
A SOPHISTICATE'S'INTRODUCTION TO
DISTRIBUTED DATABASE CONCURRENCY CONTROL;'

Philip A. Bernstein
Nathan Goodman

Aiken Computation Laboratory
Harvard University

Cambridge, MA 02136

ABSTRACT. Dozens of articles have been published
describing "new" concurrency control algorithms
for distributed database systems. All of these
algorithms can be derived and understood using a
few basic concepts. We show how to decompose the
concurrency control problem into several sub-
problems, each of which has iust a few known
solutions. By appropriately combining known
solutions to the subproblems, we show that all
published concurrency control algorithms and many
new ones can be constructed. The glue that binds
the subproblems and solutions together is a
mathematical theory known as serializability
theory.

This paper does not assume previous knowledge of
distributed database concurrency control algo-
rithms, and is suitable for both the uninitiated
and the cognoscente.

1. INTRODUCTION

A distributed database system (DDBS) is a
database system (DBS) that provides commands to
read and write data that is stored at multiple
sites of a network. If users access a DDBS con-
currently, they may interfere with each other by
attempting to read and/or write the same data.
Concurrency control is the activity of preventing
such behavior.

Dozens of algorithms that solve the DDBS
concurrency control problem have been published
(see [BGl] and the references). Unfortunately,

many of these algorithms are so complex that
only an expert can understand'them.

To remedy this situation, we have developed
a simple framework for understanding concurrency
control algorithms. The framework decomposes

This work was supported by the National Science
Foundation, grant number MCS79-07762, by the
Office for Naval Research, contract number
NOOO14-60-c-647, and by Rome Air Development
Center, Contract number F30602-61-C-0028.

the problem into subproblems and gives basic
techniques for solving each subproblem. To
understand a published algorithm, one first
identifies the technique used for each subproblem
and then checks that the techniques are
appropriately combined. The framework can also
be used to develop.new algorithms by combining
existing techniques in new ways.

The paper has 10 sections. Sections 2 and 3
set the stage by describing a simple DDBS archi-
tecture and sketching the framework in terms of
the architecture. The framework itself appears
in Sections 4-8. Section 9 uses the framework to
explain several published algorithms. Section 10
is the conclusion.

This paper refines an earlier survey of con-
currency control algorithms [BGl]. The earlier
paper includes many technical details that are
omitted here. We urge the interested reader to
consult [BGl] for more details.

2. DISTRIBUTED DBS ARCHITECTURE

We use a simple model of DDBS structure and
behavior. The model highlights those aspects of
a DDBS that are important for understanding con-
currency control, while hiding details that don't
affect concurrency control.

A database consists of a set of data items,
denoted {...,x,y,z]. In practice, a data item
can be a file, record, page, etc. But for the
purposes of this paper, it's best to think of a
data item as a simple variable. For now, assume
each data item is stored at exactly one site.

Users access data items by issuing Read and
Write operations. Read(x) returns the current
value of x. Write(x,new value) updates the
current value of x to new-value.

Users interact with the DDBS by executing
programs called transactions. A transaction only
interacts with the outside world by issuing Reads
and Writes to the DDBS or by doing terminal I/O.
We assume that every transaction is a complete
and. correct computation; each transaction, if

Proceedings of the Eighth International Conference
on Very Large Data Bases

62
Mexico City, September, 1982

abort the transaction that issued the operation:
every Write processed on behalf of the trans-
action is undone (restoring the old value of the
data item), and every transaction that read a
value written by the aborted transaction is also
aborted. This phenomerion of one abort triggering
other aborts is called cascading aborts. (It is
usually avoided in commercial DBS's by not allow-
ing a transaction to read another transaction's
output until the DBS is certain that the latter
transaction will not abort. In this paper, we
will not try to prevent cascading aborts.) This
paper does not discuss techniques for implementing
abort. See [GMBL,HS,LS].

executed alone on an initially consistent data-
base, would terminate, produce correct results,
and leave the database consistent.

Each site of a DDBS runs one or more of the
following software modules (see Figures 1 and 2):
a transaction manager (TM), a data manager (DM)
or a scheduler. Transactions talk to TM's; TM's
talk to schedulers; schedulers talk among them-
selves and also talk to DM's: and DM's manage the
data.

. hA

transactio
Scheduler-

transaction/

Figure 1. DDBS Architecture

Transaction

Begin
.

Read

Scheduler DM

TM
(xl, 1 I

I I
.

Write(y)
: =&
.
.

End

Figure 2. Processing Operations

Each transaction issues all of its Reads
and Writes to a single TM. A transaction also
issues a Begin operation to its TM when it starts
executing and an End when it's finished.

The TM forwards each Read and Write to a
scheduler. (Which scheduler depends on the con-
currency control algorithm; usually, the scheduler
is at the same site as the data being read or
written. In some algorithms, Begins and Ends are
also sent to schedulers.)

The scheduler controls the order in which
DM's process Reads and Writes. When a scheduler
receives a Read or Write operation, it can'either
OU@ut the operation right away (usually to a DM,
sometimes to another scheduler), deZay the opera-
tion by holding it for later action, or reject
the operation. A rejection causes the system to

Proceedings of the Eighth International Conference
on Very Large Data Bases 63

The DM executes each Read and Write it re-
ceives. For Read, the DM looks in its local
database and returns the requested value. For
Write, the DM modifies its local database and
returns an acknowledgment. The DM sends the re-
turned value or acknowledgment to the scheduler,
which relays it back to the TM, which relays it
back to the transaction.

DM's do not necessarily execute operations
first-come-first-served. If a DM receives a
Read(x) and a Write(x) at about the same time,
the DM is free to execute these operations in
either order. If the order matters (as it
probably does in this case), it is the scheduler's
responsibility to enforce the order. This is
done by using a handshaking communication dis-
cipline between schedulers and DM's (see Figure 3):
if the scheduler wants Read(x) to be executed
before Write(x), it sends Read(x) to the DM,
waits for the DM's response, and then sends
Write(x). Thus the scheduler doesn't even send
Write(x) to the DM until it knows Read(x) was
executed. Of course, when the execution order
doesn't matter, the scheduler can send operations
without the handshake.

Handshaking is also used between other
modules when execution order is important.

To execute Read(x) on behalf of transaction 1
followed by Write(x) on behalf of transaction 2

Scheduler

send Read(x)\receive Read(x)
execute Read(x)

receive value Nsend va1ue

send write(X)\receive Write(x)
execute Write(x)
send ack

Figure 3. Handshaking

Mexico City, September, 1982

3. THE FRAMEVORY \

The DDBS modules most important to con-
currency control are schedulers. A concurrency
control algorithm consists of some number of
schedulers, running some type of scheduling algo-
rithm, in a centralized or distributed fashion.
In addition, the concurrency control algorithm
must handle "replicated data" somehow. (TM' s

often handle this problem.)

To understand a concurrency control algo-
rithm using our framework one determines

(i) the type of scheduZing algorithm
used (discussed in Sections 5 and 8),

(ii) the location of the scheduler(s),
i.e. centralized vs. distributed
(Section 6), and

(iii) how repzicated data is handled
(Section 7).

The framework also includes rules that tell
when a concurrency control algorithm is correct.
These rules give precise conditions under which
a DDBS produces correct executions. These rules,
called serializability theory, are discussed in
the next section.

4. SERIALIZABILITY THEORY

Serializability theory is a collection of
mathematical rules that tell whether a concurrency
control algorithm works correctly [BSW,Casa,EGLT,
Papa,PBR,SLR]. Serializability theory does its
job by looking at the executions allowed by the
concurrency control algorithm. The theory gives
a precise condition under which an execution is
correct. A concurrency control algorithm is then
judged to be correct if all of its executions are
correct.

