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ABSTRACT
With an increasing amount of data and user demands for
fast query processing, the optimization of database opera-
tions continues to be a challenging task. A common op-
timization method is to leverage parallel hardware archi-
tectures. With the introduction of general-purpose GPU
computing, massively parallel hardware has become avail-
able within commodity hardware. To efficiently exploit this
technology, we introduce the method of speculative query
processing. This speculative query processing works on, but
is not limited to, a prefix tree structure to efficiently support
heavily used database index operations. Fundamentally, our
developed approach traverse a prefix tree structure in a spec-
ulative, parallel way instead of a step-by-step traversing. To
show the benefits and opportunities of our novel approach,
we present an exhaustive evaluation on a graphical process-
ing unit.

1. INTRODUCTION
The increasing availability of structured data managed

by relational databases emphasizes the need for fast query
processing on large amounts of data. The performance of
a database query can be improved in multiple ways and
represents a permanent research focus in the database com-
munity [1]. The use of indexes is one of the most common
and effective methods to enhance the speed of a query in a
row-oriented database [15]. In this kind of database, a data
tuple contains of multiple columns and the data tuples are
stored and processed with all associated column. One com-
mon access method realized by such an index is the search
for a specific data tuple within a dataset that satisfies cer-
tain properties, such as the value of a specific column. For
this reason, multiple approaches have been developed and
optimized for a variety of different data skews and hard-
ware architectures [16]. Such indexes are one of the most
commonly applied data structures, further optimizations of
these structures are essential.

Furthermore, indexes can be used as a core component
of column-store database systems [9, 19]. While row stores
keep all columns physically close to each other, column stores
partition the table vertically such that each column of a ta-
ble is stored in a separate location. To be able to recreate a
row, each column contains a row identifier next to its value.
A column store is commonly the foundation for database
systems performing a large number of analytical queries.
These analytical queries access only a few columns but al-
most all rows of a table. Thus, column stores only access
the needed data for this query type, while row stores need

to access all columns since they are tightly bound to each
other and cannot be skipped.

Therefore, index structures are heavily used in column as
well as row-storage database system to efficiently support
query processing. The main data structures used for indexes
are tree-based structures. The trees store tuples, where each
tuple consists of a key and a payload. A key is the identi-
fier for a tuple, and the payload may be a link or the ac-
tual value. Multidimensional indexes store a combination of
keys to a payload such as (key1, .., keyn, payload). For spe-
cific data skews and requirements, multiple algorithms and
structures have been proposed to store and query data most
efficiently under specific side conditions [22].

Aside from tree-based structures, prefix trees are a well-
known structure in many areas of research. They are used in
various ways, e.g., for the translation of virtual to physical
addresses in operating systems [12, 21] or within commercial
database systems for index compression in an Oracle system.
Furthermore, they are widely applied to optimize relational
joins of tables, as introduced in [10]. Therefore, it is essential
to optimize this kind of structure as far as possible and to
explore new ways for query processing with this structure.

Current CPU designs offer an increasing single-digit num-
ber of cores creating opportunities for database systems to
leverage parallel algorithms. With the introduction of Graph-
ical Processing Units (GPU) as general-purpose processors,
a massively parallel architecture has become available to
perform database operations in parallel. A common method
to speed up the access to data is to partition the data and to
perform operations on it in parallel. This can only be done
if the underlying data structures contain no data dependen-
cies. To efficiently exploit the technology of a highly parallel
system for a prefix tree, we introduce the concept of spec-
ulative computing for database operations. With this new
concept, we partially pre-create results that can potentially
be used to answer database queries. Since these partial re-
sults are computed in parallel, the complete runtime of the
query may benefit from this approach.

Our Contribution and Outline
In the following section, we briefly review the general idea of
prefix trees and the basic structure of Graphical Processing
Units (GPU). Then, we introduce our novel developed ap-
proach to traverse a prefix tree structure on tightly coupled
system in parallel in Section 3. In order to enable this ap-
proach, we describe a method to resolve data dependencies
for tress structures in Section 3.1. Moreover, we present an
analytical study of our approach in Section 3.2. Section 4
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Figure 1: Prefix tree with a depth of 4 and the search for key 7939.

includes a description of how to leverage specific hardware
features for our approach. Before we conclude the paper
with a short summary in Section 7, we review related work
in Section 5 and we present an exhaustive experimental eval-
uation of our developed approach in Section 6.

