same record. 
In cases where arbitrarily 
(repeating/varying ~&gt$feields that might tzif 
plicate storage allocation, we provide for the 
option of storing such fields as individual 
secondary records. Our rationale for such a 
choice is that while the no grouping ap roach 
results in an overly fragmented database,(4 P the 
complete grouping- app;oach has the -opposite 
effect.(S) As we shall see later, when coupled 
with the horizontal partitioning and clusteiing 
options, our approach is flexible enough to per- 
mit the grouping together of & information 
known about &lJ entities of a given type, while 
being completely isolated from other irrelevant 
information.(6) By clustering all of the record 
types that store information on a set of entities 
from different viewpoints, an organization that 
approximates the complete grouping approach can 
also be obtained as a special case. Finally, we 
disallow arbitrary grouping of functions because 
we fear that this may result in too enormous a 
physical design space, one which a human database 
designer may not be able to utilize effectively. 
Besides, a significant increase in software com- 
plexity may also result. 

In summary, to store the values of functions 
applicable to entities, there will be one primary 
logical record type corresponding to each entity 
type l Typically, each primary logical record 
includes one field for the identifier of the 

(4) It is frequently true that values for multi- 
ple functions applied to the same entity are 
of ten needed together. 

(5) The end result is that unnecessary data 
transfers often have to be made. 

(6) An entity type that is lower in a generali- 
zation hierarchy conceptually inherits all the 
functions applicable to its ancestors in the 
hierar thy . Rather than duplicating such infor- 
mation, we allow the use of clustering to ap- 
propriately juxtapose the related information. 

entity beine represented. and a number of reneat- 
ing 0; nonrepealing fields for each set-valued or 
sinele-valued function (as aonlied to the entity 
in -question and not speciEled for 
representation). 

separate 
In addition, there may be zero 

or more secondary logical records for separately 
represented functions. Only the primary logical 
records may be considered for further horizontal 
partitioning and clustering. Each type of secon- 
hary logicai record will be stored as-a separate 
two-attribute file(7) that will permit efficient 
associative access based on entity identifiers. 
In case an entity belongs to multiple entity 
types, there will be one primary logical record 
for each entity type to which it belongs. 

3 .1.2 Entity Directory 

To keep the remaining information concerning 
entities, an entity directory is maintained for 
each generalization hierarchy. The information 
stored in the entity directory is essentially 
redundant and can be obtained through sequential 
searching of logical records that represent enti- 
ties. The purpose of the entity directory, how- 
ever, is to centralize all information known 
about entities in order to permit efficient 
access. In the entity directory, there will be 
one entry for each entity that belongs to at 
least one of the types in the underlying general- 
ization hierarchy. In addition to the typing 
information and the reference count information, 
the directory entry for each entity will also 
contain physical pointers to the primary storage 
records that store values for applicable func- 
tions, one for each entity type to which it 
belongs. Thus, given an entity identifier, all 
stored information concerning the entity can be 
located either directly in the entity directory 
itself or indirectly through it. 

Occasionally, an entity may belong to an 
arbitrary number of types in a generalization 
hierarchy. Thus, an entry in an entity directory 
may have to store a varying number of pointers. 
We use a varying length record representation for 
the entries to reduce storage overhead. The 
organization of the entries also must support 
efficient associative access based on entity 
identifiers. Furthermore, to permit the inclu- 
sion of new entities and to reuse the space occu- 
pied by entries for defunct entities, it is 
important that a dynamic file organization be 
used. For this reason, we choose to or anize the 
entity directory using linear hashing r: Larson80, 
Litwin 1. Each associative retrieval of an 
entry based on entity identifier can typically be 
made in one page access, regardless of growth or 
shrinkage of the directory. 

3.2 Horizontal Partitioning of Primary 
Logical Records 

In order to achieve better inter and intra 
entity type information clustering, we support 

(7) That is, the entity identifier will be in- 
cluded as one of the attributes. 
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the options of mapping one primary logical record 
type into several disjoint storage record types, 
and also the option of 

record types 
clustering multiple 

storage originating from the same 
generalization hierarchy in the same file. 

