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Abstract

A physical design mcthodology for nctwork model databases is
developed using the theory of separability, In particular, a large
subsct of practically important access structures provided by
network model database systems is shown to have the property of
scparability under the usage specification scheme proposed. The
theory of separability was introduced in an carlier work, in the
context of relational systems, as a formal basis for partitioning the
problem of designing the optimal physical database. The thcory
proves that, given a certain sct of access structures and a usage
specification scheme, the problem of optimal assignment of access
structures to the entire database can be reduced to the subproblem
of optimizing individual record types independently of one another.
The approach presented significantly reduces the complexity of the
design problem which has the potential of being combinatorially
cxplosive.

1. Introduction

Performance is an important issuc in designing databases. As a
result, the problem of physical databasc design has been given
much attention in recent years. This problem concerns finding an
optimal configuration of physical files and access structures — given
the logical access paths that represent the interconnection among
objects in the data models, the usage pattern of those paths, the
organizational characteristics of stored data, and the various features
provided by a particular database management system (DBMS)
[HST 70} [CAR 75}[SCH 75][SEV 75][HAM 76][YAO 77] [BAT
80} [GER 771{GAM 77]. Throughout this paper, we use the term
access structure as a generic term for both access methods (e.g.,
indexes) and storage structures (c.g., various strategies for the
placement of records) that a particular DBMS provides. In the
physical database design, access structures are specified to support
logical objects (such as record types or the entire databasc) in the
database. We use the term access configuration of a logical object to
mean the aggregate of access structures specified to support that
logical object.
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In the past, most of the rescarch on this subject concentrated on
rather simple cases dealing with a single file; in many cascs, such a
file represents the storage structure for onc logical object (such as a
rclation in the relational model or a record type in the nctwork
model). In a databasc organization, however, the access
configurations for many logical objects have complex
interrelationships and access patterns. A simple extension of single-
file analyses does not suffice for understanding the interactions
among logical objects.

Some efforts have been devoted to the cases of multiple logical
objects [GER 77]{BAT 80} [KAT 80]. The approaches cmployed,
however, cither fall short of accomplishing automatic design of
optimal physical databases or provide only general, not quantitative
mcthods. Cost models were developed in [GER 77] and [BAT 80],
but it is difficult to use them for the optimal design of physical
databases without an exhaustive scarch among all possible access
configurations of the database. (A mecthod bascd on heuristic
pruning of the scarch spacc has been reported in [SCH 79].) As
pointed out in [GER 77], a rclevant partitioning of the entire design
is necessary to make the optimal design of physical databases a
practical matter, :

The theory of separability, which was uscd in [WHA-a 81] for the
physical dcsign of relational databases, can be employed for
network model databases as well. The theory proves that, if certain
conditions are satisfied, the problem of designing the optimal
physical databasc can be reduced to the subproblem of optimizing
individual record types indcpendently of one another. Once the
problem has been partitioned, the techniques developed for single-
file designs can be applied to solve the subproblems. The
conditions to be satisfied, however, are general in nature, and their
details must be analyzed for individual systems to be considered.

We shall develop, in this paper, a physical design methodology
for network model databascs using the property of separability.
Since network model database systems provide different varicty of
access structures and have different characteristics (e.g., they are
more procedural in naturc) than relational systems do, we need to
set up a fairly different framework (cspecially usage specification)
for the development of a design methodology. Therefore, we shall
put emphases on developing a usage specification scheme that is
suitable for describing the nctwork model database environment
and on proving that, under this usage specification scheme, a large
subsct of practically important access structqr’cs that arc available in
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network model database systems satisfies the conditions for
separability. 'This design procedure based on the property of
scparability will then be extended, using heuristics, to include other
access structures that are not considered initially. We discuss the
issucs involved in designing the access configuration of a physical
database so as to minimize the number of disk accesses for a set of
read and update transactions that act upon it.