2. PREREQUISITES
As a basis for our new method, we use a prefix tree1. In

this section, we will introduce and discuss the concept of
prefix trees and give a detailed description of our hardware
model.

2.1 Prefix Tree
Figure 1 shows an example of a prefix tree. The idea is

that a tuple consists of a key Ki and a payload Pi, where
the key Ki may be of any type of integer (32 or 64 bit) or a
string with variable length. Every key in a tree has the same
data type. The key is inserted into the tree and the payload
is added as a linked list to the leaf nodes of the tree. The
path within the tree for a key Ki is defined by the absolute
value of the key instead of being defined by the relation of
the key to the other keys. A key Ki is split into N equally

sized sub-keys Kn
i consisting of b = |Ki|

N
bits with |Ki| being

the number of bits in the key. Each node contains an array
of 2b child node pointers.

On the n − th tree level, the sub-key Kn
i determines the

child node to be used by interpreting the Kn
i −th sub-key as

an integer value and accessing the Kn
i − th element within

the child node array. Therefore, the tree has a depth of N .
Figure 1 illustrates how key 7939 is located within the tree.
The elements that are accessed in each node are shaded.
With a fixed tree depth, a key lookup can be executed in
constant time independent of the tree load. A further bene-
fit of this structure is that the keys are kept in sorted order.
Therefore, sorting and filter operations can strongly benefit
from this tree type since the operations can be performed
directly on the structure of the tree without expensive com-
parison functions. One of the main points of criticism of this
approach is the possible tree depth. Since the tree depth de-
pends directly on the key length, this structure is unsuitable
for long keys. Short keys can be very efficiently managed
though. Thus, to be able to use this structure as a core

1The original idea was submitted to the ”First Annual SIG-
MOD Programming Contest – Main Memory Transactional
Index” by the DEXTER team and was chosen as one of the
5 fastest submitted implementations.

component of a database system, it must be optimized with
regard to its handling and support of longer keys that are
evident in database systems.

A database index is a key component of a database sys-
tem and widely used to optimize data access. Before a data
structure is able to serve as a database index, it has to pro-
vide the following primitives:

1. get(key): This operation returns the first payload to a
specific key.

2. getNext(): This operation returns the next payload
from a position determined by a get(key) function.
Once all payloads for a specific key have been returned,
the function moves on to the next key in alphabetical
order.

3. insert(key, payload): The insertion consists of two steps
because the correct position for the key must be found
first. This can be resolved by a modified get(key) op-
eration that creates new nodes within the tree if the
required nodes in the tree do not yet exist.

4. delete(key, payload): As a reversed operation to the
insert, the delete operation removes the key-payload
tuple from the index or makes it invisible to the user.

These are the most common and basic operations on an
index within a database system [14]. For more enhanced
features of a database system, the index may provide more
sophisticated access functions, such as methods to determine
the number of distinct items or a fill factor. Furthermore,
we focus on the get(key) function, since it is used in all
other functions, and therefore, an optimization within this
function also enhances the speed of others.

2.2 GPU
The original purpose of Graphical Processing Units (GPUs)

is to perform mathematical calculations to determine the
color of a specific pixel in a picture [13]. With increasing
requirements from the game and movie industries, GPUs
have become a source for great computing power. This is
achieved by highly specialized hardware consisting of tightly
coupled parallel processors. Figure 2 illustrates a strongly
abstracted architecture view on a GTX285 from NVIDIA.
Other vendors’ products, such as those from AMD, differ
only slightly from this architectural view.

The GPU consists of a two-level hierarchy that can be
found on processor and memory level. The GTX285 has 24
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Figure 2: Schematic overview of a GPU architec-
ture.

multiprocessors (MP) and a global memory. Each MP con-
sists of 8 processors and a local memory, resulting in a total
of 240 processors. While all data in the global memory can
be accessed from all processors, data in the local memory is
accessible only from within the same thread. For synchro-
nization purposes, the global memory also includes a shared
memory region. This region can be accessed by all threads
that are executed within one block. The local and shared
memory can be leveraged by software code only and will
be flushed when the function being executed on the GPU
is complete. Therefore, the shared and local memory repre-
sent a software-controlled cache. The size of shared memory
is limited to 16kBytes, compared to a maximum of 4GB for
the global memory. Data in the global memory is persis-
tent throughout the application runtime. Furthermore, lo-
cal memory can be accessed within 4-6 cycles, compared to
400-600 cycles of latency on the global memory. With such
high latency differences, it is important to leverage the local
memory as much as possible. To transfer data, the GPU
is connected with a PCIExpress connection. The current
theoretical maximum throughput is 8GByte/s (version 2).

