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ABSTRACT 

In a distributed database environment, finding the optimal 
strategy which fully reduces all relations referenced by a general 
tree query, may take exponential time. Furthermore, since 
reduced relations are to be moved to the final site, the optimal 
strategy which fully reduces all relations does not give an 
optimal solution to the problem of minimizing the total 
transmission cost. For a general query, even with only one join 
attribute, the problem of finding an optimal strategy to reduce 
the total data transmission cost has been shown to be NP-hard. 

In this paper, a heuristic approach is taken to the distributed 
query processing problem. Different cost benefit functions are 
defined based on the nature of the relations involved in the 
semijoin. The proposed algorithm will produce a sequence of 
cost beneficial semijoin operations to reduce the total data 
transmission cost involved in answering a general query. For 
each join attribute, a two phase reduction process is used. The 
order in which the semijoins are performed is controlled by the 
projected size of the join attribute. This algorithm produces 
optimal sequence of semijoins for simple queries. For general 
queries, The experimental results, obtained by simulation, 
indicate a substantial improvement over the SDD-1 query 
processing algorithm. 

1. Introduction 

The problem of distributed query processing is to find an 
efficient or optimal strategy to process queries referencing data 
at different sites. Answering such a query requires data 
movement between sites. It usually takes the following 
steps[BERNS 81 b]: 

1. reduce the relations referenced in the query. 

2. transmit the reduced relations to one designated site, and 
then execute the query locally at that site. 

The critical optimization problem is to perform the reduction 
step efficiently. A common assumption in distributed query 
processing is that the cost of data transmission between nodes 
is the dominant cost and the cost of the local processing is 
negligible. The objective of distributed query processing is 
therefore to process queries with a minimum quantity of inter- 
site data transfers. To further reduce the size of the database, 
data from two or more relations must be combined. Semijoins 
[BERNS 81a] can usually be computed with much less data 
transmission than a join. It also always reduces the number of 
tuples of the relation on which it is performed. The problem of 
distributed query processing thus transforms to generating an 
efficient or optimal sequence of semijoin operations to reduce 
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the total data transmission cost. Research in this direction can 
be found in [CHILI 801,iW 80,8l],[HEVNE 79l,[BERNS 8lb]. 

[CHIU 801 and [YU 801 both use dynamic programming 
techniques to obtain an optimal sequence of semijoins to fully 
reduce the output relation for tree queries . However, for 
general tree queries, finding the optimal strategy which fully 
reduces relations referenced by the query, may take exponential 
time[YU 801. Furthermore, since reduced relations are to be 
moved to the final site, the optimal strategy which fully reduces 
all relations does not give an optimal solution to the problem of 
minimizing total transmission cost in distributed query 
processing. For a general query, even with only one join 
attribute, the problem of finding an optimal strategy to reduce 
the total data transmission cost has been shown to be NP-hard 
[HEVNE 8Ol,[YU 811. (General queries include both tree 
queries and cyclic queries). [HEVNE 791 presents an algorithm 
that constructs an optimal sequence of semijoins for solving a 
given simple query. (A simple query references only single 
domain relations). However, their algorithm for a general 
query, uses an improved exhaustive search and does not 
consider the fact that the reduction of one join attribute will 
indirectly reduce the other attributes in the same relation. 
[BERNS 81bl proposes a heuristic algorithm for answering 
general queries in SDD-1 [ROTHN 801. Although the 
heuristics are simple, the sequence of semijoins generated is in 
general suboptimal. In this paper, we propose a simple yet 
efficient heuristic algorithm to generate a sequence of semijoin 
operations to reduce the total transmission cost of answering a 
general query. In section 2, the assumptions are made. In 
section 3, the costs and benefits associated with a semijoin are 
examined. In section 4, the heuristic algorithm is described. 
In section 5, examples are given to illustrate the algorithm. In 
section 6, experimental results are given. Some concluding 
remarks are given in Section 7. 

2. Assumptions 

In this paper, relational database systems are considered. 
Further, it is assumed that the cost of local processing is zero 
and all possible initial local processing has been performed first. 
A query Q is of the form of conjunctions of equi-join clauses. 
All attributes are renamed such that the join attributes in a join 
clause have the same attribute name. The join clause is of the 
form R,.C = R,.C. Each query Q consists of k join attributes: 
Cl,CZ, . . ..C., where k can be any number. After the initial 
local processing, the attributes in each relation are either output 
attributes or join attributes. Relations referenced in the query 
are assumed to be located at different sites. Also, when 
multiple copies of a relation exist, it is assumed that one copy 
has already been preselected. 
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The cost measure is defined in terms of the total data 
transmission cost. The transmission cost of sending X bytes of 
dam from site A to site B is assumed to be Ke + K ,*X, where 
KO and K t are some constants. 

Similar to [BEBNS 81b], the following assumptions are made 
for estimating the effect of a semijoin. 