4.1 Logs

Serializability theory models executions by
a construct called a log. A log identifies the
Read and Write operations executed on behalf of
each transaction, and tells the order in which
those operations were executed. Following
Lamport, we allow an execution order to be a
partial order [Lamp].

A tranSactiOn log represents an allowable
execution of a single transaction. Formally, a
transaction log is a partially ordered set (poset)
Ti= (Ci,<i) where xi is the set of Reads and
Writes issued by (an execution of) transaction i,
and 'i tells the order in which those operations
must be executed. We write transaction logs as
diagrams.

Tl =

Proceedings of the Eighth International Conference
on Very Large Data Bases 64

Tl represents a transaction that reads x and
2 in parallel, and then writes x. (Presumably,
the value written depends on the values read.)
We use ri [Xl (resp. , Wi [Xl) to denote a Read
(resp. , Write) on x issued by Tie To keep
this notation unambiguous, we assume that no
transaction reads or writes a data item more
than once.

Let T={TD,..., Tn) be a set of transaction
logs. A DDBS log (or simply a log) over T
represents an execution of TD,...,T,. Formally,
a log over T is a poset L= (c,<) where

1. C = UyEo C., and I.

2. <JU’: < - 1=0 i'

Condition (1) states that the DDBS executed all,
and only, the operations submitted by TO,...,Tn.
Condition (2) states that the DDBS honored all
operation orderings stipulated by the trans-
actions.

The following are all possible logs over
the example transaction log Tl from above.

(1)
rl [xl\

r [z]/w~~xl 1 (2)
rl[xl

f \w
r [zlH ’

[xl

1 1

(3)
rl [xl

r Lzl>wlLxl
1

Notice that the DDBS is not required to process
Read(x) and Read(z) in parallel, even though

Tl allows this parallelism. However, the DDBS
is not allowed to reverse or eliminate any
ordering stipulated by Tl. The following is
not a log over Tl

(4)
rl [xl 2

rl[zl /Iwlrxl

because it reverses the order in which Tl
reads and writes x.

There is one further constraint on the form
of logs. Two operations conflict if they operate
on the same data item and (at least) one of them
is a Write. To ensure that logs represent
unique computations, we require that all pairs
of conflicting operations be ordered. This
constraint applies to transaction logs as well
as DDBS logs.

Given transaction logs

w. [xl

TO = W,[Yl

w. [zl

rl [xl
\

T =
1 w1 [xl

rl[zl /

Mexico City, September, 1982

T2 = r2[xl+wW2ty1 T3
= r3 [z](w31Y1

w3 tz3

the following is a log over ~T~,T~,T~,T~}.

=1 =

w. [xl /’
rltxl

‘w [xl
rl[zl /'

w. [Yl

+\

r [xl-w,[yl 2
w,[zl

1
r3 [zl---*w,[~l

\w3[zl

(Note that orderings implied by transitivity are
usually not drawn. E.g. W"[Yl <W,[Yl is not
drawn in the diagram, althouqh it follows from
w,ty1 <W,[Yl and w,[yl <w,[yl .I

4.2 Log Equivalence

Let L be a log over some set T, and
suppose wi[xl and rj [xl are operations in L.
We say rj [xl reads-from Wi[X] if wi[xl < r [xl
and no Wk [xl falls between ri[xl and Wj[X . I
In this log

w,[xl +rl[xl +w2[xl +r3[xl +r4[xl

rl [xl reads-from w,[xl, and r3[xl and r4[xl
read-from w2 [xl . We call Wi[xl a finaLwrite
in L if no w,[xl follows it. In this log

w,[xl *w1[x3 +w,[ul +r2[yl

w1 [xl and w,[yl are final-writes.

Intuitively, two logs over T are equi-
valent if they represent the same computation.
Formally, two logs over T are eqUiVakZt if

(1) each Read reads-from the same Write in
both logs, and

(2) they have the same final-writes.

Condition (1) ensures that each transaction reads
the same values from the database in each log.
Condition (2) ensures that the same transaction
writes the final value of a given data item in
both logs.

The following log L2 is equivalent to
log Ll of Section 4.2.

L2 = wO~xlwO[ylwO[zlr2[xlw2tylrl[x]rl[z]

w1[x1r3[~1~3ty1~3[~1 .

Proceedings of the Eighth International Conference
on Very Large Data Bases 65

(When we write a log as a sequence, e.g. L2, we
mean that the log is totally ordered: each
operation precedes the next one and all subse-
quent ones in the sequence. Thus, in L2,
w,txl <wOtyl <wOtzl < r2txl)

4.3 Serializable Logs

A serial, log is a total order on C such
that for every pair of transactions Ti and Tj,
either all of Ti's operations precede all of
Tj’S, or vice versa (e.g., L2 in Section 4.2).
A serial log represents an execution in which
there is no concurrency whatsoever; each trans-
action executes from beginning to end before the
next transaction begins. From the point of view
of concurrency control, therefore, every serial
log represents an obviously correct execution.

What other logs represent correct executions?
From the point of view of concurrency control, a
correct execution is one in which concurrency is
invisible. That is, an execution is correct if
it is equivalent to an execution in which there
is no concurrency. Serial logs represent the
latter executions, and so a correct log is any
log equivalent to a serial log. Such logs are
termed serializable (SR). Log L1 of Sec. 4.1
is SR, because it is equivalent to serial log L2
of Sec. 4.2. Therefore Ll is a correct log.

Serializability theory is the study of
serializable logs.

4.4 The Serializability Theorem

This section presents the main theorem of
serializability theory. Later sections rely on
this theorem to analyze concurrency control
algorithms. This theorem uses a graph derived
from a log, called a serialization graph.

Suppose L is a log over {TO,...,Tn}.
The serialization graph for L, SG(L), is a
directed graph whose nodes are TO,...,Tn, and
whose edges are all Ti IT'
x, either (i) ri[xl <wj[x , or 3

such that, for some
(ii) Wi[Xl <

rj[xl, or (iii) Wi[XI ' Wj[XI. The serialization
graphs for example log Ll is

Edge TO+Tl is present because w,[xl <rl[xl.
Edge T2+Tl is caused by r2[xl <wl[xl. Edge

T2+T3 arises from w2ty1 <w3[yl. And so
forth.

SERIALIZABILITY THEOREM. If SG(L) is
acycZic then L is sR. a
For example, since SG (I$ is acyclic, L 1 is
SR.

Mexico City, September, lBB2

We can also use the Serializability Theorem
to determine if a scheduler produces SR logs.
First, we characterize the logs produced by the
scheduler. Then we prove that every such log
has an acyclic SG [BSW, Papa].

Some concurrency control algorithms schedule
read-write conflicts separately from write-write
conflicts. It is easier to analyze such algo-
rithms using a restatement of the Serializability
Theorem. Define the read-write se&aZization
graph for L,.SG,(L), as follows: SGIw(L) has
nodes TG,...,T, and edges Ti+T'
for some X, either (i) ri[xl <wj xl, or 7

such that,

(ii) Wi[Xl <rj [Xl. In other words, SG,(L) is
like SG(L) except we don't care about write-
write conflicts. The write-write serialization
graph for L, SGww(L), is defined analogously:
the nodes are TD,...,T,, and the edges are
Ti+T.

3
such that, for some x, wi[xl <wj[x].

SG ,JLl) T3
21 SGww(Ll) = TG--+T

\T^/I 3

Of course, SG(L) =SGm(L) USGW CL).

RESTATED SERIALIZABILITY THEOREH I'll]. If
the following four conditions hold, then L is
SR

(i) SGm(L) is aeycZic.

(ii) SGww(L) is acyclic.