To hide the high latency of the global memory, the GPU
offers two important features. The first is coalesced mem-
ory access. This feature bundles multiple memory requests
of processors into one request. This way, high memory band-
width of 86GByte/s can be used more efficiently. The sec-
ond feature is fast thread switching. While a thread switch is
very costly on the CPU, the GPU can handle thread switch-
ing with more ease. It is therefore encouraged to create more
threads than are available as physical execution units. This
overload can then be used to schedule threads for execution,
while others wait for a memory transfer. This is especially
important since databases are more likely I/O-bound, not
CPU-bound, and it is thus one of the most important fea-
tures for implementing database operations on the GPU. We
will come back to this in later chapters.

The GPU can be employed in multiple ways. Previously,
the data has been hidden in structures for graphical pro-
cessing, such as triangles, and then graphical programming
languages like GLSL or DirectX have been used to perform
image manipulation functions on the data, resulting in the
desired mathematical operation on the data. This has re-
quired good knowledge of graphics processing and graphical
programming languages. CUDA and Stream are extensions
to the C programming language that enable the program-
mer to write native C code and execute it on the GPU. The
methods introduced in this paper are implemented using the
CUDA extension exclusively.

3. SPECULATIVE TREE TRAVERSAL
As described in Section 2.1, the performance of a database

index structure depends on the efficiency of the get(key) op-
eration. However, this operation normally corresponds to
sequential traversals of the underlying tree—from the root
to a leaf. To increase the performance and to leverage the
high number of available cores on a many-core processor
(like a GPU), we introduce our speculative approach for
tree traversal. Our goal is not to minimize the number of
instructions used to the find the result but to utilize the high
number of cores in an efficient and novel way. In this case,
we assume that many-core architectures offer enough com-
putation capabilities to allow us to perform some speculative
(and sometimes redundant) tasks that we would normally
avoid in today’s algorithms.

Our concept of speculative tree traversal consists of two
steps:

1. Parallel traversal of (all) partitions of the tree, and

2. Aggregation of intermediate results to the final result.

The parallel traversal of the tree uses the high number of
cores on a GPU. In its initial implementation, all possible
partial results are created. Then, the intermediate results
are used to determine the final result. The second step is,
again, a traversal of the intermediate results, which is imple-
mented as a serial traversal. To further enhance the perfor-
mance, we also introduce a method to create the final result
in parallel.

3.1 Partition-Based Traversal
To leverage the high number of cores of a GPU, we parti-

tion the tree into multiple computational trees. Each parti-
tion Cj starts at a specific tree level k and covers m levels.
At each leaf of a computational tree, the next computational
tree starts, until the leaf nodes of the complete tree have
been reached. Each computational tree is assigned to one
thread on the GPU. Therefore, each level may consist of one
or multiple computational trees, and each thread is respon-
sible for traversing its tree for a given sub-key Ki according
to its starting level.

To traverse the tree for a key K, each partition provides
one of three different types of results. The result may con-
tain a reference to yet another computational tree. This is
the case if the partition is in the middle of the respective
tree and if it contains a path for its substring. The result
of a computational tree can also be NULL, meaning that
the computational tree does not contain any matching path
for its substring. The third possible result is a pointer to a
payload. This is the case if the computational tree contains
leaf nodes of the original prefix tree.

The result of the partition is then entered into a global
list for the intermediate results. Since the start addresses of
a partition are known, the result of a partition can be used
to determine which partition the pointer leads to. Finally,
the global list has to be traversed starting from the first
partition. Compared to a traversal of the original tree, only
a fraction of traversal steps are needed here. Furthermore,
the benefits of the computational trees are that they are
independent of each other and can be computed in parallel.

Figure 3 illustrates an example for this parallel traversal.
It shows a tree for a 12-bit integer. Each node has 8 entries,
resulting in a sub-key length of 3 bits and in a tree depth of
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Figure 3: Speculative Traversal of a tree with a depth of 4 for the 12-bit integer 3569.