We choose the system specification given in the Journal of
Development  of CODASYL Data Description Language
Committee [COD-a 78] and that of CODASYL Cobol Committee
[COD-b 78] (CODASYL °78 Database Specification) as our
environment. Features provided in this report will be bricfly
introduced in Section 2. Section 3 introduces key assumptions,
while Section 4 describes the principle of separability and the
design theory. A design algorithm based on the theory will be
introduced in Section 5. Extensions of our approach are mentioned
bricfly in Section 6.

2. CODASYL ’78 Database Specification

In this scction, we introduce the features provided by the
CODASYL "78 Databasc Specification. (We use the *78 dcs'cription
to handle a broader spectrum of access structures that may be uscd
in nctwork model database systems. The *71 version can be trcated
in a similar but easier way.) In this new spccification, the concept of
storage schema has becen introduced to scparatc many storage-
related aspects from the conceptual schema. The storage schema is
defined by using the Data Storage Description Language (DSDL)
which is scparate from the Data Description Language (Schema
DDL). Among many new features, the following ones are of
interest in the physical database design: (Note that the DSDL in
[COD-a 78]} was only a proposed draft. In our discussion, however,
we kcep using this version as a model for network model database
systems.)

e The schema DDL now allows multiple record keys to be
defined for each record type. A record key is called a record-
ordering key if an order is defined for it by specifying
ASCENDING or DESCENDING.

o Indexes can be defined in the storage schema to support the
record keys specified in the conceptual schema.  Indexes can
also be used to represent a SET type, i.e., as pointer arrays.
([hroughout this paper, the term SET will be used to mean a
DBTG set.)

o A serial scan of all the records of a record type is possible by
specifying a record-order key in the subschema, which in turn
should be mapped to a record-ordering key in the conceptual
schema. Only onc record-order key can be defined in the
subschema. Serial order here implics only a logical ordering
and does not necessarily mean that the records are actually
stored sequentially.

e The placement of a record (location mode in carlier terms)
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can be doﬁc in any onc of three different ways. (We ignore
secondary options such as DISPLACEMENT or WITH in the
DSDL..) A record can be :

o Placed according to a CALC key,

o Clustered via a SET defined in the conceptual schema,
~and, optionally placed near the owner,

o Stored scquentialfy in ascending or descénding order
according to the valuc of a sct of data items.

3. Assumptions

In this section, we summarize the key assumptions’ that will be
used throughout the paper.

The database is assumed to reside on disklike devices. Physical
storage space for the database is divided into fixed-size units called
blocks [WIE 77]. The block is not only the unit of disk allocation,
but also the unit of transfer between the main memory and the disk.

We assume that records of all types are stored in one area, and
that they are randomly scattered therein. -It is assumed that the
clustering of records of the member type of a SET affects the
relative distances between records of that type, but does not affect
the distances between records of other types. To make this
assumption valid, we exclude the clustering of member records near
their owner record.

We assume that the CALC records are randomly distributed, and
that the average number of block accesses required to access one
record by CALC key is the same for any record type and for any
key, depending only on the overall load factor of the area.

We ignore any disparity in the size of records of the owner type
of a SET that results from various SET implementations, so that a
SET implementation affects the size of member records only
(because of the space needed for additional pointers). Furthermore,
if an index is used to represent a SET occurrence, it is assumed that
this index is not stored near the owner record (i.c., the NEAR
OWNER option for the placement of index entries is excluded from
our consideration).

A multimember SET and other options, such as sorted SETs, will
not be considered.

4. Design Theotry

In this section, we develop the design thcory based on the
concept of scparability. Specifically, we introduce the formal
definition of separability, formulate the partial-operation cost, and
show that the model system (which will be defined in Section 4.2)
consisting of a subset of access structurcs in CODASYL °73
Database  Specification, satisfies the scparability under the
assumptions we made in Scction 3 and the usage specification we
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shall develop. A cost model similar to the one developed by
Gerritsen [GER 77] is introduced as an example of a separable
system. Finally, update costs are discusscd briefly.