(iii) For all Ti and T,, if Ti pre-
cedes Tj in SGw L) 1 then either
Ti precedes T' zn SGww(L), or
there is no pat ?l between them in
SG,, UJ .

(iv) For all Ti
cedes T. in

and T-j> if Ti pre-
SG,,(L) then either

Ti peeides T. in SG,(L), or
there is no patA between them in
SGm CL) . 0

Conditions (i)-(iv) are just another way of
saying that SG(L) is acyclic. The conditions
allow us to analyze the correctness of read-
write (IX) scheduling almost independently of
write-write (ww) scheduling.

5. SCHEDULERS

There are four types of schedulers for
producing SR executions: two-phase locking,
timestamp ordering, serialization graph checking
and certifiers. Each type of scheduler can be
used to schedule rw conflicts, ww conflicts,
or both. This section describes each type of
scheduler assuming it is used for both kinds of
conflict. Ways of combining scheduler types
(e.g. two-phase locking for rw conflicts and
timestamp ordering for ww conflicts) are
d.escribed in Section 9. This section also

assumes that the scheduler runs at a single site,
see Figure 4; Section 6 lifts this restriction.

transaction .

transaction

transaction
.
. .

transaction

trans;ction>d

.
transaction/

Figure 4. DDBS Architecture with Centralized
Scheduler

5 .l Two-Phase Locking.

A two-phase locking (2PL) scheduler is
defined by three rules [EGLT]:

i. Before outputting ri [Xl Crew. Wi [Xl 1 ,
set a read-lock (resp. write-lock) for Ti
on x. The lock must be held (at least)
until the operation is executed by the
appropriate DM. (Handshaking can be used
to guarantee that locks are held long
enough.)

ii. Different transactions cannot simultaneously
hold "conflicting" locks. Two locks con-
flict if they are on the same data,item and
(at least) one is a write-lock. If rw and

ww scheduling is done separately, the de-
finition of "conflict" is modified. For
rw scheduling, two locks on the same data
item conflict if exactly one is a write-
lock; i.e., write-locks don't conflict with
each other. For ww scheduling, both
locks must be write-locks.

iii. After releasing a lock, a transaction can-
not obtain any more locks.

Rule (iii) causes locks to be obtained in a
two-phase manner, During its growing phase, a
transaction obtains locks without releasing any.
By releasing a lock, the transaction enters its
shrinking phase during which it can only release
locks. Rule (iii) is usually implemented by
holding all of a transaction's locks until it
terminates.

2PL THEOREM. A ~PL scheduler only produces
SR logs.

Proof Sketch. Consider a log L produced
by a 2PL scheduler. If Ti+T. 3 is in SG(L),
then Ti released some lock before Tj obtained
that lock. If there's a nonempty path in SG (L)
from Ti to Ti (i.e., a cycle) then, by

Proceedings of the Eighth International Conference
on Very Large Data Bases 66 Mexico City, September, 1982

transitivity, Ti released a lock before Ti
obtained some lock, thereby breaking rule (iii).
So, SG(L) is acyclic. By the Serializability
Theorem, this implies that L is SR. 0

Several varieties of T/O schedulers have
been proposed. We only sketch these variations
here. Full details appear in [BGl].

Due to rule (ii), an operation received by
a scheduler may be delayed because another trans-
action already owns a conflicting lock. Such
blocking situations can lead to deadlock. For
example, suppose r1 [xl and r2[y1 set read-
locks, and then the scheduler receives wl[y]
and w2txl. The scheduler cannot set the write-
lock needed by wl[y] because T2 holds a read-
lock on y. Nor can it set the write-lock for
w2 [xl because Tl holds a read-lock on x.
And, neither Tl nor T2 can release its read-
lock before getting the needed write-lock
because of rule (iii). Hence, we have a dead-
lock: Tl is waiting for T2 which is waiting
for Tl.

A basic T/O scheduler outputs operations in
essentially first-come-first-served order, as
long as the T/O scheduling rule holds. When the
scheduler receives ritxl it does the following.

if TS(i) <largest timestamp of any Write on -
x yet "accepted"

then reject ri[xl

else "accept" ri [Xl and output it as soon as
all Writes on x with smaller timestamp
have been acknowledged by the DM.

When the scheduler receives Wi[Xl it behaves as
follows.

Deadlocks can be characterized by a waits-
for graph [Halt, KC], a directed graph whose
nodes represent transactions and whose edges re-
present waiting relationships: edge Ti+Tj
means Ti is waiting for a lock owned by Tj.
A deadlock exists if and only if (iff) the
waits-for graph has a cycle. E.g., in the above
example the waits-for graph is

if TS(i) <largest timestamp of any Read or -
Write on x yet "accepted"

then reject Wi[X]

else "accept" wi [xl and output it as soon as
all Reads and Writes on x with smaller
timestamp have been acknowledged by the
DM.

T- lT2 *

A popular way of handling deadlock is to
maintain the waits-for graph and periodically
search it for cycles. (See [Chap. 5, AHU] for
cycle detection algorithms.) When a deadlock is
detected, one of the transactions on the cycle
is aborted and restarted, thereby breaking the
deadlock.

5.2 Timestamp Ordering

In timestamp ordering (T/O) each trans-
action is assigned a globally unique timestamp
by its TM. (See [BGl, Thorn] for how this is
done.) The TM attaches the timestamp to all
operations issued by the transaction. A T/O
scheduler is defined by a single rule: output
all pairs of conflicting operations in timestamp
order. Make sure conflicting operations are
executed by DMs in the order they were output.
(Handshaking can be used to make sure of this.)

As for 2PL, the definition of "conflicting
operation" is modified, if rw and ww
scheduling are done separately.

A conservative T/O scheduler avoids rejec-
tions by delaying operations instead. An opera-
tion is delayed until the scheduler is sure that
outputting it will cause no future operations to
be rejected. Conservative T/O requires that each
scheduler receive Reads and Writes from each TM
in timestamp order. To output any operation, the
scheduler must have an operation from each TM in
its "input queue." The scheduler then "accepts"
the operation with smallest timestamp. "Accept"
means remove the operation from the input queue,
and output it as soon as all conflicting opera-
tions with smaller timestamp have been acknow-
ledged by the DM. Variations on conservative
T/O are discussed in [BGl,BSR].

Basic T/O and conservative T/O are endpoints
of a spectrum. Basic T/O delays operations very
little, but tends to reject many operations.
Conservative T/O never rejects operations, but
tends to delay them a lot. One can imagine T/O
schedulers between these extremes. To our
knowledge, no one has yet proposed such a
scheduler.

T/O THEOREM. A T/O scheduler only produces
SR logs.

Proof Sketch. Since every pair of con-
flicting operations is in timestamp order, each
edge Ti+Tj in SG has TS(i) < TS(j) (where
TS (i) is the timestamp of Ti). Thus, SG
cannot have any cycles. So, by the Serializabi-
lity Theorem, the log produced by the scheduler
is SR. 0

Thomas' write rule (TWR) is a technique that
reduces delay and rejection [Thorn]. TWR can Only

be used to schedule Writes, and needs to be com-
bined with basic or conservative T/O to yield a
complete scheduler. If we're only interested in
ww scheduling, TWR is simple. When the
scheduler receives Wi[xI it does the following.

Proceedings of the Eighth International Conference
on Very Large Data Bases 67 Mexico City, September, 1982

if - TS(i) <largest timestamp of any Write on
x yet "accepted"

then "pretend" to execute Wi[xI--i.e., send an
acknowledgement back to the TM, but don't
send the Write to the DM

else "accept" Wi [Xl and process it as usual.