4 nodes. The tree is first partitioned into 4 computational
trees. Note that only those partitions are created that are
needed. This can be implemented by keeping a list of start
pointers for a specific tree level that is maintained during
the insertion of data. Subsequently, each of the 4 compu-
tational trees is traversed in parallel, and the intermediate
results are entered into a global list, as illustrated in Table
1. To determine the final result, this intermediate result is
traversed in two steps. Computational tree no. 3 did not
lead to any result compared to trees 1, 2 and 4. They con-
tain a pointer to a payload or to a subsequent partition. The
traversal of the intermediate result starts with the first com-
putational tree, since it contains the root element. Its result
is a pointer to the fourth computational tree. Finally, the
result of the fourth computational tree is the pointer to the
resulting payload. Therefore, we need a total of 4 traversal
steps to retrieve the final result.

Sub-Tree Result

1 4
2 Payload
3 NULL
4 Payload

Table 1: Result of the traversal from Figure 3.

To quantify the possible benefits of this approach, we will
analyze it on a theoretical level, showing that for larger trees,
this method reduces the number of traversal steps tremen-
dously and, therefore, speeds up all operations on this tree.
Further, we will use N as the number of levels within the
tree. If all computational trees are executed completely
in parallel, the number of tree levels each thread has to
pass is equal to m. The number of steps required to build
the final result can be determined by k = N

m
− 1. There-

fore, the total number of nodes that need to be traversed is
n = m + k = m + N

m
− 1; the maximum speedup w.r.t the

number of nodes traversed is:

s =
N

n
=

N

m + N
m
− 1

. (1)

The global maximum of equation 1 is at m =
√

(N). There-
fore, the maximum theoretical speedup compared to a se-

quential traversal of the tree can be determined by:

smax =
N

(2 ∗
√

(N) + 1)
. (2)

This maximum speedup can only be reached if memory re-
quests of each thread are coalesced and therefore answered
simultaneously. Furthermore, it is necessary that the hard-
ware can hide the remaining memory latency by switching
threads into hardware that is not waiting for a memory
transfer to be completed. These features are available and
very well developed on the NVIDIA GPUs.

The possible speedup is limited by equation 2, by the max-
imum throughput between memory and processors, and by
the number of available processors. Furthermore, the last
step of building the final address is executed in serial. This
is one of the bottlenecks of this approach, which we will
reconsider later on. Furthermore, the possible maximum
speedup via equation 2 is only very limited for larger trees
and decreases with an increasing number of nodes. Since
one of the main goals is the ability to apply a prefix tree to
larger keys, it is necessary to perform further optimizations.
To increase the speedup of this approach further, more fea-
tures of the GPU must be exploited, like the local memory
with very low latency to the processor. This is especially
necessary since equation 1 shows that small computational
trees result in a large table with intermediate results that
can only be traversed in serial fashion.

3.2 Hierarchical Traversal
To increase the possible speedup further, we adopt the

method of parallel traversal to include the fast local memory
and to reduce the number of traversal steps on the global
memory to build the final result from the intermediate one.
To achieve this, we introduce another hierarchy similar to
the processor hierarchy on the GPU.

Threads that are executed on the GPU are grouped into
blocks. All threads within a block can share data via the
shared memory. Furthermore, shared memory can be ac-
cessed within 4-6 processor clock cycles, meaning a low la-
tency compared to the global memory. To utilize this shared
memory, we group computational trees into blocks. Within
each block, the threads write the intermediate results of their
computational tree into the shared memory. Then, after all
threads of one block have completed their traversal, the in-



Figure 4: Legend of variables within the tree architecture.

termediate result of the block is traversed. This final result
of the block is then entered into the result list in the global
memory to build the final result from the intermediate re-
sults from the blocks, similar to the previous approach.

This approach results in an additional traversal step but
increases the speed by leveraging the fast shared memory of
the GPU. The challenge with this additional step is to en-
sure that the computational trees within one block depend
on each other, meaning that no or only very few partitions
link to a partition located in a different block. To guar-
antee this, we split the size of the computational tree and
create sub-partitions within this tree. Each sub-partition is
then traversed by a separate thread, similar to the previous
approach.

To analyze the maximum speedup compared to the pre-
vious approach, we need to incorporate more variables into
our model. An illustration of the variables is given in Figure
4. The speedup depends on the number of blocks B gener-
ated, the height of a block |B| in the number of nodes, the
height of computational trees, and the latency relationship
between global G and shared memory R = G/L.