1. The distinct values in an attribute of a relation are 
assumed to be uniformly distributed. 

2. If the number of distinct values in one attribute is 
reduced by a semijoin, the number of distinct values in 
each of the other attributes in the same relation will also 
be reduced. The hit-ratio model [YAO 771 is used to 
estimate the reduction on the other attributes. 

It is assumed that the following system parameters are available 
in the system catalog. For each relation R,, i=l, . . . . M: ni is 
the number of records, Ui is the number of attributes, and S, is 
the size of Ri (in bytes). 

For each attribute Aij, j=l, . . . . Ui, of relation R,: p,, is the 
selectivity. pij =Uij/Vrj, where t+j is the number of current Ag 
values in Ri, and Vij is the number of possible Aij values. bv is 
the projected size of Aij. bij=uij*wli (in bytes), where wij is the 
size of data item in Aij (in bytes). 

3. Cost Benefit Semijoin 

3.1 Relevant Set 

For a query Q, the relevant set of a join attribute C,, REV( C,), 
consists of all relations with C, as the join attribute. For 
example, 
Q: R,.C, = R2.C, A R2.C, = R,.C, A R,.C2 = R,.C> 

REV(Cd = 1 RI, R2. Rsl, 
REV(C2) = I RI, RsI. 

When Ck is clearly specified in the context, we will use Bi and 
Pi to represent the projected size and selectivity of C, for 
relation Ri in REV(&). For each C,, there is a corresponding 
set of Ri and Pi values associated with each Ri in REV(&). 
In the above example, if A ,, = C,, Azl = C,, A22 = C2. and 
A 31 = c29 

In REV(Cd, PI = PII. P2 = PZI. 
In REV(C2), p2 = p22, P3 = p31. 
3.2 Effect of a Semijoin 

The semijoin iBERNS 81bl of relation Ri with relation Rj on 
clause Ri.C = Rj.C, equals the join of Rr and Rj on that 
clause projected back onto attributes in Rj. The notation ( Ri 
--t Rj ) on C or simply (Ri * Rj) will be used 
interchangeably to denote the semijoin operation. The semijoin 
(Ri --t Rj) eliminates the unqualified tuples in Rj. Ri is called 
the input relation and Rj the reduced relation. A sequence of 
semijoins is called a strategy. For a chain of semijoins defined 
on C, (RI + Rz), (R2 + Rj), . . . . (Rj-1 - R,), Rj will have 
the accumulated effect of all the semijoins. The join attribute 
of Rj is referred to as the accumulated join attritmte. The process 
of performing a sequence of semijoins on C is referred to as 
accumulating the values of the join attribute C. The reduced 
value of Bj, B>, is referred to as the accumulated project size 
of C in Rj. The selectivity, Pi, of the join attribute of R, is the 
probability that an arbitrary value can be found in the join 
attribute of Rj. For a given join attribute C, the selectivity of 
C in Ri is proportional to the projected size of C in Ri. P; is 
the accumulated selectivity of the join attribute of R,. That is , 
P is the selectivity accumulated due to the semijoins. After the 
semijoin (R, -) R,), the size of Rj, S’,. and the projected size 

of the join attribute, B), is reduced proportionally to the P$ 
value. i.e., R’, = R, * P>, and S’, = Sj * P’j. These values 
are important for the estimation of Cost and benefit associated 
with a semijoin. For a sequence of semijoins (R, + RI) in a 
given strategy, the estimation of the value of P’,, R>, and S’, 
is described in detail in [CHANG 811. 

3.3 Cost Benetit Function 

The cost of performing the semijoin (R, + Rj), Cost(R,, R,), 
is the data transmission cost of moving the join attribute from 
the input relation R, to the site where Rj is located. Therefore, 
Cost(R) , R,) = KO i- K t * R,, where R, is the projected size 
of the join attribute of Ri 9 Ke and K i are some constants. The 
benefit due to the semijoin (R, -) R,), BENEFIT(Rr , R,), is 
the reduction in the transmission cost due to the size reduction 
of RI. Therefore, BENEFIT(R, ,R,) is K1 l (Zfj - S;), where 
S, is the size of relation R, before the semijotn and S\ is the 
reduced size of relation R, after the semijoin. 

A cost benefit function associated with semijoin (RI --+ R3, 
COST-BENEFIT(& , RI), is equal to BENEFIT(R, , Rj) - 
Cost(R, , Rj). A cost benefcial semijoin is a semijoin whose 
corresponding benefit is greater than its cost, i.e. COST- 
BENEFIT > 0, with the following exceptions. 

A single attribute relation is a relation which consists of only one 
join attribute after the local processing, such as select and 
project, is performed. A multi-attribute relation is a relation 
which consists of more than one join attribute and/or output 
attribute after the local processing is performed. The existence 
of single attribute relations in the query is common. However, 
it has the following special features to be considered. 

1. For a single attribute relation R,, if no semijoin (R, + 
Rj) is performed, R1 will have to be moved to the final 
site. 

2. For a single attribute relation R, , if semijoin (RI + R,) is 
performed, the join operation between Ri and R, is 
completed. Ri will no longer be moved to the final site. 