4.1. Theorem of Separability

Definition 1: The procedure of designing the optimal access
configuration of a network modecl database is separable if it can be
decomposed into the tasks of designing the optimal configurations
of individual record types independcntly of one another. O

Definition 2: A partial-operation cost of a transaction is that part
of the transaction-processing cost that represents the accessing of
only one record type, as well as of the auxiliary access. structures
defined forit. O

We consider various SET implementations to be the access
-structures that belong to their member record type. Accordingly,
the access cost of owner records, when they are accessed through
the SET, will be included in the partial-operation cost for the
member record type as shown in Equation 5.

Definition 3: A partial operation is a conceptual division of the
transaction whose processing cost is a partial-operation cost. O

Theorem 1: The procedure of designing the optimal access
configuration of a network model database is separable if the
following conditions are satisfied:

1. The partial-operation cost of a transaction for a record type
can be determined regardless of the access configuration
specified for and the partial operation used for the other
record types. '

2. A partial operation for a record type can be chosen regardless
of partial operations used for the other record types.

Proof: Condition 2 states that, in selecting a partial operation of
a transaction for a record type, we are not constrained by the partial
operations chosen for the other record types. Furthermore, since a
partial-operation cost of a record type is not affected by the access
configurations of and the partial operations used for the other
record types, neither the specific access structures assigned to onc
record type nor the partial operation used for it can affect any
design parameters for other record types. It is therefore guarantced
that there will be no interference among the designs of individual
record types. 0

4.2. Access Structures in the Model System
Our model includes the following access structures:

1. Placement by a CALC key

2. Placement by CLUSTERING VIA SET (but not NEAR
OWNER)
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3. Indexes
4. Singular SETs
5. Record-order key
6. Various SET implementations
a. Link with next pointer
b. Link with next pointer and prior pointer
c. Link with next pointer, prior pointer, and owner pointer
d. Link with next pointer and owner pointer
¢. SET implementation by index (pointer array)

Although a singular SET is specified in the conceptual schema, it
is an option that can be used to improve the performance. Thus, we
view it here as an access structure available for the physical database
design. The record-order key defined in the subschema is likewise
regarded as an access structure.

The placement strategies

1. SEQUENTIAL

2. CLUSTERED VIA SET NEAR OWNER

are not included here, since, in the following situations, a condition
for separability is not satisfied:

Situation 1: In Figure 4-1 we have two record types, R, and R,,
that are the owner and the member types, respectively, of SET type
S. The symbol — —* in the figure represents a SET type and the
asterisk refers to the member record type. It is desired, while a
transaction is being processed, that SET type S be traversed from R,
to R1 for cvery record in Rz, and that the R2 records be scanned .
according to their physical order. The R2 records are stored
sequentially (by the SEQUENTIAL option) according to the values
of the data items whose values determine the set membership
(linking data items). (Linking data items correspond to the join
attributes in relational terms.)

Figure 4-1: Record Types R, R, and SET Typé S between Them

In this situation, the order of accessing the records of R] will be
random if R L records are not stored scquentially (by the
SEQUENTIAL option) according to the values of the linking data
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items. Randomly accessing R, records will result in approximately
onc block access for every record of Rz- However, if the records of
R, are stored sequentially, the records of R, will be-accessed in the
order of physical address, resulting in far fewer block accesses.
Thus, the partial-operation cost for R2 (note that the cost of
accessing R, records as owners through a SET is included in the
partial-operation cost for the member record type R,) is*dependent
on the access structure of R, (i.c., depends on whether or not Rl is
stored sequentially), which violates th¢ condition for scparability.
O