The basic T/O-TWR combination works like this.
Reads are processed exactly as in basic T/O. But
when the scheduler receives a wi[x], it combines
the basic T/O rule and TWR as follows.

if - TS(i) <largest timestamp rw scheduling
of any Read on x yet (basic T/O)
"accepted"

then reject wi[x)

else if TS(i) <largest time- ww scheduling

then

else

stamp of any Write on x (TWR)
yet "accepted"

"pretend" to execute wi[xl

"accept" the Wi[xl and output it as soon
as all operations on x with smaller
timestamp has been acknowledged by the DM.

The conservative T/O-TWR combination is
described in [BGl].

5.3 Serialization Graph Checking

This type of scheduler works by explicitly
building a serialization graph, SG, and checking
it for cycles. Like basic T/O, an SG checking
scheduler never delays an operation (except for
handshaking reasons). Rejection is the only
action used to avoid incorrect logs.

An SG checking scheduler is defined by the
following rules.

1. ' When transaction Ti Begins, add node
Ti tO SG.

ii. When a Read or Write from Ti is re-
ceived, add all edges T' -fTi such that T. is
a node of SG, and the SC eduler has already'out- 2l
put a conflicting operation from T.. As for the
previous schedulers, the definitionjof "con-
flicting operation" is modified if r-w and ww
conflicts are scheduled separately.

iii. If after step (ii) SG is still acyclic,
output the operation. Make sure that conflicting
operations are executed by DM's in the order they
were output. (Handshaking can be used for this.)

iv. If after (ii) SG has become cyclic,
reject the operation. Delete node Ti and all
edges Ti+T.
acyclic agai?.)

or TjtTi from SG. (SG is now

SG CHECKER THEOREM. An SG checking scheduler
onzy produces SR zogs.

Proceedings of the Eighth International Conference
on Very Large Data Bases 68

Proof Sketch. Every log produced by the
scheduler has an acyclic SG. So, by the Serial-
izability Theorem, every log is SR. q

One technical problem with SG checkers is
that a transaction must remain in SG even after
it has terminated. A transaction can only be
deleted from SG when it is a source node of the
graph, i.e., when it has no incoming edges. See
[Casa] for a discussion of this problem and
techniques for efficiently encoding information
about terminated transactions that remain in SG.

5.4 Certifiers

The term "certifier" refers to a scheduling
philosophy, not a specific scheduling rule. A
certifier is a scheduler that makes its decisions
on a per-transaction basis. When a certifier
receives an operation, it internally stores in-
formation about the operation and outputs it as
soon as all earlier conflicting operations have
been acknowledged. When a transaction ends, its
TM sends the End operation to the certifier. At
this point, the certifier checks its stored in-
formation to see if the transaction executed
serializably. If it did, the certifier certifies
the transaction, allowing it to terminate; other-
wise, the certifier aborts the transaction.

All of the earlier schedulers can be adapted
to work as certifiers. Here is an SG checking
certifier. When the certifier receives an
operation, it adds a node and some edges to SG
as explained in the previous section. The certi-
fier does not check for cycles at this time.
When a transaction, Ti, ends, the certifier
checks SG for cycles. If Ti does not lie on a
cycle, it is certified; otherwise it is aborted.

SG CERTIFIER THEOREM. An SG checking certi-
fier only produces SR logs.

Proof.Sketch. Consider any "completed" log
produced by the certifier. Conp~eted means that
all uncertified transactions are aborted and
removed from the log. (As always, any trans-
action that read data written by an aborted
transaction is also aborted; this may include
some certified transaction.) The completed log
has an acyclic serialization graph. So by the
Serializability Theorem, the log is SR. 0

Here is a 2PL certifier [Thom,KR]. Define
a transaction to be active from the time the
certifier receives its first operation until the
certifier processes its End. The certifier
stores two sets for each active transaction Ti:

Tits readset, RS(i) = {xlthe certifier has
output ri [XII

Ti's writeset, WS(i) = {xlthe certifier has
output wi [xl I.

Mexico City, September, 1982

The certifier updates these sets as it receives
operations. When the certifier receives End,,
it runs the following test.

Let RS(active) = U (RS(j), such that Tj is
active, but j fi)

WS(active) = U (WS(j), such that Tj is
active, but j fi)

if -

then

else

RS(i) nWS(active) = @, and
WS(i) fl (RS(active) UWS(active)) = Q

certify Ti

abort T.. 1

I

This amounts to pretending that transactions
hold imaginary locks on their readsets and write-
sets. When transaction Ti ends, the certifier
sees if Ti’S imaginary locks conflict with the
imaginary locks held by other active transactions.
If there is no conflict, Ti is certified; else

Ti is aborted.

2PL CERTIFIER THEOPEM. A ~PL certifier on&
produces SR logs.

Proof Sketch. Consider a completed log L
produced by the certifier. If Ti+T. is in
SG CL) , then since both Ti and T.

3

fied, the certifier processed End:
were certi-

If there's a nonempty path in SG(L)
before Endj.

from Ti
tO Ti (i.e., a cycle) then, by transitivity,
the certifier processed Endi before Endi.
This is absurd. So, SG(L) is acyclic, and by
the Serializability Theorem, L is SR. 0

T/O certifiers are also possible. To our
knowledge, no one has proposed this algorithm yet.

Certifiers can also be built that check for
serializable executions during transactions'
executions, not just at the end. The extreme
version of this idea is to check for serializabi-
lity on every operation. At this extreme, the
certifier reduces to a "normal" scheduler.

6. SCHEDULER LOCATION

The schedulers of Section 5 can be modified
to work in a distributed manner. Instead of one
scheduler for the whole system, we now assume one
scheduler per DM (refer back to Figure 1). The
scheduler normally runs at the same site as the
DM, and schedules all operations that the DM
executes.

The new issue in this setting is that the
distributed schedulers must cooperate to attain
the scheduling rules of Section 5.

The main problem caused by distributing
schedulers is the maintenance of global data
structures. Distributed 2PL schedulers need a
global waits-for graph. Distributed SG checkers

need a global SG. In distributed T/O scheduling,
no global data structures are needed; each
scheduler can make its scheduling decisions using
local copies of R-TS(x) and W-TS(x) for each
X at its,DM. Distributed certifiers generally
manifest the same problems as their corresponding
schedulers.

6.1 Distributed Two-Phase Locking

Refer to the 2PL scheduling rules of Section
5.1. Rules (i) and (ii) are "local." The
scheduler for data item x schedules all opera-
tions on x. Hence this scheduler can set all
locks on x. Rule (iii) requires a small amount
of inter-scheduler cooperation: no scheduler can
obtain a lock for transaction Ti after any
scheduler releases a lock for Ti. This can be
done by handshaking between TMs and schedulers.
When Ti Ends, its TM waits until all of Ti's
Reads and Writes are acknowledged. At this point
the TM knows that all of T.'s locks are set,
and it's safe to release lokks. The TM forwards
Endi to the schedulers which then release Ti'S

locks.

One problem with distributed 2PL is that
multi-site deadlocks are possible. Suppose x
and y are stored at sites A and B, respectively.
Suppose ri [Xl is processed at A, setting a
read-lock on x for Ti at A; and rj[y] is
processed at B, setting a read-lock on y for
Tj at B. If Wj[Xl and wiLyI are now
issued, a deadlock will result; Tj will be
waiting for Ti to release its lock on x at
A and Ti will be waiting for T. to release
its lock on y at B. Unfortunatlly, the dead-
lock isn't apparent by looking at site A or B
alone. Only by taking the union of the waits-for
graphs at both sites does the deadlock cycle
materialize.

See [MM,Ston,GlSh,Lomet l-4,RSLl for
solutions to this problem.

6.2 Distributed Timestamp Ordering

T/O schedulers are easy to distribute,
because the T/O scheduling rule of Section 5.2
is inherently local. Consider a basic T/O
scheduler for data item x. To process an
operation on x, the scheduler only needs to
know if a conflicting operation with larger
timestamp has been accepted. Since the scheduler
handles all operations on x, it can make this
decision itself.