Therefore, for a semijoin (R, -+ RI), if Ri is a single attribute 
relation, this would actually save the cost of moving R, to the 
final site. the cost of performing such a semijoin is actually 
zero. Also, if Rj is a single attribute relation and it has already 
been the input relation of some semijoin, Rj will not be moved 
to the final site. The benefit of reducing such a relation is 
actually zero. 

Therefore, 

1. If Rj is a single attribute relation and it has been used as 
the input relation of some semijoin, the semijoin with Rj 
as the reduced relation is non-cost beneficial. 

2. Otherwise, if RI is a single attribute relation, the first 
semijoin with R, as the input relation is cost beneficial. 

In our approach, we require all the semijoins performed to be 
cost-beneficial. 

4. A Heuristic Algorithm 

A heuristic algorithm is proposed to determine the sequence of 
semijoins used to answer an arbitrary general query Q. We 
divide the reduction process of the query processing into two 
phases. Phase 1 concentrates on accumulating the values of the 
join attributes. Phase 2 concentrates on using the accumulated 
join attribute values to reduce the sizes of the relations. This 
division allows simple solutions to be found in each phase. To 
answer a query, this two phase reduction process will be 
repeated for each join attribute Ck. The reduced relations are 
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then sent to the final site, and Q is executed at that site. 

4.1 PHASE 1 Reduction Process 

Observation: The cheapest way to accumulate the values of C, 
from all relations in REV(Ck) is to continue moving the 
join attribute which has the smallest (accumulated) 
projected size to the site which would produce the smallest 
accumulated projected size [CHANG 811. 

Consider the following situation: 
REV(Ck)=(R,, R,, . . . . Rk]. 
relations Ri are renamed so that Bt I B2 I . . . I Bk. 
The cheapest way to accumulate the values of Ck is to perform 
(R, + R2), (R2 -+ R3), . . . (Rk-, + Rk). In each of these 
semijoins, the input relation Ri always has the smallest 
(accumulated) projected size of Ck. The reduced relation Rj is 
always the relation that will produce the smallest accumulated 
size of C, with Ri as the input relation. Each time a semijoin 
is performed the relation with the smallest (accumulated) 
projected size of Ck changes dynamically. After each semijoin, 
since the relation Rj has the accumulated effect of the 
semijoins performed, it has the current smallest accumulated 
projected size of C,. Rj will be used as the input relation for 
the next semijoin. 

In our approach, all semijoins performed are required to be 
cost-beneficial. Based on the above observation and the 
contraint on cost-beneficial semijoins, the following basic rules, 
are used in our algorithm to determine the sequence among all 
the possible cost beneficial semijoins. 

RULE 1: 
For a given C, and a R, in REV(Ck), among all the cost 
beneficial semijoins (Ri - R,) on C,, always perform (Ri 
- Rk) such that the value of E;, the reduced Bk, is the 
smallest among all B'j. 

RULE 2: 
For a given Ck, among all the relations in REV(Ck), always 
try to use the relation Ri which has the smallest projected 
size of Ck as the input relation. (Only when no cost- 
beneficial semijoin with R, as the input relation can be 
performed, will other relations can be considered as the 
input relation.) 

RULE 1 will determine the reduced relation of a semijoin. 
RULE 2 will determine the input relation of a semijoin. With 
RULE 2, between two relations Ri and Ri, if Bi < Bjq we 
always first try to perform (Ri + Rj). Only when (R, + RI) is 
not a cost beneficial semijoin,will we consider (R, -+ Ri). 
When all the semijoins are cost-beneficial, RULE 1 and RULE 
2 will produce the sequence of semijoins which has the smallest 
costs among all the possible semijoin sequences which 
accumulate the values of the C, from all the relations in 
REV( C, ) . 

The algorithm for performing the phase 1 reduction process for 
a given C, is described in the following algorithm ( 
ALGORITHM H-l). In ALGORITHM H-l, a list SA is used 
to record the relations that have been involved in semijoins. A 
list SI is used to record the relations that are not in SA. 
Strategy(Ck) is used to record the resulting semijoins for the 
phase 1 reduction process of C,. Initially, SA consists of the 
relation with the smallest Br among all the relations in 
REV(Ck). SI consists of the rest of the relations in REV(Ck) 
in increasing B, order. ALGORITHM H-l maintains proper 
order among the relations in both SA and SI. The first relation 
in SI always has the smallest B, value among all the relations in 
SI. Also the last relation in SA always has the smallest B, 
value among all relations in REV(Ck). There are two 

alternatives that a relation can be added to SA. The first 
alternative is to semijoin the relation in SA with the relation in 
SI. Since Pi is proportional to Bi, performing the semijoin 
between the last relation of SA and the first relation of SI 
which satisfies the cost-beneficial requirement will always 
produce the smallest accumulated projected size of C,. RULE 
1 is thus obeyed. Since the last relation in SA always the 
smallest Bi value, RULE 2 is also obeyed. This process will 
continue until all the possible semijoins are exhausted. Because 
of the constraint on cost beneficial semijoins, SA may not yet 
have all the relations in REV(&). The second alternative of 
adding relations to SA is to semijoin the relation in SI with the 
relation in SA. Since the relations in SI will always have larger 
projected size of Ck than relations in SA, according to RULE 2, 
this alternative will only be considered when the first alternative 
is exhausted. 