Consider the following generalization 
hierarchy involving the entity types persons, 
students, and instructors.(8) Assume that stu- 
dents and instructors do not overlap (i.e., a 
person cannot be both a student and an instruc- 
tar>. An alternative to storing all the person 
records in the same file is to divide the 
records into disjoint groups, and to stof?FEE 
groups of records in different files. If we view 
all of the logical records of a given type as a 
table, then the grouping may be viewed as parti- 
troning this table horizontally. Instead of hor- 
izontal partitioning based on arbitrary criteria, 
we require that the partitioning be based on pro- 
perties of overlapping type membership only. - In 
the above generalization hierarchy, we can divide 
person records into records for: 

8 person who is a student 
6 person who is an instructor 
8 person who is neither a student nor an 

instructor 

Alternatively, to suit a different usage 
pattern, we can divide the person records into 
records for : 

6 person who is an instructor 
w person who is not an instructor 

Now consider a generalization 
where student and instructor do overlap. 

hierarchy 
Rere we 

may want to divide person records into: 

6 person who is a student but is not an instruc- 
tor 

o person who is an instructor but is not a stu- 
dent 

e person who is both a student and an instruc- 
tor . 

e person who is neither a student nor an 
instructor. 

In essence, the blocks of a horizontal par- 
titioning scheme are defined by a number of nono- 
verlapping block definition predicates. Each 
block- - definition predicate may- consist of a con- 
junction of type condi- 
tions 

inclusion/noninclusion 
involving types that overlap with the type 

in question.(9) In addition to the blocks defined 
by each of these predicates, a complementary 
block is also induced by the complement of their 
disjunction when this complement is satisfiable. 
That is, records that do not satisfy any of the 
block definition predicates will be stored in the 
complementary block. 

(8) That is, each student is also a person and 
each instructor is also a person. 

(9) The use ;i dt;$u;c,tt;n& subtype membership 
properties 1s in effect sup- 
ported since we allow the placement of two or 
more blocks from the same horizontal partitioning 
scheme in the same file. 

Proceedings of the Eighth International Conference 177 

3.3 Placement of Storage Records 

mines 
The primary organization of a file deter- 

how records are to be positioned within the 
file. In general, the placement criteria may be 
based on: 

6 The entity identifier of the record 
8 One or more other fields stored in the record 
e The positioning of related records 

Typical file organizations may be dichotom- 
ized as static versus dynamic. In a static 
organization, records do not move once they have 
been inserted in the file. When the original 
(primary) space assigned to the file runs out, 
overflow space 
chained onto 

(typically additional pages 
the original pages) is used to 

accommodate the subsequently inserted 
records.(lO) Contrarily, in a dynamic organiza- 
tion, the amount of primary space assigned to a 
file grows or shrinks dynamically in response to 
insertions and deletions. Records are moved as a 
result of page splitting and merging operations 
(used to maintain a certain loading factor) and 
to guarantee a certain level of associative 
access efficiency and uniformity. 

For an infrequently updated file, a static 
organization typically is faster than a dynamic 
organization. However, the amount of overflow in 
a statically organized file is liable to become 
excessive and unbalanced, requiring costly 
neriodic reorganization of the whole file. This 
will result in-the file’s inaccessibility while 
reorganization is in progress. In a dynamically 
organized file, reorganization is performed 
incrementally and continuously, so that perfor- 
mance and accessibility tends to be more uniform. 
The drawback with having to move records around 
in response to insertions and deletions is that 
pointers to these records cannot readily be main- 
tained. On the other hand, the storage of such 
pointers is often necessary in auxiliary access 
structures in order to provide additional access 
paths to the records. As we shall see in subse- 
quent discussions, it is possible to replace phy- 
sical pointers to records with logical pointers 
consisting of entity identifiers in order to 
minimize the impact of record relocation. HOW- 
ever, this will require indirection through the 
entity directory for each access. 

It is our belief that there will be situa- 
tions where a static organization is more desir- 
able than a dynamic one, and vice versa. BOW- 
ever, in an attempt to limit the size and com- 
plexity of the system, we have decided to support 
dynamic organizations only in the initial imple- 
mentation. Our rationale is that stability is 
often more critical than performance, and that 
the need to initiate reorganization is too much 
of a burden on users in many applications [Stone- 
braker80 1. As will be discussed in Section 3.6, 

(10) The distinction between primary and over- 
flow is that access to a record in the ove;fttgF 
space can be made only by first accessing 
records in the primary space. Thus, it is more 
expensive to access a record in the overflow 
space. 

on Very Large Data Bases 
..-I 
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we have an optimization scheme for approximating 
the performance characteristics of static file 

a scheme very similar to one that is obtained by 
storine values for all annlicable functions in 

organizations through the storage of hybrid 
pointers (combination of logical and physical 

the same record.(lZ) In gen&al, we allow multi- 

pointers). 
ple storage records representing the same under- 
lying entity to be clustered together. We also 

From an alternate viewpoint, we can distin- 
guish between organizations based on address cal- 
culation (randomization) and those that use 
tree-structured directories. Typically, a tree- 
structured organization provides the capability 
of accessing records in key order, which is not 
feasible in randomized organizations. On the 
other hand, a randomized organization isr~;~~~y 
more efficient for accessing individual . 
To accommodate a range of applications, we have 
decided to support both randomized and tree- 
structured organizations. Thus, the dynamic 

allow multiple storage record types that ori- 
ginate from the the same logical record type to 
provide the functions for determining record 
placement. 