6.3 Distributed Serialization tiraph Checking

SG checkers are harder to distribute than
the other scheduler because the serialization
graph, SG, is inherently global: Z$ transaction
that accesses data at a single site can become
involved in a cycle spanning many sites. See
[Casal for a discussion of this problem.

Proceedings of the Eighth International Conference
on Very Large Data Bases 69 Mexico City, September, 1982

6.4 Distributedicertifiers

Distributed certifiers have a synchronization
requirement a little like rule (iii) of 2PL:
Ti's TM must not send Endi to any certifier,
until all of Ti’S Reads and Writes have been
acknowledged. I.e., we must not try to certify

Ti at any site until we are ready to certify
Ti at all sites.

Beyond this, each distributed certifier be-
haves like the corresponding scheduler. A
distributed 2PL certifier needs little inter-
scheduler cooperation (beyond the previous para-
graph). The certifier at each site keeps track
of the data items at its site read or written by
active transactions. When the certifier at site
A receives Endi, it sees if any active trans-
action conflicts with Ti at site A. If not,
Ti is certified at site A. If Ti is certified
at all sites at which it accessed data, then it
is "really" certified; else Ti is aborted.

A distributed SG certifier shares the prob-
lems of distributed SG schedulers: the certifier
needs to check for cycles in a global graph
every time a transaction ends.

6.5 Other Architectures

Centralized and distributed scheduling are
endpoints of a spectrum. One can imagine hybrid
architectures with multiple DM's per scheduler.
See Figure 5. This architecture adds no technical
issues beyond those already discussed.

Figure 5. Hybrid Architecture

Hierarchical scheduler architectures are
also possible. See Figure 6. To our knowledge,
one one has studied this approach yet.

7. DATA REPLICATION

In a replicated database, each logical data
item, x, can have many physica copies, denoted
{Xl,... ,xm,), which are resident at different
DM's. Transactions issue Reads and Writes on
logical data items. TM's translate those opera-
tions into Reads and Writes on physical data.
The effect, as seen by each transaction, must be
as if there were only one copy of each data item.

Proceedings of the Eighth International Conference
on Very Large Data Bases

70

sched H

sched +--jEJ

Figure 6. Hierarchical Architecture

There is a simple way to obtain this effect.
Each TM translates ri [Xl into
some copy xj of x and wi[xl

ri Lxj 1 for

all copies Xj Of Xl.

into {wi[xjl /
If the scheduler(s) is

SR, the effect is just like a nonreplicated
database. To see this, consider a serial log
equivalent to the SR log that executed. Since
each transaction writes into ali! copies of each
logical data item, each ri[Xjl reads from the
'latest' transaction preceding it that wrote
into any copy of x. But this is exactly what
would have happened had there been only one copy
of x. (For a more rigorous explanation, see
[ABC-I. 1 Consider this example.

w,[x,l -rl [x,1

XW”“”
L3 =

:"::2x:::::$12:
01 1

w. [Y,l -r2 [Y,l

x1 and x2 are copies of logical data item x;
y1 and y2 are copies of y. To produces
initial values for both copies of each data
item. Tl reads x and Y, and writes xi T2
reads x and Y, and writes y.

L3 is SR. It is equivalent to the follow-
ing serial log:

L4 = w Lx lw Ix lw ty lw [y lr Ix lr [y lw ix 1 01020102111111

w Lx lr tx lr [Y lw [Y lw '[Y 1 . 1222222122

Note that each Read, e.g. r2 [x21
reads 5,:lrn the 'latest'

or r2 [y21 ,
transaction preceding it

that wrote into any copy of the data item.
Therefore, L4 has the same effect as the
following log in which there is no replicated
data:

Lh = w. [XlW, [Yl r1 [xl’l tylw, [xl r2 [xl r2 [yl w2 [y] .

Mexico City, September, 1982

We call this the do nothing approach to
replication--just write into all copies of each
data item and use an SR scheduler.

Two other approaches to replication have
been suggested. In the primary copy approach, a
copy of each x, say xp, is designated its
primary copy [Stan] . Each TM translates ri [Xl
into ri tXj 1 for some copy x., as before.
Writes are translated differen ly, 2 though. The
TM translates Wi[XI into a single Write,
WitX I,

P
on the primary copy. When the primary

copy s scheduler outputs Wi [Xpl r it also issues
Writes on the other copies of x (i.e.,
Wi[X~l~~~~rwitx~3)~ See Figure 7. These Writes
are processed by the schedulers for Xl!. . . ,xm
in the usual way. For example, in 2PL, the
scheduler for xj must get a write-lock on x'
for Ti before outputting Wi[Xj]. The primazy
copy's scheduler may be centralized (in which
case the technique is called primary site [AD]),
or distributed with the primary copy's DM.

Transaction

Begin TM Scheduler DM
.

Write(x)
.

w[x 1

End

I-

IL-8
Scheduler DM

Figure 7. Processing Writes in Primary Copy

Primary copy is a good idea for 2PL
schedulers. It eliminates the possibility of
deadlock caused by Writes on different copies of
one data item. Suppose x has copies xl and
x2. Suppose Tl and T2 want to Write x at
about the same time. In the do nothing approach,
the following execution is possible: Tl locks
x1; T2 locks x2; Tl tries to lock x2 but is
blocked by T2's lock; T2 tries to lock x1
but is blocked by Tl's lock. This is a dead-
lock. Primary copy avoids this possibility
because each transaction must lock the primary
copy first.

In the voting approach to replication, TM's
again distribute Writes to all copies of each
data item [Thorn]. Assume we are using distributed
schedulers. When a scheduler is ready to output
Wi[Xjl I it sends a vote of yes to the vote
colZector for
this time.

X; it does not output Wi[j'j] at
When the vote collector recieves yes

votes from a majority of schedulers, it tells
all schedulers to output their Writes. (Each
scheduler may need to update its local data

Proceedings of the Eighth International Conference
on Very Large Data Bases 71

structures before outputting
a write-lock on

Wi[Xjl, e.g., set
x,.) Assume each scheduler is

correct (i.e., il pro uces an acyclic SG). Then,
since every pair of conflicting operations was
voted yes by some correct scheduler (both opera-
tions got a majority of yes's), the SG must be
acyclic and the result is correct.

The principal benefit of voting is fault
tolerance; it works correctly as long as a
majority of sites holding a copy of x are
running. See [Thorn, Giff] for details.

b. MULTIVERSION DATA

Let us return to a database system model
where each logical data item is stored at one DM.

In a muZtiversion database each Write,
wi [Xl I produces a new copy (or version) of x,
denoted xi. Thus, the value of x is a set of
versions. For each Read, ri[X], the scheduler
selects one of the versions of x to be read.
Since Writes don't overwrite each other, and
since Reads can read any version, the scheduler
has more flexibility in controlling the effective
order of Reads and Writes.

Although the database has multiple versions,
users expect their transactions to behave as if
there were just one copy of each data item.
Serial logs don't always behave this way. For
example,

wO[xolrl[xolwl[x1y1]r2[xoy1]w2[y2]

is a serial log, but its behavior cannot be re-
produced with only one copy of x. We must
therefore restrict the set of allowable serial
logs.

A serial.logis ~zcopy serial (or l-serial)
if each ri[xj] reads from the last trans-
action preceding it that wrote into any version
of x. The above log is not l-serial, because
r2 reads
r2[x"l.

x from wo, but wo[xo] <wl[xl] <
A log is I-seria~i2abZe (l-SR) if it's

equivalent to a l-serial log. l-serializability
is our correctness criterion for multiversion
database systems.