The number of intermediate results generated in the shared
memory to determine final results per block depends on the
block depth |B| and can be determined by |B|/m. Succeed-
ing this is the number of traversal steps in global memory =
N/(|B|). The traversal in global memory is needed to create
the final result. One of the limiting factors of the previous
approach was the bandwidth between global memory and
the processors. As the number of parallel traversals within
one block is still equal to m, the bandwidth usage is still a
limiting factor. In the following, we will analyze the possible
speedup compared to the previous approach. The number of
memory accesses khierarchical of the parallel node traversal
must be split into shared and global memory accesses.

kshared
hierarchical =

|B|
m

(3)

and

kglobal
hierarchical = m +

N

|B| (4)

Access to the global memory is only necessary to determine
the final results from the intermediate block results. As a
next step in our analysis, we incorporate the latency factor
R. Since the latency to the global memory is a lot higher

than to the shared memory, we add a penalty to the global
memory access.

khierarchical = klocal
hierarchical + kglobal

hierarchical ∗R (5)

=
|B|
m

+ (m +
N

|B| ) ∗R (6)

Therefore, the speedup of the approach with shared mem-
ory compared to the approach without shared memory can
be determined by:

s =
(m + N

m
− 1) ∗R

|B|
m

+ (m + N
|B| ) ∗R

. (7)

The maximum speedup can be reached by using |B| ==
N , meaning that the complete tree is traversed within one
block. In this case, the final result would be determined
completely in the fast local memory. This would result in
a maximum speedup compared to the non-hierarchical ap-
proach of:

smax = R. (8)

This theoretical maximum could only be reached if we were
able to dispatch unlimited numbers of threads in each block
to calculate all computational trees. Since architecture lim-
itations of the GPU prohibit unlimited numbers of threads
within one block and since there are limitations on the size
of the shared memory, this speedup can only be reached for
small trees, as our evaluation will show.

3.3 Parallel result building
As the analysis of the previous section has shown, the

determination of the final result is a sequential task and
requires k = N

m
−1 steps. If this fraction can be parallelized,

the total number of sequential steps would be reduced to the
number of traversals within a partition N

m
. In special cases,

the number of steps required within the final result can be
reduced. If the intermediate result table contains exactly
one pointer to a payload, then this pointer is the final result.
No other partitions containing leaf nodes have found a path
within their containing nodes. Furthermore, keys containing
a common beginning, for example, Web URLs, only need to
be compared in the last traversal steps.

Therefore, we propose a new method to find the final re-
sult. First, we start a thread for each pointer to a payload



Sub-Tree Result Payload

1 NULL NULL
2 NULL payload
3 NULL NULL
4 1 payload

Table 2: Reversed intermediate result table from
Table 1.

within the result table. Then, each thread checks the entries
within the table that reference this entry. This is repeated
until no further referencing entry is found or until the ref-
erencing entry is the root node. If, during the traversal, all
threads except for one are terminated, then the thread must
have started at the pointer to the payload that is the final
result.

Given the example in Table 1, a thread is created for every
entry containing a pointer to a payload. In this example, 2
are created. Further, the threads determine the entries in
the table that point to this element. For the payload in
partition 2, no parent partition can be found, and therefore,
this thread can terminate. Sub-tree 4 is referenced by the
root partition. Since the thread from partition 4 is the only
thread running and the only one that has found a parent, it
must be started at the pointer to the final result.

The challenge with this approach is to find the referencing
partitions. The näıve implementation of such a search would
be to scan the complete intermediate result table. Since this
is very inefficient, we propose to change the intermediate
result table to a reversed result table. The entries within it
do not point to the successor but to the predecessor. The
reversed intermediate result table from Table 1 is illustrated
in Table 2. As the reversed table shows, it is necessary to
save the pointer to the payload if the result of a partition is
a payload.

4. IMPLEMENTATION
Our implementation of speculative pre-computation for

the GPU is based on CUDA 3.1 developed by NVidia. Using
this technology, it is possible to write c/c++ style functions,
called device or global kernels, that are compiled with nvcc
and are executed via the runtime environment on the GPU.
It is only possible to execute these functions on the GPU.
Functions written for the CPU have to be rewritten, such as
functions for memory management. Since the insertion of
new data requires the allocation of new tree nodes, a mem-
ory management must be implemented to function on the
GPU. Furthermore, to leverage such functions as coalscaled
memory access the data layout must be optimize to avoid
conflicts. In this section, we will illustrate the basic archi-
tecture of the index system and outline how we optimized
the memory layout.