Besides contiguous clustering based on one- 
to-one relationships, it is possible to perform 
clustering based on one-to-many relationships. 
For example, if there is a one-to-man relation- 
ship between department and employee ir department 
is a single-valued function applicable to 
employee entities), we may require each employee 
record to be stored close to the corresponding 
department record. In this case, it may not 
always be possible to store all of the employee 
records related to a particular department record 
on the same page. Rather, it may be more reason- 
able to require that they be stored only in the 
same general vicinity (a small fraction of the 
file space). We will call this type of cluster- 

organizations we support initially- will include 
Comer791 and linear hashing 
. 

It should be noted that the choice of pri- 
mary organization is allowed for only in the case 
of primary storage records. Secondary storage 
records will always be organized using linear 
hashing since the predominant access mode will be 
keyed on individual entity identifiers. 

3.4 Clustering of Storage Record Types 

In addition to positioning criteria based 
purely on record contents, we also support the 
placement of records dependent on the position of 
related records. For example, we may want to 
store a student storage record next to a person 
storage record when they represent the same 
underlying entity. In particular, we may combine 
clustering with horizontal partitioning to 
achieve better juxtapositioning of information 
within the same generalization hierarchy. For 
example, we may map person logical records into 
storage records for person who is also an 
instructor, and storage records for person who is 
not an instructor, and then cluster the instruc- 
tor storage records with the first group of per- 
son storage records. In this way, all the infor- 
mation concerning instructor entities will be 
readily accessible together. 

In the above example, the clustering is 
based on a one-to-one relationship, namely, 
records representing the w entity are to be 
stored close to each other. In this case, we 
require the related records to be stored adja- 
cently on the same page, so that a single page 
access will sufZZ for their simultaneous 
access.(ll) We will call such clustering continu- 
ggg. As a special case, if we cluster both stu- 
dent records and instructor records with the 
corresponding person records, we effectively have 

(11) In fact, we will construct a hybrid record 
to combine the information from the original 
records representing the same under1 ing entity. 
In general, a (hybrid or nonhybrid 3 record may 
consist of a fixed length portion followed by a 
varying length portion. We require only that 
the fixed length portion of the combined record 
not span page boundaries. 

ing noncontinuous. One practical way to imple- 
ment noncontinuous clusterine is in coniunction 

.a 

with a static file organization. Inszead of 
requiring that all related records be found on 
the same page, related records are localiz;: ;;t; 
on pages assigned to the same bucket. 
case, all related records can be located by a 
sequential scan of the entire bucket. As in con- 
tiguous clustering, multiple types of records may 
be clustered. For example, we may want to store 
Employee records close to the related Department 
records, and to store Dependent records close to 
corresponding Employee records. However, in view 
of our decision not to support static organiza- 
tion initially, we must also postpone support for 
noncontiguous clustering. 

3.5 Auxiliary Access Structures 

In addition to primary access paths provided 
by record placement strategies, often it is 
desirable to support associative access based on 
additional criteria. As in conventional systems, 
we permit the maintenance of simple and combined 
indices on logical records of a given type. Con- 
ceptually, an index provides a mapping from an 
indexed key value (or combination of values) to a 
set of pointers to the storage records that con- 
tain the indexed value (or combination of 
values). (As will be seen in the next section, 

(12) A single record header is used to describe 
a group of records that represent the same 
underlying entity that is being clustered to- 
gether. This header will also replicate the 
typing information in order to eliminate access 
to the entity directory when it is necessary to 
obtain information about an entity from the 
viewpoints of several overlapping entity types, 
and this information is already clustered in the 
same hybrid record. Pointers from the entity 
directory point to the combined record instead 
of to the individual records. 
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we will use only logical and hybrid pointers to 
point to dynamically organized records.) As for 
the organization for -the index file(l3) the 
options of using either a B*-tree organization or 
a linear hashing organization may both be useful. 
(There is no advantage for using a static organi- 
zation for the index file since records in this 
file are not pointed to by records in other 
files.) A linear hashing organization provides 
more efficient 
search. 

access based on an equality 
Typically, a single access is all that 

is needed to locate a particular index entry. A 
B*-tree organization, on the other hand, requires 
one access for each level of the tree, while vro- 
viding a fuller range of functional capabilities: 
the ability to access index entries in key order 
makes it useful in the resolution of ranze 
queries. In addition, 
‘such an index to 

it is also possible to uie 
retrieve all records 

order . 
in key 

Both types of organizations are allowed 
for in the LDM implementation. 