ALGORITHM H- 1: 

Input: Q, C,, REV(&). 
Output: Strategy( Ck ). 
Initialization: relations Ri in REV(Ck) are renamed so that 
B, I Bz 5 . . . I Bk. 
SA={R,), SI=(R 2, . . . ,Rk ), Strategy( C, ) = empty. 

STEP 1: If SI is empty, STOP. 
Let Rim be the last element in SA. Scan SI in 
sequence. Select the first Rj in SI that satisfies 
COST-BENEFIT(R,n,Rj) >O. 
Remove Rj from SI and add to the end of SA. Add 
(R,,, + Rj) to the end of Strategy(&). 
Repeat STEP 1. 

STEP 2: If no element in SI satisfies COST-BENEFIT(Rin,Rj) 
>O, go to STEP 3. 

STEP 3: Let R’in be the first element in SI. Scan SA in 
sequence. Select the first Rj in SA that satisfies 
COST-BENEFIT(R’h ,R,) > 0 . 
Remove R’in from SI and add to SA right before Rj. 
Add (R/i,, --t Rj) to Strategy(Ck) right after the last 
semijoin reduces Rj. 
Go to STEP 1. 

STEP 4: If no element in SA satisfies COST- 
BENEFIT(R’r,,,R]) > 0 and no single attribute 
relation in SI, STOP. Otherwise, move the first single 
attribute relation in SI as the first element in SI, and 
go to STEP 3. 

In ALGORITHM H-l, STEP 1 implements the first alternative 
of adding elements to SA. STEP 3 implements the second 
alternative of adding elements to SA. The relative order of the 
elements in SA and SI are properly maintained by 
ALGORITHM H-l. Basically, the last element in SA has the 
smallest P,. Therefore, in STEP 1, if the last element of SA 
cannot obtain any Cost-Beneficial semijoin with elements in SI, 
no other element in SA can obtain Cost-Beneficial semijoins 
with elements in SI. The first element in SI has the smallest 
projected size of Ck. Similarly, in STEP 3, if the first element 
in SI cannot obtain any Cost-Beneficial semijoin with elements 
in SA, no other element in SI, with the exception of single 
attribute relations, can obtain Cost-Beneficial semijoins with 
elements in SA. STEP 4 therefore either stops ALGORITHM 
H-l or moves the single attribute relation to the beginning of 
the SI. (In most of the cases, STEP 3 is rarely used). 

ALGORITHM H-1 will collect the values of the join attribute 
from each relation in REV(&) at most once, i.e. each relation 
will be the input relation of some semijoin at most once. Due 
to STEP 3, it is possible taht some relation may be the reduced 
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relation of some semijoin more than once. In an improved 
version of ALGORITHM H-l, STEP 3 is modified such that all 
relations in REV(Ck) will be the input/reduced relation of 
some semijoin at most once. For the detail of the modified 
algorithm, please refer to [CHANG 811. 

The join attribute has the smallest ACCk value has the 
highest priority. 

4.2 PHASE 2 Reduction Process 

In phase 2 of the reduction process, the accumulated join 
attribute will be used to further reduce a multi-attribute relation 
when the corresponding cost benefit function is greater than 0. 
For a single attribute relation R,, since the cost of performing 
the first semijoin with R, as the input relation is 0, its join 
attribute value will always have been collected during phase 1. 
It is therefore not necessary to further reduce any single 
attribute relation in Phase 2. 

The algorithm H-l and H-2 are repeated for each join attribute. 
The overall strategy for Q, Strategy(Q), is therefore 
Strategy(Q) = ( Strategy(C,), Strategy(C,),..., Strategy(C 
where each C’i is selected dynamically, after C,-, is selected and 
Stmtegy(Ci-l) is produced. Initially, C, is selected as the join 
attribute with the highest priority. 

4.4 Encbancement Rules and Rule of Shipping 

This subsection discusses the enchancement rules used to 
further reduce the cost of the semijoins. Also, a specific rule, 
rule of shipping, is used to specify which relations are to be 
shipped to the final site in order to form the correct reponse set 
for the user queries. 

To further reduce the transmission cost, the project operation is 
to be performed to eliminate the join attributes that are not to 
be used for future processing. For a query Q, C, is R,- 
reducible, if (1) there is only one multi-attribute relation R, in 
the REV(&) and the rest are all single attribute relations, and 
(2) Ck is not an output attribute. If Ck is R,,,-reducible, we 
can eliminate C, from R,,, at the end of phase 2 and still 
obtain the correct answer for Q. 

The algorithm for performing the phase 2 reduction process is 
described in ALGORITHM H-2. 