All multiversion concurrency control algo-
rithms (that we know of) totally order the
versions of each data item in some simple way.
A version order, <<, for L is an order rela-
tion over versions such that, for each x, <<
totally orders the versions of x.

Given a version order <<, we define the
multiversion SG w.r.t. L and << (denoted
MVSG(L,<<)) as SG(L) with the following edges

Mexico City, September, 1982

*
added: for each ri[xJl and wk[xkl in L,
if xk << ,I then include Tk+T., else include
T. +T 3

1 k'

MULTIVERSION THEOREM [BGj]. A muZtiversion
log is I-SR iff there exists a version order <c
such that MVSG(L,<<) is acyclic.

This theorem enables us to prove multi-
version concurrency control algorithms to be
correct. We must argue that for every log L
produced by the algorithm, MVSG(L,<<) is acyclic
for some <<.

The types of multiversion schedulers that
have been proposed fall into two classes that
approximately correspond to timestamping and
locking.

8.1 Multiversion Timestamping

Multiversion concurrency control was first
introduced by Reed in his multiversion time-
stamping method [Reed]. In Reed's algorithm,
each transaction has a unique timestamp. Each
Read and Write carries the timestamp of the
transaction that wrote it. The version order is
defined by xi<< xj if TS(i) <TS(j).

0p:sations are processed first-come-first-
served. However, the version selection rules
ensure that the overall effect is as if opera-
tions were processed in timestamp order. To
process ri[xl, the scheduler (or DM) returns
the version of x with largest timestamp <TS(i).
To process Wi[xl, version x1 is created,
unless some Ij [Xl has already been processed
with TS(j) <TS(i) <TS(k). If this condition
holds, the Write is rejected.

An analysis of MVSG(L,<<) for any L
produced by this method shows that every edge
TijT. is in timestamp order. (TS(i) <TS(j)).
Thus 'MVSG(L,<<) is acyclic, and so L is l-SR.

8.2 Multiversion Locking

In multiversion locking, the Writes on each
aata item, x, must be ordered. We define
,i << ,j if Wi[X’] <W*[X3].

the certified or uncer zfied state. When a 6
Each version is in

version is first written, it is uncertified.
Each Read, ri[xI, reads either the last (wrt <<)
certified version of x or Qny uncertified

*
Note that two operations conflict (and produce
an edge in SG(L) if they operate on the same
version and one of them is a write.

**
Handshaking is used to ensure that logically
conflicting operations are executed by DM's
in the order the scheduler output them.

version of x. When a transaction finishes
executing, the database system attempts to certi-
fy it. To certify Ti, three conditions must
hold:

Cl. For each ri[x71, x3 is certified.

c2. For each x <<x i are
certified.

wi[xll, all '

C;. For each w.[xi] and each x' << x=,
all transac ions that read xj t, have
been certified.

These conditions must be tested atomically. When
they hold, Ti is declared to be certified and
all versions it wrote are (atomically) certified.

An analysis of MVSG(L,<<) for any L
produced by this method shows that every edge
Ti-fT' is consistent with the order in which
transictions were certified. Since certification
is an atomic event, the certification order is a
total order. Thus, MVSG(L,<<) is acyclic, and
so L is l-SR.

Two details of the algorithm require some
discussion. First, the algorithm can deadlock.
For example, in this log

Tl and T2 are deadlocked due to certification
condition C3. As in 2PL, deadlocks can be
detected by cycle detection on a waits-for graph
whose edges include Ti-fTj such that Ti is
waiting for Tj to become certified (so that Ti
will satisfy Cl-C3).

Second, Cl-C3 can be tested atomically with-
out using a critical section. Once Cl or C2 is
satisfied for some ri[xj] or Wi[X1], no future
event can falsify it. When C3 becomes true for
some Wi[X’], we "lock" X1 so that no,future
reads can read versions that precede xi. This
allows Cl93 to be checked one data item at a
time. Of course, the waits-for graph must be
extended to account for these new version locks.

Two similar multiversion locking algorithms
have been proposed which allow at most one un-
certified version of each data item. In Stearns'
and Rosenkrantz's method [SRI, the waits-for
graph is avoided by using a timestamp-based
deadlock avoidance scheme. In Bayer et aZ.'s
method [BHR,BEHR], a waits-for,graph is used to
help prevent deadlocks. This algorithms con-
sults the waits-for graph before selecting a
version to read, and always selects a version
that creates no cycles.

Multiversion locking algorithms in which
queries (read-only transactions) are given
special treatient are described in [Dubol, [BG41.

Proceedings of the Eighth International Conference
on Very Large Data Bases 72 Mexico City, September, 1982

s. COKEiINING Tt!E TECHNID,UES

The techniques described in Sections 4-8
can be combined in almost all possible ways.
The three basic scheduling techniques (2PL, T/O,
SG checking) can be used in scheduler mode or
certifier mode. This gives six basic concurrency
control techniques. Each technique can be used
for rw or ww scheduling or both (62=36).
Schedulers can be centralized or distributed
(36x 2 = 72), and replicated data can be handled
in three ways (Do Nothing, Primary Copy, Voting)
(72 X 3 = 216). Then, one can use multiversions
or not (216x2=432). By considering the multi-
facious variations of each technique, the number
of distinct algorithms is in the thousands.

To illustrate our framework, we describe
some of these algorithms that have already
appeared in the literature.

The distributed locking algorithm proposed
for System R* uses a 2PL scheduler for rw
and ww synchronization. The schedulers are
distributed at the DM's. Replication is handled
by the do nothing approach.

Distributed INGRES uses a similar locking
algorithm [Ston]. The main difference is that
distributed INGRBS uses primary copy for
replication.

Many researchers have proposed algorithms
that use conservative T/O for all scheduling
[SM,Lela,KNTH,CB]. They typically distribute
the schedulers at DM's and take the do nothing
approach to replication.

SDD-1 uses conservative T/O for rw
scheduling and Thomas' write rule for ww
scheduling. The algorithm has distributed
schedulers and takes the do nothing approach to
replication [BSR]. SDD-1 also uses conflict
graph analysis, a technique for preanalyzing
transactions to determine which run-time
conflicts need not be synchronized.

A method using 2PL for rw scheduling and
Thomas' write rule for ww scheduling is
described in [BGLI. Distributed schedulers and
the do nothing approach to replication were
suggested. To ensure that the locking order is
consistent with the timestamp order, one can use
a Lamport clock: Each message is timestamped
with the local clock time when it was sent; if
a site receives a message with a timestamp, TS,
greater than its local clock time, the site
pushes its clock ahead to TS. After a trans-
action obtains all of its locks, it is assigned
a timestamp using the TM's local Lamport clock.

Thomas' majority consensus algorithm was
one of the first distributed concurrency control
algorithms. It uses a 2PL certifier for rw
scheduling and Thomas' write rule for ww
scheduling. Schedulers are distributed and

Proceedings of the Eighth International Conference
on Very Large Data Bases 73

voting is used for replication. Bach trans-
action is assigned a timestamp from a Lamport
clock when it is certified. This ensures that
the certification order (produced by rw
scheduling) is consistent with the timestamp
order used for ww scheduling.

Each of these algorithms is quite complex.
A complete treatment of each would be lengthy.
Yet by understanding the basic techniques and
how they can be correctly combined, we can ex-
plain the essentials of each algorithm in a few
sentences.

10. PERFORMANCE

Given that thousands of concurrency control
algorithms are conceivable, which one is best for
each type of application? Every concurrency
control algorithm delays and/or aborts some
transactions, when conflicting operations are
submitted concurrently. The question is: which
algorithms increase overall transaction response
time the least?