Another relevant organizational issue is how 
a pointer list should be represented. While most 
contemporary systems use a sorted array represen- 
tation, there are also some which automatically 
convert an array representation to a bit-map 
representation when a list gets long. The advan- 
tage of the latter scheme is that it results in a 
much more compact representation on which bitwise 
operations can be performed in order to implmnent 
set operations on pointer lists. 
be more difficult to intersect 

However, it may 
pointer lists that 

use different representation. For the sake of 
software simplicity, we restrict our initial 
implementation to the array representation only. 

3.6 Hybrid Pointers 

Pointers in data structures are essential 
for supporting associative access. These 
pointers may be of a logical nature, or they may 
be physically oriented. A logical pointer has 
the advantage of providing a higher level of data 
independence. Hewer, once a logical pointer is 
obtained, an extra level of searching must be 
performed to acquire an actual physical pointer 
to the desired information. the 
entity ident if ier 

In our context, 
serves as a logical pointer, 

with the entity directory ‘providing the indirec- 
tion. When a storage record that stores inforzia- 
tion concerning an entity has to be relocated, 
only the corresponding entry in the entity direc- 
tory needs to be updated; ail other records that 
store the entity identifier of 
entity need not be modified. 

the affected 
For indices that 

point to dynamically organized records, it would 
be appropriate to store logical pointers to sim- 
plify pointer maintenance. 

As a physical pointer, we use the page 

(13) Each record in this file consists of an in- 
dexed key value and an associated pointer list. 

number together with the direct 
offset of 

or indirect (14) 
the record within the page. Physical 

pointers have the advantage of directness. How- 
ever, the price we pay is pointer maintenance 
when records are relocated. Since we support 
only dynamic organizations, we do not permit the 
use of physical pointers in isolation in secon- 
dary indices or 
tions. 

in the representation of func- 

As an optimization, however, we support the 
option of combining a physical pointer with a 
logical pointer to form a hybrid pointer. For 
example, when representing a function from course 
to student, it may be useful to store both the 
student entity identifier. and the physical 
pointer to the student record. The rationale is 
that often when the student function is applied 
to the course entity, one is interested oniy in 
the student aspects of the target entity. Simi- 
larly, in the index on age for the student record 
type, we can store both the entity identifiers 
and the physical pointers to the student records. 
In general. we can follow the nhvsical portion of 
a hybrid pointer to find the- p&ted-to record, 
and then compare the entity identifier stored 
there against the logical pointer portion of the 
hybrid pointer on hand. If the two entity iden- 
tifiers do not match, we know that the pointed-to 
record has been relocated. In this case, the 
corresponding entry in the entity directory 
should be examined to determine the new address 
of the relocated record, and the hybrid pointer 
should be updated. The advantage of this scheme 
is that records can be relocated without regard 
to the Pointers that noint to them. Only the 
entity directory needs to-be updated. The hybrid 
Pointers are rwalidated when thev are next used. 
Thus in a high update situation, ; record may be 
relocated many times before pointers pointing to 
it need be updated. 

4. SUMMARY 

We have presented a set of storage and 
access structures for supporting a semantic data 
model. The prominent features of this data 
model, which are intended to capture more appli- 
cation semantics than constructs found in conven- 
tional data models, include the notions of gen- 
eralization hierarchies and referential con- 
straints. Our design allows for the flexible 
tuning of database organizations to match appli- 
cation requirements. The design space encozr 
passes such options as horizontal and vertical 
partitioning of information within an entity 
type, as well as the clustering of information 
across entity types within the same generaliza- 
tion hierarchy. Dynamic file organizations are 
used for the storing of data records, and the 
concept of hybrid pointers is introduced for the 

(14) In the case of varying length records, it 
is often desirable to be able to relocate a 
record within a page without having to update 
all pointers that point to the relocated record. 
The indirection of the physical pointer can 
solve the problem by means of indexing informa- 
tion stored at the bottom of the same page. 
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purpose of pointing to dynamically relocatable 
records in the representation of inverted lists 
in secondary indices, 
of interentity 

and in the representation 
relationships. The underlying 

DBMS that supports the discussed set of storage 
and access structures is being developed by the 
Computer Corporation of America. It is scheduled 
to be completed in 1983. 
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