Situation 2: Figure 4-2 describes four record types, RO, Rl, R2,
and R3. Set types Sr Sz, and S3 are defined among them. If the
placement of R, records is declared as CLUSTERED VIA SET S,
NEAR OWNER, then R, records will be clustered around R,
records. Similarly, if the placement of R, records is declared as
CLUSTERED VIA SET S3 NEAR OWNER, then R, records will
be clustered around R1 records. Let us assume that the placement
strategy of R, records is CLUSTERED VIA SET S,. Then the
accessing of the member records (R1 records) of an occurrence of
SET S, will be different, depending on whether R, or R, is
clustered via its SET (S2 or S,) ncar the owner Rl, since the
intervening records will affect the distances between R, records.
Thus, the partial-operation cost for R, is dependent on the access
configurations of R2 or R3, which violates the cor_ldifion for
separability. O

Figure 4-2: Record Types Ry,R|,R,.R, with SET Types 31'82’83

In the model introduced in this section, a significant portion of
the access structurcs provided by the CODASYL ’78 Database
Spccification is included. Those access structures excluded will be
incorporated by a heuristic extension.

4.3. Usage Specification

The problem of designing an optimal physical database for
network model systems is difficult because of the intrinsic
procedural clements in those systems. Thus, once a physical
databasc is designed according to a certain usage specification in a
procedural form, there is a possibility that the usage pattern will
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change as users perceive a new physical structure. This happens
because the usage specification in a procedural form docs not
necessarily represent the optimal translation of the nonprocedural
specification. Nor can we get the optimal translation before we
have the specific physical databasc structure. (This is the classic
chicken-and-cgg problem.) Although the cycle may converge to
some local optimum, the true optimum cannot be achicved.

Another difficulty with procedural specifications stems from data
dependencies. As an cxample, let us assume that a record key is
defined in the conceptual schema and the subschema and that the
programs use it explicitly. This key cannot then be climinated
without changing all the programs that use it. Similarly, once a
singular set is defined in the schema and used by programs, it
cannot be eliminated without changing thesc programs. In the
system described by the DBTG proposal [COD 71], once a CALC
key has been defined and used in application programs, it cannot be
redefined without jeopardizing those programs.

One possible approach to averting all these problems would be to
employ a nonprocedural usage specification. We would then have
to have a hypothetical optimizer to translate the transaction in a
nonprocedural form into an optimal sequence of operations. In
principle, the design can be accomplished as follows:

o Enumerate all possible access configurations of the physical
database

e Using the hypothetical optimizer, evaluate the minimum
possible processing cost for each configuration

o Find out the access configuration that yields the minimum
cost.

If we design the optimal physical database structure, initially,
based on a nonprocedural usage specification, the application
programs will adapt themselves towards the true optimum. A good
initial design is particularly important when a full data
independence is not provided by the system.

We choose here a scheme for the usage specification that is rather
nonprocedural and is similar to the approach used in [GER 77].
The usage is divided into 2 classes: one is the usage representing
the entry to the database, the other the traversal of SETSs, in which
all the interactions among the different record types are reflected.
For the SET travcersal, the directions of the traversal (i.c., owner to
member or member to owner) are explicitly specified in the usage.
On the other hand, all the processing for the database entry is
subject to optimization. Thus, for each operation, a decision has to
be made as to which key is to be used (if the operation has a
predicate that matches more than one key), whether a scan using the
record-order key or the singular set is to be performed, ctc., so as to
yield the minimum cost. The fixed direction of a SET traversal is
necessary to make the design.separable, since, otherwise, both
directions have to be considered, and the choice of the direction will
depend on the access configurations of both record types.