We assume that the reduction of the join attribute will reduce 
the other attributes in the same relation. Since (Ri + Rj) will 
reduce the projected size of other attributes in Rj besides the 
join attribute, it would sometimes be beneficial if some 
semijoins in Strategy(Ci+,) are performed before semijoins in 
Stmtegy(Ci). However, when the semijoins in Strategy(Q) are 
reordered, the relative order of each of the semijoins in a 
stmtegy(Ck) cannot be changed. That is, if semijoin i is before 
semijoin j in Strategy(&), then semijoin i has to be before 
semijoin j in Strategy(Q). 

ALGORITHM H-2: Consider the following example: 
Input: SA, Strategy(&). 
Output: Strategy(&). 

STEP 1: Let Rin be the last element in SA. Perform (Rin - 
Rj) for every multi-attribute relation Rj satisfying 
COST-BENEFIT(Rin ,Rj) >O. 
Add (Ri,, --t R,) to the end of Strategy(Ck). 

STEP 2: Eliminate C, from R,,, , if C, is R,,,-reducible. 

StmWu(Cd =@I - R2), (R2 + RI)), 
Strategy(Cd =I@2 * Rd, (R3 -( R2)h 

4.3 Rule of Ordering 

Since (R3 + R2) reduces R2, the cost of (R2 - RI) on Cl can 
be decrease by delaying it until (Rl - R2) on C2 is performed. 
This reordering also does not increase any other semijoins. 
Strategy(Ql)=I(Rl - Rd, (R2 -+ Rd. CR, - R2), CR2 - 
R,)) has a lower cost than Strategy(Q) ==((R, - R2), (R2 --) 
R,), CR3 + RI), (RI - R3)). 

To answer a query Q, the two phase reduction process is 
repeated for every join attribute Ck to obtain Strategy(&). 
The order of which the join attributes are to be processed is 
determined based on the following observations: 

Observation 1: 
Since the reduction of one join attribute will indirectly 
reduce the other attributes in the same relation, one 
reasonable choice of ordering the join attributes is to first 
process the join attribute that will most reduce the relations 
in its relevant set. That is, to first process the join attribute 
with the smallest value for the product of the selectivity for 
all the relations in its relevant set. 

The permutation rule in [BERNS 81bl permutes the order of 
semijoins in a given strategy to decrease the cost of semijoins 
without increasing the cost of any others. This permutation 
rule will be used to reorder the semijoins in Strategy(Q) to 
further reduce the total cost. The details of the permutation 
algorithm, can be found in [BERNS 81bl. 

RULE 4: Rule of Transformation 
Using the permutation rule in [BERNS 81bl, reorder the 
semijoins in Strategy(Q) . 

Observation 2: 
for a given C,, the cost of performing the semijoins on Ck 
are influenced by the projected sizes of R,s in REV(Ck). 
Another choice of ordering the join attributes is to order the 
join attributes according to its projected size. 

At the end of the reduction phase, reduced relations are sent to 
a designated site and the query Q is executed locally at that site. 
The following rule specifies which relations are to be sent to the 
final site in order to produce the answer for Q. 

RULE 5: Rule of Shipping 

The following heuristic rule is therefore used. For a given Ck, 
let RANGE-Ck be the number of possible values in the 
domain of C,. 
Let AC& = RANGE-Ck * II pj. 

i E REVtCk) 

If all relations referenced by Q are single attribute relations, 
move the relation which was reduced last to the designated 
site. Otherwise, move all multi-attribute relations to the 
designated site. 

The order of which the join attribute is processed is determined 
according to its associated AC& value. The join attribute has 
the smallest AC& value will be processed first. 

MOVE(R,,Rj) is used to represent the move of the relation Ri 
to the site where R, is located. For each relation R, moved to 
the final site, MOVE(R,,R,) will be added to the Strategy(Q). 
The cost associated with the move operation is Ke + K1 l S,, 
where S, is the size of the Ri. 

RULE 3: Rule of Ordering In calculating the cost benefit function, the fact that a relation 

Order join attributes C, according to the following priorities: may already be located at the final site was not taken into 
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account. If a relation Rf is located at the final site, there is no 
need to move it and moreover a reduction in its size does not 
directly contribute to the total cost reduction. To determine 
whether to include the semijoin (R, - R,) in the strategy, 
where RI is any relation and Rf is a relation located at the final 
site, we compare the cost of the two strategies with and without 
the semijoin. 

There are two possibilities for a semijoin (Ri - R,) on C, to 
be included in the strategy: either in phase 1 or in phase 2 of 
the 

(1) 

(2) 

reduction process of ?i. 

If (R, -) R,) occurs during phase 1: After (R, -) R,), 
there exist semijoin (Rf - RI) on Ck. To remove (RI 
-B Rf) will involve changing all (R, + Rj) to (Ri + R,), 
where R, f R,, 

If (Ri - Rf) occurs during phase 2: (R, -+ R,) will not 
be followed by any (Rf + R,) on Ck. Removal of (R, - 
RI) will not affect other semijoins. 