Although there have been several performance
studies of some of these algorithms, the results
are still inconclusive [GS,GMl,GM2,Lee,Lin,LN,
MNl,MN2,Riesl,RiesZ]. There is some evidence
that 2PL schedulers perform well at low to
moderate intensity of conflicting operations.
However, we know of no quantitative results that
tell when 2PL thrashes due to too many deadlocks.
There are similar gaps in our understanding of
the performance of other types of schedulers.
More analysis is badly needed to help us learn
how to predict which concurrency control algo-
rithms will perform well for the applications
and systems we will encounter in practice.

ACKNOWLEDGMENT. We would like to thank Renate
D'Arcangelo for her expert editorial work in the
preparation of the manuscript.

REFERENCES

[AD] Alsberg, P.A. and Day, J.D. "A Principle
for Resilient Sharing of Distributed'Re-
sources," Proc. 2nd Int. Conf. on Sofhxre
Engineering, October 1976.

[AHU] Aho, A.V., Hopcroft, E., and J.D. Ullman.
The Design and Analysis of Computer Algo-
rithms, Addison-Wesley Publishing Co.
(1975).

[ABG] Attar, R., P.A. Bernstein, and. N. Goodman.
"Site Initialization, Recovery, and Backup
in a Distributed Database System," P~Yx.
1982 Berkeley Workshop on Distributed Data-
bases and Computer Netiorks.

Mexico City, September, 1982

[Badal] Badal, D.Z. "Correctness of Concurrency

[BEHR]

[BHRI

[BGll

tBG21

[BGL]

[BRGP]

[=I

[BSRI

[BSWI

ICasa]

Control and Implications in Distributed
Databases," Proc. COMPSAC 79 Conf.,
Chicago, Nov. 1979.

Bayer, R., E. Elhardt, H. Heller, and A.
Reiser. "Distributed Concurrency Control
in Database Systems," Proc. Sixth Int.
Conf. on Very Large Data Bases, IEEE,
N.Y., 1980, pp. 275-284.

Bayer, R., H. Heller, and A. Reiser.
"Parallelism and Recovery in Database
Systems," ACM Trans. on Database Systems
2, 2 (June 19801, pp. 139-156.

Bernstein, P.A. and N. Goodman, "Con-
currency Control in Distributed Database
Systems," Computing SurVeys 13, 2 (June
1981), pp. 185-221.

Bernstein, P.A. and N. Goodman. "Con-
currency Control Algorithms for Multi-
version Database Systems," Proc. ACM SIGACS
SIGOPS Symp. on Dist'd Computing, 1982.

Bernstein, P.A., N. Goodman, and M.Y. Lai.
"A Two-Part Proof Schema for Database
Concurrency Control," Proc. 1981 Berkeley
Workshop on Distributed Databases and
Computer Networks.

Bernstein, P.A., J.B. Rothnie, N. Goodman,
and C.H. Papadimitriou. "The Concurrency
Control Mechanism of SDD-1: A System for
Distributed Databases (The Fully Redundant
Case) ," IEEE Trans. on Software
Engineering, Vol. SE-4, No. 3 (May 1978).

Bernstein, P.A. and Shipman, D. "The
Correctness of Concurrency Mechanisms in
a System for Distributed Databases (SDD-1):'
ACM Trans. on Database Systems 2, 1 (March
1980).

Bernstein, P.A., D. Shipman, and J.
Rothnie. "Concurrency Control in a System
for Distributed Databases (SDD-11," ACM
Trans. on Database Systems 2, 1 (March
1980).

Bernstein, P.A., D.W. Shipman, and W.S.
Wong. "Formal Aspects of Serializability
in Database Concurrency Control," IEEE
Trans. on Software Engineering SE-Z, 3
(May 1979).

Casanova, M.A. The Concurrency Control
Problem of Database Systems, Lecture Notes
in Computer Science, Vol. 116, Springer-
Verlag, 1981 (originally published as
TR-17-79, Center for Research in Computing
Technology, Harvard University, 1979).

Proceedings of the Eighth International Conference
on Very Large Data Bases 74

[CBI Chenq, W.K. and G.C. Belford. "Update
Synchronization in Distributed Databases,"
Proc. 6th Int. Co@. on Very Large Data
Bases, Oct. 1980.

[CGP] Coffman, E.G., E. Gelenbe, and B. Plateau.
"Optimization of the Number of Copies in
a Distributed Database ," IEEE Trans. on
Software Eng. SE-I, 1 (Jan. 1981), pp. 78-
84.

[Dubo] DuBourdieu, D.J. "Implementation of
Distributed Transactions," Proc. 1982
Berkeley Workshop on Distributed Data
Management and Computer Networks, pp. 81-
94.

[Ellis] Ellis, C.A. "A Robust Algorithms for
Updating Duplicate Databases," Proc. 2nd
Berkeley Workshop on Distributed Data-
bases and Computer Networks, May 1977.

[EGLT] Eswaran, K.P., J.N. Gray, R.A. Lorie, and
I.L. Traiqer. "The Notions of Consistency
and Predicate Locks in a Database System,"
Communications of the ACM 19, 11 (Nov.
1976).

[G-Ml] Garcia-Molina, H. "Performance Comparisons
of Two Update Algorithms for Distributed
Databases," Proc. 3rd Berkeley Workshop on
Distributed Databases and Computer Net-
works, August 1978.

[G-M21 Garcia-Molina, H. "Performance of Update
Algorithms for Replicated Data in a
Distributed Database," Ph.D. Dissertation,
Computer Science Dept., Stanford Univer-
sity, June 1979.

[G-M31 Garcia-Molina, H. "A Concurrency Control
Mechanism for Distributed Data Bases which
Uses Centralized Locking Controllers,"
Proc. 4th BerkeZey Conf. on Distributed
Data Management and Computer Networks,
August 1979.

tGS1 Gelenbe, E. and K. Sevcik. "Analysis of
Update Synchronization for Multiple Copy
Databases," Proc. 3rd Berkeley Workshop on
Distributed Databases and Computer Net-
works, August 1978.

[GlSh] Gliqor, V.D. and S.H. Shattuck. "On Dead-
lock Detection in Distributed Systems,"
IEEE Trans. on Software Engineering SE-g,
5 (Sept. 1980), pp. 435-440.

[Giff] Gifford, D.K. "Weighted Voting for Re-
plicated Data," Proc. 7th Symp. on @era-
ting Sys. PrincipZes, ACM, N.Y., Dec.
1979.

Mexico City, September, 1982

[Gray]

[GLPT]

[GMBL]

[WI

[Halt]

[KNTHI

K-11

B-P21

[WIT]

[KC1

[KRI

Gray, J.N. "Notes on Database Operating
Systems," Operating Systems: An Advanced
Course, Vol. 60, Lecture Notes in Computer
Science, Springer-Verlag, N.Y., 1978,
PP. 393-481.

Gray, J.N., R.A. Lorie, G.R. Putzulo, and
I.L. Traiger. "Granularity of Locks and
Degrees of Consistency in a Shared Data-
base," IBM Research Report Rsl654, Sept.
1975.

Gray, J.N., P. McJones, M. Blasgen, B.
Lindsay, R. Lorie, T. Price, F. Putzulo,
and I. Traiger. "The Recovery Manager of
the System R Database Manager,"
Computing Sumeys 13, 2 (June 1981),
pp. 223-242.

Hammer, M. and D.W. Shipman. "Reliability
Mechanisms for SDD-1: A System for
Distributed Databases," ACM Tr'rans. on
Database Sys. 5, 4 (Dec. 19801, pp. 431-
466.

Holt, R.C., "Some Deadlock Properties of
Computer Systems," Computing Surveys 4,
3 (Dec. 19721, pp. 379-195.