The two classes of usage information are as follows:
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o For database entry

o fur (T. R PRED) is the frequency of entry to the
record type R in processing the transaction T. PRED
represents the predicate, which is in the. conjunctive

normal form, to be applicd to the rccord type R.A -

simple predicate is an cquality predicate on onc data
item, such as DATAITEM DATAVALUE. A
candidate key is defined as the list of all data items, each
of which appcars in a conjunct of PRED that is a simple
predicate.  Only candidate keys are considered as
potential record keys to be supported in the storage
schema.

o For SET traversal

o o (T. R, S, PRED) is the frequency of traversal of SET
type S, in processing transaction T, from the owner to
the member (record type R). PRED is the predicate to
be applied to the owner record type.

o fM o (T, R, S, PRED) is the frequency of traversal of SET

type S, in processing transaction T, from the member

(record type R) to the owner. PRED is the predicate to
be applied to the member record type. These
parameters arc illustrated in Figure 4-3.

f o (T.R 2_,_s_,_P>RED( R,))

<_...__
f,o(T.R,,S,PRED(R,))

Figure 4-3: Usage Parameters for SET Traversal

4.4. Formulation of Partial-Operation Costs

To formulate the partial-opcration cost, we develop the following
notation.

Elementary-Operation Costs

CENT(R, PRED, candidate-key)
The cost of scanning the records of type R using
the candidate-key with predicate PRED.

CSCAN(R, singular-set)
The cost of scanning the records of type R using
a singular set. o

Cocan(R, record-order-key)
The cost of scanning the records of type R using
the rccord-order-key.  The predicate is not
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resolved before the record is fetched.

Coean(R, area-scan) _
The cost of scanning the records of type R by
scanning the whole area.

COM(R, S) The cost of traversing one SET occurrence of
type S from the owner record to its member
records (of -type R). The cost of accessing the
owner record is excluded since the owner record
must have been accessed through other access
structures that belong to the owner record type.

CvoR. S) The cost of accessing member records and ‘the

owner record when traversing. one SET

occurrence of type S from a member record (of
type R) to its owner. The starting member
record is assumed to have been accessed already.

Usage-Transformation Functions

In Section 4.3, the usage associated with SETs was specified as
the frequencies of traversals of SET types. This must be translated
into the frequencics of traversals of SET occurrences. We need the
following definition and notation: - (The usage transformation
scheme that will be described here is suitable for the queries of two
record types. The usage specification for the queries of more-than-
two record types is currently being developed. It mainly has to deal
with predicate branches in the query graph.)

Definition 4: The linkage factor JR's of a record type R with
respect to a SET type S is the ratio of the number of records of type
R that are linked in any occurrence of S to the total number of
records of type R. (This is similar in concept to the join selectivity in
relational systems [WHA-a 81}.) O

n, :  Number of records of record type R
(cardinality).
Bes : Number of member records (of type R) in a

" SET occurrence of SET type S (grouping factor).

owner(R,S) : The owner record type of SET type S whose
member record type is R.
SEL(PRED,R) : Selectivity of predicate PRED when applied to

the records of type R.

We now define three usage-transformation functions in
accordance with three SET-related usage parameters.

F,,(f . T.R.S,PRED)= f_(T,R,S, PRED) X L
B ey X SELPRED, owner(R,8)) X I .o o
F,(f, T.R. S, PRED)= f,(T,R,S, PRED) X V)

bl(n, X I, V8, o ey Ny X SEL(PRED, R))
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Here the function b(m,g.k) computes the number of record groups
sclected, where k is the number of records sclected, g the number of
records in a group, and m the total number of record groups
considered. In the form in Equation 2, the b function gives the
number of set occurrences that have at Ieast one member record (of
type R) satisfying predicate PRED. An cxact form of this function
and various approximation formulas are summarized in [WHA-b
81]. It is approximately linear in k when k<n (n=mXg), and
approaches m as k becomes larger. A familiar approximation
suggested by Cardenas [CAR 75] is b(m,g,k) = m][l — (1 — l/g)k].