RULE 6: Rule of Final Site 
Given a Strategy(Q), for each semijoin (R, -* Rf) on C, 

(1) If (Ri + RI) is followed by semijoin (R, -) Ri) on 
C,, Stmtegy(Q t) is constructed as follows: 

Since R,,, is the final site, no new rule is added. 
Strategy(Q) = ((RI -t Rd, (R2 ---) R3), . . . . (&,-I + 
R,,,)}. 

00 IfR,,, #R/. 

(a) Remove (R, + Rf). 
Apply Rule of Shipping, MOVE(R,,, ,R,) is added. 
Stmtegy(Q) = ((RI + Rd, (R2 - Rd, . . . . UL-I -, 

(b) Translate each (RI + R,) into (Ri -+ R,),if R, # 
R,. Otherwise, remove (Rf - Rj). 

The cost of the Strategy(Q) is compared to the cost of 
the Strategy(Qt). If the latter cost is lower, Strategy(Q) 
is replaced with Strategy( Q 1). 

&,,),MOVEUC,,,R/)}. 

(2) If (RI - R,) is not followed by any semijoin (Rf - 
Rj) on Ck, Strategy(QJ is constructed by removing 
(4 - R,) from Strategy(Q). The cost of the 
Strategy(Q) is compared to the cost of the Strategy(QJ. 
If the latter cost is lower, the semijoin is removed from 
Strategy(Q). Strategy(Q) is replaced with Strategy( Q i). 

Apply Rule of Final Site, the cost of Strategy(Qi) is 
compared with Strategy(Q), where 
Strategy(Qd = ((RI - R2), . . . . (Rf-I -) Rf+A . . . . 
(&,-I - &n),MOVE(Rm&)). 
Therefore, Strategy(Q) is equal to 
(1) if Cost(Strategy(Q)) < Cost(Strategy(Ql)), 
Strategy(Q)=((Rl --) Rd, . . . . (R/-I + R/l, CR/ - 
++I), .a., (&,-I - 4,,),MOVE(R,,,,R/)~. 
(2) otherwise, 
Stmtegy(Q)=((Rl + R2), . . . . (&-I - Rf+d, . . . . 
(&,,-I + &),MOVE(Rm&)). 

The overall processing for a general query Q is described in the 
following algorithm. 

Since all RI are single attribute relations, B, = S,, for all i. 
The solution obtained above is actually the optimal solution for 
a simple query as presented in [HEVNE 791. 

ALGORITHM H-Q: 5.2 General Query 

Input: Q. 
Output: Strategy(Q). 
Initialization: Strategy(Q) = empty. JOIN, = {C,,..C,,,], Ci 
are join attributes in Q. k= 1. 

STEP 1: If JOIN, is empty, go to STEP 4. 

STEP 2: Apply Rule of Ordering to select the attribute with the 
highest priority among attributes in JOIN] as Ck. 

STEP 3: Apply ALGORITHM H-l and H-2 to produce 
Strategy( C,). 
Strategy(Q) = IStrategy( Strategy(G)). 
Remove C, from JOZN,, k = k + 1. 
go to STEP 1. 

STEP 4: Apply Rule of Transformation. 

STEP 5: Apply Rule of Shipping. 

STEP 6: Apply Rule of Final Site. STOP. 

Example 2: Given a distributed database with four relations, I? 
EMPLOYEE (E#, ENAME, SEX), C: COURSE (C#, 
CNAME. LEVEL), SC STUDENT-COURSE (E#, C#), TC: 
TEACHER-COURSE (E# , C# , ROOM) [HEVNE 791. 
Assume that the site containing the TEACHER-COURSE 
relation is at the result site. Consider the following query Q: 
“for all male employees who are teaching advanced courses in 
Room 103 and are students in at least one course, list the 
employees’ names and the courses they are teaching.” 
The first step is to do local processing. The local restrictions on 
E.SEX. C.LEVEL, and TC.ROOM are performed and the 
required joining attribute and output attributes E.ENAME and 
C.CNAME are projected. 
The qualification of Q is 
(E.E# =SC.E#) A (SC.E# =TC.E#) A (TC.C# =C.C#). 
The target list of Q is E.ENAME and C.CNAME. 
The parameters associated with the relations are given as 
follows. 
4 s, B,(W) P,(E#) B,(C#) 4(Cdo 
TC 600 200 115 200 112 
SC 600 600 315 
C 1200 100 114 
E 2000 200 115 

5. Examples 

In order to illustrate the algorithm described in Section 4. the 
following examples are given. 

5.1 Simple Query 

A simple query [HEVNE 791 is defined such that after initial 
local processing each relation in the query contains only one 
attribute, namely, the join attribute. 

Example I: Let Q be a simple query with relations Ri, i= 1, . . . . 
m. Each Ri consists of only one attribute C. 

The relations R, are reordered, so that 
5B21 ... SB,. 