4.1 Basic Architecture
Index systems of database systems do not only consist

out of the index but also requires metadata and links to
the actual payload. Since the result of the search within an
index is used to perform further operations on the result,
the data must be located where the next operation will take
place. Figure 5 illustrates our main architecture. The dic-
tionary contains metadata to the index, such as name and
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Figure 5: Architecture and location overview.

type. Parts of the dictionary, such as the name, are located
on the GPU and on the CPU memory. This makes changes
and creation expensive but minimizes data transfer between
the host and the device. The metadata on the GPU is used
to search for a specific index. If the user opens an index with
a specific name the GPU is used to locate it within the sys-
tem. For this one thread per existing index is created which
compares its name with the name that is being searched for.
Once the index is found a pointer is returned to the CPU to
perform further operations. This is especially useful if many
indexes exist within the system.

As Figure 5 shows, the complete index resides on the
GPU. The insert() or get() functions are executed solely on
the GPU. Therefore, only minimal data transfer is needed.
The limiting factor fur such a design is the amount of avail-
able GPU memory. Current systems provide up to 4GB of
global memory (NVidia Tesla S1060). Since a prefix tree
performs a type of compression we can store strings exceed-
ing the 4GB limit. Furthermore, through our memory lay-
out it is possible to page a complete index from the GPU to
CPU ram if necessary.

As depicted in the previous chapter, leafs of the tree con-
tain the payload. These L1 items are located in CPU RAM
together with the payload list. The leaf nodes on the GPU
only contain the address of this L1 item within the address
space of the CPU RAM. This way only the address of the
L1 item and the key must be transferred to the GPU when
inserting a tuple. The L1 Items contain a pointer to the
actual payload. To support efficient scan operations, the
payloads are within a globally linked list reducing the need
to find the next lexical element within the tree.

4.2 Memory and Thread Layout
Finding an efficient memory layout is essential to leverage

coalscaled access capabilities of the GPU. The most critical
part is the creation of the node structure. Current NVidia
GPU can coalscaled memory access from 16 parallel running
threads (half warp) on the same multiprocessor. Therefore,
it is essential that within a half warp the memory layout is
build such that the memory requests can be coalscaled by
the hardware. For each partition level we create a multi-
ple of 16 threads and partitions. Each thread traverses one
partition of the same level. Each of these partitions is filled
in parallel during the insertion of the data into the index.
The only difference between the partitions is the value of the
leaf node of the partition. Hence each partition has the same



Figure 6: Illustration of parallel filled partitions
with the same layout.

number of nodes and the same layout as Figure 6 illustrates.
This method creates a higher memory footprint than an allo-
cation of memory only when necessary. If a dataset contains
many common substrings with different prefixes then only
minimal overhead is created compared to an allocation on
request. An allocation on request would randomly create
addresses and hence limit coalscaled access.

The only exception is the root partition since there is only
exactly one root partition we create only one partition but
dispatch 16 threads to traverse it. From these threads 15
terminate immediately. This is necessary to guarantee that
all other partition levels are aligned with 16 threads.

Besides coalscaled access this method of allocating the
partitions also minimizes the number of divergent Branches.
Divergent branches are created when a thread within a half
warp has a different execution flow as the other thread.
When for example an if condition evaluates true within
one thread and false in another thread then the threads
are partially serialized reducing the parallelism. Since each
thread within a half warp traverses the same path the eval-
uation of the conditions are the same. Divergent branches
create a significant overhead since the scheduler needs to
find a new schedule for this new set of operations.

Since dynamic memory allocation can only be performed
from the CPU the insertion function requires their own mem-
ory management. Memory management is based on pages.
Each page consist of G number of bytes. A pointer deter-
mines where the next free byte is located within this page.
Before an insert operation is executed the system determines
the number of free bytes within the current page. If not
enough memory is available then another page is allocated
and is added to the index. Therefore, the index maintains
a list of memory pages it may use. For this setup deletes of
nodes are not considered. Each page can be considered as
an array of bytes. The actual address that is written into a
node of the tree is not the physical address but a reference
on into a specific page. With this relative addressing we can
move the complete index from and to any GPU device, in a
multi device setting, without having to modify the pointers
in the tree.