Partiul-Operation Cost

Given an access configuration of the physical database, the
partial-opcration cost of transaction T for record type R will be

POC(T,R) = Cost, . (T,R) + Cost,, . . (I,R), (3)
where
COStDl)ﬁN‘lliR(T’ R) = PREI‘;D min { @
min

candi dmc_kcy{fwr(’l',R,PRED)><CENT(R,PRED,candidatc-key)},
fa( TRPRED)XC, ., (R singular-set)!,

f(TRPRED)XC,_ (R,rccord-order-key)T,

ENT

foc(LR,PRED)XC, . (R,arca-scan)},
and
COStSl:TTRr\VERSE(T’ R) = 2 2 { (5)

SE{SET types whose member is R} PRED

Foulfoe TR, S, PRED) X C_ (R, S) +
Folfue T R, S, PRED) X C, (R, S}

Entrics in Equation 4 marked with the symbol § are considered
only when the corresponding access structures (singular set or
record-order key) are available in the given access configuration.

4.5, Separability for the Model System

To verify that the design of the physical database for our model is
indeced scparable, we have to show that the partial-operation cost
POC(T,R) for record type R is independent of the access structures
chosen for the other record types. For this purpose, we shall
consider each individual component of the partial-operation cost.
First, as shown in Equations 1 and 2, the usage-transformation
functions arc independent of access structures. They depend solely
on the characteristics of the data such as the cardinality of a record
type, linkage factors, grouping factors, or the selectivity of a
predicaté for a record type, cte. (These are already known at design
time.) . :
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Flementary-operation costs CN and CS(.A\l for a record type, say
R, are not afiected by the access structures of record types other
than R. We reason as follows:

o Hintering the database through record type R accesses only
records of type R.

o The records to be actually accessed and the order of accessing
them arc determined by the characteristics of the access
structures of R itsclf,

o [n accordance with our assumption in Section 3, clustering of
member records (but not near owner), access structures such
as indcexes, or various SIE1 implementations in any record
type other than R, do not affect the relative distances of
records of type R.

e The accessing cost when using a CALC key is not affected by
any access structures, since, on the basis of our assumption in
Section 3, this will depend solely on the load factor of the
area.

C OM(R, S), the cost of accessing the member records (of type R)
of one SET occurrence when it is traversed from the owner to
members, is dependent only on the access structures (e.g. SET
implementation or clustering) of R itself, because of rcasons similar
to those above.

CM O(R. S), which is the cost of accessing member records and the
owner record of one SET occurrence when it is traversed from a
member to the owner, consists of two components: the cost of
accessing the member records and the cost of accessing the owner
record. The former can be cxplained as in the previous case (COM).
The latter depends on whether the records of type R (which is the
member) are clustered on the linking data items. If so, the same
SET occurrence and accordingly the samc owner record will be
accessed consccutively. The owner record may well stay in the
buffer and causc one block access for one sct occurrence. However,
if the member records are not clustered, a SET occurrence can be
traversed repeatedly in a random order (i.c., not consccutively) and
will cause one block access to access the same owner record for cach
traversal of the SET occurrence. Thus, the cost of accessing the
owner records through a SET is dependent on the access structures
for its member record type. This is why we included that cost in the
partial operation cost for the member record type. Let us note that
this cost does not depend on the access structures of the owner type.

Since all the components of the partial processing cost for record
type R are independent of the access structures of other record
types, so is the partial processing cost, thus satisfying Condition 1
for scparability.

Condition 2 in Theorem 1 is satisficd, since we arc not restricted
at all in our choice of elementary opcrations (for database entering
or SET traversing) for a record type by choices made for other
record types. (This condition may be a significant restriction upon
relational systems, especially in the selection of join algorithms.)
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Hence, we conclude that entire design procedure for our model
system is separable.

4.6. Example Cost Model

As an example, let us investigate the cost model developed by
Gerritsen [GER 77]. Based on a similar system [GER 76] described
in the DBTG proposal {COD 71], it is presented here in a slightly
modified form incorporating the following assumptions to be
consistent with the assumptions we have used:

o Mcmber records of a SET occurrence cannot be clustered
near their owner.

o All the records of any type are stored in one area.

o The difference between sequential and random block accesses
is ignored, so that the cost measure is simply thec number of
block accesses.

o Predicates are normally assumed to qualify morc than one
record, so that ali the records of a type have to be accessed
when they are scanned. (If it is known that only one record
satisfics the predicate, only about half the records,: on the
average, will have to be accessed, which is the only case
considered in [GER 77].)