Apply ALGORITHM H-l and H-2 for C: 
Since all Ri are single attribute relations, (R, -t Ri+l) is 
always cost beneficial. 
Stmtegy(C) = ((RI -, Rd, (R2 - RJ), . . . . (&-I - &,)I. 
Since there is only one join attribute, 
Strategy(Q) = Strategy(C) = ((R, - R2), (R2 -) Rx), . . . . 
UL-I + &,)I. 

Apply Rule of Shipping and Rule of Final Site: 

(4 IfR,,, = R/. 
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Let Ks = 10, K, =l. 

TC is at the final site, rule of final site will remove (SC - 
TC), (C - TC) from the strategy. Therefore, 
Strategy(Q)= {(E - TC), (TC - SC), (SC - E), (TC * 
C), MOVE(E, TC), MOVE(C, TC)). 

This presents the correct solution to the problem suggested in 
[HEVNE 791. The solution suggested by [HEVNE 791 is ((E 
+ TC), (TC - SC), (SC + E), (C -) TC), (TC + C), 
MOVE(E, TC), MOVE(C, TC)}. They failed to recognize that 
the size of relation TC had been considerably reduced by the 
reduction process of E#. The semijoin (C -) TC) as suggested 
in their solution is not a cost-beneficial move and therefore 
their solution is incorrect according to their own problem 
formulation. 

Example 3: Consider the same query as in Example 2. The 
qualification of Q is 
(E.E# =SC.E#) A (SC.E# =TC.E#) A (TC.C# =C.C#). 
However, the target list consists only E.E#. Also, TC is 
assumed to be located at the final site [YU 801. 
The parameters associated with the relations are given as 
follows. 

Apply Rule of Ordering: 
REV(E#) = {TC, SC, Ej, REV(C#) = {TC, C). 
ACC(E#) < ACC(C#). E# will be processed first. 

Phase 1 reduction for E#: BE < Bn: < Bsc. 
(a) first try (E + TC): 
COST-BENEFIT(E, TC) = (l-1/5)*600 -(200+10) >0 
Strategy(E#)={(E - TC)). 
(b) try (TC -t SC): 
COST-BENEFIT(TC, SC) = (l-1/25)*60 - (40+10) >O 
Strategy(E#)={(E - TC), (TC -) SC)). 

Phase 2 Reduction for E# : 
COST-BENEFIT(SC, E) > 0, COST-BENEFIT(SC, TC) > 
0. 
Strategy(E#)={(E - TC), (TC - SC), (SC - E), (SC + 
WI. 

Phase 1 reduction for C#: 
B’x=40.(Using hit ratio model). BIT= < Bc. 
first try (TC + C): 
COST-BENEFIT(TC, C) > 0. 
Strategy(C#) = {(TC - C)). 

Phase 2 reduction process for C# : 
COST-BENEFIT(C, TC) > 0. 
Strategy(C#)= {(TC -) C), (C -) TC)). 

Strategy(Q)= {(E - TC), (TC + SC), .(SC - E), (SC --) 
TC), (TC - C), (C -4 TC)). 
Applying Rule of Transformation does not change the order 
of the semijoins in Strategy(Q). 

Apply Rule of Shipping: 
Strategy(Q)= {(E - TC), (TC + SC), (SC - E), (SC - 
TC), (TC + C), (C + TC), MOVE(E, TC), MOVE(C, 
‘WI. 

Apply Rule of Final Site: 
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4 Si Bi(E#) pi(E#) Bi(C#) Pi(C#) 

TC 600 300 314 300 112 

SC 240 240 315 

C 300 300 112 

E 200 200 112 
Let K, = 10, K, = 1. 

l Apply Rule of Ordering: 
REV(E#) = (TC, SC, E), REV(C#) = (TC, C). 
ACC(E#) < ACC(C#), E# will be processed first. 

l Apply ALGORITHM H-l and H-2 for E#: 
BE-=Bsc<BTC. 
Strategy(E#)=((E -, SC), (SC -+ TC)}. 

l Apply ALGORITHM H-l and H-2 for C#: 
B’TC = 180 (according to hit ratio model). 
B’,<B,. 
Strategy(C#)=((TC 4 C), (C + TC)). 

Strategy(Q)={(E - SC), (SC - TC), (TC - C), (C -) 
W 1. 

l Apply Rule of Transformation , Rule of shipping and Rule 
of Final Site: 
Since TC is the final site, Strategy(Q) is the same. 
Cost (Strategy(Q)) = Cost(E,SC) + Cost(SC,TC) + 
Cost(TC,C) + Cost (C,TC) =(lO +200) +(lO + 120) + 
(10 + 180) + (10 + 90) = 630. 

Using the algorithm in SDD-1, their strategy is to perform the 
semijoin which maximizes the immediate gain. According to 
the cost benefit definition in IBERNS 81b1, the only cost 
beneficial semijoin is (E * TC). Therefore, their solution 
would be: 
Strategy(SDD-1)= {(E - TC), MOVE(SC, TC), MOVE(C, 
WI. 
This is also the solution that the algorithm in [HEVNE 791 
would suggest. 
Cost(Strategy(SDD-l))=Cost(E, TC) + Size(SC) + Size(C) 
=(10 + 200) + (10 + 240) + (10 + 300) = 870. 
This is much higher than our strategy. 