5. RELATED WORK
Multiple approaches to perform relational database oper-

ations on a GPU (join) have been proposed in [6, 7]. The
approach used to speed up database operations is to parti-
tion the data and then to compute each partition in parallel.
With this method, strong data dependencies still exist and
only a limited parallelization usage of the high number of
cores is possible. For spatial databases, similar approaches
have been proposed in [2, 3]. Furthermore, all approaches
focus on complete operations of databases and not on single
elements such as indexes. Index structures for the GPU have
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Figure 7: Naive index.

found attention in [5, 4]. The goal of [5] is to create a com-
pression and evaluation strategy for bitmap indexes for mas-
sively multi-threaded platforms. One of the major points of
criticism of this approach is that bitmap indexes are costly
to maintain. In [11], the authors use a special layout of
a binary tree to optimize the search strategy. Compared
to our approach, their concept is update-unfriendly since a
complete rebuild of the tree is necessary to insert a tuple.
Furthermore, [20] proposes a SIMD-based traversal of a tree
to optimize the tree traversal for multiple parallel searches.
This differs from our approach, since we use a data-parallel
traversal. Furthermore, the previous approaches use a bi-
nary tree as a base, compared to our prefix tree using N
bits as a prefix. A binary search tree results in a deep tree
for long key values, reducing its performance. In contrast,
our approach uses multiple bits per node and, therefore, re-
sults in shorter trees and a reduction of the total number of
traversal steps required to resolve a search query.

Beyond of the field of databases the method of specu-
lative computation is widely adopted for parallel memory
machines as [8, 17, 18] illustrate. Here the authors also com-
pute partial results although they might not contribute to
the final result. Precomputation is here applied to a domain
containing data dependencies within complex calculations.
Distributed memory machines have no global memory and
offer different optimization possibilities. The research focus
lies on when to push data from what computing node to
another. Yet the computing node consist only of a single
computing instance and not, like a GPU, of a highly thread
parallel system. The GPU furthermore offers other possibil-
ities to optimize the parallel execution and parallel memory
access as the previous section illustrates.

6. DISCUSSION AND EVALUATION
We evaluated our proposed approaches against the se-

quential traversal of the tree, performing N steps on one
core on the GPU and CPU, and against a näıve approach.
The näıve approach creates a thread for every key within
the index. To ensure that the näıve implementation also
uses coalesced memory access, we have arranged the data in
a matrix containing 512 keys, as Fig. 7 shows. With this
organization, each thread accesses a character in ascending
address order. Once a matrix is full, another matrix is cre-
ated. Each matrix is executed as one block on the GPU. All
data is unsorted within the matrixes.

For the evaluation, we used a single GTX285 GPU with
240 cores with 1.48GHz per core and a memory clock rate of
1.2GHz running on a Windows 2008 PC and a CUDA driver



of version 3.1. To compare the GPU performance with a
CPU implementation, we used an Athlon 64 X2 Dual Core
4200+ with a clock rate of 2.2GHz. To measure the number
of serialized blocks, we used NVIDIA’s Parallel NSight.

First, we evaluated the performance of the approaches
with multiple different artificial data sets containing differ-
ent data skews in addition to a real dataset. For the fol-
lowing experiments, we use strings as keys with a length of
128 characters. Since the speculative approach creates one
thread per partition, the first dataset creates a new partition
with every insert. This is the worst case for our speculative
approach, since it maxes out the number of threads used.
Figure 8(a) illustrates the result of this experiment. As we
can see, the speculative approach performs better than the
linear traversal and the näıve approach. Since the number of
tuples within the index determines the number of partitions,
and thus the number of threads used to traverse the tree,
the performance degrades. As soon as the GPU hardware
has more threads that can fully run in parallel, threads and
blocks are serialized.

The second data skew is optimal for the tree construc-
tion. Every insert creates a new leaf node by incrementing
the least significant byte by one for every new string. With
this data skew, only the minimal number of partitions is
created, since the tree is only expanded on the very last
level. Figure 8(b) illustrates the result of this experiment.
Clearly, it shows that the performance is almost always bet-
ter than with the näıve approach and the linear traversal of
the tree. The performances of the näıve approach and the
linear traversal are equal to the performance with the pre-
vious data skew. This shows that the performances of these
approaches are independent of the data skew. Furthermore,
it can be seen from the two experiments that the linear tree
traversal is independent of the number of tuples compared
to the näıve approach. This is due to the tree structure.
The number of levels within the tree is independent from
the number of tuples within the tree. Since a new thread is
created for every new tuple in the näıve approach, it suffers
from the same effects as the parallel traversal does. As soon
as a specific number of tuples is reached, the GPU hardware
starts to serialize the threads and blocks.