The following notation will be used in the cost model:

X 1 if the placement strategy of record type R is
CLUSTERED VIA SET' S, and 0 otherwise.

ZR Size in bytes of a record of type R.

B Size in bytes of a block.

LF Load factor of the arca in which the database is
stored. Here it is assumed to be constant
throughout the design procedure.

e Number of records of type R-(which is the
member) in a SET occurrence of type S.

Q 1 if SET type S has thc owner pointer, and 0
otherwise.

n, Number of records of type R (cardinality).

P Number of blocks in the area.

f An overflow function indicating the average

number of block accesscs, in excess of 1, required
to retrieve a record by a CALC key.
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We define MAC(R, S) (member-accessing Cost) as the expected
cost of complcting the physical accesses required to visit all the
members (of type R) of an occurrence of SET type S. Then we have

MACR, §) = x, ( X [z, % gR‘S) /(BX@A ~-0S5LF)]+
1- xR'S) X Bos'

The first term calculates the average number of blocks touched
when the placement strategy for record type R is CLUSTERED
VIA SET S. The factor 0.5 in the denominator is for adjusting the
load factor. This factor is obtaincd based on the assumption that
the load factor is 0 when the first SET occurrence is loaded, whercas
it is LF when the last SET occurrence is loaded. The second term
represents the cost when the placement strategy of the record type
R is not CLUSTERED VIA SET S, in which case the records in a
SET occurrence arce aceessed randomly.

Using MAC(R,S), we can obtain the elementary-operation costs
as follows:

C, (R, Calc-key) = 1 + fLF) 6)
Cooan(R, singular-set) = n, G)
C,.(R,S) = MAC(R, S) (3)
C R, 8) = 1-Q9) X 0.5 XMACR, 5) + 1 )

In Equation 9, it was assumed that accessing the owner record
causes one block access for each traversal of a SET occurrence
regardless of whether a SET occurrence is traversed consecutively
or randomly.

We note that all the elementary costs in this model for record
type R are independent of access configurations for the other record
types; consequently, the design is separable.

4.7. Update Cost

Although a detailed usage specification for update transactions
will not be devcloped here, the following points arc worth noting.

An update operation can be viewed as a serics of operations that
locate the record to be updated as well as those that are accessed on
the way of locating it. Thus, usage specifications similar to the ones
used in previous scctions can be employed for the updates.

As mentioned previously, we included the cost of accessing the
owner rccord through a SET in the partial-operation cost of the
member record type. By the samc token, the cost of updating the
pointers (used for a specific SET implementation) of the records of
the owner record type of a SET must be included in the partial-
operation cost of the member record type. This is because the cost
is a function of the specific SET implementation, and the SET
implementation is regarded as an access structure of the member
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record type.

It is not difficult to conclude that, if we scgregate the costs into
partial-operation costs for each record type as defined in Section 4,
update costs for a record type other than that of SET pointers will
not be affected by the access configurations for the other record
types,

5. Design Algorithm

In this scction, an algorithm for the design of optimal access
configurations will be presented. Based on the result of Theorem 1,
the algorithm is as follows:

Inputs:

o Usage information: fsm' fOM, fM o 38 defined in Section 4.3,
for each transaction, record type, SET type, and predicate,
together with their respective frequencies. Usage
specification of update transactions with their frequencies.

o Data characteristics: for each record type—its cardinality, the
size of a record, sclectivity of the domain of each data item,
the grouping and linkage factors of a rccord type with respect
to the SET types connected to it. The conceptual schema
specifying SET types defined among record types, SET
selection strategy, etc..