6. Experimental Results 

Simulation programs were written to compare the performance 
of our proposed heuristic algorithm and SDD-1 query 
processing algorithm. For a given query, separate sequences of 
semijoins are generated according to the SDD-1 algorithm and 
our algorithm. The costs of performing these sequences of 
semijoins are then calculated. Both the SDD-1 strategy and our 
strategy have been applied under the following conditions: (1) 
the rule of transformation and rule of final site have not been 
used. (2) after the reduction phase, the site with the largest 
relation size is dynamically chosen to be the final site. 

The performance improvement of our algorithm over SDD-1 
algorithm is calculated as follows: 

improvement = (Cost(Strategy(SDD-1)) - Cost(Strategy(Q)) 
)/ Cost(Strategy(SDD-1)). 

For each query, the corresponding system parameters (the 
number of tuples, the number of attributes in each relation, 
and the selectivity associated with each join attribute ) are 
randomly generated. The average improvement for a query Q 
is calculated as the average improvement of Q tested over 500 
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different combinations of relation sizes, possible join attribute 
values and selectivities. 

We have empirically tested the common query patterns, i.e. 
queries consisting of one ,two and three join attributes. These 
query patterns included cyclic queries as well as tree queries. 
The empirical results indicate up to 50% performance 
improvement of our algorithm over SDD-1. The improvement 
over SDD-1 increases in general with the increase of (1) the 
number of relations referenced in the query, (2) the percentage 
of single attribute relations referenced in the query. 

Let M be the total number of relations referenced in the query 
and S be the number of single attribute relation referenced in 
the query. For each query pattern, experiments have been 
performed for different combinations of M and S values. The 
characteristics of the corresponding system parameters used in 
each experiment are described in Table 1. When a wider range 
of relation sizes and join attribute values is used in the 
experiments, similar results have also been obtained. 

Figure 1 gives the average improvement of our algorithm over 
SDD-1 algorithm when the query consists of one join attribute. 

Q,: (Ra.A = Ri.A) A (R,,.A = Rs.A) A (R,,.A = RM-,.A) 

Experiments have been performed for M = 3, 4, 5 and for S 
=o ,..., M. 

Queries consisting of two join attributes are generated from Qp 

Q2: (Ro.A - R,.A) A (Ro.B - R2.B) A equi-join -clausei A 
equi-join -clause,+, A . . . 

where equi-join-dausei is in the form of (Ro.A - R,..A) or 
(Re.B = R,.B) 

Figure 2 shows the improvement in cases where the total 
number of relations varies from 4 to 6 and the number of 
single attribute relations varies from 0 to M-l. 

Queries consisting of three join attributes are generated from 
the following two query patterns. 

Q3,: &.A = RpA) A (Re.B - Rs.B) A (R,,.C = R3.C) A 
equi -join -clause, A equi -fin -clause,+, A . . . 

where equi-join--clause, is in the form of (Ro.A = R,.A) or 
(Ro.B - Ri.B) or (Ro.C = R,.C). 

Q32: (ReA = Rt.A) A (ReB = R2.B) A (R,.C = R>C) A 
equi-jkn -clausei A equi-join -clausei+, A . . . 

where equi-join-dame, is in the form of (R*A - R,.A) or 
(Rs.B = R,.B) or (R,.C = R,.C). 

Figure 3 shows the average improvement over SDD-1 when 
Qst is used. In Figure 3, M varies from 4 to 6 and S varies 
from 0 to M-4. Figure 4 shows the average improvement over 
SDD-1 when Q32 is used. In Figure 4, M varies from 4 to 6 
and S varies from 0 to M-3. Q32 in fact generates cyclic 
queries. 

7. Coaclusions 

To summarize, we have proposed a distributed query processing 
algorithm, which produces a squence of semijoins for general 
queries. In our algorithm, the COST-BENEFIT definition has 
been modified to reflect the special feature of single attribute 
relations. Also, a two phase reduction process was used. Phase 
1 concentrates on accumulating the values of the join attributes. 
Phase 2 concentrates on using the accumulated join attribute 
values to reduce the sizes of the relations. This reduction 
process allows simple solutions to be found in each phase. 
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This algorithm produces optimal solution for simple queries. 
For general queries, the empirical results indicate up to 50% 
performance improvement over SDD- 1. 
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Table 1: Descriptions of system parameters. 

M: 3,4,5 --Figure 1 
4,5,6 ---Figure 2,3,4 

p,j: unif(O,l) ---Figure 1,2,3,4 

Vii: unif(500,lOOO) -- Figure 1, 2, 3, 4 
unif( 1000,10000) -- similar results were obtained when this 

value range was used 

n,: unif(lOO,lOOO) -- Figure 1, 2, 3, 4 
unif( lOO,lOOOO) -- similar results were obtained when this 

value range was used 

where unif(n,m) indicates the value is uniformly distributed 
between n and m. 
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