Kaneko, A., Y. Nishihara, K. Tsuruoka,
and M. Hattori. "Logical Clock Synchro-
nization Method for Duplicated Database
Control," Proc. First International Conf.
on Distributed Computing Systems, IEEE,
N.Y., Oct. 1979, pp. 601-611.

Kanellakis, P. and C.H. Papadimitriou.
'I IS Distributed Locking Harder?", PrOc.
1982 ACM Symp. on Principles of Database
Systems, ACM, N.Y., pp. 98-107.

Kanellakis, P. and C.H. Papadimitriou.
"The Complexity of Distributed Concurrency
'Control," Proc. 22nd Conf. on Foundations
of Computer Science, IEEE, N.Y., pp. l85-
197.

Kawazu, S., S. Minami, K. Itoh, and K.
Teranaka. "Two-Phase Deadlock Detection
Algorithm in Distributed Databases,
hoc. 1979 Intern. Conf. on Very Large
Data Bases, IEEE, N.Y.

King, P.F. and A.J. Collmeyer. "Database
Sharing--An Efficient Mechanism for
Supporting Concurrent Processes," Proc.
1974 NCC, 'AFIPS Press, Montvale, New
Jersey, 1974.

Kung , H.T. and J.T. Robinson. "On Opti-
mistic Methods for Concurrency Control,"
Proc. 1979 Int. Conf. on Very Large Data
Bases, Oct. 1979.

Lamp1 Lamport, L. "Time, Clocks, and the
Ordering of Events in a Distributed
System," Comm. of the ACM 2J, I (July
1978), pp. 558-565.

[LSI Lampson, B. and H. Sturgis. "Crash Re-
covery in a Distributed Data Storage
System," Tech. Report, Computer Science
Lab., Xerox, Palo Alto Research Center,
Palo Alto, Calif. 1976.

Lee1 Lee, H. "Queueing Analysis of Global
Synchronization Schemes for Multicopy
Databases," IEEE Trans. on Computers
C-g, 5 (May 1980).

[Lelann] LeLann, G. "Algorithms for Distributed
Data-Sharing Systems Which Use Tickets,"
Proc. 3rd Berkeley Workshop on Distributed
Databases and Computer Networks, August
1978.

[Lin] Lin, W.K. "Concurrency Control in a
Multiple Copy Distributed Data Base
System," Proe. 4th Berkeley Conf. on
Distributed Data Management and Computer
Networks, August 1979.

[LNI Lin, W.T.K. and J. Nolte. "Performance
of Two-Phase Locking," Proc. 1982
BerkeZey Workshop on Distributed Data
Management ad Computer Networks, pp.
131-160.

[Lometl] Lomet, D.B. "Multi-Level Locking With
Deadlock Avoidance ," Proc. 1978 Annual
Conf. of the ACM, ACM, N.Y., pp. 862-867.

[LometZ] Lomet, D.B. "Coping with Deadlock in
Distributed Systems," in Data Base
Architecture (Bracchi/Nijssen, eds.),
North-Holland, 1979, pp. 95-105.

[Lomet3] Lomet, D.B. "Subsystems of Processes
with Deadlock Avoidance," IEEE Trans.
on Software Eng. SE-g, 3 (May 1980),
pp. 297-304.

[Lomet4] Lomet, D.B. "The Ordering of Activities
in Distributed Systems," Tech. Report
~C8450, IBM T.J. Watson Research Center,
Sept. 1980.

[MM1 Menace, D.A. and R.R. Muntz. "Locking
and Deadlock Detection in Distributed
Databases ," IEEE Trans. on SOftWa.re Eng.
SE-Z, 3 (May 1979), pp. 195-202.

[Mail Menasce, D.A. and T. Nakanishi. "Opti-
mistic v. Pessimistic Concurrency
Control Mechanism in Database Management
Systems," Information Systems z, 1
(1982).

Proceedings of the Eighth International Conference
on Very Large Data Bases 75 Mexico City, September, 1982

[MN21 Menasce, D.A. and T. Nakanishi. "Per-
formance Evaluation of a Two-Phase Commit
Based Protocol for DDBs," Proc. 1982 ACM
Symp. on Principles of Database Systems,
ACM, N.Y., pp. 247-255.

[WMI Menasce, D.A., G.J. Popek and R.R. Muntz.
"A Locking Protocol for Resource Coordina-
tion in Distributed Databases," ACM Trans.<
on Database Systems z., 2 (June 1980),
pp. 103-138.

[Mine] Minoura, T. "A New Concurrency Control
Algorithm for Distributed Data Base
Systems," Proc. 4th BerkeZey conf. on
Distributed Data Management and Computer
Networks, August 1979.

[Montgomery] Montgomery, W.A. "Robust Concurrency
Control for a Distributed Information
System," Ph.D. Dissertation, Lab. for
Computer Science, MIT, Dec. 1978.

[PBRI Papadimitriou, C.H., P.A. Bernstein,
and J.B. Rothnie, Jr. IISorne Computa-
tional Problems Related to Database Con-
currency Control," PPoc. Conf. on
Sheoretical Computer Science, Waterloo,
Ontario, August 1977.

[Papadimitriou] Papadimitriou, C.H. "Serializab-

IPKI

[Reed]

[Riesl]

[RiesZ]

[RSLI

ility of Concurrent Updates," J. of the
ACM 26, 4 (Oct. 19791, pp. 631-653.

Papadimitriou,.C.H. and P. Kanellakis.
"On Concurrency Control by Multiple
Versions," Proc. 1982 ACM Symp. on
Principles of Database Systems, ACM,
N.Y., pp. 76-82.

Reed, D.P. "Naming and Synchronization
a Decentralized Computer System," Ph.D.
Thesis, MIT Dept. of Elect. Eng., Sept.
1978.

Ries, D. "The Effect of Concurrency
Control on Database Management System
Performance," Ph.D. Dissertation,
Computer Science Dept., University of
California, Berkeley, April 1979.

Ries, D. "The Effects of Concurrency
Control on the Performance of a Distrib-
uted Data Management Systems," Proc.
4th Berkeley Conf. on Distributed Data
Management and Computer Networks,
August 1979.

Rosenkrantz, D.J., R.E. Stearns, and
P.M. Lewis. "System Level Concurrency
Control for Distributed Database Systems,"
ACM Trans. on Database Systems 2, 2
(June 19781, pp. 178-198.

tSM1

[SKI

[SRLI

[SRI

Shapiro, R.M. and R.E. Millstein. "Relia-
bility and Fault Recovery in Distributed
Processing," Oceans '77 Conf. Record,
Vol. II, Los Angeles, 1977.

Silberschatz, A. and 2. Kedem. "Con-
sistency in Hierarchical Database Systems,"
J. of the ACM 21, 1 (Jan. 1980). pp. 72-80.

Stearns, R.E., P.M. Lewis, II, and D.J.
Rosenkrantz. "Concurrency Controls for
Database Systems ,'I Proc. of the 17th
Annual Symp. on Foundations of Computer
Science, IEEE, 1976, pp. 19-32.

Stearns, R.E. and D.J. Rosenkrantz.
"Distributed Database Concurrency Controls
Using Before-Values," Proc. 1981 ACM-
SIGMOD Conf., ACM, N.Y., pp. 74-83.

[Stonebrakerl Stonebraker, M. "Concurrency
Control and Consistency of Multiple Copies
of Data in Distributed INGRES," IEEE
Trans. on Software Erg. SE-Z, 3 (May 1979),
pp. 188-194.

[Thorn] Thomas, R.H. "A Majority Consensus
Approach to Concurrency Control for
Multiple Copy Databases," ACM Trans. on
Database Systems 4, 2 (June 19791,
pp. 180-209.

Proceedings of the Eighth International Conference
on Very Large Data Bases 76 Mexico City, September, 1982