Algorithm:

1. Using the given usage information and data characteristics,
evaluate the usage-transformation functions (Fow FMO) for
¢very transaction, record type, SET type, and predicate.

2.Pick onc Trecord .type and determine the optimal access
configuration as follows:

a. Pick one possible access configuration of the record
type.

b. Given that access configuration, identify the best
processing method for each elementary operation
(corresponding to an elementary-operation cost) and
calculate its cost.

c. Calculate the partial-operation cost of each transaction.
This is done by summing up all the elementary costs
identified in Step b—multiplied by their respective
frequencies—and all the costs incutred by the update
transactions acting upon this record type.

d. Repeat Steps b and ¢ for all possible access
configurations for the record type under consideration.
Then determine the one that gives the minimal cost as
the optimal configuration for that record type.

3. Step 2 is repeated for every record type in the database. The
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aggregate result for all record types constitutess he global
optimum.

The designer could perform Step 2 in the Design Algorithm by
the designer by trying each access configuration with a trial-and-
error method. This is similar to the approach used in [GAM 77],
except that now we are considering only one record type at a time.

Since there are many different access structures to be chosen,
however, even for one record type, enumeration of all the possible
access configurations could be an extensive procedure. An
alternative approach is to partition the single record type design into
several substeps, using heuristics if necessary, with wcll-defined
interfaces. As exemplificd in [WHA-a 81] for a relational system,
the design procedure could be partitioned into the following two
substeps:

o Determination of the placement strategy (this corresponds to
clustering in relational systems) such as CALC and
CLUSTERED VIA set-name, where set-name stands for any
SET type whose member is the record typc under
consideration.

o Selection of auxiliary access structures such as indexes,
singular sets, and the record-order key.

This approach should be explored in more detail in the future.

6. Extensions for the Other Access Structures

An extension of the access structures not included in the basic
design methodology, such as SEQUENTIAL and CLLUSTERED
VIA SET NEAR OWNER, can be accomplished by using heuristic
methods.

After the basic design is obtained by using the Design Algorithm
in Section 3, the SEQUENTIAL option can be considered for each
record type (only one at a timc is endowed with this property). The
total costs with or without this option are comparcd and the
differences calculated for each record type. (Since the
SEQUENTIAL structure may affect the partial-operation cost for
other record types, the total processing cost has to be considered for
comparison.) Record types must be ranked in importance
according to the cost differences. The rccord type that yields the
greatest bencfit is assigned the top rank. The placement strategy is
then actually changed to SEQUENTIAL—if the total cost is
reduced — starting with the top-ranked record type.

Another approach for the SEQUENTIAL option is to include it
in the basic design methodology, pretending that the design is
separable and sacrificing slightly the rigorousncss of the property of
separability. The major prospects for this option will be record
types that require frequent scanning of all their records. But this
type of operation does not impair scparability, so that we can keep
the error minimal while pretending that the design is separable.

The CLUSTERED VIA SET NEAR OWNER option can be
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considered next, For every record type whose placement strategy is
CLUSTERED VIA SET, the latter is changed temporarily to
CLUSTERED VIA SET NEAR OWNER (only one record type at
a time is endowed with this property) and difference in total cost is
calculated. As in the case of SEQUENTIAL option, the importance
of the record types is ranked. The placement strategy is then
actually changed to CLUSTERED VIA SET NEAR OWNER —if
there is a cost benefit—starting from the top according to the rank,
Constraints can be used here, if desired, that not more than one
member record type can be clustered near the same owner record
type. 'This approach is similar to the onc in [KAT 80] but uses a
morce quantitative approach to establish the rank.

More rescarch needs to be done on usage specifications for
update transactions and on the design algorithm for a single record
type. Now that the whole design has been partitioned to the designs
of individual record types, any conventional method devised for a
singlc logical objcct can be applied here.

7. Conclusion
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