The third data skew contains URL-like strings. Their ini-
tial segments are the same, but their last segments are very
heterogeneous. We used the scaped URL data from the
facebook directory. This dataset contains more than 100,000
urls with an average length of 60 characters and a maximum
length of 147. It consists out of the Facebook URL, the user
name and an integer value being the user ID within Face-
book. This type of dataset can be used to show the effects of
the parallel traversal of the intermediate result. Figure 8(c)
shows the result of this experiment. The performance gain
that can be achieved by this additional approach is only very
limited but adds another 10% performance increase for this
specific data skew. As the previous experiments have shown,
the parallel traversal of the intermediate results shows only
very little to no performance degradation compared to the
sequential traversal of the intermediate result.

Aside from the data skew, the performance of our ap-
proach depends on the number of levels within a partition.
In the previous examples, we used the theoretical optimum.
Figure 8(d) illustrates the performance of our approach with
the first dataset with different numbers of levels within a
partition. Clearly, the experiment shows that the theoreti-

cal optimum is also the optimum for the implementation.
Due to the method how the memory layout is orches-

trated, it is important to measure the memory consump-
tion. Figure 8(e) shows an experiment for different dataset
sizes from the different data skews from above and compared
to a näıve implementation. The näıve implementation allo-
cates data on demand and therefore creates a randomized
memory layout minimizing the possibility of coalesced ac-
cess. The modified memory allocation creates for the Face-
book dataset only minimal overhead since the lower parti-
tions are very heterogeneous and new partitions are created
very often. The minimal tree in comparison creates a larger
overhead since the partitions are completely filled and the
parallel partitions for the levels are also filled.

One of the main points of criticism for the usage of the
GPU as a co-processor for database operators is the limited
bandwidth between CPU and GPU memory, which is cur-
rently limited to 4GB/s. Since our approach keeps the data
persistent on the GPU’s main memory, such criticism only
applies to a very limited extent. Figure 8(f) shows another
very important observation. In the previous experiments,
we only measured the runtime of the kernels executing the
search on the GPU. To execute this kernel, it is necessary
to leverage the CUDA runtime. This adds significant over-
head to a single operation. As Figure 8(f) shows, it is not
the data transfer rate that limits the performance but the
CUDA runtime overhead, since our approach only transfers
very small tuples to the GPU memory. The runtime API is
mapped during the compilation to the driver API. This map-
ping can be enhanced with specific application knowledge,
such as that the system runs in a single threaded environ-
ment. Since NVidia offers the possibility to use driver API
directly to start kernels on the GPU, we implemented our
own intermediate management layer to replace the CUDA
runtime based on the driver API. This intermediate layer
reduces the necessity for specific calls and also minimizes
the management overhead. Figure 8(f) shows that our im-
plementation on top of the driver API reduces the overhead
significantly.

7. CONCLUSION AND OUTLOOK
With an increasing amount of data and user demands for

fast query processing, the optimization of database opera-
tions continues to be a challenging task. A common op-
timization method is to leverage parallel hardware archi-
tectures. With the introduction of general-purpose GPU
computing, massively parallel hardware has become avail-
able within commodity hardware. In this paper, we have
presented our novel developed approach of speculative pro-
cessing of database operations for highly parallel systems.
As an example, we realized this approach for the search on a
prefix index to speed up search queries. Fundamentally, our
concept of speculative tree traversal consists of two steps:
(i) parallel traversal of (all) partitions of the tree, and (ii)
aggregation of intermediate results to the final result. As
our exhaustive evaluation showed, our approach scales well
for different data skews and sizes. During the implementa-
tion, we leveraged the driver API to reduce the overhead
generated by the CUDA runtime.

This first implementation of our approach showed the ap-
plicability to a small task within a database system. In
the future, we are going to apply this speculative idea to
other areas within database systems, for example, to joins
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Figure 8: Evaluation Results of Our Speculative Approach.



or groupings as intra-operator speculative processing. Aside
from the fine-grained speculative processing, this method
could also be applied to a complete execution plan of a query
by massively using parallel threads to execute operations
and then merging the result together in a subsequent step.
However, the speculative processing has its limits since the
available resources can be exhausted. Hence, it is essential
to develop pruning methods, such as the reverse traversal of
the intermediate result, to efficiently leverage the hardware
for scalable problems.
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